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Abstract

In this paper we consider distributed adaptive stabilization for uncertain multivariable linear systems with a time-varying
diagonal matrix gain. We show that uncertain multivariable linear systems are stabilizable by diagonal matrix high gains if
the system matrix is an H-matrix with positive diagonal entries. Based on matrix measure and stability theory for diagonally
dominant systems, we consider two classes of uncertain linear systems, and derive a threshold condition to ensure their
exponential stability by a monotonically increasing diagonal gain matrix. When each individual gain function in the matrix
gain is updated by state-dependent functions using only local state information, the boundedness and convergence of both
system states and adaptive matrix gains are guaranteed. We apply the adaptive distributed stabilization approach to adaptive
synchronization control for large-scale complex networks consisting of nonlinear node dynamics and time-varying coupling
weights. A unified framework for adaptive synchronization is proposed that includes several general design approaches for
adaptive coupling weights to guarantee network synchronization.

Key words: Adaptive stabilization; high-gain control; H-matrix; M-matrix; diagonally dominate system; adaptive
synchronization.

1 Background and motivations

1.1 Adaptive stabilization control

Adaptive stabilization is a popular approach in direct
adaptive control for stabilizing uncertain plants with
unknown or uncertain system parameters. Different to
estimation-based indirect adaptive control methods,
adaptive stabilization aims to stabilize uncertain sys-
tems without estimating or identifying system parame-
ters during the stabilization process. A simple method
for direct adaptive control for uncertain plants is adap-
tive high-gain stabilization. To start with, consider
the following stabilization problem for a time-invariant
system in R

n:

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (1)
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where the system matrices A,B and C with proper di-
mensions are unknown, and the stabilization control law
is designed as

u(t) = −k(t)y(t), (2)

where k(t) is a scalar time-varying positive gain func-
tion. The adaptive stabilization approach is promising
for stabilizing uncertain systems, as long as the system
is high-gain stabilizable [1]. We call an uncertain plant
high-gain stabilizable with the simple feedback of (2),
if the closed-loop system is stable under k(t) > k̄ by a
sufficiently large gain k̄. Very often a lower bound esti-
mation of the threshold gain value k̄ depends on the sys-
tem parameters and dynamics which might be unknown
or uncertain. To this end, adaptive high-gain stabiliza-
tion allows online adjustment of adaptive gain tuning
which eventually generates a feedback gain greater than
the threshold gain k̄ and therefore ensures system con-
vergence. The first use of adaptive stabilization could be
dated back to the 1970s (see, e.g., an early paper [2]).
The literature on adaptive high-gain stabilization has
seen a fruitful theoretic development as early as in the
1980s, with several key developments in some influen-
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tial papers e.g., [3–7], and also successful applications
to industrial control systems and uncertain mechatronic
systems [1, 8].

The seminal paper by Byrnes andWillems [3] considered
the following adaptive gain updating law

k̇(t) = ‖y(t)‖2, k(0) = k0 > 0 (3)

and showed that, if the system is minimum phase and
all eigenvalues of the system matrix product −CB have
negative real parts, then the time-varying linear system

ẋ(t) = (A− k(t)BC)x(t) (4)

is asymptotically stable. In addition, the scalar time-
varying gain k(t) updated by (3) is upper bounded and
convergent in the sense that limt→∞k(t) = k∞ < ∞.
The adaptive gain method has also been generalized to
other types of dynamical control systems, such as track-
ing control systems [7] and nonlinear systems (see e.g.,
[9]). We refer the readers to some recent surveys [10, 11]
for recent developments and applications of adaptive sta-
bilization control.

1.2 Distributed adaptive stabilization: problem formu-
lation

The main focus of this paper is to extend the clas-
sical adaptive stabilization theory with time-varying
scalar gains to adaptive matrix gains and develop a
distributed adaptive stabilization theory. The adap-
tive stabilization approach in (4) under the scalar gain
updating law (3), which involves all system states or
outputs, is not scalable for large-scale complex systems
that often contain hundreds or thousands of states.
We therefore formulate the distributed adaptive sta-
bilization problem by replacing the scalar gain func-
tion in (4) by a matrix gain K(t) in a diagonal form
K(t) := diag{k1(t), k2(t), · · · , kn(t)} ∈ R

n×n, in the
sense that each diagonal gain is associated with sta-
bilization of each distributed channel of the uncertain
system. Furthermore, the updating of each diagonal
gain element ki(t) should involve only local informa-
tion of the corresponding state xi(t). Without loss of
generality we assume in the sequel that C = In; i.e.,
the system output measures the states of the uncertain
system. We will consider the following systems

ẋ(t) = (A−K(t)B)x(t), System (I) (5)

and

ẋ(t) = (A−BK(t))x(t), System (II) (6)

where A and B are unknown system matrices. Note that
since the diagonal matrixK(t) does not necessarily com-
mute with the system matrix B, System (I) in (5) and

System (II) in (6) need to be treated separately. 1 When
the square matrix B is non-singular, the system (5) is
minimum phase [1], and the Byrnes-Willems condition
[3] for such uncertain systems to be scalar high-gain sta-
bilizable reduces to that −B is a Hurwitz matrix. How-
ever, for a time-varying matrix gainK(t) in (5) or (6), we
will show in this paper that some additional conditions
on the matrix B should be imposed to guarantee matrix
high-gain stabilizability, which therefore demands new
theories and tools to stabilize uncertain systems of (5)
or (6). We will also provide a general approach for ad-
justing adaptive matrix gains according to system state
evolution in order to ensure system convergence and up-
per bounded gain matrix.

1.3 Motivation and application: scalable and distributed
control of networked systems

The motivation choice of considering a diagonal matrix
gain function instead of a scalar gain function is in-
spired by many recent applications in distributed con-
trol for multi-agent systems [12], and scalable control of
large-scale networked systems [13]. In these control sce-
narios, very often each individual system is associated
with some local gain functions while a global and uni-
form gain is inaccessible or very hard to compute. Each
individual system should update its own adaptive gain
function using local information to guarantee the stabil-
ity of the overall system, while the local adaptive gain
and its updating law are often different among all sys-
tems in a networked environment. Furthermore, since
individual adaptive gains are updated in a local and dis-
tributed way without involving any global information,
the distributed adaptive stabilization approach is scal-
able and independent of the system size, which is a fa-
vorable property particularly applicable for stabilization
and regulation of large-scale networks.

A typical application of distributed adaptive stabiliza-
tion with matrix high gains is adaptive synchronization
control of complex networks. Synchronization of com-
plex network systems has a long history [14], [15], [16],
which has been motivated by vast applications that in-
volve increasingly complicated inter-connected systems.
The condition for reaching network synchronization de-
pends on both individual system dynamics and the over-
all network topology, which are often hard to obtain and
also result in a high computational cost. Therefore, dis-
tributed adaptive stabilization is a suitable approach for
designing an adaptive synchronization protocol. In re-
cent years there has been an increasing interest in the

1 System (I) can be interpreted in the output feedback struc-
ture, while System (II) is related to the state feedback struc-
ture in linear system theory. For both systems, the diag-
onal control gain K(t) is associated with stabilization for
each channel of the uncertain linear systems. A non-diagonal
K(t) does not meet the distributed stabilization requirement,
which will be considered in future work.
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design of adaptive coupling gain tuning functions to en-
sure adaptive synchronization [17–19]. In this paper, via
the matrix high-gain approach, we will provide a uni-
fied framework on adaptive synchronization and suggest
several novel and general approaches on designing local
adaptive coupling functions to achieve synchronization
in complex network systems.

1.4 Contributions and paper organization

The main contribution of this paper is a comprehensive
study of distributed adaptive stabilization theory, while
we also present several conditions on matrix high-gain
stabilizability of uncertain linear systems. Applications
to nonlinear networked systems and adaptive synchro-
nization will also be shown, which provide novel insights
on the general design of adaptive coupling weights to
ensure network synchronization. A preliminary version
was presented in [20]. In this paper we will generalize
the matrix condition (while in [20] we focused on the M-
matrix condition), and will further present a complete
study on distributed adaptive stabilization for both sys-
tems (I) and (II), based on some new applications of tools
such as H-matrix and matrix measure theory. In the de-
velopment of the main results, the paper will also prove
some interesting results on exponential convergence of
time-varying linear systems.

This paper is organized as follows. Section 2 presents def-
initions and properties of some special matrices, and in-
troduces several convergence results for diagonally dom-
inant systems. Distributed adaptive stabilization with
matrix high gains for System (I) and System (II) is pre-
sented in Section 3 and Section 4, respectively. We dis-
cuss applications of adaptive matrix gain stabilization to
network synchronization in Section 5, followed by con-
clusions in Section 6. In appendix, we present some back-
ground on matrix measure and proofs.

2 Definitions and preliminaries

2.1 Notations

The notations in this paper are fairly standard. For a
real symmetric matrix A, we use minλ(A) to denote its
minimum eigenvalue, and A ≺ 0 to indicate that A is
negative definite. The notation ρ(A) denotes the spec-
tral radius of a square matrix A. The null space of a real
matrixA is denoted by null(A). The notation 1n denotes
an n-vector with all 1’s, and In denotes an n × n iden-
tity matrix. The symbol ⊗ denotes Kronecker product.
For a vector x ∈ R

n, the notation ‖x‖1 denotes the vec-
tor 1-norm, i.e., ‖x‖1 =

∑n
i=1 |xi|, and ‖x‖∞ denotes

the vector infinity norm, i.e., ‖x‖∞ = maxi=1,··· ,n|xi|.
By default, the notation ‖x‖ for a vector x ∈ R

n is in-
terpreted as the 2-norm, unless otherwise specified.

2.2 M-matrix, H-matrix, and generalized diagonally
dominant matrix

We present definitions of certain special matrices which
will be frequently used in this paper. All matrices dis-
cussed in this paper are real-valued matrices.

Definition 1 (M-matrix) AmatrixA ∈ R
n×n is called

an M-matrix, if its non-diagonal entries are non-positive
and its eigenvalues have positive real parts. 2

Definition 2 (Generalized row-diagonally dom-
inant matrix) A matrix A = {aij} ∈ R

n×n is
generalized row-diagonally dominant, if there exists
x = (x1, x2, · · · , xn) ∈ R

n with xi > 0, ∀i, such that

|aii|xi >

n
∑

j=1,j 6=i

|aij |xj , ∀i = 1, 2, · · · , n. (7)

Definition 3 (Generalized column-diagonally
dominant matrix) A matrix A = {aij} ∈ R

n×n is
generalized column-diagonally dominant, if there exists
x = (x1, x2, · · · , xn) ∈ R

n with xi > 0, ∀i, such that

|ajj |xj >

n
∑

i=1,i6=j

|aij |xi, ∀j = 1, 2, · · · , n. (8)

If the positive vector x in the above definitions is chosen
as the all-ones vector 1n, then the two terms in Defini-
tions 2 and 3 reduce to the conventional definitions of
(strict) row-/column-diagonally dominant matrices.

Definition 4 (Comparison matrix and H-matrix)
For a real matrix A = {aij} ∈ R

n×n, we associate it with
a comparison matrix MA = {mij} ∈ R

n×n, defined by

mij =

{

|aij |, if j = i;

−|aij |, if j 6= i.

A given matrix A is called an H-matrix if its comparison
matrix MA is an M-matrix.

Apparently, the set of M-matrices is a subset of H-
matrices. An iterative criterion for determining H-
matrix can be found in [22]. The generalized row-
diagonally dominant matrix is also closely related to
M-matrix. The following fact appears in [23] (see also
[24, Chapter 2.5]).

2 In this paper by convention an M-matrix is meant a non-
singular M-matrix. Note that there is also a counterpart to
non-singular M-matrix, termed singular M-matrix (A typi-
cal example of a singular M-matrix is the graph Laplacian
matrix [21]). This will be made clear in the context.
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Lemma 1 A given matrix A ∈ R
n×n is an H-matrix if

and only if there exists a positive diagonal matrix D such
that AD is row-diagonally dominant.

The Lemma actually states that H-matrices and general-
ized row-diagonally dominant matrices are the same.We
shall prove the following more general result that shows
the equivalence between generalized row-diagonal dom-
inance, generalized column-diagonal dominance, and H-
matrices.

Theorem 1 Given a matrix A = {aij} ∈ R
n×n, the

following statements are equivalent.

(i) A is an H-matrix;
(ii) A is generalized row-diagonally dominant;
(iii) There exists a positive diagonal matrix D̄ =

diag{d̄1, d̄2, · · · , d̄n}, such that D̄−1AD̄ is row-
diagonally dominant;

(iv) A is generalized column-diagonally dominant;

(v) There exists a positive diagonal matrix D̃ =

diag{d̃1, d̃2, · · · , d̃n}, such that D̃AD̃−1 is column-
diagonally dominant.

The proof is presented in Appendix. Applying the Ger-
shgorin circle theorem [24], we immediately obtain the
following result as a direct consequence of Theorem 1.

Proposition 1 Let B = {bij} ∈ R
n×n be an H-matrix.

Then B is non-singular. Further suppose that B has all
positive diagonal entries, i.e., bii > 0, ∀i. Then all of its
eigenvalues have positive real parts; i.e., −B is a non-
singular Hurwitz matrix.

2.3 Exponential convergence of diagonally dominant
time-varying systems

In this section, by applying the theory of matrix mea-
sures (see Appendix), we develop some results on the
solution bound and exponential convergence of time-
varying linear systems with diagonally dominant system
matrices.

Lemma 2 (Row-diagonally dominant linear system)
Consider a time-varying linear system ẋ(t) = A(t)x(t),
where A(t) is a continuous-time Hurwitz matrix with
row-diagonally dominant entries ∀t ≥ t0. Then it holds
that

‖x(t)‖∞ ≤ ‖x(t0)‖∞e

∫

t

t0

αr(t
′)dt′

, ∀t ≥ t0, (9)

whereαr(t
′) = maxi=1,2,··· ,n

(

aii(t
′) +

∑n
j=1,j 6=i |aij(t

′)|
)

and αr(t
′) < 0.

Proof Applying Lemma 4, and choosing the vec-
tor norm as the infinity norm with the matrix mea-
sure induced by infinity vector norm in (44) (in Ap-
pendix), gives the desired result. Note that A(t) being

Hurwitz and row-diagonally dominant implies that
αr(t

′) < 0. ✷

In particular, consider a time-varying system ẋ =
−A(t)x with A(t) := {aij(t)} ∈ R

n×n satisfying

aii(t)−
n
∑

j=1,i6=j

|aij(t)| ≥ δ > 0, ∀i = 1, 2, · · · , n; ∀t ≥ t̄

(10)

with a finite time t̄. Then all of its solutions converge to
zero exponentially fast with the rate e−δt as t → ∞. In
fact, it holds that

|xi(t)| ≤ ‖x(t)‖∞ ≤ ‖x(t̄)‖∞e−δt, ∀i, ∀t ≥ t̄. (11)

Lemma 3 (Column-diagonally dominant linear sys-
tem) Consider a time-varying linear system ẋ(t) =
A(t)x(t), where A(t) is a continuous-time Hurwitz ma-
trix with column-diagonally dominant entries ∀t ≥ t0.
Then it holds that

‖x(t)‖1 ≤ ‖x(t0)‖1e

∫

t

t0

αc(t
′)dt′

, ∀t ≥ t0, (12)

whereαc(t
′) = maxj=1,2,··· ,n

(

ajj(t
′) +

∑n
i=1,i6=j |aij(t

′)|
)

and αc(t
′) < 0.

Proof Applying Lemma 4, and choosing the vector
norm as the one-norm with the matrix measure in-
duced by the vector one-norm in (43) (in Appendix),
gives the desired result. Note that A(t) being Hur-
witz and column-diagonally dominant implies that
αc(t

′) < 0. ✷

In particular, consider a time-varying system ẋ =
−A(t)x with A(t) := {aij(t)} ∈ R

n×n satisfying

ajj(t)−
n
∑

i=1,i6=j

|aij(t)| ≥ δ > 0, ∀j = 1, 2, · · · , n, ∀t ≥ t̄

(13)

with a finite time t̄. Then all of its solutions converge to
zero exponentially fast with the lower bound rate e−δt

as t → ∞. In fact, it holds that

|xi(t)| ≤
n
∑

i=1

|xi(t)| ≤ e−δt

n
∑

i=1

|xi(t̄)|, ∀i, ∀t ≥ t̄. (14)

We note that the solution bound and exponential con-
vergence in (14) under the condition of (13) for column-
diagonally dominant linear systems generalize the main
Theorem of [25].
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3 Distributed high-gain adaptive stabilization:
System (I) case

3.1 Matrix high-gain stabilizability

Consider the following uncertain closed-loop linear sys-
tem

ẋ(t) = (A−K(t)B)x(t), t ≥ 0, (15)

where x(t) ∈ R
n is the system state, A ∈ R

n×n, B ∈
R

n×n are systemmatrices, andK(t) := diag{k1(t), k2(t),
· · · , kn(t)} ∈ R

n×n is a positive diagonal gain matrix
with each time-varying individual gain ki(t) being posi-
tive and monotonically increasing. We remark that the
system matrices A and/or B are unknown, and we
aim to design adaptive control laws that regulate the
gain matrix K(t) such that the uncertain system (15) is
stabilized. The adaptive gain matrix K(t) renders that
the system (15) is a time-varying linear system. There-
fore, the system matrix (A −K(t)B) being Hurwitz at
all the time does not necessarily conclude convergence,
and additional conditions are required to ensure system
stability [26].

The definition of matrix high-gain stabilizability under
a diagonal gain matrix is given below.

Definition 5 (Matrix high-gain stabilizability) A mul-
tivariable linear system (15) (or (6)) is stabilizable by
high-gain diagonal matrix functions K(t) if there exist
a positive constant k̄ and a finite time t̄, such that for
ki(t) > k̄, ∀i, ∀t > t̄ the system is asymptotically stable
with the diagonal matrix K(t) and its solutions x(t) con-
verge to zero exponentially fast.

The following example shows the distinct features
between scalar high-gain stabilizability (the Byrnes-
Willems condition [3]) and matrix high-gain stabiliz-
ability.

Example 1 Consider a second-order uncertain system
with unknown system matrices A,B ∈ R

2×2, while the
true value of the matrix B is given by

B =

[

2 3

−1 −1

]

. (16)

Clearly −B is a Hurwitz matrix with eigenvalues
λ1,2(−B) = −0.5000±0.8660i. The matrix −k(t)B with
any positive scalar function k(t) > 0 remains a Hurwitz
matrix, and by the Byrnes-Willems Theorem [3] the un-
certain linear system is stabilizable by a scalar high gain
k(t) > k̄ where k̄ is a sufficiently large threshold gain
value.

However, we show that a linear system with the ma-
trix B in (16) is not stabilizable by diagonal matrix high

gains K(t) = diag{k1(t), k2(t)}. Without loss of gener-
ality we assume A = 0 and consider the system ẋ(t) =
−K(t)Bx(t). The matrix measure ofK(t)B, with the in-
duced matrix norm chosen by the column-sum norm, is
calculated by µ(K(t)B) = max(2k1(t) − k2(t), 3k1(t) −
k2(t)). For k2(t) > 3k1(t), we have µ(K(t)B) = 3k1(t)−
k2(t) < 0, and by Lemma 4, one concludes that the

solution satisfies ‖x(t)‖1 ≥ ‖x(0)‖1e
−
∫

t

t0

µ(K(t′)B)dt′

=

‖x(0)‖1e

∫

t

t0

(k2(t
′)−3k1(t

′)))dt′

which grows unbounded for
k2(t) > 3k1(t). Therefore, the system with a Hurwitz ma-
trix −B given in (16) is not stabilizable by matrix high
gains no matter how large one chooses k1(t) and k2(t)
in K(t) (In this example, the stability indeed depends on
the relative magnitude of each individual gain ki(t) in the
matrix gain function K(t)).

In this section, we first give a characterization of uncer-
tain multivariable systems that are stabilizable by ma-
trix high gains, and then provide a state-dependent up-
dating law for adaptively adjusting matrix gains to en-
sure system convergence with upper bounded and con-
vergent matrix gains. It turns out that H-matrices and
generalized diagonally dominant systems [27] play an im-
portant role in tuning adaptive matrix gains for stabi-
lizing uncertain multivariable linear systems. The intu-
ition is that with the increasing of each diagonal entry of
K(t), the term −K(t)B should dominate the unknown
matrix A under each sufficiently large ki(t).

The following theorem characterizes an important set of
uncertain linear systems that are stabilizable by matrix
high gains. This can be seen as a counterpart to the
classical results on uncertain linear systems stabilizable
by scalar high gains (see e.g., [28, Theorem 3.5] and [29,
Proposition 2.1]).

Theorem 2 (High gain stabilizability) Consider the un-
certain linear system (15) with unknown system matri-
ces A and/or B. Suppose B is an H-matrix with pos-
itive diagonal entries, and each individual gain func-
tion ki(t) in the matrix gain K(t) is a monotonically in-
creasing function approaching infinity as t → ∞. Then
the uncertain linear system (15) is exponentially conver-
gent to zero.

Proof From Theorem 1, the condition that the matrix
B is an H-matrix implies that there exists a positive
diagonalmatrix D̄ = diag{d̄1, d̄2, · · · , d̄n} such that B̄ =
{b̄ij} := D̄−1BD̄ is strictly row-diagonally dominant.
By a coordinate transform z := D̄−1x we will consider
the system

ż = D̄−1ẋ = D̄−1(A−K(t)B)D̄z

=
(

D̄−1AD̄ −K(t)D̄−1BD̄
)

z. (17)

Note that the commuting equality D̄−1K(t) = K(t)D̄−1

holds since both matrices D̄−1 and K(t) are diagonal.
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Note also that the diagonal entries of D̄−1BD̄ satisfy
b̄ii = bii, ∀i, which are positive. Let āij denote the (ij)-
th entry of the matrix D̄−1AD̄. Due to the strict row-
diagonal dominance of the matrix B̄, it holds that b̄ii −
∑

j=1,j 6=i |b̄ij | > 0, ∀i. Now by choosing k̄i such that

ki(t) ≥ k̄i =

∑

j=1,j 6=i |āij |+ āii + δ

b̄ii −
∑

j=1,j 6=i |b̄ij |
, (18)

where δ > 0 is any positive constant predefined, it holds
that

ki(t)b̄ii − āii −





∑

j=1,j 6=i

(|āij |+ ki(t)|b̄ij |)



 ≥ δ > 0.

(19)

Note that since all entries of A and B̄ are bounded, all
k̄i, ∀i are bounded. Choose k̄ := maxik̄i and let ki(t) ≥
k̄, ∀i, ∀t > t̄. Then (19) holds ∀i = 1, 2, · · · , n, ∀t > t̄. By
Lemma 2 this proves that the z system (17) converges
to zero exponentially fast with a least convergence rate
e−δ(t−t̄), ∀t > t̄. This in turn implies that the linear
system (15) converges to zero exponentially fast with
the convergence scaled by the coordinate transform x :=
D̄z. ✷

Remark 1 Some remarks of Theorem 2 are in order.

• The condition ki(t) → ∞ as t → ∞ is not really used
in the proof. So long as the condition in (19) is satisfied
that guarantees ki(t) ≥ k̄, ∀i, ∀t > t̄, the linear system
(17) is exponentially convergent with a rate e−δ(t−t̄),
∀t > t̄. Nevertheless, we follow the same spirit of scalar
high-gain stabilizability ([28, Theorem 3.5] and [29,
Proposition 2.1]) to state the matrix high-gain stabi-
lizability in Theorem 2.

• With the condition ki(t) → ∞ as t → ∞, one can claim
a stronger result termed arbitrarily fast exponential
convergence [29]; i.e., the exponential rate δ(t) is a
monotonically increasing function of the time ∀t > t̄,
and δ(t) → ∞ as t → ∞. This is also evident by
Lemma 2.

• The sufficient condition for the uncertain system (15)
being matrix high-gain stabilizable is that, with a suf-
ficiently large diagonal matrix gain K(t), the system
(15) should become a generalized diagonally row dom-
inant system at some finite time t̄ and will remain it
∀t > t̄ so as to ensure the exponential stability of the
system states. Note that the exponential rate also grows
with the growing ki(t), for t > t̄.

3.2 Matrix high-gain updating laws for distributed
adaptive stabilization

Now we are ready to show one of the main results of this
paper. The following theorem can be seen as the ma-

trix high-gain extension of the classical Byrnes-Willems
Theorem [3] on adaptive scalar high-gain stabilization.

Theorem 3 Consider the uncertain linearmultivariable
system (15) with unknown system matrices A and/or B,
and suppose that B is an H-matrix with positive diagonal
entries. Each individual gain ki(t) in the adaptive matrix
gain K(t) = diag{k1(t), k2(t), · · · , kn(t)} is updated by
the following distributed adaptive law

k̇i(t) = ci|xi(t)|
pi , ki(0) > 0, (20)

where ci, pi are positive constants with ci > 0, pi ≥ 1.
Then the following statements hold.

(i) The solutions to the linear system (15) and the
adaptive gain updating system (20) always exist,
are unique, and can be extended to t → ∞.

(ii) The uncertain system (15) with unknown system
matrices A,B is stabilized with the adaptive matrix
gain K(t) in the sense that limt→∞x(t) = 0.

(iii) Each distributed gain ki(t) in the adaptive ma-
trix gain K(t) is monotonically increasing, upper
bounded and convergent in the limit in the sense
that limt→∞ki(t) = ki∞ < ∞, ∀i, where ki∞ is a
bounded positive constant.

Proof For the time-varying linear system (15), the exis-
tence and uniqueness of the solution can be ensured if the
state matrix (A − K(t)B) is continuous and uniformly
bounded (see e.g., [30, Chapter 1.2]), which is equiva-
lent to that the gain matrix K(t) is continuous and uni-
formly bounded. Since each diagonal entry ki(t) of the
gain matrix K(t) is updated by the differential equation
(20), the gain matrix K(t) is a differentiable function of
time and thus is uniformly continuous. Therefore the so-
lutions to the linear system (15) and the adaptive gain
updating system (20) uniquely exist. Since each ki(t)
cannot increase to be unbounded at any finite time, the
solutions can be extended to t → ∞. In the following
analysis we will rule out the possibility that x(t) or ki(t)
becomes unbounded in the limit t → ∞.

According to the updating law (20), each distributed
gain function ki(t) will keep increasing as long as
|xi(t)| 6= 0. Since the unknown matrix A is bounded
there must exist a finite time t̄ such that the condition
in Eq. (19) of Theorem 2 holds, 3 and therefore from

3 The existence of such a finite time t̄ can be shown by con-
tradictions. Suppose no such finite time t̄ exists, which then
implies the system state xi(t) is unstable and is non-zero for
almost all the time. By integrating (20) this in turn implies
that ki(t) will always keep increasing, while an unbounded
ki(t) leads to an arbitrarily fast exponential convergence of
all system states according to Theorem 2, thus a contradic-
tion. For adaptive stabilization of scalar uncertain linear sys-
tems, the existence of such a finite time t̄ is discussed in [1].
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Lemma 2 one can show

|xi(t)| ≤ Me−δ(t−t̄), ∀t ∈ [t̄,∞), (21)

with some positive constants M > 0 and δ > 0. 4 This
implies that the state x(t) must converge to the origin
exponentially fast ∀t ∈ [t̄,∞).

Now we prove the third statement. Note from the exis-
tence of a finite time t̄ as ensured in Theorem 2 and the
exponential convergence inequality (21), one has

ki(∞) = ki(0) +

∫ ∞

0

ci|xi(t)|
pidt

= ki(0) + ci

(

∫ t̄

0

|x(t)|pidt+

∫ ∞

t̄

|x(t)|pidt

)

≤ ki(0) + ci

(

∫ t̄

0

|x(t)|pidt+
M

δpi

)

. (22)

Since |xi(t)| is bounded at the finite time interval [0, t̄),

the first integral
∫ t̄

0
|xi(t)|pidt is bounded; furthermore,

due to the exponential convergence inequality in (21),
the second integral

∫∞

t̄
|xi(t)|pidt is also upper bounded

by M
δpi

. Therefore, ki(t) is upper bounded in the limit.

Also note that each ki(t) is continuous and monoton-
ically increasing; therefore it must converge to some
bounded value ki∞. 5 This completes the proof. ✷

Remark 2 We note that the overall stabilization con-
trol system consisting of the uncertain linear system (15)
and the adaptive gain updating system (20) is nonlin-
ear, due to the nonlinearity in the updating law (20).
Therefore, in general it is hard or even impossible to give
an analytical formula for the converged values of each
distributed gain. However, the inequality in (22) shows
an estimate of the upper bound of each individual gain
ki(t). Clearly, with larger values of ci and ki(0), the upper
bounds of ki(∞) will be larger. Furthermore, the positive
parameters ci, pi can be used to adjust the growing speed
of each updating function: under transient system state
|xi(t)| ≥ 1, larger values of ci, pi lead to a larger updating
function ci|xi(t)|pi , and thus the updating and growing
speed for ki(t) is increased. As a consequence, the finite
time t̄ when the uncertain system starts to exponentially
decay can be shortened.

4 According to Lemma 2 and the convergence inequality
(14), the constant M is related to a state norm at the time
t̄, and the exponential decay rate δ will continue to increase
with the monotonic increasing of each individual gain ki(t)
for t ≥ t̄.
5 This is due to the well-known result: if a continuous func-
tion f(t) : [a,∞) → R is increasing and bounded from above,
then limt→∞f(t) exists and is finite.

Remark 3 Under the structural assumption on the un-
known matrix B, this non-linear (adaptive) controller
(20) is robust to large structural uncertainties for the un-
certain linear system (15) (apart from the boundedness
condition, no other condition on A is required). In con-
trast, a linear non-adaptive controller [31] would give
very limited robustness to structural uncertainty inA and
B. We also remark that the proposed distributed adap-
tive law inherits similar robustness properties from the
scalar gain adaptive stabilization law (e.g., [29]). To fur-
ther improve the robustness property of uncertain con-
trol systems with unstructured uncertainties, external or
non-vanishing perturbations, the robust adaptive tech-
niques (such as the σ modification, dead zone approach,
dynamic projection method, etc.) discussed in [32] can be
adopted to design robust distributed adaptive law.

3.3 Numerical examples

We show some numerical simulation examples to illus-
trate the main results of this section. Consider an uncer-
tain linear system (15) with unknown system matrices
A and B, while for simulation purpose their true values
are chosen as

A =









1 4 2

5 −2 1

6 3 −4









, B =









7 4 −2

−4 6 3

2 −2 5









. (23)

In this simulation example it can be verified that B is an
H-matrix (its comparison matrix MB, which has eigen-
values λ1,2,3(B) = {0.3184, 10.5111, 7.1705}, is an M-
matrix). Note the matrix B in (23) is not diagonally
dominant by itself, but can be made generalized diag-
onally dominant by some positive diagonal matrix ac-
cording to Theorem 1. Theorems 2 and 3 indicate that
the uncertain linear system (15) with the unknown sys-
tem matrices in (23) is stabilizable by the adaptive ma-
trix high gain K(t) updated by the distributed state-
dependent adaptive law (20).

In the simulations, the initial values for the system states
are chosen by x(0) = [5,−10, 20]T , and the initial val-
ues of adaptive gains are set as k1(0) = 4, k2(0) = 3 and
k3(0) = 2. The simulation results that demonstrate con-
vergences of both system states and distributed adap-
tive matrix gains are shown in Fig. 1 and Fig. 2 under
different values of the updating function parameters ci
and pi. Clearly, without identifying the true values of
the unknown matrices A and B, the adaptive matrix
gains updated by (20) guarantee that the system states
converge to zero exponentially fast, while all distributed
adaptive gains monotonically converge to some constant
and bounded values. Furthermore, it can be clearly ob-
served in Fig. 1 and Fig. 2 that the updating speed for
the three distributed gains ki(t) is increased with larger
values ci and pi. As a consequence, the finite time t̄ when
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Fig. 1. Adaptive stabilization of an uncertain system (15)
with distributed adaptive matrix gains. The parameters in
the updating functions are set as ci = 1, i = 1, 2, 3 and
p1 = 1, p2 = 1.5, p3 = 2.
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Fig. 2. Adaptive stabilization of an uncertain system (15)
with distributed adaptive matrix gains. The parameters in
the updating functions are set as ci = 3, i = 1, 2, 3 and
p1 = 2, p2 = 2, p3 = 2.

the uncertain system starts to exponentially decay has
also been shortened, which implies the uncertain system
settles down more rapidly by a faster updating of each
individual gain.

4 Distributed high-gain adaptive stabilization:
System (II) case

4.1 Matrix high-gain stabilizability

In this section we provide some corresponding results
for uncertain linear systems in the form of System (II)
in (6). The main analysis follows from the equivalence
results in Theorem 1.

Theorem 4 (High-gain stabilizability) Consider the un-
certain linear system

ẋ(t) = (A−BK(t))x(t), t ≥ 0, (24)

where the system matrices A and/or B are unknown.
Suppose B is an H-matrix with positive diagonal
entries, and each gain entry ki(t) in the matrix gain
K(t) is a monotonically increasing function approaching
infinity as t → ∞. Then the uncertain linear system (24)
is exponentially convergent to zero.

Proof The proof follows a similar spirit as that of The-
orem 2, but we will focus on the column-diagonal dom-
inance of the matrix B. From Theorem 1, the matrix
B being an H-matrix implies that there exists a posi-
tive diagonal matrix D̃ = diag{d̃1, d̃2, · · · , d̃n} such that

B̃ = {b̃ij} := D̃BD̃−1 is strictly column-diagonally

dominant. By a coordinate transform z := D̃x we will
consider the transformed system

ż = D̃ẋ = D̃(A−BK(t))D̃−1z

=
(

D̃AD̃−1 − D̃BD̃−1K(t)
)

z. (25)

Note that the diagonal entries of D̃BD̃−1 satisfy b̃ii =
bii, ∀i, which are positive. Let ãij denote the (ij)-th en-

try of the matrix D̃AD̃−1. Due to the strict column di-
agonal dominance of the matrix B̃ it holds that b̃jj −
∑

i=1,i6=j |b̃ij | > 0, ∀j. Now by choosing k̃j such that

kj(t) ≥ k̃j =

∑

i=1,i6=j |ãij |+ ãjj + δ

b̃jj −
∑

i=1,i6=j |b̃ij |
, (26)

where δ > 0 is any positive constant predefined, it holds
that

kj(t)b̃jj − ãjj −





∑

i=1,i6=j

(|ãij |+ kj(t)|b̃ij |)



 ≥ δ > 0.

(27)

Note that since all entries of A and B̃ are bounded,
all k̃j , ∀j are also bounded. Choose k̃ := maxj k̃j
and let kj(t) ≥ k̃, ∀j, ∀t > t̄. Then (27) holds
∀j = 1, 2, · · · , n, ∀t > t̄. By Lemma 3 this proves that
the z system (25) converges to zero exponentially fast
with the least convergence rate e−δ(t−t̄), ∀t > t̄. This
in turn implies that the linear system (24) converges to
zero exponentially fast with the convergence scaled by
the coordinate transform x := D̃−1z. ✷

Again, we remark that all statements in Remark 1 also
apply to Theorem 4.

4.2 Matrix high-gain updating laws for distributed
adaptive stabilization

The corresponding result on distributed gain updating
law and system convergence for System (II) is shown
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below.

Theorem 5 Consider the uncertain linear multi-
variable system (24) with unknown system matri-
ces A and/or B. Suppose that the matrix B is an
H-matrix with positive diagonal entries. Each
individual gain ki(t) in the adaptive matrix gain
K(t) = diag{k1(t), k2(t), · · · , kn(t)} is updated by the
following distributed adaptive law

k̇i(t) = ci|xi(t)|
pi , ki(0) > 0, (28)

where ci, pi are positive constants with ci > 0, pi ≥ 1.
Then the following statements hold.

(i) The solutions to the linear system (24) and the
adaptive gain updating system (28) always exist,
are unique, and can be extended to t → ∞.

(ii) The uncertain system (24) with unknown system
matrices A,B is stabilized with the adaptive matrix
gain K(t) in the sense that limt→∞x(t) = 0.

(iii) Each distributed gain ki(t) in the adaptive ma-
trix gain K(t) is monotonically increasing, upper
bounded and convergent in the limit in the sense
that limt→∞ki(t) = ki∞ < ∞, ∀i, where ki∞ is a
bounded positive constant.

Proof The proof is based on the result of Theorem4, and
follows similar steps as that of Theorem 3. It is omitted
here for brevity. ✷

4.3 Numerical examples

We consider an uncertain control system (24) in R
5 with

unknown system matrices, whose true values are given
by

A =



















1.9790 0.5275 1.7078 0.8509 0.5712

1.2670 1.8672 1.3512 1.2259 1.2712

1.4203 1.9343 1.2113 0.7842 0.3338

0.7864 1.8849 0.2922 1.1515 0.5984

0.2575 1.9451 0.2046 1.7284 0.9200



















, (29)

and

B =



















1.1837 0.1407 0.2400 −0.4138 0.2894

−0.3679 1.3288 −0.2652 −0.1336 −0.1323

0.2227 0.1538 0.7350 −0.1308 −0.2940

−0.3896 0.2491 0.4706 1.1850 −0.4133

−0.3825 0.0832 0.3669 0.0979 1.1719



















.

(30)
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Fig. 3. Adaptive stabilization of an uncertain system (24)
with distributed adaptive matrix gains. Left: convergence
of system states. Right: convergence of distributed adaptive
gains.

The two matrices are generated randomly in Matlab for
the simulation purpose. It is verified that the compari-
son matrix of B, denoted byMB, is an M-matrix (whose
eigenvalues are λ(MB) = [0.0456, 1.0995, 1.5474 +
0.1286i, 1.5474 − 0.1286i, 1.3645]) and therefore the
matrix B is an H-matrix. In the numerical simula-
tion we set the initial conditions for the states and
gain matrix as x(0) = [10,−10,−15, 15,−8]T and
K(0) = diag{2, 3, 4, 5, 6}. The updating functions for
distributed adaptive gains are chosen as fi = |xi(t)|1.5,
i.e., ci = 1, pi = 1.5, ∀i.

The simulation results that demonstrate convergences
of both system states and distributed adaptive gains are
shown in Fig. 3. Clearly, without identifying the true val-
ues of the unknown matrices A and B, distributed adap-
tive gains updated by (28) guarantee that the system
states converge to zero exponentially fast, while all in-
dividual adaptive gains monotonically converge to some
constant and bounded values. In this simulation, we ob-
serve that the final converged values for each individual
gain are k1(∞) ≈ 12.2056, k2(∞) ≈ 9.1612, k3(∞) ≈
11.2881, k4(∞) ≈ 14.4884, and k5(∞) ≈ 9.5236, as
shown in the right figure of Fig. 3.

For a comparative study, we also simulate the stabiliza-
tion control of the above uncertain linear system with
an adaptive scalar gain k(t) updated by all state infor-
mation. The scalar gain k(t) is updated by the adaptive

law k̇(t) = ‖x(t)‖1.5, with an initial condition k(0) = 2.
In Fig. 4, one can observe that the scalar gain k(t) grows
unnecessarily larger than the distributed matrix gains in
Fig. 3. Furthermore, the updating of the scalar gain k(t)
involves all five system states, which will soon become
impractical when the uncertain system includes a large
number of states or some state information is inacces-
sible. In contrast, the distributed adaptive stabilization
scheme offers several advantages such as low computa-
tional complexity, improved scalability and high flexibil-
ity. These advantages are significant in the control task
involving large-scale systems, as will be discussed in the
next section on adaptive synchronization of complex net-
works.
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Fig. 4. Adaptive stabilization of uncertain multivariable
systems, by a scalar adaptive gain: the system is described
by ẋ(t) = (A− k(t)B)x(t), with a scalar adaptive gain k(t).

5 Applications to distributed adaptive synchro-
nization of complex networks

In this section we discuss a typical application of dis-
tributed adaptive stabilization theory in distributed and
scalable control of large-scale networked systems. The
application example involves distributed adaptive syn-
chronization of complex networks, in which the coupling
weights are adaptively adjusted by local information to
reach network synchronization.

Following [14–16] we consider the following complex net-
work system

ẋi(t) = f(xi(t)) + ki(t)
∑

j∈Ni

(xj(t)− xi(t)), (31)

where xi ∈ R
n is the system state of the i-th node,

f(·) is the system vector function, Ni denotes the neigh-
boring set for node i, and ki > 0 is a local coupling
gain (or coupling weight) for node i associated with
the diffusive coupling xj − xi. Synchronization control
for complex network systems aims to achieve xi(t) →
xj(t), ∀i, j, with t → ∞. The condition on reaching
network synchronization depends on the (possibly un-
known) vector function f , the coupling weight ki, and
the graph connection, which often involves the network
connectivity and topology. In practice, it is prohibitive
to derive such synchronization conditions for large-scale
networks, since the unknown dynamics functions are
hard to estimate, and the network connectivity (in terms
of Laplacian spectrum) involves global network infor-
mation and its calculation is computationally expen-
sive. Adaptive synchronization with distributed adap-
tive time-varying coupling weights ki(t) is preferable in
particular for large-scale networks, since it avoids using
any global information for achieving network synchro-
nization even with unknown system dynamics and little
knowledge of network topology.

Before presenting the main result we impose the follow-

ing condition on the vector function f , which is a stan-
dard assumption commonly used in the study of com-
plex network synchronization (see e.g., [33–35]).

Definition 6 A function f : Rn × R
+ 7→ R

n is said to
be QUAD (∆, ǫ) if and only if, for any x, y ∈ R

n, it holds
that

(x− y)T [f(x, t)− f(y, t)]− (x− y)T∆(x − y)

≤ −ǫ(x− y)T (x − y), (32)

where∆ is an n×n diagonal matrix and ǫ is a real scalar.

Bydefining x = [xT
1 , x

T
2 , · · · , x

T
N ]T , f(x) = [f(x1)

T , f(x2)
T ,

· · · , f(xN )T ]T , the diagonal coupling weight matrix
K(t) = diag{k1(t), k2(t), · · · , kN (t)}, and the (un-
weighted) graph Laplacian matrix L, one can obtain a
compact form of the complex network system

ẋ(t) = f(x(t)) − (K(t)L⊗ In)x(t). (33)

5.1 A general weight updating law for distributed adap-
tive synchronization

In light of Theorem 3, we propose the following dis-
tributed adaptive updating law for tuning local coupling
weights

k̇i(t) = ci

∥

∥

∥

∥

∥

∥

∑

j∈Ni

(xj(t)− xi(t))

∥

∥

∥

∥

∥

∥

pi

, ki(0) > 0, (34)

where ci, pi are positive constants with ci > 0, pi ≥ 1.

Note that the graph Laplacian matrix L is a singular
M-matrix, while the (usually nonlinear and unknown)
vector function f under the QUAD assumption takes a
similar role of the unknown matrix A in the uncertain
system (15). Therefore the complex network model (33)
resembles the System (I) of (15), and one can expect
that with adaptive andmonotonically increasing weights
ki(t) updated by (34) the network synchronization can
be achieved. We formalize this intuition in the following
theorem, with a careful treatment of the singularity of
the Laplacian matrix L. Since the result is of its own
interest for network synchronization study, we present
it as a main theorem with a proof.

Theorem 6 Consider the complex network system (33)
with the general distributed updating laws (34) that ad-
just individual coupling weight for each distributed sys-
tem. Suppose the underlying graph is undirected and con-
nected. Then the following property and convergence re-
sults hold true.
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(1) All individual systems of the complex network (33)
achieve state synchronization globally and asymp-
totically; furthermore, there exists a finite time t̄
such that the synchronization is achieved exponen-
tially fast ∀t > t̄.

(2) All distributed coupling weights ki(t) are upper
bounded for all the time, and converge to some
constant values; i.e., limt→∞ ki(t) → ki∞ < ∞ for
some constant and bounded value ki∞ > 0, ∀i.

Proof Construct a Lyapunov-like function

V (x(t)) =
1

2
(H̄x)T (H̄x) =

1

2
xT L̄x, (35)

where H̄ = H ⊗ In, L̄ = L ⊗ In, and H is the associ-
ated incidence matrix of the graph (with each row corre-
sponding to an edge of the graph under arbitrary orien-
tation assigned). For undirected graphs, the Laplacian
matrix can be decomposed as L = HTH (see e.g., [36]).
From the QUAD condition (32) for the vector function
f in Definition 6, one can obtain

(H̄x)T H̄f(x) =
∑

(i,j)∈E

(xi − xj)
T (f(xi)− f(xj))

≤
∑

(i,j)∈E

(xi − xj)
T (∆− ǫIn)(xi − xj)

= (H̄x)T (IN ⊗ (∆− ǫIn)) H̄x (36)

where E denotes the edge set of the underlying graph.
The Lie derivative of V (x(t)) along the solutions of the
complex network system (33) can be derived as

V̇ (x(t)) =(H̄x)T (H̄ẋ)

=(H̄x)T
(

H̄(f(x)− (K(t)L ⊗ In)x(t))
)

=(H̄x)T H̄f(x)− (H̄x)T H̄K̄(t)H̄T H̄x

≤(H̄x)T (IN ⊗ (∆− ǫIn))H̄x

− (H̄x)T H̄K̄(t)H̄T H̄x, (37)

where K̄(t) = K(t) ⊗ In. The matrix HK(t)HT is the
edge-based weighted Laplacian matrix for the undi-
rected graph. With the monotonic increasing of each
weight ki(t) the non-zero eigenvalues of HK(t)HT also
monotonically increase along with time (see Lemma 5 in
Appendix). Note that it holds (H̄x)T H̄K̄(t)H̄T H̄x ≥
λ+
min(H̄K̄(t)H̄T )‖H̄x‖2 where λ+

min denotes the small-
est positive eigenvalue of the associated edge weighted
Laplacian (see [37]). Therefore V̇ (x(t)) ≤ (H̄x)T (IN ⊗
(∆ − ǫIn) − λ+

min(H̄K̄(t)H̄T )INn)H̄x. With the mono-
tonic increasing of the local weight function ki(t)
updated by the state-dependent law (34), there
must exist a finite time t∗, such that ∀t > t∗,
A(t) := (IN ⊗ (∆ − ǫIn) − λ+

min(H̄K̄(t)H̄T )INn) ≺ 0

and therefore V̇ (x(t)) ≤ −λmin(−A(t))‖H̄x‖2, ∀t > t∗.

This again implies that ‖H̄x‖ → 0 with an ex-
ponential rate of at least λmin(−A(t∗)), ∀t > t∗.
Since the underlying graph is connected which im-
plies null(H̄) = span(1N ⊗ In) [36], the convergence
‖H̄x‖ → 0 is equivalent to that xi(t) → xj(t), ∀(i, j) ex-
ponentially fast ∀t > t∗, i.e., the state synchronization
is achieved asymptotically, and after a finite time t∗ the
synchronization convergence is exponentially fast.

Following a similar argument as in the proof of Theo-
rem 3, the exponential convergence of ‖H̄x‖ after a finite
time t∗ also implies that each ‖

∑

j∈Ni
(xj(t) − xi(t))‖

exponentially converges to zero ∀t > t∗, and an inte-
gral of the adaptive coupling weight law (34) ensures
the existence of an upper bound of ki(t) ∀i, t > 0. Since
each ki(t) is continuous and monotonically increasing,
one concludes that each ki(t) must be convergent in the
limit. ✷

5.2 Discussions: new insights on distributed adaptive
synchronization based on distributed adaptive sta-
bilization theory

The distributed adaptive stabilization theory developed
in previous sections provides a unified and general frame-
work to study adaptive synchronization. In the following
remarks, we present some novel insights on distributed
design of coupling weights in complex network synchro-
nization.

Remark 4 The updating law (34) also includes the fol-
lowing quadratic form as a special case (i.e., setting pi =
2 in (34))

k̇i(t) = ci





∑

j∈Ni

(xj(t)− xi(t))





T

∑

j∈Ni

(xj(t)− xi(t)),

ki(0) > 0. (38)

The above quadratic function on the right-hand side of
(38) and its variations are the most popular weight updat-
ing law for adaptive synchronization control, which has
been extensively studied in the literature on adaptive syn-
chronization or consensus control of complex networks
(see e.g., [19, 38–40]). The proof for the adaptive syn-
chronization in these papers often involves a Lyapunov

function, in the form of V = 1
2x

T L̄x+
∑N

i=1(αi−ki)
2 (or

similar forms) with some sufficiently large but unknown
αi. The stability analysis employs a Lyapunov-based ar-
gument and Barbalat’s lemma to prove the convergence
of the synchronized states. As demonstrated above one
can prove the stability and synchronization convergence
of the complex network (33) with a unified approach for a
general weight-updating law (34). In addition, via the in-
sights of distributed matrix high gains and the M-matrix
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property one can also extend the adaptive synchroniza-
tion to directed networks, and characterize the exponen-
tial convergence of the state synchronization, which is not
available by using the conventional approach with Bar-
balat’s lemma as in [19, 40]. Furthermore, the updating
law of coupling weights in the form of (34) generalizes the
main result in [41] under much weaker conditions (while
it is assumed in [41] that the QUAD condition should
satisfy ∆− ǫIn < 0 to ensure adaptive synchronization).

Remark 5 The network synchronization dynamics in
(31) are often termed node-based adaptive synchroniza-
tion in the literature, as the updating of adaptive coupling
weights in (34) is implemented by each individual node
system. We remark that the node-based network system
(33) resembles the uncertain linear system (I) in (5),
where Theorem 3 applies. In contrast, one can also con-
sider the following edge-based adaptive synchronization
dynamics (e.g., [38, 39])

ẋi(t) = f(xi(t)) +
∑

j∈Ni

kij(t)(xj(t)− xi(t)), (39)

where kij(t) is a time-varying coupling weight func-
tion for edge (i, j). An illustration of the node-based
and edge-based adaptive synchronization in complex
networks is shown in Fig. 5. By numbering the weight
function for each edge as wl(t) := kij(t) with the same
ordering of the graph topology and defining W (t) =
diag{w1(t), · · · , wM (t)}, the weighted graph Laplacian
matrix is described by L = HTWH. In this way one can
obtain a compact form of the complex network system
(39) by ẋ(t) = f(x(t)) − (HTW ⊗ In)(H̄x(t)), which
resembles the structure of System (II) in (6). In light of
Theorem 5, we propose the following distributed edge-
based updating law for adaptive edge coupling weights

k̇ij(t) = cij ‖(xj(t)− xi(t))‖
pij , kij(0) > 0, (40)

where cij > 0, pij ≥ 1. Similarly, by following Theorem 5,
one can expect that under the adaptive weights (40) the
network system (39) will achieve state synchronization
while all edge weights kij(t) converge to bounded values.
A detailed study of general edge-based weight coupling
laws for adaptive synchronization can be found in [42].

5.3 Numerical examples

In the simulations we consider a complex network con-
sisting of 100 Van der Pol oscillators coupled by an undi-
rected graph. Each node in the network represents a Van
der Pol oscillator, whose system dynamics can be de-
scribed by the following second-order nonlinear equation

……

……

(a) Node-based

adaptive synchronization

(b) Edge-based

adaptive synchronization

Fig. 5. Illustrations of adaptive synchronization in complex
networks. (a) Node-based adaptive synchronization of the
system dynamics (31), corresponding to the uncertain sys-
tem (I) in (5). (b) Edge-based adaptive synchronization of
the system dynamics (39), corresponding to the uncertain
system (II) in (6).

(see e.g., [43])

ẋi = wyi −
a

3
x3
i − bxi + ki(t)

∑

j∈Ni

(xj − xi),

ẏi = −wxi +
µ(t)

w
+ ki(t)

∑

j∈Ni

(yj − yi), (41)

where xi, yi are the states of the i-th oscillator,w, a, b are
system parameters, µ(t) is a driven force term, and ki(t)
is a local adaptive coupling weight for the i-th oscillator.
In the simulations, we set the parameters as a = w = b =
1 and µ(t) = sin(t) which are the same as in [34]. Some
upper bounds of the QUAD conditions for the Van der
Pol oscillator with the same parameters are estimated in
[34]. We remark that adaptive synchronization does not
require to know any true or estimated values of these
bounds.

We model the oscillator coupling graph by the Erdős–
Rényi network [44], and generate an Erdős–Rényi ran-
dom graph G(n, ρ) with n = 100 nodes and by a con-
nectivity probability ρ = 0.10 (an illustration is shown
in Fig. 5(a)). Each Van der Pol oscillator in each node
adaptively updates its own local coupling weight via (34)
with relative information received from its neighbors in
order to achieve state synchronization. In the simula-
tions, the initial states of all oscillators are randomly
chosen, while the initial coupling weights are also se-
lected to be random positive values. The parameters in
the weight updating law are set as ci = 1 with a power
parameter pi = 1.5, ∀i according to (34). It can be seen
from Fig. 6 that the states of all oscillators are asymp-
totically synchronized. All distributed coupling weights
are updated by local information from neighboring os-
cillators to ensure synchronization, which all converge
to their individual bounded values as shown in Fig. 7.
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Fig. 6. State synchronization of 100 Van der Pol oscillators connected by an Erdős–Rényi network with adaptive distributed
coupling weights. Left: synchronization of the x states. Right: synchronization of the y states.
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Fig. 7. Time evolution of local adaptive coupling weights for
100 distributed oscillators.

6 Conclusions

In this paper we have presented a distributed adap-
tive stabilization theory for uncertain multivariable sys-
tems with matrix high gains, while the adaptive gains
are described by a time-varying positive diagonal ma-
trix. Adaptive matrix gain stabilization is motivated by
distributed and scalable stabilization of spatially dis-
tributed systems, and will find many applications in
distributed control for networked and coupled systems.
We show that the unknown system matrix B being an
H-matrix with positive diagonal entries guarantees ma-
trix high-gain stabilizability of uncertain multivariable
systems. We propose a general approach for designing
state-dependent updating laws for individual gain func-
tions, and prove the convergence of both system states
and adaptive matrix gains. We show an application of
adaptive synchronization for complex network systems,
while each node dynamics can update its own and local
coupling weights to ensure state synchronization. Based
on the distributed adaptive stabilization approach, a
unified framework of network synchronization control is
proposed which suggests several general and novel de-
signs for node-based and edge-based local updating laws
of coupling weights to achieve adaptive network synchro-

nization.

7 Appendix

7.1 Matrix measure

The matrix measure (or “logarithmic norm”) plays an
important role in bounding the solution of differential
equations. We introduce the definition and some prop-
erties of matrix measure from [45] as follows.

Definition 7 (Matrix measure) Given a real n× n ma-
trix A, the matrix measure µ(A) is defined as

µ(A) = limǫ↓0
‖I + ǫA‖ − 1

ǫ
, (42)

where ‖ · ‖ is a matrix norm on R
n×n induced by a vector

norm ‖ · ‖′ on R
n.

The matrix measure is always well-defined, and can take
positive or negative values. Different matrix norms on
R

n×n induced by a corresponding vector norm ‖ · ‖′ give
rise to different matrix measures. In particular, one can
show the following two commonly-usedmatrixmeasures.

• If the vector norm ‖ · ‖′ is chosen as the 1-norm,
i.e., ‖ · ‖′ = ‖ · ‖1, then the induced matrix norm
is the column-sum norm, i.e., ‖A‖ = ‖A‖col =
maxj

∑

i |aij |. The corresponding matrix measure is

µ(A) = maxj=1,2,··· ,n



ajj +
n
∑

i=1,i6=j

|aij |



 . (43)

• If the vector norm ‖ · ‖′ is chosen as the ∞-norm, i.e.,
‖ · ‖′ = ‖ · ‖∞, then the induced matrix norm is the
row-sum norm, i.e., ‖A‖ = ‖A‖row = maxi

∑

j |aij |.
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The corresponding matrix measure is

µ(A) = maxi=1,2,··· ,n



aii +

n
∑

j=1,j 6=i

|aij |



 . (44)

7.2 Solution bounds of time-varying linear systems

We recall the following result (the Coppel inequality
[46]) that bounds the solution of a time-varying linear
system via matrix measures (see e.g., Chapter 2 of [45]).

Lemma 4 Let t → A(t) be a continuous matrix function
from R

+ to R
n×n. Then the solution of the time-varying

linear system

ẋ(t) = A(t)x(t) (45)

satisfies the inequalities

‖x(t0)‖
′e

−
∫

t

t0

µ(−A(t′))dt′

≤ ‖x(t)‖′ ≤ ‖x(t0)‖
′e

∫

t

t0

µ(A(t′))dt′

,

∀t ≥ t0 (46)

where ‖ · ‖′ denotes a vector norm that is compatible with
the norm in the matrix measure µ(A).

7.3 Proof of Theorem 1

Proof The equivalence of each statement is proved as
below.

• (i) ⇐⇒ (ii)
This is a reformulation of the statement in Lemma 1.

• (ii) ⇐⇒ (iii)
Under a positive diagonal matrix D̄, the entries of the
matrix Ā = {āij} := D̄−1AD̄ are described by

āij =

{

aij , if j = i;
d̄j

d̄i
aij , if j 6= i.

By definition, strict row-diagonal dominance of
D̄−1AD̄ equivalently indicates that

|āii| = |aii| >
n
∑

j=1,j 6=i

āij

=
1

d̄i

n
∑

j=1,j 6=i

d̄j |aij |, ∀i = 1, 2, · · · , n,

(47)

which is equivalent to |aii|d̄i >
∑n

j=1,j 6=i d̄j |aij |, ∀i =

1, 2, · · · , n since d̄i > 0, ∀i. The latter inequal-
ity equivalently implies that A is generalized row-
diagonally dominant according to Definition 2. There-
fore the equivalence is proved.

• (i) ⇐⇒ (iv)
We first show that A is an H-matrix if and only if AT

is an H-matrix. According to Definition 1 and prop-
erties of M-matrix [24], a matrix MA is an M-matrix
if and only if that there exists a positive scalar s > 0
and a non-negative matrix N = {nij ≥ 0} ∈ R

n×n,
such that MA = sIn −N and s > ρ(N). Without loss
of generality we choose s = max{aii, i = 1, 2, · · · , n},
and therefore N = sIn −MA which is a non-negative
matrix. Since MT

A = (sIn −N)T = sIn −NT and be-
cause ρ(N) = ρ(NT ), one has s > ρ(NT ) and there-
fore MT

A is also an M-matrix if MA is an M-matrix.
By Definition 4 and the structure of the comparison
matrix, one concludes that A is an H-matrix if and
only if AT is an H-matrix. Then applying statement
(ii) to AT gives the result.

• (iv) ⇐⇒ (v)

Under a positive diagonal matrix D̃, the entries of the
matrix Ã = {ãij} = D̃AD̃−1 are described by

ãij =







aij , if j = i;
d̃i

d̃j

aij , if j 6= i.

By definition, strict column-diagonal dominance of
D̃AD̃−1 equivalently indicates that

|ãjj | = |ajj | >
n
∑

i=1,i6=j

ãij

=
1

d̃j

n
∑

i=1,i6=j

d̃i|aij |, ∀j = 1, 2, · · · , n,

(48)

which is equivalent to |ajj |d̃j >
∑n

i=1,i6=j d̃i|aij |, ∀j =

1, 2, · · · , n since d̃j > 0, ∀j. The latter inequality
equivalently implies that A is generalized column-
diagonally dominant according to Definition 3. There-
fore the equivalence is proved.

✷

7.4 A lemma on weighted edge Laplacian

The following lemma shows the monotonic increasing
property of non-zero eigenvalues of weighted edge Lapla-
cian with monotonic increasing node weights.

Lemma 5 Consider two undirected connected graphs
GK and G

K̂
with the same node-edge topology (encoded by

the 0-1 incidence matrix H ∈ R
m×n), but with different

sets of positive node weights K = diag{k1, k2, · · · , kn}

and K̂ = diag{k̂1, k̂2, · · · , k̂n}. Their weighted edge
Laplacian matrices are denoted by LGK

:= HKHT and

LG
K̂

:= HK̂HT , respectively, and their eigenvalues
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are listed in an ascending order λi(GK) and λi(GK̂
),

∀i = 1, 2, · · · ,m, respectively.

• The two matrices have the same number of zero eigen-
values: λi(LGK

) = λi(LG
K̂
) = 0, i = 1, · · · , κ, where

κ is the number of independent cycles in the graph.
• If the node weights of the two weighted graphs satisfy

ki > k̂i, ∀i = 1, 2, · · · , n, then the non-zero eigenval-
ues of the weighted edge Laplacians satisfy

λi(LGK
) > λi(LG

K̂
), ∀i = κ+ 1, · · · ,m. (49)

In particular, λ+
min(HKHT ) > λ+

min(HK̂HT ) > 0.

Proof For a connected undirected graph G encoded by
the incidence matrix H (with arbitrary orientation as-
signed), the null space null(HT ) is spanned by all lin-
early independent signed path vectors corresponding to
the cycles in G [21]. Then the dimension of null(HT ) is
the number of independent cycles in the graph. Since
the diagonal weight matrices K and K̂ are positive defi-
nite, one has null(HT ) = null(HKHT ) = null(HK̂HT ),
from which one concludes that the two edge Laplacian
matrices LGK

and LG
K̂
have the same number κ of zero

eigenvalues.

Now we analyze the non-zero eigenvalues of the edge

Laplacian matrices. By denoting k̃i = ki − k̂i > 0, ∀i
and K̃ = diag{k̃1, k̃2, · · · , k̃n}, one has LGK

= H(K̂ +

K̃)HT = LG
K̂
+ HK̃HT . The matrix HK̃HT has the

same number of zero eigenvalues with the same null vec-
tors as in LGK

, and all other eigenvalues are positive.
Therefore, one concludes λi(LGK

) > λi(LG
K̂
), ∀i = κ+

1, · · · ,m. In particular, for the smallest positive eigen-
value, there holds λ+

min(HKHT ) > λ+
min(HK̂HT ) >

0. ✷
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