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Abstract

Computation of derivatives (gradient and Hessian) of a fidelity function is one of the
most crucial steps in many optimization algorithms. Having access to accurate methods
to calculate these derivatives is even more desired where the optimization process re-
quires propagation of these calculations over many steps, which is in particular impor-
tant in optimal control of spin systems. Here we propose a novel numerical approach,
ESCALADE (Efficient Spin Control using Analytical Lie Algebraic Derivatives) that
offers the exact first and second derivatives of the fidelity function by taking advantage
of the properties of the Lie group of 2 × 2 Hermitian matrices, SU(2), and its Lie alge-
bra, the Lie algebra of skew-Hermitian matrices, su(2). A full mathematical treatment
of the proposed method along with some numerical examples are presented.

Keywords: Optimal control, Spins, Lie algebra, Derivatives, Gradient, Hessian,
Newton-Raphson

1. Introduction

Controlling quantum spin dynamics using time-dependent Hamiltonians in the form
of pulses (e.g. radiofrequency, microwave, and laser pulses) is the essence of method
development in many areas of science [1], from magnetic resonance spectroscopy and
imaging [2] and terahertz technologies[3, 4] to trapped ions [5], cold atoms [6] and
NV-centers in diamond [7, 8] for quantum information processing and computing [9].

In NMR and ESR, in particular, designing radiofrequency and microwave pulses
for robust excitation of signals over a very wide range of frequencies and reduced
sensitivity to instrumental imperfections is still among the most challenging areas of
method design and is of great interest. The development of methods for pulse design
in these applications generally follows one or more of three distinct routes: compos-
ite pulse design [10–15], evolutionary numerical methods like optimal control theory
(OCT) [2, 16–22], and design of swept-frequency pulses [23–33].

∗Corresponding author
∗∗Corresponding author

Email addresses: mohammadali.foroozandeh@chem.ox.ac.uk (Mohammadali Foroozandeh),
ps2106@bath.ac.uk (Pranav Singh)

ar
X

iv
:2

00
3.

02
01

1v
1 

 [
ph

ys
ic

s.
co

m
p-

ph
] 

 4
 M

ar
 2

02
0



Two of the main challenges in the field of optimal control of spin systems are the
controllability of the dynamics and the convergence rate of the control process. In prin-
ciple, three main approaches can be considered when optimal control has been applied
to spin systems: 1) derivative-free techniques [34, 35] which are especially important
when due to experimental requirements not many iterations or function evaluations by
the optimisation protocol can be allowed, 2) gradient-based techniques like GRAPE
[2, 9] and KROTOV [36, 37], and 3) Newton–Raphson method [38, 39] where in ad-
dition to the gradient (first derivative), the Hessian (second derivative of the objective
function with respect to the control parameters) is also utilized. Although the latter ap-
proach results in quadratic convergence rate, it suffers from numerical complexity due
to computation and update of a dense Hession matrix in the course of optimization.
Additionally, computation of derivatives using finite differences can be expensive, in-
accurate and potentially unstable when the objective function involves numerical prop-
agators with limited accuracy [40, Chapter 8]. Therefore having access to the exact
form of these derivatives is of great interest, in particular in the optimal control of spin
systems, where the optimization process requires propagation of these calculations over
many steps, and inaccurate estimations of derivatives can result in a large accumulated
numerical error.

The objective of this paper is to present a novel approach that facilitates the optimal
control of spins using Newton–Raphson utilizing an analytical computation of deriva-
tives. Control of dynamical systems using properties of Lie groups and their algebras
covers a surprisingly wide range of applications from controlling of landing a plane,
rotations of rigid bodies in robotics and estimation of camera poses in computer vision,
to the time evolution of quantum systems [41–49]. In these applications, the underlying
geometric structure is described by a Lie group. Finite difference methods suffer from
a further disadvantage here since they do not respect Lie group structure and result in
derivatives that do not live in the tangent space (the Lie algebra) [50].

Here we propose a novel numerical approach, ESCALADE (Efficient Spin Control
using Analytical Lie Algebraic Derivatives) that harnesses the exact first and second
derivatives of the fidelity function. These derivatives are computed by exploiting the
properties of the Lie group of 2×2 Hermitian matrices, SU(2), and its Lie algebra – the
Lie algebra of skew-Hermitian matrices, su(2). Since the Lie groups, SU(2) and SO(3)
are closely related (see [51, Chapter 5] and [52, Chapter 6]), there is a close parallel
between some of the properties exploited here to the Rodrigues rotation formula [53],
which is utilized widely in computer vision and robotics applications for computation
of rotation matrices in SO(3) [49, 50, 54, 55].

Although here we present the technique on the optimal control of the dynamic of
non-interacting qubits, this is a general approach and can be applied to spin systems
with more diverse Hamiltonian structures. It has the potential to find applications in
a variety of areas where taking advantage of Lie algebra for efficient optimal control
of spins is beneficial. Examples include geometric [41, 56–59] and adiabatic optimal
control [23, 60–62] methods.
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2. Theory

2.1. Optimal control of spin-1⁄2
The state of a single spin-1⁄2 particle is described by the density matrix ρ(t) ∈ SU(2)

and its dynamics are governed by the Liouville–von Neumann equation,

∂tρ(t) = −i[H(t), ρ(t)], ρ(0) = ρ0 ∈ SU(2), (1)

where
H(t) = h(t) · σ, (2)

h(t) = ( f (t), g(t),Ω)> ∈ R3, σ = (σx, σy, σz)>, (3)

and

σx =
1
2

(
0 1
1 0

)
, σy =

1
2

(
0 −i
i 0

)
, σz =

1
2

(
1 0
0 −1

)
are the normalized Pauli matrices. Ω describes the offset frequency of a spin.

remark 1. In magnetic resonance applications, it is typical to write f (t) = ω(t) cos(φ(t))
and g(t) = ω(t) sin(φ(t)) where the amplitude ω(t) and the phase φ(t) may be arbitrary
(real-valued) functions of time.

remark 2. In the case of multiple non-interacting spin-1⁄2 particles, the kth spin evolves
under the influence of Hk(t) = hk(t) · σ, where the offset Ωk in hk(t) = ( f (t), g(t),Ωk)
varies with the particle but f (t) and g(t) are common across all spins.

In a numerical solution of equation (1), we compute ρ at time intervals t0, t1, . . . tN ,
with the unitary numerical propagation being described by

ρn = Unρn−1U†n, Un = e−isn·σ, (4)

where
sn = (∆t) ( f (tn−1), g(tn−1),Ω)>. (5)

By using equation (4), one can see that the final density matrix is given by

ρN = Utotρ0U†tot (6)

where
Utot = UNUN−1 . . .U2U1. (7)

Typically we want to maximize the fidelity functional,

F = 〈%|ρN〉 := Tr(%†ρN) ∈ [0, 1],

to have maximum overlap (i.e. F = 1) with the (normalized) target state % ∈ SU(2).
In a gradient-based optimization scheme one needs to compute the gradient of the

fidelity function F ,
∂F

∂θn,k
= Tr

(
%†
∂ρN

∂θn,k

)
, (8)
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where n ∈ {1, . . . ,N}, k ∈ {1, 2}, and

θn,1 = f (tn−1), θn,2 = g(tn−1)

are the control parameters that solely affect the nth propagator, Un. A Newton–Raphson
optimization scheme also requires the Hessian,

∂2F

∂θm, j∂θn,k
= Tr

(
%†

∂2ρN

∂θm, j∂θn,k

)
, (9)

where n,m ∈ {1, . . . ,N} and j, k ∈ {1, 2}.
In the computation of the gradient of the fidelity function (8), we require the gradi-

ent of the final state ρN ,
∂ρN

∂θn,k
= 2Re

(
∂Utot

∂θn,k
ρ0U†tot

)
. (10)

Since θn,k only affects the nth propagator, this gradient can be written in the form

∂Utot

∂θn,k
= UNUN−1 . . .Un+1

∂Un

∂θn,k
Un−1 . . .U1

= Ln+1
∂Un

∂θn,k
Rn−1, (11)

where

Ln = UNUN−1 . . .Un, (12)
Rn = UnUn−1 . . .U1, (13)

can be computed in O(N) time.
Here we present a method for computing the gradient ∂Un/∂θn,k, and therefore

the gradient of the fidelity function, analytically using Lie algebraic techniques. This
approach is also extended for computing the Hessian analytically.

2.2. Computation of gradient
In this section we present the analytic approach for computing the derivative of the

nth unitary propagator (4),
Un = exp(−isn(θn,k)),

with respect to a control parameter θn,k. Here we write sn(θn,k) to highlight the fact that
sn depends on θn,k.

In general, the derivative of the exponential of X(θ) with respect to a control pa-
rameter θ can be expressed as [63, 64]

∂

∂θ
exp(X(θ)) = exp(X(θ)) dexpX(θ)X

′(θ), (14)

where the dexp function,

dexpXX′ =

(
1 − e−adX

adX

)
(X′) =

∞∑
p=0

(−1)p

(p + 1)!
adp

X(X′), (15)

4



is expressed as a power series of the adjoint operator, ad. The powers of ad are given
by

ad0
X(X′) = X′,

adX(X′) = [X, X′],

ad2
X(X′) = [X, [X, X′]].

Equations (14) and (15) allow us to express the derivative of Un,

∂Un

∂θn,k
=

∂

∂θn,k
e−isn(θn,k)·σ

= e−isn·σ︸︷︷︸
Un

(
1 − e−ad−isn ·σ

ad−isn·σ

) (
−i

∂sn

∂θn,k
· σ

)

= Un

 ∞∑
p=0

(−1)p

(p + 1)!
adp
−isn·σ

 (−i
∂sn

∂θn,k
· σ

)
.

remark 3. For ease of notation, we suppress the dependence of s on the control pa-
rameters, θ.

An explicit formula can be derived for the dexp series when X(θ) ∈ su(2). To see
this, we introduce the map ∼ which maps vectors in R3 to matrices in su(2),

s̃ = −is · σ, s ∈ R3.

It is easy to verify that

[̃s, r̃] = s̃ × r = S̃r, s, r ∈ R3, (16)

where × is the cross product and S is the matrix,

S =

 0 −sz sy

sz 0 −sx

−sy sx 0

 . (17)

Note that the powers of the ad operator can be written in terms of the matrix S using
the relation (16),

ad−isn·σ (̃r) = S̃nr = −i(Snr) · σ,

and
adp
−isn·σ

(̃r) = S̃p
n r = −i(Sp

n r) · σ, p ≥ 0.

Consequently,

∂Un

∂θn,k
= −iUn


 ∞∑

p=0

(−Sn)p

(p + 1)!

︸           ︷︷           ︸
3×3

(
∂sn

∂θn,k

)
︸  ︷︷  ︸

3×1

 · σ,
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where Sn is obtained from sn(θn,k) using equation (17). Observe that

S3
n = − ‖sn‖

2 Sn,

and we may further simplify the dexp series as

Dn =

∞∑
p=0

(−Sn)p

(p + 1)!

= I + S2
n

∞∑
p=1

(− ‖sn‖
2)p−1

(2p + 1)!
− Sn

∞∑
p=0

(− ‖sn‖
2)p

(2p + 2)!

= I + c1(‖sn‖)Sn + c2(‖sn‖)S2
n, (18)

where
c1(x) =

cos(x) − 1
x2 , c2(x) =

x − sin(x)
x3 . (19)

To summarise, the analytic derivative of Un is given by

∂Un

∂θn,k
= −iUn

([
Dn

∂sn

∂θn,k

]
· σ

)
, (20)

and the derivative of Utot by

∂Utot

∂θn,k
= UNUN−1 . . .Un+1

∂Un

∂θn,k
Un−1 . . .U1

= −iLn

([
Dn

∂sn

∂θn,k

]
· σ

)
Rn−1. (21)

In a practical implementation, Ln and Ln−1 are given by equations (12) and (13). We
compute Dn using equation (18). Lastly, recall that in equation (5),

sn = (∆t) ( f (tn−1), g(tn−1),Ω)>,

and the control parameters are θn,1 = f (tn−1) and θn,2 = g(tn−1). Consequently,

∂sn

∂θn,1
= (∆t) (1, 0, 0)>, (22)

and
∂sn

∂θn,2
= (∆t) (0, 1, 0)>. (23)

This completes the description of the analytic gradients. Combining equations (8), (10)
and (21),

∂F

∂θn,k
= 2ImTr

(
%†Ln

([
Dn

∂sn

∂θn,k

]
· σ

)
Rn−1ρ0U†tot

)
. (24)

Using the definition of Ln and Rn in equations (12) and (13) it is evident that LnRn−1 =

Utot and consequently we may write

Rn−1 = L†nUtot. (25)

6



Substituting (25) in (24) reduces the final form of the analytical gradient of the fidelity
function to

∂F

∂θn,k
= 2ImTr(Ln,kρN%

†). (26)

where for any pulse segment n and any control parameter k:

Ln,k = Ln

([
Dn

∂sn

∂θn,k

]
· σ

)
L†n, (27)

2.3. Computation of Hessian

In the computation of the Hessian of the fidelity function (9) we require the Hessian
of the final state,

∂2ρN

∂θm, j∂θn,k
= 2Re

(
∂2Utot

∂θm, j∂θn,k
ρ0U†tot

+
∂Utot

∂θn,k
ρ0
∂Utot

∂θm, j

†
)
. (28)

An analytic form for the gradient of Utot with respect to control parameters θn,k and θm, j

has already been obtained in equation (21). In this section, we derive an analytic form
for ∂2Utot/∂θm, j∂θn,k.

2.3.1. Off-diagonal entries (n > m) of the Hessian
When n > m, the Hessian is typically computed as

∂2Utot

∂θm, j∂θn,k
= UNUN−1 . . .Un+1︸               ︷︷               ︸

Ln+1

∂Un

∂θn,k

× Un−1 . . .Um+1︸          ︷︷          ︸
Mn−1,m+1

∂Um

∂θm, j

× Um−1 . . .U1︸        ︷︷        ︸
Rm−1

. (29)

where

Mn,m = UnUn−1 . . .Um−1Um. (30)

Similarly, we can derive the corresponding expression for m > n. Overall, since n and
m range between 1 and N, the various values of Mn,m are typically computed in O(N2)
time in such a procedure.

Here we introduce an alternative approach for computing ∂2Utot/∂θm, j∂θn,k that
does not require the computation of Mn,m. Since Ln+1 and Rm−1 are unitary,

L†n+1Ln+1 = I, R†m−1Rm−1 = I, (31)
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we can express Mn,m as

Mn,m = UnUn−1 . . .Um

= L†n+1Ln+1UnUn−1 . . .UmRm−1R†m−1

= L†n+1UtotR
†

m−1. (32)

Thus, Mn,m can be replaced in the computation of the Hessian and equation (29)
can be written in the form

∂2Utot

∂θm, j∂θn,k
= Ln+1

∂Un

∂θn,k
L†nUtotR†m

∂Um

∂θm, j
Rm−1. (33)

Substituting (20), the expression in equation (33) becomes

− Ln+1Un

([
Dn

∂sn

∂θn,k

]
· σ

)
L†nUtot

× R†mUm

([
Dm

∂sm

∂θm, j

]
· σ

)
Rm−1.

We use the fact that Ln+1Un = Ln and R†mUm = R†m−1 to reduce this expression to

− Ln

([
Dn

∂sn

∂θn,k

]
· σ

)
L†nUtot

× R†m−1

([
Dm

∂sm

∂θm, j

]
· σ

)
Rm−1.

2.3.2. Diagonal entries (m = n) of the Hessian
For the case m = n, following (11),

∂2Utot

∂θn, j∂θn,k
= Ln+1

∂2Un

∂θn, j∂θn,k
Rn−1. (34)

Differentiating equation (20) with respect to θn, j,

∂2Un

∂θn, j∂θn,k
=

− Un

{[(
Dn

∂sn

∂θn, j

)
· σ

] [(
Dn

∂sn

∂θn,k

)
· σ

]
+i

(
∂Dn

∂θn, j

∂sn

∂θn,k
+ Dn

∂2sn

∂θn, j∂θn,k

)
· σ

}
, (35)

where ∂2sn/∂θn, j∂θn,k vanishes due to (22) and (23). The derivative of Dn (18) can be

8



computed explicitly,

∂Dn

∂θn, j
=

∂

∂θn, j

(
I + c1(‖sn‖)Sn + c2(‖sn‖)S2

n

)
(36)

= c′1(‖sn‖)
∂ ‖sn‖

∂θn, j
Sn + c1(‖sn‖)

∂Sn

∂θn, j

+ c′2(‖sn‖)
∂ ‖sn‖

∂θn, j
S2

n

+ c2(‖sn‖)(Sn
∂Sn

∂θn, j
+
∂Sn

∂θn, j
Sn),

where

c′1(x) =
−2 cos(x) − x sin(x) + 2

x3 , (37)

c′2(x) =
3 sin(x) − x cos(x) − 2x

x4 , (38)

∂ ‖sn‖

∂θn, j
=

sn ·
∂sn
∂θn, j

‖sn‖
, (39)

and ∂Sn/∂θn, j is obtained directly by creating a matrix from ∂sn/∂θn, j, equations (22)
and (23), along the lines of (17),

∂Sn

∂θn,1
= (∆t)

 0 0 0
0 0 −1
0 1 0

 , ∂Sn

∂θn,2
= (∆t)

 0 0 1
0 0 0
−1 0 0

 . (40)

The complete description of the Hessian of the fidelity is obtained by combining
equations (9), (28), (29), (35), (34) and (21),

∂2F

∂θm, j∂θn,k
= 2ReTr(%†(Vm,n, j,k −Wm,n, j,k)), (41)

where

Vm,n, j,k = Ln

([
Dn

∂sn

∂θn,k

]
· σ

)
Rn−1ρ0

×

(
Lm

([
Dm

∂sm

∂θm, j

]
· σ

)
Rm−1

)†
, (42)

Using equations (25) and (27) we can simplify the above expressions as follows:

Vm,n, j,k = Ln,kρNL
†

m, j (43)

whileVm,n, j,k is common between diagonal (m = n) and off-diagonal elements (n > m)
of the Hessian matrixWm,n, j,k has two distinct forms.
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For m = n,

Wn,n, j,k = Ln

{[(
Dn

∂sn

∂θn, j

)
· σ

] [(
Dn

∂sn

∂θn,k

)
· σ

]
+i

[(
∂Dn

∂θn, j

∂sn

∂θn,k

)
· σ

]}
Rn−1ρ0U†tot,

and for n > m,

Wm,n, j,k = Ln

([
Dn

∂sn

∂θn,k

]
· σ

)
L†nUtot

× R†m−1

([
Dm

∂sm

∂θm, j

]
· σ

)
Rm−1ρ0U†tot.

Similar to equation (43) we can do additional simplifications for theWm,n, j,k term.
For m = n we have:

Wn,n, j,k =
(
Ln, jLn,k +Dn, j,k

)
ρN (44)

where

Dn, j,k = iLn

[(
∂Dn

∂θn, j

∂sn

∂θn,k

)
· σ

]
L†n. (45)

and for n > m we can use equation (27) to write:

Wm,n, j,k = Ln,kLm, jρN (46)

Therefore the general form of the diagonal elements of the Hessian matrix will be:

∂2F

∂θn, j∂θn,k
= 2ReTr(Ln,kρNL

†

n, j%
†

− (Ln, jLn,k +Dn, j,k)ρN%
†), (47)

and the general form of the upper-diagonal elements of the Hessian matrix can be
written as

∂2F

∂θm, j∂θn,k
= 2ReTr(Ln,kρNL

†

m, j%
† − Ln,kLm, jρN%

†), (48)

L andD can be precomputed inO(N) time along with L. The factorization (27) reduces
the computational effort by a factor of three since only two matrix multiplications are
required for each entry of the Hessian. Note that the lower-diagonal elements (n < m)
can be easily obtained using the symmetry of the Hessian matrix and do not need to be
computed separately. Equation (48) for these entries can be written as:

∂2F

∂θm, j∂θn,k
= 2ReTr(Ln,kρNL

†

m, j%
† − Lm, jLn,kρN%

†), (49)

Finally, using equations (47), (48) and (49) a general form of Hessian entries can be
expressed as a single equation:

∂2F

∂θm, j∂θn,k
= 2ReTr(Ln,kρNL

†

m, j%
†

− (Ln,kLm, j︸    ︷︷    ︸
Lm, jLn,k

if m>n

+Dn, j,k︸︷︷︸
0

if n,m

)ρN%
†), (50)
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3. Numerical demonstrations

3.1. Comparison with finite difference method

Finite difference approximation of the gradient of numerical propagators Un re-
quires computing Un for multiple values of θn,k differing by a ‘finite difference step’.
Figure 1 demonstrates that while the finite difference step size must be kept sufficiently
small for accuracy, the approximations become unstable for very small steps. Thus the
suitability of a finite difference step may prove difficult to asses a-priori. This balance
between accuracy and stability becomes more precarious when (i) the time step of the
numerical propagator (∆t) is large, (ii) the numerical propagator is of limited accuracy
or (iii) higher derivatives are required. In addition to respecting the Lie algebraic struc-
ture and being relatively inexpensive, the proposed approach for computing analytic
derivatives does not suffer from such instability.

3.2. Example for pulse design in magnetic resonance

Here we demonstrate one of the applications of the proposed method for the de-
sign of broadband excitation pulses in magnetic resonance spectroscopy. The simplest
case would be control of an ensemble of non-interacting spin-1⁄2 particles. Conven-
tional instantaneous radio-frequency or microwave pulses have limited bandwidth due
to high power requirements that cannot be afforded on most instruments; therefore they
can only satisfy the desired state manipulation in a rather limited range of frequencies
close to the transmitter offset of the pulse, i.e. they are only effective for spins with
relatively small frequency offsets; additionally, the performance of these pulses can be
considerably affected by instrumental imperfections or instabilities. The goal here is to
circumvent these problems by designing a pulse propagator that satisfies certain objec-
tives for all spins within the desired frequency range, with a robust performance that
does not depend on frequency offset of spins or instrumental imperfections.

The example here demonstrates an excitation pulse designed using the proposed
method to bring all spins in the ensemble from z to y. Figure 2 (a) shows the final state
of spin across the frequency range of interest (50 kHz here), and figure 2 (a) shows
variations of one of the components, y, for five different offset frequencies during the
200 µs pulse. Additionally, we can incorporate an additional optimization step that
significantly reduces the sensitivity of the pulse to instrumental imperfections. Here
this was considered as reducing the sensitivity of the pulse performance to unknown
variations of radio-frequency (RF), or microwave (MW) amplitudes. Figure 3 (a) shows
corresponding graphs for the variations of the target state, y, versus RF field, B1. One
common example of such imperfection is the position-dependent B1 field across an RF
coil used to generate the pulse. These variations introduce position-dependent phase
of the signal across the ensemble of spins and therefore results in significant signal
loss and non-uniform excitation profile of the pulse. Here an additional objective is to
minimize the variation of signal phase with respect to the variation of B1 field ( dφ

dB1
),

figure 3 (b) shows that for a given nominal RF amplitude with ±20% variations in the
amplitude of B1 field, dφ

dB1
is zero for all frequencies in the desired range.
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Figure 1: Accuracy and stability of forward differences and central differences approximation to (a) the
gradient (∂Un/∂θn,k), and (b) the Hessian (∂2Un/∂θ

2
n,k) of a single step propagator Un. The behaviour is

shown for two different time steps, ∆t = 10−6 (forward difference [solid blue], central difference [dotted
purple], analytic [solid green with circles]) and ∆t = 10−4 (forward difference [dashed orange], central
difference [densely dashed yellow], analytic [solid light blue with crosses]).
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Figure 2: (a) calculated excitation profiles for different component of density operator, x (blue), y (red),
and z (orange) at ω1 = ω0

1 (20 kHz) for a 200 µs pulse acting on 101 non-interacting spin-1⁄2 over a 50
kHz frequency range; (b) variations of y component of spin trajectories during the pulse for five different
frequencies.
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Figure 3: (a) 3D plot and projection showing the y-magnetization excited as a function of relative resonance
offset ( Ω

ω0
1

) and relative RF amplitude ω1
ω0

1
; (b) Sensitivity of signal phase to field strength ( dφ

dB1
) as a function

of relative field strength ( B1
B0

1
).
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4. Conclusion

In the present work, we have introduced a new approach, ESCALADE, for com-
putation of derivatives of the cost function in optimal control of spin systems. We
demonstrated that using the proposed mathematical framework, derivatives (gradient
and Hessian) can be computed analytically using Lie algebraic techniques. The pro-
posed method is very general and can be adapted to and used in many potential ap-
plications where efficient optimal control of spin systems is required. A numerical
implementation of the proposed method in MATLAB along with additional functions
for optimization and visualization of the performance are freely available via the fol-
lowing DOI: 10.17632/8zz84359m5.1.
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