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Abstract

Observing the internal state of the whole system using a small number of sensor nodes is
important in analysis of complex networks. Here, we study the problem of determining the
minimum number of sensor nodes to discriminate attractors under the assumption that each
attractor has at most K noisy nodes. We present exact and approximation algorithms for this
minimization problem. The effectiveness of the algorithms is also demonstrated by computational
experiments using both synthetic data and realistic biological data.
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1 Introduction

It is important for analyzing complex network systems to select a small set of nodes (i.e., sen-
sor nodes) whose measurements can determine all other state variables. Relationships between
structure of complex networks and sensor nodes have been analyzed recently, especially for lin-
ear systems [1, 2]. However, biological systems contain non-linear components and thus exhibit
switch-like behaviors. Therefore, it is essential to study the observability of non-linear systems.
Even though most biological phenomena manifest them in a continuous domain, the binary ex-
pression shows promising and useful results [3, 4]. The Boolean network (BN) is one of the most
studied mathematical models for genetic networks [5, 6], in which the state of each gene is repre-
sented by 0 (off) or 1 (on). Observability of BNs has been widely studied [7, 8, 9]. However, it is
impossible in most cases to observe all internal states from a small set of sensor nodes because BN
is a highly non-linear network [9]. Therefore, another approach has been proposed: discrimination
of attractors, where an attractor is a collection of state cycles. Attractors are classified into single-
ton attractors and periodic attractors, where the former and latter correspond to statically steady
states and periodically steady states, respectively. The purpose of discrimination of attractors
is to determine the minimum set of sensor nodes required to discriminate all given attractors.
Since attractors are often interpreted as cell types [10], the discrimination problem corresponds
to a problem of selecting the minimum number of genes that are needed to identify types of cells
(e.g., types of cancers), which is closely related to selection of biomarkers or marker genes, a very
important topic in biological and medical sciences [11, 12].

This discrimination problem was proposed in [13], and has been extensively studied [14].
All the results assume clean input data. However, gene expression noise is inevitable due to
environmental fluctuations and the stochasticity of biochemical reactions such as transcription,
chromatin remodeling and post-translational regulation [15, 16, 17]. Therefore, proposing a robust
discrimination model is essential towards robust classification of cell types. To this end, we
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reformulate the discrimination problem on BNs by assuming the number of noisy nodes is bounded
by a numberK, where this number is closely related to the Hamming distance, a standard distance
measure for binary vectors.

In this paper, we consider the discrimination problem for attractors with noisy nodes firstly,
and present an exact algorithm. Another polynomial-time approximation algorithm is proposed to
in order to balance the tradeoff between the size of the target set and the overall time complexity.
Discrimination of singleton attractors with noisy nodes is a special case of our general discrimi-
nation problem here. In this special case, the distance between any pair of attractors equals to
Hamming distance between two attractors’ states and thus it might be possible to develop simpler
and/or faster algorithms. Therefore we present an exact algorithm and a polynomial-time approx-
imation algorithm specified for discrimination of singleton attractors with noisy nodes afterwards.
Finally, we perform computational experiments using synthetic data and realistic biological data.
We remark that in our study, we assume a set of attractors are given without knowing the internal
structure of a BN. Although enumerating all the singleton attractors is an NP-hard problem, there
are some algorithms developed to find all the attractors up to moderate size networks [18, 19, 20].
Furthermore, we assume that those attractors can be given independent of BN structures since
they will be directly obtained from the expression data of stable cells.

2 Discrimination of Attractors with Noisy Nodes

A list of notations used in this paper is given in Table 1. Firstly, we give a mathematical for-
mulation of finding a minimum discriminator for attractors with noisy nodes (MinDattNN). To
this end, we define the distance between a pair of attractors (POA) by observing a set of nodes
V̂ . This new definition is needed because a periodic attractor is a periodically steady time se-
ries. For a set V̂ ⊆ V and an n-dimensional 0-1 vector v, vV̂ denotes the |V̂ |-dimensional vector

consisting of elements of v that correspond to V̂ . For example, if n = 5,v = [1, 1, 0, 1, 0] and
V̂ = {v2, v3, v5}, then vV̂ = [1, 0, 0]. Let Atti1 and Atti2 be two periodic attractors and p(i) be
the period of Atti: Atti1 = [v(0),v(1), . . . ,v(p(i1)−1)] and Atti2 = [w(0),w(1), . . . ,w(p(i2)−1)].
Define Ser(Atti1 , V̂ , t) as an infinite sequence of |V̂ |-dimensional vectors beginning from time step
t: Ser(Atti1 , V̂ , t) = [vV̂ (t),vV̂ (t + 1),vV̂ (t + 2), . . .]. Let Dist(Atti1 , Atti2 , V̂ ) be the distance

between Atti1 and Atti2 by observing V̂ :

Dist(Atti1 , Atti2 , V̂ ) =
p−1

min
t=0

{
∑

vi∈V̂

I{Ser(Atti1 , {vi}, 0), Ser(Atti2 , {vi}, t)}

}

where p = LCM(p(i1), p(i2)) (LCM means the least common multiple) and
I{Ser(Atti1 , {vi}, 0), Ser(Atti2 , {vi}, t)}

=

{
1, if Ser(Atti1 , {vi}, 0) 6= Ser(Atti2 , {vi}, t),
0, otherwise.

Then Dist(Atti1 , Atti2 , V ) = 0 if and only if these two attractors are identical. In the noisy case, it
is hypothesized that noisy nodes vary in different attractors, thus at most 2K nodes’ value may flip
from 1 to 0 or vice versa for a pair of attractors. Therefore, in the worst case, a POA is discrimi-
nated only if there are at least 2K+1 different nodes observed, that is Dist(Atti1 , Atti2 , V ) > 2K.

Definition 1 (Minimum Discriminator for Attractors with Noisy Nodes [MinDattNN])
Input: A set of m attractors {Att1, Att2, . . . , Attm} where Atti is a p(i)× n binary matrix (n is
number of genes), and an integer K denoting the maximum number of noisy nodes per attractor.
Output: A minimum cardinality set V̂ of nodes such that Dist(Atti1 , Atti2 , V̂ ) ≥ 2K + 1 holds
for all i1, i2 with 1 ≤ i1 < i2 ≤ m.

2.1 Exact Algorithm for MinDattNN

Inspired by Lemma 1 in [14], we consider gene pairs. We first construct a binary
(
m
2

)
×
(
n
2

)
matrix

D by D[T (i1, i2,m), T (j1, j2, n)] = Dist(Atti1 , Atti2 , {vj1 , vj2}). Here T (i1, i2,m) = (i1 − 1)m −
i1(i1−1)

2 + i2− i1. Then for each POA (Atti1, Atti2) and a set V̂ , we construct an undirected graph

GD(T (i1, i2,m), V̂ ) = 〈V̂ , Ê〉 where Ê = {e = (vj1 , vj2)|vj1 , vj2 ∈ V̂ , D[T (i1, i2,m), T (j1, j2, n)] =
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Table 1: List of Notations

Common Notations

m Number of attractors
n Number of genes
M Number of POAs (i.e., M =

(
m
2

)
)

xT (i1,i2,m), 1 ≤ T (i1, i2,m) ≤M A pair of attractors (POA), (Atti1 , Atti2)

U = {xl, 1 ≤ l ≤M} A set of POAs need to be discriminated

Notations in MinDattNN

v A 0-1 vector
V A set of nodes corresponding to genes

v
V̂
, V̂ ⊆ V

|V̂ |-dimensional vector consisting of

elements of v that correspond to V̂
Atti1 = [v(0), . . . ,v(p(i1)− 1)]

Two periodic attractors
Atti2 = [w(0), . . . ,w(p(i2)− 1)]

p(i) The period of Atti
Ser(Atti1 , V̂ , t) = An infinite sequence of |V̂ |-dimensional

[v
V̂
(t),v

V̂
(t+ 1),v

V̂
(t+ 2), . . .] vectors beginning from time step t

Dist(Atti1 , Atti2 , V̂ ) Distance between Atti1 and Atti2 by observing V̂
D[T (i1, i2,m), T (j1, j2, n)] Distance between (Atti1 , Atti2) by observing {vj1 , vj2}

sT (j1,j2,n) = {xT (i1,i2,m)|D[T (i1, i2,m), T (j1, j2, n)] 6= 0} A set of POAs that can be discriminated by {vj1 , vj2}
S = {s1, s2, . . . , sn(n−1)

2

} A set of all candidate sensor pairs

rT (i1,i2,m) A dummy variable indicating the distance

≤ Dist(Atti1 , Atti2 , V̂ ) between a POA under the current discriminator

GD(T (i1, i2,m), V̂ )
Adjacent graph of T (i1, i2,m)−th row of

D constrained on nodes in V̂

MC(GD(T (i1, i2,m), V̂ )) A maximum clique of GD(T (i1, i2,m), V̂ )

Notations in MinDSattNN

Att An m× n attractor matrix
J = {j1, j2, . . . , jk} A set of column/row indices
A[i,−](resp.A[−, j]) The i-th row (resp. j-th column) of A

A[i, J ](resp.A[J, j])
The sub-matrix of A[i,−] (resp. A[−, j]) consisting
of the j1, j2, . . . , jk-th columns (resp. rows)

H(x, y) Hamming distance between vectors x and y
sj = {xT (i1,i2,m)|Att[i1, j] 6= Att[i2, j]} A set of POAs that can be discriminated by vj

S = {s1, s2, . . . , sn} A set of candidate sensor nodes

rT (i1,i2,m) = H(Att[i1, J ], Att[i2, J ])
A dummy variable indicating the distance between
a POA under the current discriminator

0}. From Lemma 1 (given below), Dist( Atti1 , Atti2 , V̂ ) can be calculated by computing a maxi-
mum clique of GD(T (i1, i2,m), V̂ ), then we need to decide whether Dist(Atti1 , Atti2 , V̂ ) ≥ 2K+1
holds for all i1, i2 with 1 ≤ i1 < i2 ≤ m. Note that the exceptional case that all node in
GD(T (i1, i2,m), V̂ ) are isolated needs to be discussed based on whether these two attractor can
be discriminated by observing any nodes in V̂ (line 7-9 in Algorithm 1). Example 1 is an illustra-
tive example for calculation of Dist(Atti1 , Atti2 , V̂ ). The resulting algorithm is given in Algorithm
1, and its time complexity is analyzed in Theorem 1.

Lemma 1 Suppose that GD(T (i1, i2,m), V̂ ) has at least one edge. γ = |MC(GD(T (i1, i2,m), V̂ ))|
is the number of nodes in the maximum clique of GD(T (i1, i2,m), V̂ ). Then Dist(Atti1 , Atti2 , V̂ ) =
|V̂ | − γ.

Proof: Define

Dif(i1,i2)({vj}, t)=

{

0, if Ser(Atti1 , {vj}, 0) = Ser(Atti2 , {vj}, t),

1, otherwise,

Without considering order of nodes in V̂ , Dif(i1,i2)(V̂ , t) has the form of Dif(i1,i2)(V̂ , t) =

00 · · · 0
︸ ︷︷ ︸

V̂1(t)

11 · · · 1
︸ ︷︷ ︸

V̂2(t)

. From definition, we know Dist(Atti1 , Atti2 , V̂ ) = min
t
|V̂2(t)| = |V̂ | −max

t
|V̂1(t)|.
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Figure 1: (a) GD(T (1, 2, 3), V ) (left) and (b) GD(T (2, 3, 3), V ) (right)

On the other hand, if vj1 , vj2 ∈ V̂1(t), thenDist(Atti1 , Atti2 , {vj1 , vj2}) = 0, this means all nodes in

V̂1(t) forms a clique. Maximizing |V̂1(t)| equals to calculating the number of nodes in a maximum
clique of GD(T (i1, i2,m), V̂ ), which completes the proof. ✷

Algorithm 1 Exact algorithm for MinDattNN

Input: set of attractors, set of nodes V , integer K
Output: set of nodes V̂

1: Calculate matrix D
2: for k = 2K + 1 to n do
3: for V̂ ⊂ V and |V̂ | = k do
4: sig ← 0;
5: for 1 ≤ i1 ≤ i2 ≤ m do
6: sig2 ←

∑

vj1 ,vj2∈V̂

D[T (i1, i2,m), T (j1, j2, n)]

7: if sig2 = (|V̂ | − 1)|V̂ | then γ ← 0
8: else γ ← |MC(GD(T (i1, i2,m), V̂ ))|
9: end if

10: if k − γ ≥ 2K + 1 then sig ← sig + 1
11: else Break
12: end if
13: end for
14: if sig = M then return V̂
15: end if
16: end for
17: end for

Example 1 Let Att1 = [00001, 11100],Att2 = [10100], Att3 = [11001] and V = {v1, v2, v3, v4, v5}.
Part of D is shown below, where gene pairs with v5 are omitted. GD(T (1, 2, 3), V ) and GD(T (2, 3, 3),
V ) are shown in Fig. 1.

D =







(v1, v2) (v1, v3) (v1, v4) (v2, v3) (v2, v4) (v3, v4)
2 2 1 2 1 1 (Att1, Att2)
2 2 1 2 1 1 (Att1, Att3)
1 1 0 2 1 1 (Att2, Att3)







,

Case 1: Consider (Att2, Att3) and V̂ = {v1, v2, v4}, then Ê = {(v1, v4)} 6= ∅. From Lemma
1, Dist(Att2, Att3, V̂ ) = 3 − |MC(GD(T (2, 3, 3), V̂ ))| = 1 holds. This can be verified since
Dist(Att2, Att3, V̂ ) equals to the Hamming distance between vectors 100 and 110.
Case 2: Consider (Att1, Att2) and V̂ = {v1, v2, v3}, then Ê = ∅. In this case, Dist(Att1, Att2, V̂ ) =
3 since these two attractors are discriminated by observing any node in V̂ , which corresponds to
Line 7 in Algorithm 1.
Case 3: Consider (Att2, Att3) and V̂ = {v1, v2, v3}, then Ê = ∅. In this case, Dist(Att2, Att3, V̂ ) =
3 − |MC(GD(T (2, 3, 3), V̂ ))| = 2 since these two attractors are the same by observing v1 but are
discriminated by observing v2 or v3, which corresponds to Line 8 in Algorithm 1.
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Finally, we can see that V̂ = {v1, v2, v3, v5} is a solution of MinDattNN for K = 1 because the
distance between any attractor pair is 3 or 4.

Theorem 1 Algorithm 1 computes an optimal discriminator V̂ ∗ in O(3|V̂
∗|/3n|V̂ ∗|m2 +m2n2p)

time, where p = LCM{p(1), p(2), . . . , p(m)}.

Proof: The correctness of the algorithm follows from Lemma 1. D can be calculated in O(m2n2p)
time by a naive algorithm. We can apply the Bron-Kerbosch algorithm to calculate the maximum
clique, whose time complexity is O(3n/3) for graphs with n nodes. Therefore, the total time

complexity is O(3|V̂
∗|/3n|V̂ ∗|m2 +m2n2p), where |V̂ ∗| is the minimum number of needed nodes.

✷

2.2 Approximation Algorithm for MinDattNN

Algorithm 2 is a greedy-type approximation algorithm running in O(poly(m,n, p)) time, which is
much more efficient than Algorithm 1. Here, we introduce some notations. xT (i1,i2,m) means a
POA (Atti1 , Atti2), and sT (j1,j2,n) = {xT (i1,i2,m)|D[T (i1, i2,m), T (j1, j2, n)] 6= 0}. For instance,
x1 means (Att1, Att2) and s1 = {x1, x2, x3} in Example 1. Notice that we adopt rT (i1,i2,m) to

record the distance between Atti1 and Atti2 , and rT (i1,i2,m) ≤ Dist(Atti1 , Atti2 , V̂ ) holds where

V̂ is the current discriminator set. In this greedy algorithm, a pair of nodes is added in each
iteration, instead of a single node. It is because there exist cases in which the single node addition
strategy fails (Proposition 1), whereas the node pair addition strategy can always find a feasible
solution (Proposition 2). An illustrative example is given in Example 2.

Algorithm 2 Approximation algorithm for MinDattNN

Input: U = {x1, x2, . . . , x(m2 )
}, S = {s1, s2, . . . , s(n2)

}, integer K

Output: set of nodes V̂

1: Calculate matrix D
2: V̂ ← ∅, rl = 0 for 1 ≤ l ≤M
3: while U 6= ∅ and S 6= ∅ do
4: Find sT (j1,j2,n) ∈ S maximize |sT (j1,j2,n) ∩ U |

5: V̂ ← V̂ ∪ {vj1 , vj2},
6: S ← S − {sT (k,k′,n)|k = j1 or k′ = j2};
7: for all xl ∈ sT (j1,j2,n) and rl < 2K + 1 do
8: rl ← rl +D(l, T (j1, j2, n))
9: if rl ≥ 2K + 1 then U ← U − {xl}

10: end if
11: end for
12: end while
13: if S = ∅ then V̂ ← V
14: end if

Proposition 1 Suppose that (Atti1 , Atti2 ) is a pair of attractors and V̂ is a discriminator set such
that Dist(Atti1 , Atti2 , V̂ ) = N . Then it is possible that for any node vj ∈ V−V̂ , Dist(Atti1 , Atti2 , V̂ ∪

{vj}) = N , but there exists vi ∈ V̂ such that Dist(Atti1 , Atti2 , {vi, vj}) 6= 0.

Proof: Let Att1 = [00101, 00110], Att2 = [00010, 00001], and V̂ = {v1, v2, v3}. Then we have
Dist(Att1, Att2, V̂ ) = Dist(Att1, Att2, {v1, v2, v3, v4}) = Dist(Att1, Att2, {v1, v2, v3, v5}) = 1. On
the other hand, we have Dist(Att1, Att2, {v3, v4}) = Dist(Att1, Att2, {v3, v5}) 6= 0. ✷

Proposition 2 If (Atti1 , Atti2) is a pair of attractors and V̂ is a discriminator such that Dist(Atti1 ,
Atti2 , V̂ ) = N , then for any pairs of nodes (vj1 , vj2) such that vj1 /∈ V̂ , vj2 /∈ V̂ , and xT (i1,i2,m) ∈
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Table 2: Example of execution of Algorithm 2.

step U S V̂ r = [r1, r2, r3]

0 {x1, x2, x3} {s1, . . . , s15} ∅ [0, 0, 0]
1 {x1, x2, x3} {s6, s8, s9, s11, s12, s15} {v1, v4} [1, 1, 1]
2 {x1, x3} {s11} {v1, v4, v2, v6} [2, 3, 2]
3 ∅ ∅ {v1, v4, v2, v6, v3, v4} [3, 3, 3]

sT (j1,j2,n), Dist(Atti1 , Atti2 , V̄ ) ≥ N +D[T (i1, i2,m), T (j1, j2, n)] holds where V̄ = V̂ ∪{vj1 , vj2}.

Proof: Let Dif(i1,i2)(V̂ , t) has the form of Dif(i1,i2)(V̂ , t) = 00 · · ·0
︸ ︷︷ ︸

V̂1(t)

11 · · ·1
︸ ︷︷ ︸

V̂2(t)

. and

β1(t) =
∑

vi∈V̂

I{Ser(Atti1 , {vi}, 0), Ser(Atti2 , {vi}, t)}. Then, it is obvious β1(t) = |V̂2(t)|. In

the proof of Lemma 1, we claimed a relationship between β1(t) and Dist(Atti1 , Atti2 , V̂ ) that
Dist(Atti1 , Atti2 , V̂ ) = min

t
β1(t). Let α = D[T (i1, i2,m), T (j1, j2, n)]. Since xT (i1,i2,m) ∈ sT (j1,j2,n),

α is either 1 or 2. This means

α = min
t

α(t) = min
t







∑

vi∈{vj1 ,vj2}

I{Ser(Atti1 , {vi}, 0), Ser(Atti2 , {vi}, t)}






.

Similarly, consider β2(t) =
∑

vi∈V̄

I{Ser(Atti1 , {vi}, 0), Ser(Atti2 , {vi}, t)} thenDist(Atti1 , Atti2 , V̄ )

= min
t

β2(t). Obviously, we have min
t

β2(t) ≥ min
t

β1(t) + α, and the equality is achieved when

both β1(t) and α(t) are minimized at the same t, which implies Dist(Atti1 , Atti2 , V̄ ) ≥ N +
D[T (i1, i2,m), T (j1, j2, n)]. ✷

Example 2 Three attractors are given by Att1 = [010101, 011011, 000101, 111011, 110101, 101011],
Att2 = [010011, 011100, 000011, 111100, 110011, 101100] and Att3 = [010001, 101110, 110001, 001110].
A detailed process of Algorithm 2 is shown in Table 2 where r = [r1, r2, r3]. After the 3rd step, all
nodes have been added to V̂ and r = [3, 3, 3] holds, and then it returns V since U = ∅.

Besides, there is a difficulty in analyzing the approximation factor in general. Therefore, we add a
condition Dist(Atti1 , Atti2 , V̂j−1)+Dist(Atti1 , Atti2 , V̂

∗− V̂j−1) ≥ 2K+1 to obtain a guaranteed
approximation factor as below. Even though it is difficult to test whether or not the condition is
satisfied before running the approximation algorithm, it seems from numerical experiments that
this condition is satisfied in most cases.

Theorem 2 Let V̂j denote the discriminator set obtained after the j-th iteration of Algorithm

2 and V̂ ∗ be an optimal solution. Suppose that Dist(Atti1 , Atti2 , V̂j−1) +Dist(Atti1 , Atti2 , V̂
∗ −

V̂j−1) ≥ 2K+1 is satisfied for each j. Then, Algorithm 2 is an ln(M(2K+1))+1 factor polynomial
time approximation algorithm for MinDattNN (M =

(
m
2

)
).

Proof: Firstly, we consider the approximation ratio when the algorithm terminates when S 6= ∅.
Let t(k) be the index such that a pair of nodes st(k) is chosen at the k-th iteration. Let V̂j−1

denote the discriminator set after the (j − 1)-th iteration, Uj is U at the j−th iteration. We

assume without loss of generality that V̂j−1 = {v1, v2, · · · , v2j−2} holds. In each iteration, a pair
of nodes is added, thus the distance between a POA can be increased by at most 2, thus we have
the following inequality:

∑

i1<i2
Dist(Atti1 , Atti2 , V̂j−1) ≤

∑

i1<i2
(0 + 2 · · ·+ 2) (1)
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= 2
∑j−1

k=1

∑

i1<i2
1st(j)∩Uk

(xT (i1,i2,m)) = 2
∑j−1

k=1 |st(k) ∩ Uk|,

where 1A(x) = 1 if x ∈ A, and 0 otherwise.
By assumption, we have Dist(Atti1 , Atti2 , V̂j−1) + Dist(Atti1 , Atti2 , V̂

∗ − V̂j−1) ≥ 2K + 1. By
taking the summation over all pairs of attractors, we have

∑

i1<i2

Dist(Atti1 , Atti2 , V̂
∗ − V̂j−1) (2)

≥ (2K + 1)M −
∑

i1<i2

Dist(Atti1 , Atti2 , V̂j−1)

≥ (2K + 1)M − 2

j−1
∑

k=1

|st(k) ∩ Uk|.

At the j-th iteration, we need to choose a pair of nodes that discriminates the largest number of
POAs in Uj . Since all nodes in V̂ ∗ − V̂j−1 = {v∗1 , v

∗
2 , · · · } are candidates, every two nodes form a

pair in order, which are denoted as s∗1, s
∗
2, · · · , s

∗
|V̂ ∗−V̂j−1|/2

. Then we have

|V̂ ∗−V̂j−1|/2∑

k=1

|s∗k ∩ Uj| ≤
|V̂ ∗ − V̂j−1|

2
· |st(j) ∩ Uj |, (3)

Furthermore, if we consider choosing nodes from V̂ ∗ − V̂j−1 to discriminate POAs in Uj−1, then

after |V̂ ∗ − V̂j−1|/2 iterations, all nodes will be chosen. Therefore, from Ineq. (1), we have

|V̂ ∗−V̂j−1|/2∑

k=1

|s∗k ∩ Uj | ≥

|V̂ ∗−V̂j−1|/2∑

k=1

|s∗k ∩ Uk
j | (4)

≥
1

2

∑

i1<i2

Dist(Atti1 , Atti2 , V̂
∗ − V̂j−1),

where Uk
j is Uj at the k-th iteration. Putting (2)-(4) together, we have

1

|st(j) ∩ Uj |
≤

|V̂ ∗ − V̂j−1|

2

|V̂ ∗−V̂j−1|/2∑

k=1

|s∗k ∩ Uj|

by (3)

≤
|V̂ ∗ − V̂j−1|

∑

i1<i2

Dist(Atti1 , Atti2 , V̂
∗ − V̂j−1)

by (4)

≤
|V̂ ∗ − V̂j−1|

M(2K + 1)− 2

j−1
∑

k=1

|st(k) ∩ Uk|

by (2)

≤
|V̂ ∗|

M(2K + 1)− 2

j−1
∑

k=1

|st(k) ∩ Uk|

.

Finally, we define P (xl, j) as the average price of to each xl at the j-th iteration, for xl ∈ Uj.

Then we have P (xl, j) =

{ 2
|st(j)∩Uj |

, xl ∈ st(j) ∩ Uj ,

0, otherwise.

After termination of Algorithm 2, the total number of nodes in the discriminator should be |V̂ |,
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which means |V̂ | =

|V̂ |/2
∑

j=1

M∑

l=1

P (xl, j). Thus we have

|V̂ | =

|V̂ |/2
∑

j=1

M∑

l=1

P (xl, j)

≤

|V̂ |/2
∑

j=1

(2|Uj ∩ st(j)|) ·
|V̂ ∗|

M(2K + 1)− 2

j−1
∑

k=1

|st(k) ∩ Uk|

≤ |V̂ ∗|

(

1 +
1

2
+ . . .+

1

M(2K + 1)

)

,

where is = 2

j−1
∑

k=1

|st(k) ∩ Uk| and ie = 2

j
∑

k=1

|st(k) ∩ Uk| − 1. Therefore, we have

|V̂ |

|V̂ ∗|
≤
(

1 + 1
2 + . . .+ 1

M(2K+1)

)

≤ ln(M(2K + 1)) + 1. On the other hand, if the algorithm

terminates when S = ∅, it will reduce the approximation factor. Therefore, ln (M(2K + 1)) + 1
gives an upper bound of the approximation ratio.
Next, we analyze the time complexity. Let p = LCM{p(1), p(2), . . . , p(m)}. Calculation of matrix
D should cost O(m2n2p) time. It is also clear that the inner While loop takes O(m2n2 logn)
time. Therefore, the theorem holds. ✷

3 Discrimination of Singleton Attractors with Noisy Nodes

As we mentioned before, discrimination of singleton attractors with noisy nodes is a special case
of the discrimination problem proposed in the previous section. In this case, each attractor Atti is
a binary vector and the distance between a POA (Atti1 , Atti2) is degenerated to H(Atti1 , Atti2),
where H(x, y) is the Hamming distance between binary vectors x and y. Therefore, we put
all attractors in a binary m × n matrix Att in which each row represents a singleton attractor.
Moreover, for a matrix A, let A[i,−] (resp., A[−, j]) denotes the i-th row (resp., j-th column).
Similarly, for a matrix A and a set of column (resp., row) indices J = {j1, . . . , jk}, A[i, J ] (resp.,
A[J, j]) denotes the submatrix of A[i,−] (resp., A[−, j]) consisting of the j1, . . . , jk-th columns
(resp., rows). [14] considered the clean (i.e., without noise) version of the problem, The task was
to find the minimum set of column indices J such that Att[i1, J ] 6= Att[i2, J ] holds for all i1, i2
with 1 ≤ i1 < i2 ≤ m. In the noisy case, it is hypothesized that noisy nodes vary in different
attractors, thus at most 2K nodes are not reliable for a POA, thus a POA is discriminated only
if H(Att[i1,−], Att[i2,−]) > 2K. Hence, we define MinDSattNN as follows.

Definition 2 (Minimum Discriminator for Singleton Attractors with Noisy Nodes [MinDSat-
tNN])
Input: A set of singleton attractors represented by an m × n binary matrix Att and an integer
K denoting the maximum number of noisy nodes per attractor.
Output: A minimum cardinality set J of columns such that H(Att[i1, J ], Att[i2, J ]) ≥ 2K + 1
holds for all i1, i2 with 1 ≤ i1 < i2 ≤ m.

3.1 Exact Algorithm for MinDSattNN

To solve MinDSattNN, we develop an integer programming (IP)-based exact method. To this
end, we construct a matrix Catt of size

(
m
2

)
× n by comparing every two rows of Att:

Catt[T (i1, i2,m), j] =

{
0, if Att[i1, j] = Att[i2, j],
1, if otherwise.

In MinDatt, matrix D is constructed from calculating distance between any POA by observing
a pair of nodes, whereas in the singleton case observing only a node is needed. Let M denote

(
m
2

)
.
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Let y = [y1, y2, . . . , yn] be a vector in which yj takes 1 (j ∈ J) or 0 (j /∈ J). Then MinDSattNN
can be formulated as a typical IP problem

min 1 · yT

subject to
{

Catt[i,−] · yT ≥ 2K + 1 (i = 1, 2, . . . ,M),
yj ∈ {0, 1} (j = 1, 2, . . . , n),

where 1 = [1, 1, . . . , 1]
︸ ︷︷ ︸

n

. Accordingly, we see that MinDSattNN can be transformed into an

integer programming problem with n binary variables and O(m2) constraints. It should be noted
that existing IP solvers (e.g., intlinprog in MATLAB) take exponential time in the worst case and
thus this IP-based method takes exponential time in the worst case. However, it is reasonable
because bothMinDattNN andMinDSattNN include the problem of discrimination of singleton
attractors (MinDiscSatt) [14], which is known to be NP-hard, as a special case and thus are
NP-hard. The following is an illustrative example of the IP process.

Example 3 Let Att be given by

Att =





1 0 0 0 0 0 0 1
1 1 1 0 1 0 0 1
1 0 0 0 1 1 1 0



 ,

which means that there exist three singleton attractors Att[1,−] = [1, 0, 0, 0, 0, 0, 0, 1], Att[2,−] =
[1, 1, 1, 0, 1, 0, 0, 1], Att[3,−] = [1, 0, 0, 0, 1, 1, 1, 0]. Then we would have

Catt =





0 1 1 0 1 0 0 0
0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 1



 ,

and all parameters into intlinprog (in MATLAB) would be f = [1, 1, 1, 1, 1, 1, 1, 1], intcon =
[1, 2, 3, 4, 5, 6, 7, 8],lb= [0, 0, 0, 0, 0, 0, 0, 0], ub = [1, 1, 1, 1, 1, 1, 1, 1], then we would have the optimal
object value of 5 and y = [0, 1, 1, 0, 1, 1, 0, 1], which means J = {2, 3, 5, 6, 8}.

3.2 Approximation Algorithm for MinDSattNN

MinDSattNN is a special case of the set multi-cover problem [21], which is NP-hard. Therefore,
in order to balance the trade-off between the size of a target set J and the overall time complexity,
we design a simple greedy algorithm, Algorithm 3, based on [21]. As shown in Theorem 3, it has
a guaranteed approximation ratio ln (M(2K + 1)) + 1. Notice that, usually, m ≪ n and K ≪ n
and thus the ratio is acceptable as the computational time can be reduced significantly. Similarly,
xT (i1,i2,m) denotes a POA and let sj = {xT (i1,i2,m)|Att[i1, j] 6= Att[i2, j]} denote the POAs that
can be discriminated by vj . For example, x1 = (Att1, Att2) and s2 = {x1, x3} in Example 3. An
example of this algorithm is given in Example 4.

Algorithm 3 Approximation algorithm for MinDSattNN

Input: U = {xl, 1 ≤ l ≤M}, S = {s1, s2, . . . , sn}, integer K
Output: set of nodes J

1: J ← ∅, rl = 0 for 1 ≤ l ≤M
2: while U 6= ∅ do
3: Find sj ∈ S with maximum |sj ∩ U |, J ← J ∪ {j}, S ← S − {sj};
4: for all xl ∈ sj and rl < 2K + 1 do rl ← rl + 1
5: if rl = 2K + 1 then U ← U − {xl}
6: end if
7: end for
8: end while

9



Example 4 Attractors are the same as in Example 3, and detailed execution steps are shown in
Table 3. In this case, we have the final target set equals to {v2, v3, v5, v6, v7}.

Table 3: Example of execution of Algorithm 3.

step U S J r = [r1, r2, r3]

0 {x1, x2, x3} {s1, . . . , s8} ∅ [0, 0, 0]
1 {x1, x2, x3} {s1, s3, . . . , s8} {2} [1, 0, 1]
2 {x1, x2, x3} {s1, s4, . . . , s8} {2, 3} [2, 0, 2]
3 {x2, x3} {s1, s4, s6, s7, s8} {2, 3, 5} [3, 1, 2]
4 {x2} {s1, s4, s7, s8} {2, 3, 5, 6} [3, 2, 3]
5 ∅ {s1, s4, s8} {2, 3, 5, 6, 7} [3, 3, 3]

Theorem 3 Algorithm 3 is an ln(M(2K+1))+1 factor polynomial-time approximation algorithm
for MinDSattNN.

Proof: Let t(j) be the index such that st(j) is chosen at the j-th iteration. We say that price
for solving MinDSattNN is N if N nodes are needed for discriminating the given attractors
each with at most K noisy nodes. In each iteration, a column index is added to J and then
price 1 is added to the total cost. Afterward, we assign an average price of P (xl, j) to each xl

at the j-th iteration, for xl ∈ Uj , where Uj is the set U at j-th iteration. Therefore we have

P (xl, j) =

{ 1
|st(j)∩Uj |

, xl ∈ st(j) ∩ Uj,

0, otherwise.
We call |st(j)∩Uj | coverage power of st(j). After termination of Algorithm 3, the total number

of nodes in the discriminator set should be |J | from which |J | =
∑|J|

j=1

∑M
l=1 P (xl, j) holds. Here

we give a key inequality (A.1), P (xl, j) ≤
|J∗|

M(2K + 1)−

j−1
∑

k=1

|st(k) ∩ Uk|

, where we define the

summation in the denominator to be 0 when j = 1 because st(0) = ∅, and the proof is given in
Appendix A.

Let J∗ be an optimal solution of MinDSattNN. Then, we have

|J | =

|J|
∑

j=1

M∑

l=1

P (xl, j) =

|J|
∑

j=1

(|Uj ∩ st(j)|)P (xl, j)

≤

|J|
∑

j=1

(|Uj ∩ st(j)|) ·
|J∗|

M(2K + 1)−

j−1
∑

k=1

|st(k) ∩ Uk|

≤ |J∗|

|J|
∑

j=1

(
ie∑

s=is

1

M(2K + 1)− s

)

≤ |J∗|

(

1 +
1

2
+ . . .+

1

M(2K + 1)

)

,

where is =
∑j−1

k=1 |st(k) ∩Uk| and ie =
∑j

k=1 |st(k) ∩Uk|− 1, and the second inequality comes from
∑|J|−1

k=1 |st(k) ∩ Uk| ≥ 1. Therefore, the approximation ratio is bounded by
|J |

|J∗|
≤ 1 +

1

2
+ . . .+

1

M(2K + 1)
< ln(M(2K + 1)) + 1.
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Table 4: Numerical results on discrimination of attractors.

n m K len
Time of Time of Approximation

Algorithm 1 (s) Algorithm 2 (s) ratio

100 3 1 3 63.6160 0.0100 2
100 5 1 5 209.09 0.0100 2
100 5 2 5 260982 1.3 1.7
1000 3 3 1 9902.3 0.0100 2

Table 5: Numerical results on discrimination of singleton attractors.

n m K
Time of Time Approximation
IP(s) Algorithm 3 (s) ratio

50 5 1 0.109 0.003 1.3333
50 5 3 0.045 0.002 1.1538
500 5 1 0.137 0.001 1.3333
500 5 3 661.4 0.000 1.2000
5000 5 3 7063 0.000 1.2000
20000 5 3 7064 0.080 1.2000
20000 5 5 6855 0.017 1.1000
20000 5 10 7168 0.400 1.1000

Hereafter we analyze the time complexity. The number of iterations in While loop is bounded
by min {|J∗| · ln(M(2K + 1)) + 1, n} . and time complexity for each iteration of While loop is at
most O(m2 ·n logn) by using merge sort. Therefore, the total cost for Algorithm 3 is O

(
m2n logn·

min {|J∗| · (ln(M(2K + 1)) + 1), n}) , which is a polynomial order of m and n. ✷

4 Results of Computational Experiments

All numerical experiments were conducted using Matlab on a PC with dual-core 3.4 GHz pro-
cessor and 8 GB RAM. Firstly, for each of MinDattNN and MinDSattNN, we conducted
computational experiments using simulation data by randomly generating a couple of attractors,
repeating the numerical experiment 10 times for each parameter set, and then recording the av-
erage time and maximum approximation ratio. For the discrimination of attractors, results are
listed in Table 4, where len denotes the maximum length of attractors. It is seen that Algorithm
2 is much faster than Algorithm 1 and the approximation ratios are not large. For discrimination
of singleton attractors, it is seen from Table 5 that Algorithm 3 is much faster than the IP-based
method, and the approximation ratios are much smaller than ln(M(2K + 1)) + 1.

Next, we also examined the efficiency of the IP-based method and Algorithm 3 for the clean
case of MinDSattNN, we compared those with a previous one, SolveMinDiscSatt [14]. It is
seen from Table 6 that the new methods are much more efficient even for the clean case.

Then, we conducted computational experiments using BN models on the following four real

Table 6: Numerical results on the clean case of discrimination of singleton attractors.

n m
Time of Time of Time of Approximation

SolveMinDiscSatt (s) IP (s) Algorithm 3 (s) ratio

100 5 0.4094 0.0657 0.0125 1
1000 5 7.2797 0.2703 0.0031 1
10000 5 1571.2 51.6 0.0000 1
20000 5 5128.2 125.5 0.0000 1
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Table 7: Results on four biological processes.

n m CPU time (sec) Identified Markers
Exact Approx. Exact Approx

(1) 40 3+(7) 612.11 0.04 ZAP70, TCR, SLP76, SEK, RLK ZAP70, TCR, SLP76, SEK, RLK, TCRphosp

(2)
90 (4, 4, 4, ≈ 106 0.3 AFF1, AKAP12, APLP2, CAV1, AEBP1, AFF1, AICDA, AKT3, APLP2

4, 4, 4) CCND2, HDAC9, INPPSD CAV1, CCND2, HDAC9, INPP5D, PAK

(3) 60 5 0.52 0.53 wg1, WG1, EN1, PTC1, PH1, ptc2, PTC2, SMO3 wg1, WG1, en1, EN1, hh1, en2, EN2, hh2, PTC2

(4) 9 3 0.05 0.06 Rb, TELase, Cyclin, E2F, ESE2 p53, p16, Rb, TELase, Snai2, E2F

biological processes, where K = 1 was used in all cases: (1) Logical model analyzing T-cell
activation ([22]), (2) IGVH mutational status in chronic lymphocytic leukemia [23], (3) Segment
polarity genes in Drosophila Melanogaster [24], (4) Tumorigenic transformation of human epithelial
cells [25]. Note that the algorithms for MinDattNN were used for (1) and (2), whereas those for
MinDSattNN were used for (3) and (4). The results are summarized in Table 7. In this table,
n and m denote the numbers of genes and attractors, where the periodic attractors are shown by
a list of their periods.

In the BN model (1), there exist 9 periodic attractors [22]. However, distances among some
attractors are less than or equal to 2. Therefore, we discarded such attractors. Finally, we only
kept attractors 1, 2, 3 and 9 for verification It is known that ZAP70, TCR, SLP76, SEK, and
RLK play important roles in T-cell development and lymphocyte activation or development of
the nervous system, while genes ZAP70, TCR are the ligand for TCRphosp. Therefore, the
approximation algorithm may have found more important genes. In addition, the approximation
algorithm was much faster than the exact algorithm. These facts suggest the usefulness of the
approximation algorithm.

In the BN model (2), the exact and approximation algorithms identified 7 and 10 genes, re-
spectively. Therefore, the resulting approximation ratio is 10/7, which is much smaller than
ln(M(2K + 1)) + 1. Besides, there are 6 common genes identified, which encode proteins in-
volved in critical biological processes or diseases like human child lymphoblastic leukemia, histone
deacetylase and so on. Among the other identified genes, AKAP12 gene functions in binding to
the regulatory subunit of PAK and confining the holoenzyme to discrete locations within the cell.
AEBP1 gene encodes proteins that may function as a transcriptional repressor and play a role in
adipogenesis and smooth muscle cell differentiation. AICDA encodes a RNA-editing deaminase.
AKT3 encodes proteins known to be regulators of cell signaling in response to insulin and growth
factors. These facts suggest the usefulness of both algorithms. However, the approximation algo-
rithm was much faster than the exact one. Therefore, these results suggest again the usefulness
of the approximation algorithm.

In the BN model (3), there are 10 singleton attractors [24]. However, since the distances
among attractors 3, 4, and 6 are less than 3, and the distances among attractors 7, 8, 9, and 10
are also less than 3, we only keep the five attractors: 1, 2, 3, 6, 7. There are 60 nodes in this BN,
including 5 segment polarity genes (en, wg, ptc, ci, hh) and their proteins (EN, WG, PTC, CI,
CIR, CIA, SMO, HH), one pair-rule gene (slp) and its protein SLP in one parasegment primordia
(4 cells). Most markers identified by two algorithms are the same except that gene hh is not
identified by the exact algorithm and transcription factors PTC and SMO are not identified by
the approximation algorithm. It has been verified experimentally that binding of HH (protein of
hh) would remove the inhibition of SMO. It is seen from Table 7 that the approximation ratio by
Algorithm 3, is 9/8 = 1.125, which is reasonable.

The BN model (4) includes 9 molecular players (transcription factors or signaling molecules)
[25]. After solving a system of Boolean equations, three attractors were obtained, which corre-
sponded to three kinds of cells: epithelial cells, senescent cells and mesenchymal stem-like cells.
The obtained molecular players can be interpreted as master regulators for each cell. It is known
that cells with mesenchymal stem-like phenotype have a strong potential of transferring to cino-
mas. Snai2 was chosen as a master regulator from the approximation algorithm (but not from the
IP-based method). By taking a further look at this molecule, we can see that the activation of
Snai2 enables cells to sustain proliferative signals and to evade growth suppressors by undergoing
a de-differentiation process. Thus it is activated in mesenchymal stem-like cells but not in the
other two kinds of cells. This fact suggests the usefulness of the approximation algorithm.
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[23] M. C. Álvarez-Silva, S. Yepes, M. M. Torres, and A. F. G. Barrios, “Proteins interaction net-
work and modeling of igvh mutational status in chronic lymphocytic leukemia,” Theoretical
Biology and Medical Modelling, vol. 12, no. 1, p. 12, 2015.

[24] R. Albert and H. G. Othmer, “The topology of the regulatory interactions predicts the
expression pattern of the segment polarity genes in drosophila melanogaster,” Journal of
Theoretical Biology, vol. 223, no. 1, pp. 1–18, 2003.
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A Proof of Key Inequality (A.1) in Theorem 3

Let α be the average price in the j-th iteration, that is, α = P (xl, j). Let J∗ represent an

optimal discriminator set. When j = 1, we need to prove α ≤ |J∗|
M(2K+1) . Note that in each

iteration, we choose a node with the maximum coverage power (or the minimum average price),
thus we have α ≤ 1

|sk′∩U| , k′ ∈ J∗ which indicates |J∗| ≥ α
(∑

k′∈J∗ |sk′ ∩ U |
)
. Let y∗ be

the binary vector corresponding to J∗. Then we have
(∑

k′∈J∗ |sk′ ∩ U |
)
≥ M(2K + 1) from

Catt[i,−] · (y∗)T ≥ 2K + 1 (i = 1, 2, . . . ,M). Thus the inequality is satisfied when j = 1.
Before presenting our proof for the general case, we give a definition of a special class of sets

(multi-set) by allowing it as a collection of objects and any object may have duplications in the
same set. For example, suppose S1 = {x1, x1, x2, x3, x3, x3} and S2 = {x1, x3, x4, x4}. Then |Si| is
the cardinal number of the set Si, which equals to the number of elements in Si and |S1| = 6 and
|S2| = 4. Moreover, we let S1∪S2 = {x1, x1, x1, x2, x3, x3, x3, x3, x4, x4} be the union of these two
sets without removing duplications, S1 ∩ S2 = {x1, x3} be the intersection of two sets by keeping
the common elements of S1 and S2 with smaller frequency, and S1 − S2 = {x1, x2, x3, x3} be the
relative complement of S1 in S2 by removing those common elements of S1 and S2 with smaller
duplicates from S1. We will then apply this new definition in the following analysis.

Let U ′ = {x1, x1, . . . , x1
︸ ︷︷ ︸

2K+1

, . . . , xM , xM , . . . , xM
︸ ︷︷ ︸

2K+1

} where |U ′| = M(2K + 1). Then the greedy

algorithm can be rewritten as follows.

14



Algorithm 1 Greedy algorithm MAPMinDSattNN

Input: set of POAs U ′, set of nodes S
Output: set of nodes J

1: J ← ∅
2: while U ′ 6= ∅ do
3: Find sj ∈ S with maximum |sj ∩ U ′|, J ← J ∪ {j}, S ← S − {sj};
4: end while

Let Jj−1 = {t(1), t(2), . . . , t(j − 1)} and U ′
j denote J and U after the (j − 1)-th iteration

of this modified algorithm, respectively. Let re(xT (i1,i2,m)) denote the number of repetitions of
xT (i1,i2,m) in U ′

j . Since Jj−1 ∪ (J∗ − Jj−1) is an optimal solution, it is easy to see H(Att[i1, J
∗ −

Jj−1], Att[i2, J
∗ − Jj−1]) ≥ re(xT (i1,i2,m)).

In the j-th iteration, Algorithm 3 will choose st(j) with the maximum coverage power, which

means that the average price will be minimized. Then for k′ ∈ J∗ − Jj−1, we have α ≤ 1
|sk′∩U ′

j
| ,

which indicates α
(
∑

k′∈J∗−Jj−1
|sk′ ∩ U ′

j |
)

≤
∑

k′∈J∗−Jj−1
1. Thus we have

α ≤
|J∗ − Jj−1|

|(
⋃

k′∈J∗−Jj−1
sk′) ∩ U ′

j |
. (5)

Recall that H(Att[i1, J
∗−Jj−1], Att[i2, J

∗−Jj−1]) ≥ re(xT (i1,i2,m)). This means that the number
counting together all the repetitions of xT (i1,i2,m) in set s′k, k

′ ∈ J∗− Jj−1 should be greater than

or equal to re(xT (i1 ,i2,m)), then we have
(
⋃

k′∈J∗−Jj−1
sk′

)

∩ U ′
j = U ′

j . Here the union operation

should be over multi-sets. From this and Ineq. (5), we have

α ≤
|J∗ − Jj−1|

|(
⋃

k′∈J∗−Jj−1
sk′) ∩ U ′

j|
=
|J∗ − Ji|

|U ′
j |

≤
|J∗|

M(2K + 1)−

j−1
∑

k=1

|st(k) ∩ U ′
k|

=
|J∗|

M(2K + 1)−

j−1
∑

k=1

|st(k) ∩ Uk|

.

Here Uk is the set U in the k-th iteration in Algorithm 3. The last equality holds because there is
no duplicated elements in st(k), and those elements are the same in U

′

k and Uk without considering
the number of duplications of each element. Then the inequality is proved.
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