
Kernel-based methods for Volterra series identification ?,??

Alberto Dalla Libera a,b, Ruggero Carli a, Gianluigi Pillonetto a

aDepartment of Information Engineering, University of Padova, Via Gradenigo 6/B, 35131 Padova, Italy

bWomen’s and Children’s health Department, University of Padova, Via Giustiniani 3, 35131 Padova, Italy

Abstract

Volterra series approximate a broad range of nonlinear systems. Their identification is challenging due to the curse of dimen-
sionality: the number of model parameters grows exponentially with the complexity of the input-output response. This fact
limits the applicability of such models and has stimulated recently much research on regularized solutions. Along this line, we
propose two new strategies that use kernel-based methods. First, we introduce the multiplicative polynomial kernel (MPK).
Compared to the standard polynomial kernel, the MPK is equipped with a richer set of hyperparameters, increasing flexibility
in selecting the monomials that really influence the system output. Second, we introduce the smooth exponentially decay-
ing multiplicative polynomial kernel (SED-MPK), that is a regularized version of MPK which requires less hyperparameters,
allowing to handle also high-order Volterra series. Numerical results show the effectiveness of the two approaches.

Key words: Nonlinear system identification; Nonparametric methods; Time series modelling

1 Introduction

In many real applications, linear models cannot ade-
quately describe dynamic systems. This can be due to
the presence of saturations, quantizers or static nonlin-
earities at the input and/or the output [23][Section 5].
Even if some insight on the nonlinearities can be avail-
able, the formulation of parametric models from finite
data records is a difficult task [14,22,35]. In particular,
nonlinear system identification is often seen as an ex-
tended parametric regression where the choice of regres-
sors and basis functions plays a crucial role. In this con-
text, Volterra series are especially useful since they can
represent a broad range of nonlinear systems [30,5,7].
In discrete-time, Volterra series are connected with Tay-
lor expansion of the input-output map. Considering sys-
tems with finite memory (current output depends on a
finite numberm of past inputs and outputs), the r-th or-

? This paper was not presented at any IFAC meeting. Cor-
responding author A. Dalla Libera Tel. +39-049-827-7600
Fax +39-049-827-7699.
??This work has been in part supported by the H2020
FETPROACT-01-2019 project A BIONIC INVISIBLE
PANCREAS TO FORGET DIABETES - FORGETDIA-
BETES: 951933

Email addresses: dallaliber@dei.unipd.it (Alberto
Dalla Libera), carlirug@dei.unipd.it (Ruggero Carli),
giapi@dei.unipd.it (Gianluigi Pillonetto).

der Volterra series is represented as the convolution be-
tween the Volterra maps 1 and all the possible monomi-
als up to order r (function of past inputs and outputs).
Identification is difficult due to the curse of dimension-
ality: the number of monomials grows quickly w.r.t. the
adopted polynomial degree r and system memory m.
Hence, a careful selection of the relevant components to
be included in the model is crucial to control complexity,
a problem known as regressor selection.

Suboptimal solutions are often adopted, e.g. greedy ap-
proaches like forward orthogonal least squares [6,1] and
its many variants [17][Section 3]. Another approach uses
variance analysis (ANOVA) [21]. These regressor selec-
tion methods have however difficulties in handling high-
dimensional spaces, as e.g. illustrated in [22] where the
divide-and-conquer method TILIA is introduced to mit-
igate this problem. An interesting option is joint estima-
tion and variable selection whose aim is to automatically
set to zero groups of variables in the regression vector.
This can be performed exploiting the `1-norm that leads
to LASSO [39], also implementable using LARS [9], a
less greedy version of classical forward selection.

1 These are typically called Volterra kernels in the litera-
ture but we adopt this terminology to avoid confusion with
the concept of kernels taken from machine learning and in-
troduced later on.

As revised for Automatica 26 March 2021

aposmau19238
Typewritten text
This is the accepted version of the article VoR published in Automatica (0005-1098) as 10.1016/j.automatica.2021.109686



Alternative solutions rely on kernel-based regularization
[32]. Positive definite kernels are especially important
since they implicitly include a large (possibly infinite)
number of basis functions. They also define particular
spaces, the so called Reproducing Kernel Hilbert spaces
(RKHS), and the related norms can be exploited to con-
trol complexity. In particular, regularized least squares,
also called regularization networks in [28], determine the
unknown system by minimizing an objective sum of two
terms. The first is a quadratic loss, accounting for data
fit, and the second is a regularization term given by the
RKHS squared norm. The balance between these two
contributions is given by the regularization parameter,
typically estimated from data through marginal likeli-
hood maximization or cross validation [16,29,25]. The
crucial aspect in the design of a regularization network
is the kernel choice. In system identification the Gaus-
sian kernel is often used to embed just expected smooth-
ness of the input-output map, see e.g. [10,19,40] and
also [12,13,15] for state-space approaches. This kernel
has however some limitations in system identification. In
those regions of the regressor space where few data are
collected, output prediction just decays to zero. In this
paper, we instead focus on more structured kernels con-
nected with Volterra series. They are discussed in [11]
using the polynomial kernel which encodes all the mono-
mials up to the desired degree r. Such implicit represen-
tation makes computationally feasible the handling of
high-order Volterra series. However, the associated reg-
ularization networks have some drawbacks and can over-
fit the data as stated in [29] (chapter 4.2.2). The reason
is that the norm associated with the polynomial kernel
is sometimes not able to well control the high number
of monomials (implicitly) introduced in the estimation
process.

More recent work on regularized Volterra series can be
found in [2]. Here, authors do not use kernels to encode
monomials but focus on how to control the variance of
the monomial coefficients via regularization. This is per-
formed extending some ideas developed for linear sys-
tem identification in [26], and embedding in a Volterra
map smooth-exponential decay concepts, i.e., the fact
that as the lag increases inputs should have less effect
on the output. In this way, the system memory m is
replaced by continuous hyperparameters that are con-
nected with memory fading concepts and can be esti-
mated from data. Despite the remarkable results on both
simulated and real data [2–4], one limitation is that com-
putational and memory requirements increase quickly
with the polynomial degree r and the memory m. A pos-
sible solution to this issue has been proposed in [37,38],
where, instead of using monomials, orthonormal basis
functions, such as Laguerre or Kautz, are considered. As
we will see, the strategy adopted in this work is differ-
ent since it relies on basis functions which are encoded
in kernels.

The approaches proposed in [11] and [2] are in some sense

complimentary. The first one uses the kernel to handle
efficiently a large number of monomials but regulariza-
tion is not always so effective.The second one refines this
aspect but the price to pay is that implicit encoding of
monomials is absent. In this work, we propose new tech-
niques that overcome such dichotomy. To obtain this,
two new kernels are introduced.

The first new kernel, which we call Multiplicative Poli-
nomial Kernel (MPK), builds upon the polynomial ker-
nel. For Volterra series of order r, it consists of the prod-
uct of r basic building blocks. Each block consists of
a linear kernel containing hyperparameters that permit
monomial selection. This is a fundamental novelty w.r.t.
the polynomial kernel that does not promote any spar-
sity, possibly returning solutions too rich of monomials.
Hence, we will see that MPK allows a finer regulariza-
tion, discovering those system parts that really influence
the output and improving prediction capability.

Then, inspired by [2], we will show that MPK features
can be further improved. Similarly to MPK, the second
new kernel is the product of r linear kernels but with
different hyperparameters able to model smooth expo-
nential decay of Volterra coefficients. For this reason,
it is called Smooth Exponentially Decaying MPK (SED-
MPK). Hence, SED-MPK combines the nice features of
[2] with implicit kernel encoding: handling of high-order
Volterra series is so made possible.

Preliminary results about the MPK are reported in [20],
where we showed the advantages of the MPK w.r.t. the
standard inhomogeneous polynomial kernel through nu-
merical examples. In this work, compared to [20], we
analyze rigorously the MPK regularization properties,
comparing its performance also with the homogeneous
polynomial kernel, as well as introducing the SED-MPK.

The paper is organized as follows. In Section 2 we provide
background notions about discrete-time Volterra series,
and we describe some solutions proposed to identify such
models. We start Section 3 analyzing the regularization
properties of standard polynomial kernel, highlighting
possible limitations. Then, we introduce the MPK, dis-
cussing the advantages due to the MPK parametriza-
tion. Finally, we discuss the recovering of the coeffi-
cient of Volterra maps from the kernel-based estimate
of the model. In Section 4, we describe the SED-MPK,
providing insights about the regularization induced by
the SED-MPK parameters w.r.t. the coefficients of the
Volterra map. Finally, in Section 5 we report experimen-
tal results.

2



2 Background

2.1 Volterra series

Consider a discrete time system, and let zt be its output
at time t. Assume that the system has finite memory

m, and let ut = [ut, . . . , ut−m]
T

be the column vector
containing the lagged inputs influencing the system re-
sponse at time k. When modeling the system response
with a truncated Volterra series of order r, the noisy out-
put yt is defined by the sum of r + 1 Volterra functions
and of the measurement noise et ∼ N

(
0, σ2

n

)
. Specifi-

cally, one has

yt = zt + et = h0 +

r∑
i=1

Hi(ut) + et , (1)

where h0 represents the zero-order Volterra function,
constant and independent of the inputs, whileHi(ut) are
the higher-order contributions. Each Hi(ut) is the con-
volution between a Volterra map hi and all the possible
monomials of degree i built with the components of ut.
The Volterra map hi is function of i variables {τj}ij=1

that may assume values {0, 1, . . . ,m} and represent in-
put lags. In other words, they select (possibly repeated)
components from ut to define a monomial. Then, the
expression of Hi(ut) is

Hi (ut) =

m∑
τ1=0

· · ·
m∑
τi=0

hi (τ1, . . . , τi)

τi∏
τ=τ1

uk−τ . (2)

For example, letm = 2 so that ut = [ut ut−1 ut−2], with
i = 4 and τ1 = 0, τ2 = 0, τ3 = 1, τ4 = 2. Note that τ1
and τ2 both select ut while τ3 and τ4 choose, respectively,
uk−1 and uk−2. Then h4 (0, 0, 1, 2) is a coefficient that
multiplies the monomial u2tut−1ut−2.

Commonly, Volterra maps are assumed to be symmet-
ric with respect to the input lags. Given a set of i in-
put lags, the hi value is equal for all the possible per-
mutation of the lags. For instance, coming back to the
previous example, under symmetry assumptions one has
h4 (0, 0, 1, 2) = h4 (0, 1, 0, 2) = h4 (1, 0, 2, 0) = . . ..

Alternatively, (2) can be rewritten more compactly with
an inner product. Let φi(ut) ∈ Rni be the vector col-
lecting all the distinct monomials in ut with degree i,
with ni =

(
m+i
i

)
. Moreover, let wi be the vector func-

tion of the coefficients hi, multiplied by opportune con-
stants to account for the repetitions due to symmetry.

Specifically, consider the generic monomial
∏m
j=0 u

dj
k−j ,

where d = [d0, . . . , dm] are the relative degrees of each
variable, and

∑m
j=0 dj = i. Then, the multiplicative con-

stant cited above is equal to the multinomial coefficient(
i

d0 , ... , dm

)
, hereafter denoted just by

(
i
d

)
. For an oppor-

tune permutation of the hi and wi elements, one then

has
Hi (ut) = φTi (ut)wi. (3)

2.2 Volterra maps identification via regularized least
squares

Combining (1) and (3), we have

yt = φT (ut)w + et,

with

φT (ut) =
[
1,φT1 (ut), . . .φ

T
r (ut)

]
∈ Rn, (4a)

wT =
[
h0,w

T
1 , . . . ,w

T
r

]
∈ Rn, (4b)

where n = 1 +
∑r
i=1 ni with ni equal to the dimension

of wi. System identification then reduces to obtaining
an estimate ŵ of w from the data set

D = {(ut, yt), t = 1 , . . . , N} . (5)

For instance, one can use least squares:

ŵ = arg min
w

∥∥y − ΦTw
∥∥2 ,

where y = [y1, . . . yN ]
T

and the regression matrix ΦT is

ΦT =
[
φ(u1) . . . φ(uN ).

]T
.

This approach suffers of the curse of dimensionality. The
number of parameters n grows quickly with r and m,
entailing high variance in the estimate. In [2] such prob-
lem has been addressed for Volterra series of order two
exploiting regularized least squares. In particular, the
smooth exponential decay of the Volterra coefficients
is enforced by a suitable positive definite matrix (also
called kernel) denoted by P . The estimator becomes

ŵ = arg min
w

∥∥y − ΦTw
∥∥2 +wTP−1w, (6)

with ŵ available in closed form as

ŵ =
(
ΦΦT + P−1

)−1
Φy. (7)

The (i, j)-entry of the matrix P can be seen as a similar-
ity measure between the i-th and the j-th component of
the vector w in (4), i.e., between two coefficients associ-
ated to two monomials. In [2], such matrix is block di-
agonal, i.e., P = block diag([P0, P1, P2]). Each block ac-
counts for the coefficients related to the monomials of a

3



distinct degree. First, P0 is a positive scalar that regular-
izes h0 in (4). Second, P1 ∈ Rn1×n1 accounts forw1, i.e.,
the coefficient of the Volterra map h1. The entries of P1

have been defined exploiting the DC kernel proposed in
[27]. Assume that the w1 elements are listed in increas-
ing order of time-lags, i.e., w1 = [h1(0), . . . , h1(m)]T .
Then, P1(i, j), which expresses the similarity between
h1(i) and h1(j), is defined as

P1(i, j) = c · e−α|i−j|e−β
|i+j|

2 ,

where c is a scale factor, while α and β regulate the h1 ex-
ponential decay. Note that P1(i, j) is the product of two
exponentials. The first one measures the similarity be-
tween coefficients, weighting the distance between time-
lags: coefficients related to lags that are close are more
similar that coefficients related to lags that are far. The
second one decreases with the magnitude of the time-
lags. The important contribution of [2] is the definition
of P2 ∈ Rn2×n2 , that describes the interactions between
thew2 elements, i.e., the coefficients of the Volterra map
h2. The matrix P2 has been defined extending the reg-
ularization strategy described for P1 to the two dimen-
sional case, to deal with the fact h2 depends on two time-
lags. For a more detailed description of the P2 definition
we refer the reader to [2].

Numerical results reported in [2] show that the addi-
tion of the regularization term is crucial to control es-
timator’s variance. Regarding computational issues, (7)
shows that the number of operations scales with the cube
of n (the number of distinct monomials), while the stor-
age requirements are proportional to the square of n.
Thus, there is a direct dependence on the number of coef-
ficients of the Volterra maps. Unfortunately, this number
grows rapidly with the system memory and the order of
the Volterra series. Despite the valuable implementation
adjustments proposed in [4], these requirements makes
already hard to introduce monomials of degree three.

2.3 Polynomial kernel and Volterra series

An alternative technique is regularized system identifi-
cation in a RKHS defined by a kernel functionK(ut,uj).
Under mild assumptions, a kernel function admits a
(possibly infinite) expansion in terms of basis functions
ψq, i.e.

K(ut,uj) =
∑
q

λqψq(ut)ψq(uj), (8)

where λq are positive scalars [8]. Any function in the
induced RKHS has then the representation

f(ut) =
∑
q

cqψq(ut), (9)

for suitable coefficients cq.
A widely used estimator of the input-output map is

f̂ = arg min
f

N∑
t=1

(yt − f(ut))
2 + γ‖f‖2H , (10)

where γ is the regularization parameter that trades-off
data fit and the penalty term ‖·‖2H , given by the squared
RKHS norm. According to the representer theorem [31],
one has

f̂(ut) =

N∑
j=1

αtK(ut,uj), (11)

where α = [α1, . . . , αN ]
T

is given by

α = (K + γIN )−1y, (12)

with K the so called kernel matrix whose (t, j) entry is
K(ut,uj). So, even if the RKHS can implicitly encode a
very large (possibly infinite) number of basis functions
ψq, the estimate always belongs to a finite-dimensional
subspace and can be computed with a finite number of
operations.

A class of kernel-based solutions for Volterra series iden-
tification has been proposed in [11]. The authors rely on
the use of polynomial kernels, which are strongly con-
nected with Volterra series since they encode monomials
in ut. Let us consider

r∑
i=1

ρi
(
uTt uj

)i
+ ρ0, (13)

where the ρi ≥ 0 are tunable hyperparameters. As dis-

cussed in [32], each term
(
uTt uj

)i
is the homogeneous

polynomial kernel of degree i, which encodes all the
monomials of degree i. So the ψq in (8) are the elements
of φi in (4a).

The computational bottleneck of kernel-based methods
is the matrix inversion in (12), which requires O(N3)
operations. The memory requirements to store the kernel
matrix areO(N2). However, notice that there is no direct
dependence on the number of basis functions encoded
in the kernel. So, computational complexity does not
depend on the number of Volterra parameters, and this
allows to handle also high-order series.

To summarize, kernel-based identification of all the pro-
posed models relies on the following steps:

• kernel selection;
• hyperparameters estimation by maximizing the

Marginal Likelihood of the training data, see [29];
• computation of the estime (11);

4



• if possible, estimation of the Volterra maps coeffi-
cients, see Section 3.5.

It is worth mentioning that the last step is not manda-
tory, since predictions can be done with (11). However,
in some cases it might be interesting computing also the
estimate of the Volterra maps coefficients, to analyze the
properties of the Volterra maps, see for instance [18].

3 Multiplicative Polynomial Kernel

Now, we show that in important cases the kernel in (13)
do not provide enough flexibility to penalize the different
monomials. For our purposes, it is useful also to recall
the following two facts. First, given the kernel expansion
(8) in terms of eigenvalues λq and independent basis
functions ψq, one has

f(ut) =
∑
q

cqψq(ut) =⇒ ‖f‖2H =
∑
q

c2q
λq
. (14)

So, smaller λq give more penalty to the coefficients of
the corresponding ψq. Second, as said, in the context
of our polynomial kernels, the ψq belong to the set of
monomials contained in

φT (ut) =
[
1,φT1 (ut), . . .φ

T
r (ut)

]
.

It is also useful now to denote the components of the

blocksφi, i.e., the monomials of degree i, by φ
(i)
1 , φ

(i)
2 , . . ..

So, one has

φi(ut) =
[
φ
(i)
1 (ut) . . . φ

(i)
ni (ut)

]T
. (15)

From the discussion before (3), we recall also that each
monomial of degree i is in one-to-one correspondence
with a m+ 1-dimensional vector whose components are
the relative degrees of each component of ut. In partic-

ular, we will use d(i)q to denote the vector that contains

the relative degrees of the monomial φ
(i)
q . We will also

indicate with Di the following set

Di =

{
d(i) = [d

(i)
0 d

(i)
1 . . . d(i)m ] s.t.

m∑
τ=0

d(i)τ = i

}
,

(16)
that is thus associated with all the monomials in φi (15).

3.1 Penalties induced by the polynomial kernels

We focus on the penalties induced by the single ho-

mogenous kernels
(
uTt uj

)i
that compose (13). To con-

sider a more general case, we also introduce the positive

semidefinite matrix Σ(i) ∈ R(m+1)×(m+1), and we define
our generalized building block as

k
(i)
pk (ut,uj) =

(
uTt Σ(i)uj

)i
, (17a)

Σ(i) = diag(σ(i)), (17b)

σ(i) = [σ
(i)
0 , . . . , σ(i)

m ]. (17c)

The overall kernel turns out to be

K
(r)
pk (ut,uj) =

r∑
i=1

ρik
(i)
pk (ut,uj) + ρ0, (18)

namely, (18) corresponds to (13) when considering all

the Σ(i) equal to the identity. Since k
(i)
pk encodes all the

monomials of degree i (if the Σ(i) is full-rank), using (15)
one must have

k
(i)
pk (ut,uj) =

ni∑
q=1

λ(i)q φ(i)q (ut)φ
(i)
q (uj). (19)

But we can also find another representation through the
multinomial theorem. Using (16) and (17), one has

k
(i)
pk (ut,uj) =

(
m∑
τ=0

σ(i)
τ ut−τuj−τ

)i

=
∑

d(i)∈Di

(
i

d(i)

) m∏
τ=0

(
σ(i)
τ ut−τuj−τ

)d(i)τ
,

(20)

where here, and in what follows, we have used the fact
that

(
i
d(i)

)
is the number of all the different lags vectors

that identify the same monomial.

If d(i)q contains the relative degrees [d
(i)
q,0 d

(i)
q,1 . . . d

(i)
q,m] of

the monomial φ
(i)
q , equating the right hand sides of (19)

and (20) we have

λ(i)q =

(
i

d(i)q

) m∏
τ=0

(σ(i)
τ )d

(i)
q,τ . (21)

The expression (21) highlights two interesting issue.
First, a part of the penalty is assigned only on the ba-
sis of the relative degrees associated to the monomial.
In particular, due to the behaviour of the multinomial
coefficient, monomials composed by mixed terms are
promoted. The gap between the penalties assigned to
monomials with mixed terms and monomials composed
by just one term becomes also particularly relevant
when i grows. The reconstruction of the input-output
function based on this kind of penalties might not be
suitable. Second, notice that acting on the values of

5



the σ
(i)
τ , we can promote or penalize the monomials

containing ut−τ . However, from (21), we can see that
promotions or penalizations are rigid, in the sense that

by increasing σ
(i)
τ we promote simultaneously all the

monomials of degree i in which ut−τ appears. There
might be cases in which more flexibility is needed to
penalize ut−τ by also accounting for its relative degree.

To clarify this concept, we discuss a simple exam-
ple. Consider the following polynomial function in
ut = [ut ut−1], defined as

f(ut) = u2tuk−1 + u3t . (22a)

Moreover, we define φ3(ut) ordering the monomials as
follows,

φ3(ut) =
[
u3t u

2
tut−1 utu

2
t−1 u

3
t−1

]
. (22b)

Ideally, given that utu
2
t−1 and u3t−1 do not compare in

f(ut), and the u3t and u2tut−1 coefficients are equal, we

would like to have λ
(3)
3 and λ

(3)
4 equal to zero, and λ

(3)
1

and λ
(3)
2 assuming similar values higher than zero. How-

ever, from (21), this is not possible, given that if λ
(3)
3

and λ
(3)
4 are null also λ

(3)
2 is null.

In (21), the presence of the multinomial coefficient
(
i
d(i)

)
is due to repetitions induced by symmetry. To avoid
this fact, and for visualization purposes, we express the

penalties induced by λ
(i)
q in the coefficients of the i-th

Volterra map that define the input-output formulation
(2). Note that the set of ordered lags τ = (τ1, . . . , τi)

identifies univocally i, q and, hence, the monomial φ
(i)
q

and the vector d(i)q with its relative degrees. The oppo-
site is not true due to the possible change of ordering: all
the permutations of (τ1, . . . , τi) lead to the same mono-
mial. Due to the symmetry of the Volterra maps, the

λ
(i)
q contribution is equally divided among all the co-

efficients of hi associated to the
( i
d
(i)
q

)
permutations of

(τ1, . . . , τi). Then, λhi(τ ), the penalty assigned to the co-
efficient hi(τ1, . . . , τi) = hi(τ ), is inversely proportional
to

λhi(τ ) =
λ
(i)
q( i
d
(i)
q

) . (23)

Hence, combining the last equation with (21), we have

that the λhi(τ ) defined by k
(i)
pk are

λhi(τ ) =

m∏
τ=0

(σ(i)
τ )d

(i)
q,τ .

The last equality permits to analyze the effects of the σ
(i)
τ

in the penalties assigned to the Volterra maps. Notice

that when considering σ
(i)
τ = 1 ∀τ = 0 . . . ,m, as done

in [11], the penalties assigned to the coefficients of the
hi maps are flat, in the sense that all the coefficients are
equally penalized.

Remark 1 An alternative to (18) relies on the use of
the inhomogeneous polynomial kernel of order r:

K
(r)
ipk(ut,uj) =

(
1 + uTt Σuj

)r
, (24)

where Σ ∈ R(m+1)×(m+1) is typically diagonal. The in-
homogeneous polynomial kernel encodes all the mono-
mials with degree up to r [32]. Similar considerations
can be done for this model by recalling that (24) can
be expressed as sum of r homogeneous kernels sharing
the same Σ = Σ(i), multiplied by opportune coefficients,
namely,

(
1 + uTt Σuj

)r
=

r∑
i=0

(
r

i

)
k
(i)
pk (ut,uj).

The last equation shows that the use of the inhomoge-
neous polynomial kernel further reduces the flexibility in
determining penalties. In fact, the same hyperparame-
ters determine simultaneously the penalties assigned to
monomials with different degrees while, through the model
(18), one can exploit σ(i) to tune specific regularization
for each block φi in (15).

3.2 Multiplicative Polynomial Kernel

In view of the limitations of the currently used poly-
nomial kernels described above, the MPK is now intro-

duced. Let k
(i)
mpk denote a novel kernel that, similarly

to the homogeneous polynomial kernel, encodes all the
monomials of degree i, i.e., all those contained in φi. But
its structure is different, being the product of i linear
kernels, i.e.,

k
(i)
mpk(ut,uj) =

i∏
p=1

(
uTt Σpuj

)
, (25a)

Σp = diag(σp), (25b)

σp = [σ
(p)
0 , . . . , σ(p)

m ]. (25c)

Differently from k
(i)
pk in (17), the k

(i)
mpk assigns a distinct

set of hyperparameters to each factor. It is easy to see
that (25) is a well-defined kernel function, being the
product of valid kernels [29]. Also, it admits an expan-
sion in terms of the elements in φi. Then, we propose
the following kernel to model Volterra series of order r:

K
(r)
mpk(ut,uj) =

r∑
i=1

ρik
(i)
mpk(ut,uj) + ρ0. (26)

6



3.3 Penalties induced by the MPK

As done with (17), we analyze the regularization prop-

erties of (26) focusing on the single bulding blocks k
(i)
mpk.

Using the same kind of notation adopted in the previous

subsection, an expression of the λ
(i)
q is obtained by ex-

panding (25), isolating the terms with relative degrees

d(i)q , and, finally, summing their coefficients.
To perform such computation, let us introduce the fol-
lowing set

T (i)
q =

{
(τ1, . . . , τi) s.t.

τi∏
τ=τ1

uk−τ =

m∏
τ=0

u
d(i)q,τ
k−τ .

}
,

(27)

Each vector in T (i)
q contains i lags associated with the

same d(i)q . Then, summing all the contributions associ-

ated to the elements of T (i)
q , one obtains

λ(i)q =
∑

(τ1,...,τi)∈T iq

(
i∏

p=1

σ(p)
τp

)
. (28)

The last equation shows that the MPK parameters al-
lows for a more flexible regularization. In particular, tun-
ing opportunely the hyperparameters, it is possible to
promote or penalize the relative degree with which each
lagged input appears. For example, consider the lagged

input uk−τ , and the coefficients σ
(1)
τ , . . . , σ

(i)
τ . Then, by

inspection of (28) it comes that, in order to promote
monomials in which uk−τ appear with relative degree

d ≤ i, at least d of the σ
(1)
τ , . . . , σ

(i)
τ hyperparameters

should assume large values. Otherwise, all the products
in (28) and λq become small, much penalizing the mono-
mials containing the powers udk−τ , . . . , u

i
k−τ . Standard

polynomial kernels do not provide such possibility, given
that, as showed before, changing the values of the hy-
perparameters promote, or penalize, simultaneously all
the monomials containing uk−τ , regardless of the rela-
tive degree.

To clarify this point, we consider again the simple ex-
ample of Section (3.1), i.e., the third degree polynomial
function in ut = [ut ut−1] reported in (22a), with φ3 de-
fined in (22b). Let the MPK hyperparameters assuming
the following values,

σ1 =
[
1 1
]

, σ2 =
[
1 0
]

, σ3 =
[
1 0
]

.

Hence, from (28) we obtain λ
(3)
1 = 1, λ

(3)
2 = 1, λ

(3)
3 = 0

and λ
(3)
4 = 0. Recalling that λq is inversely proportional

to the penalty assigned to the q-th element of φ3, we ap-
preciate that with the set of hyperparameters proposed
the MPK highly penalizes the monomials in which ut−1

appears with degree greater than one, in accordance with
the function in (22a).

It is worth stressing that MPK obtains more flexibility
by increasing the number of hyperparameters, possibly
leading to overfitting. In particular, when considering
the polynomial kernel of degree i, MPK has (m+1)i addi-
tional hyparameters. However, as it will be seen through
extensive numerical experiments, when considering suf-
ficiently exciting input trajectories, the prediction capa-
bility of MPK outperforms constantly that of the homo-
geneus and inhomogeneus polynomial kernel.

3.4 Re-parametrization of the diagonal Σp matrices

To optimize the Σp matrices, we will use Marginal Like-
lihood maximization [29], by adopting a reparametriza-
tion. In fact, since (25) is the product of i equal blocks,

optimizing directly the σ
(p)
τ could lead to undesired be-

haviors due to the presence of several local maxima. In
particular, from the structure (25), it is immediate to see
that any permutation of the i vectors σp that represent

the diagonals of the matrices Σp define the same k
(i)
mpk.

To avoid this situation, we propose a hierarchical
parametrization of the σp vectors, w.r.t. a set of vectors

{ap, p = 1, . . . , i}, where ap =
[
a
(p)
0 , . . . , a

(p)
m

]
with all

positive entries. More specifically, the σp vectors are
defined iteratively by a backward iteration as follows,

σi = ai, (29a)

σp = σp+1 + ap, (29b)

with p = i− 1, . . . , 1.

Beyond reducing the presence of possible local maxima,
this parametrization has an intuitive interpretation also
in terms of the penalties and the relative degree of each

ut−τ . Indeed, from (29) we see that increasing a
(p)
τ means

increasing all the σ
(d)
τ with d ≤ p, and then, recalling

(28), this promotes all the monomials in which uk−τ has

degree at least equal to p. Moreover, if a
(d)
τ is close to

zero for d > p, then the monomials with ut−τ of degree
larger than p are highly penalized. In this way, by tuning
opportunely the hyperparameters it is possible to control
the maximum degree of each lagged input.

3.5 Computation of the Volterra maps coefficients

Now, we discuss how to estimate the coefficients of the
Volterra maps starting from the kernel-based estimate
of the model. More precisely, we provide a closed form
expression of the estimate ŵ of the vector w defined
in (4). Recall that the elements of w are in one-to-one
correspondence with the monomials in φ(ut). So, given

7



ŵ, the estimate of hi(τ1 . . . τi) can be recovered divid-

ing by
(
i
d

)
the component of ŵ related to the mono-

mial
∏τi
τ=τ1

ut−τ . For our purposes, we need to assume
that the kernel expansion is available in closed form,
with its basis functions corresponding to the monomi-
als of the Volterra model. Namely, referring to (14), the
number of ψq(ut) is n and they correspond to the ele-
ments of φ(ut) defined in (4a). In matrix form we have

k(ut,uj) = φT (ut)Λφ
T (uj), where Λ is a diagonal ma-

trix, with the diagonal elements correspondent to the
λq coefficients ordered in accordance with the monomi-
als in φ. As previously discussed, these conditions are
met with all the polynomial kernels so far introduced,

i.e., K
(r)
ipk, K

(r)
pk , and K

(r)
mpk, defined, respectively, in (18),

(24), and (25). For convenience, we recall that α is the
vector that defines the kernel-based estimator, see (11),
while Φ is the matrix staking the vectors φ(ut) with
t = 1 . . . N . Then, the following proposition holds true.

Proposition 1 Let K be a kernel whose expansion cor-
responds to the elements of φ(ut), and denote by λq the
coefficient of the expansion related to the q-th element of
φ(ut). Then, the estimate ŵ of the Volterra model coef-
ficients defined in (3), is

ŵ = ΛΦα. (30)

The proof of the proposition is reported in the Appendix.
Notice that in our setting Proposition 1 can be used
when using both Kpk and Kmpk using the expressions of
λq reported in (21) and (28), respectively.

4 Smooth exponentially decaying MPK

In this section, we extend the framework introduced in
the previous subsection by designing the Smooth Ex-
ponentially Decaying MPK (SED-MPK). The model
incorporates information on smooth exponential decay
of Volterra maps coefficients. The kernel has the same
structure of the MPK (25), except for the positive def-
inite matrices Σp which are no more restricted to be
diagonal. In fact, we define the basic building kernel as

k
(i)
sed(ut,uj) =

i∏
p=1

uTt Σpuj (31a)

Σp(i, j) = e−αp|i−j|e−βp|i−1+j−1| (31b)

where Σp(i, j) is the (i, j)-entry of Σp, and the hyper-
parameters αp and βp regulate the smooth exponential
decaying behavior. One can thus notice that while in
(25) each Σp is diagonal with the hyperparameters cor-
responding to the m+1 diagonal elements, now the ma-
trix is full but depends only on αp and βp. Similarly to
the MPK, to limit the presence of local maxima, the αp

and βp hyperparameters can be parametrized hierarchi-
cally. When considering a Volterra series or order r, the
mode based on the SED-MPK is the sum of kernels (31)
of increasing order, i.e.,

K
(r)
sed(ut,uj) =

r∑
i=1

ρik
(i)
sed(ut,uj) + ρ0. (32)

The regularization matrix in (31b) has clear analogies
with the regularizer introduced in [2]. But a fundamental
difference holds: while in [2] it is used to regularize the
Volterra coefficients hi in an explicit way, i.e. writing
down the model in terms of basis functions, the penalty
is here embedded in a kernel. This point is crucial, and
the rest of the subsection is devoted to illustrate it by
building a kernel that generalizes both MPK and SED-
MPK.

As said, once an order i is fixed, the hi(τ ) is the coef-
ficient of a monomial of order i defined by the vector
τ = [τ1, . . . , τi] containing the input lags. Recall that
Hi (ut) in (2) is the sum of products between hi and the
possible monomials of degree i built with ut. In other
words, this is the part of the system output due only to
the monomials of order i. With this in mind, letPi(τ , τ ′)
be a kernel that measures the similarity between two
lags vectors. Then, we define

k(i)(ut,uj) =
∑
τ

∑
τ ′

Pi(τ , τ ′)
i∏

p=1

ut−τpuj−τ ′
p

(33)

as the similarity measure between the system outputs
Hi(ut) and Hi(uj) obtained using two different inputs
ut anduj . Note that (33) accounts for the effect of all the
monomials of order i built with ut and uj by summing
over all the possible couples of vector lags. Now, consider
(31a) but without assigning any particular structure to

Σp. In particular, for t, j in {0, 1, . . . ,m} let σ
(p)
tj be the

(t+ 1, j + 1)-entry of Σp. Then, it is easy to prove that
(31a) generalizes into

∑
τ

∑
τ ′

i∏
p=1

σ
(p)
τpτ ′

p
ut−τpuj−τ ′

p
, (34)

where we are summing over all the possible couples of
lags vectors

τ = [τ1, . . . , τi], τ ′ = [τ ′1, . . . , τ
′
i ].

Equating the right hand sides of (34) and (33), we obtain

Pi(τ , τ ′) =

i∏
p=1

σ
(p)
τpτ ′

p
. (35)

8



The equality (35) is important because it shows the cor-
respondence between the similarity measure assigned to
two lags vectors (and, hence, also to two Volterra map co-
efficients) and the elements of the Σp. In particular, (35)
says that the similarity between hi(τ ) and hi(τ

′) is fac-
torized by i elements, corresponding to the entries of the
Σp matrices identified by τ and τ ′. Without parametriz-
ing the Σp structure, the model complexity could be-
come relevant, in particular when the system memory
m and the Volterra order i are large. The MPK reduces
complexity by using diagonal matrices exploiting (25b).
Instead, inspired by [26] and [2], the SED-MPK uses the
option (31b) to limit the number of parameters and en-
force smooth exponential decay of the hi(τ ). This feature
is so encoded in the kernel, providing information that
monomials built with large input lags values should have
less influence on output prediction. To clarify this con-
cept, we provide the explicit expression of the P(τ , τ ′)
obtained with the kernel in (31), considering the partic-
ular case where all the αp (resp. βp) are equal to α (resp.
β). By (34) we have

P(τ , τ ′) = e−α‖τ−τ
′‖

1e−β‖τ+τ
′‖

1 . (36)

The last expression is the product of two exponen-
tials, where the first term expresses the smoothness of
P(τ , τ ′), while the second defines the decay w.r.t. the
increasing of the lags.

The fundamental point is that, thanks to our kernel-
based framework, the SED-MPK computational com-
plexity scales with the number of samples, instead that
with the number of coefficients of the Volterra maps as
in [2]. This allows to model also high-order Volterra se-
ries. As proven by numerical results reported in the next
section, solutions based on SED-MPK are effective in
identifying also Volterra series up to order 5.

5 Experimental results

We tested the proposed kernel functions in several ex-
periments. First, we compare the performance of the
MPK-based estimator (26) with that of the estimators
based on IPK and PK, i.e., (24) and (17). In particu-
lar, we considered the benchmark system introduced in
[36], described by a Volterra series with order r = 3 and
memory m = 6. Then, to evaluate the advantages of the
SED-MPK (32), we used the estimators based on the
proposed kernels to identify a more challenging system,
previously considered in [38], and modeled as Volterra
series with m = 70 and r = 3, 4, 5. Finally, we tested
the estimator based on the SED-MPK with data coming
from a real system, the cascaded water tanks benchmark
system [34,33].

5.1 Experiment 1

The system considered in this experiment is described
by the following equation

zt =ut + 0.6ut−1 + 0.35(ut−2 + ut−4)− 0.25u2t−3
+ 0.2(ut−5 + ut−6) + 0.9ut−3

+ 0.25utut−1 + 0.75u3t−2 − ut−1ut−2
+ 0.5(u2t + utut−2 + ut−1ut−3). (37)

The estimator based on the MPK is compared with the
ones based on the homogeneous polynomial kernel (PK)
and the inhomogeneous polynomial kernel (IPK), ex-
pressed, respectively, by (18) and (24). The input signals
are 1000 samples obtained from a realization of Gaus-
sian noise. Concerning mtr

u , mts
u , σtru and σtsu , which are,

respectively the input mean and standard deviation of
the training and test samples, we considered two differ-
ent scenarios :

• Setup 1 : mtr
u = mts

u = 0, σtru = σtsu = 4;
• Setup 2 : mtr

u = mts
u = 0, σtru = 1, σtsu = 4.

Notice that in Setup 1 the distribution of the training
and test inputs is the same, while in Setup 2 is differ-
ent. In particular, we limited the variability of the train-
ing samples, increasing the probability of generating test
samples that are significantly distant from the training
distribution. Consequently, the second scenario is more
challenging. In all the experiments the noise standard de-
viation is σn = 4. For each setup we performed a Monte
Carlo experiment composed of 100 simulations. For each
simulation we generated a training and test dataset used
to train and test the three estimators. Performance is
measured by the percentage fit (Fit%), defined as

100%

(
1−
‖z − ẑ‖1
‖z − z̄‖1

)
,

where z is a vector collecting the noiseless test outputs,
ẑ is the vector of the estimated outputs, and, finally, z̄ is
the mean of z. The hyperparameters of the kernels have
been trained maximizing the marginal likelihood of the
training samples. Concerning the likelihood optimiza-
tion, we used standard gradient descent algorithm. The
algorithms are implemented in Pytorch [24], to exploit
its automatic differentiation capabilities for computing
the gradient.

Results are reported in Figure 1. As far as Setup 1 is
concerned, all the three estimators perform well. This is
due to the fact that the input distribution does not vary
between training and test, combined with the low value
of m. On the contrary, performance varies significantly
in the second scenario, where the MPK-based estimator
outperforms the other estimators; the MPK Fit is 10%
higher than the IPK and PK Fit. Thanks to the higher

9



flexibility provided by the additional parameters, the
MPK extracts more information from the training data,
obtaining better out of sample performance.

To closely inspect the regularization properties of the
three kernels, we analyzed the penalties assigned to the
different monomials. In particular, we focused on φ2,
i.e. the monomials with degree two (see (3)), and we
computed the penalty assigned to the h2 map, i.e. the
λh2 defined by (23). In Figure 2, we compare the mod-
ule of the h2 coefficients of the system in (37) with the
λh2

computed by estimators based on the IPK, PK and
MPK after tuning the hyperparameters by marginal like-
lihood maximization. We recall that small values of λ
entail high penalization. Results confirm the considera-
tion done in Section 2 and 3. Notice that the IPK and
PK estimators are not able to penalize properly the dif-
ferent monomials. In particular, IPK assigns high value
only to λh2(−2,−2), the coefficient of the monomial u2k−2.
This is due to the constraints between penalties assigned
to the different orders. Indeed, notice that in (37) the
only monomial with degree three is u3k−2. Instead, PK
is not able to select the relative degree of each mono-
mial; for example, the coefficient of u2k−1 is promoted
despite its maximum relative degree in (37) is one. Fi-
nally, results confirm that MPK can promote monomi-
als depending on the relative degrees. Indeed, the coef-
ficient of the monomial uk−2uk−3 is promoted without
promoting u2k−2 and u2k−3, differently from the PK, and
in accordance with (37). Additional tests with this sys-
tem has been performed in [20], where we considered
also nonzero mean input signals.

98

99

100

Fi
t%

Setup 1

IPK PK MPK
50
60
70
80
90

100

Fi
t%

Setup 2

Fig. 1. Boxplot of the Fit obtained with a Monte Carlo sim-
ulation composed of 100 simulations of the system described
by (37). IPK, PK, and MPK correspond to the estimators
based on (24), (18), and (25), respectively.

5.2 Experiment 2

In this set of experiments we compare the performance
of the estimators based on MPK and SED-MPK, i.e.,
(26) and (32), simulating a more complex system. We

0 1 2 3 4 5 6
τ1

0
1
2
3
4
5
6

τ 2

|h2|

0 1 2 3 4 5 6
τ1

0
1
2
3
4
5
6

τ 2

λh2 IPK

0 1 2 3 4 5 6
τ1

0
1
2
3
4
5
6

τ 2

λh2 PK

0 1 2 3 4 5 6
τ1

0
1
2
3
4
5
6

τ 2

λh2 MPK

Fig. 2. Visualization of the h2 coefficients’ module related
to the system in (37), compared with the λh2 obtained with
the IPK, PK, and MPK. The dark squares represent higher
values. For each matrix the values have been normalized
w.r.t. the maximum value, i.e., black squares correspond to
1, while white squares to zero.

considered the Wiener system proposed in [38], and de-
scribed by the following equation,

zt =

r∑
i=1

(
10q−1

A(q)
ut

)i
, (38)

where q is the forward shift operator, and A(q) = 1 −
1.8036q−1 +0.8338q−2. To analyze the robustness of the
two kernels w.r.t. measurement noise, we performed sim-
ulations with different level of noise. Specifically, we var-
ied σn obtaining simulations with signal to noise ration
(SNR) approximately equal to 5dB and 20dB. Concern-
ing the Volterra orders, we considered r = 2, . . . 5, in-
stead, the system memorym has been set to 70. For each
Volterra order we performed a Monte Carlo study com-
posed of 40 simulations. In each simulation the training
and test inputs are the collection of 3500 samples, gen-
erated from a Gaussian distribution with zero mean and
unitary standard deviation. Notice that the number of
samples is approximately equal to the number of distinct
coefficients of a Volterra map with r = 2 and m = 70,
and significantly lower than the number monomials in
φi with i > 2. As concerns the SED-MPK, we consid-
ered the special case reported in (36), with all the αp
and βp equal

In Figure 3 we visualized the Fit obtained for r = 2 and
r = 3, after training the hyperparameters by marginal
likelihood maximization. Results show that, compared

10



70
75
80
85
90
95

100

Fi
t%

r= 2 (SNR 20dB) r= 2 (SNR 5dB)

MPK SED-MPK
0

20
40
60
80

100

Fi
t%

r= 3 (SNR 20dB)

MPK SED-MPK

r= 3 (SNR 5dB)

Fig. 3. Comparison of the Fit obtained with the estima-
tors based on the MPK and SED-MPK in a Monte Carlo
study composed of 40 simulations of the system in (38), with
r = 2, 3.

to SED-MPK based estimator, the performance of the
estimator based on the MPK decreases faster with the
increasing of r, as well as being more sensitive to mea-
surement noise. Due to the high number of parameters,
and the small number of samples, the MPK is not able to
identify a convenient set of penalties capable of providing
generalization and robustness to measurement noise. In-
stead, results show the effectiveness of the regularization
strategy implemented by the SED-MPK. Notice that the
SED-MPK based estimator provides accurate estimates
of the system output also with r = 3, as well as being
robust to the presence of noise. This trend is confirmed
also by results reported in Figure 4, where we plotted
the SED-MPK Fit obtained with r = 3, 4, 5. Despite the
number of samples is order of magnitudes smaller than
the number of elements in φ5, the average Fit is higher
that the 80%. Finally, notice that effects of noise be-
come particularly relevant only with r = 5, where there
have been several outliers. However, we would like to
stress that the configuration considered is particularly
challenging.

5.3 Experiment 3: cascaded water tanks benchmark

In this experiment we tested the estimators based on the
SED-MPK with data coming from a real system, the wa-
ter tanks benchmark system [34,33]. This system is com-
posed of two vertically cascaded water tanks, a reservoir
and a water pump. The water flows from the highest tank
to the reservoir, passing through second tank. A voltage
controlled pump can move the water from the reservoir
to the first tank, while the water level of the second tank
can be measured through a capacitive water level sensor
which returns a voltage signal. The goal of this bench-
mark is deriving an input-output model of the water
level in the second tank, considering as input the pump
voltage. The training and test dataset consists of 1024

70
80
90

100

Fi
t%

r= 3 (SNR 20dB) r= 3 (SNR 5dB)

60
70
80
90

100

Fi
t%

r= 4 (SNR 20dB) r= 4 (SNR 5dB)

SED-MPK
20
40
60
80

100

Fi
t%

r= 5 (SNR 20dB)

SED-MPK

r= 5 (SNR 5dB)

Fig. 4. Boxplot of the Fit obtained with the SED-MPK based
estimator in a Monte Carlo study composed of 40 simulations
of the system in (38), with r = 3, 4, 5.

samples on each, collected exciting the system with two
distinct random phase multisine, with frequency rang-
ing [0, 0.0144]Hz. A detailed description of the setup,
the datasets ,and a video of the experiment are publicly
available 2 . Due to the presence of overflows and the wa-
ter level saturation, the input-output relation is highly
nonlinear. Both the training and the test datasets con-
tain at least two overflows at different time instants. The
main challenges of this benchmark are not only the pres-
ence of strongly nonlinear behaviors but also the limited
number of data and the presence of transient.

We used the estimators based on the SED-MPK to de-
rive a system model, assuming that the input-output re-
lation is a Volterra series with r = 3, and m = 100. Due
to the limited number of samples, we did not consider
the implementation of the estimators based on the PK
and MPK kernel, i.e., (17) and (26). Notice that, when
considering a Volterra series with r = 3 and m = 100,
the number of hyperparameters in (17) and (26) is, re-
spectively, 300 and 600. On the contrary, the SED-MPK,
i.e., (32), has just 6 hyperparameters. We trained the
estimator by maximizing the marginal likelihood of the
training dataset. The performance of SED-MPK is com-
pared with the results previously obtained on this bench-
mark relying on Volterra series. In particular, we consid-
ered the results reported in [3,4], where authors also de-
scribed the evolution of the water level with a third order
regularized Volterra series (RVS), applying the strategy
described in Section 2 that relies on (6),(7).

Figure 5 plots the test output together with the estimate
ŷ returned by SED-MPK. We also report the percentage
fit, comparing also the root mean squared error (RMSE)
and the training time of RVS and SED-MPK. The SED-
MPK estimator is effective with fit equal to 93.43%. It

2 http://www.nonlinearbenchmark.org/#Tanks

11



0 200 400 600 800
Steps

2

4

6

8

10

[V
]

y
̂y

Fig. 5. Evolution of y and ŷ, i.e., the water tanks system
output, and the estimate obtained with the SED-MPK
based estimator modeling the input-output relation with a
Volterra series with r = 3 and m = 100. In the table below
we compare the numerical values of the RMSEs, the Fit,
and the training time of our solution and the RVS approach
proposed in [3,4] (the RVS’s Fit is not available).

RVS SED-MPK

RMSE[V ] 0.54 0.48

Fit% N.A 93.43

Training time 6.5[hours] 2[minutes]

performs similarly to RVS (the two RMSEs are close
each other) but its computational time is considerably
smaller. In fact, while RVS requires 6.5 hours to identify
the model, our approach needs only 2 minutes. As ex-
plained in Section 2, this is due to the fact that the com-
putational time of the solution proposed in [3,4] depends
on the number of coefficients of the Volterra maps while
the computational time of SED-MPK depends only on
the number of training samples.

6 Conclusion

In this paper, we introduced two new kernels for Volterra
series identification. They are named multiplicative poly-
nomial kernel and smooth exponentially decaying mul-
tiplicative polynomial kernel. The MPK of degree i is
defined as the product of i basic building blocks, repre-
sented by distinct linear kernels. Compared to standard
polynomial kernels, MPK identifies the same RKHS, but
it is equipped with a richer set of hyperparameters that
allows for a flexible regularization, allowing to penalize
monomials w.r.t. their maximum relative degree. Simi-
larly to MPK, SED-MPK is the product of distinct linear
kernels. However, SED-MPK also encodes the smooth
exponentially decaying of the Volterra maps coefficients.
In this way, we combine encoding properties of the poly-
nomial kernel with explicit regularization of the Volterra

maps, increasing significantly regularization and data-
efficiency. In particular, our new approaches allow to
identify also high-order Volterra series using a limited
number of samples. Experimental results on artificial
and real data show their effectiveness.

References

[1] S.A. Billings, A. Chen, and M.J. Korenberg. Identification
of MIMO non-linear systems using a forward-regression
orthogonal algorithm. Intern. J. of Control, 49:2157 – 2189,
1989.

[2] G. Birpoutsoukis, A. Marconato, J. Lataire, and
J. Schoukens. Regularized nonparametric volterra kernel
estimation. Automatica, 82:324 – 327, 2017.

[3] Georgios Birpoutsoukis, Pter Zoltn Csurcsia, and Johan
Schoukens. Nonparametric volterra series estimate of the
cascaded water tanks using multidimensional regularization.
IFAC-PapersOnLine, 50(1):476 – 481, 2017. 20th IFAC
World Congress.

[4] Georgios Birpoutsoukis, Pter Zoltn Csurcsia, and Johan
Schoukens. Efficient multidimensional regularization for
volterra series estimation. Mechanical Systems and Signal
Processing, 104:896 – 914, 2018.

[5] S. Boyd and L. Chua. Fading memory and the problem
of approximating nonlinear operators with volterra series.
IEEE Transactions on Circuits and Systems, 32(11):1150–
1161, 1985.

[6] S. Chen, S. A. Billings, and W. Luo. Orthogonal least
squares methods and their application to non-linear system
identification. International Journal of Control, 50:1873–
1896, 1989.

[7] C.M. Cheng, Z.K. Peng, W.M. Zhang, and G. Meng. Volterra-
series-based nonlinear system modeling and its engineering
applications: A state-of-the-art review. Mechanical Systems
and Signal Processing, 87:340 – 364, 2017.

[8] F. Cucker and S. Smale. On the mathematical foundations
of learning. Bulletin of the American mathematical society,
39:1–49, 2001.

[9] B. Efron, T. Hastie, L. Johnstone, and R. Tibshirani. Least
angle regression. Annals of Statistics, 32:407–499, 2004.

[10] M. Espinoza, J. A. K. Suykens, and B. De Moor. Kernel
based partially linear models and nonlinear identification.
IEEE Trans. on Automatic Control, 50(10):1602–1606, 2005.

[11] M.O. Franz and B. Schölkopf. A unifying view of Wiener
and volterra theory and polynomial kernel regression. Neural
Computation, 18:3097–3118, 2006.

[12] R. Frigola, F. Lindsten, T.B. Schon, and C.E. Rasmussen.
Bayesian inference and learning in Gaussian process state-
space models with particle mcmc. In Advances in Neural
Information Processing Systems (NIPS), 2013.

[13] R. Frigola and C.E. Rasmussen. Integrated pre-processing
for Bayesian nonlinear system identification with Gaussian
processes. In Proceedings of the 52nd Annual Conference on
Decision and Control (CDC), 2013.

[14] R. Haber and H. Unbehauen. Structure identification of
nonlinear systems-a survey. Automatica, 26:651–677, 1990.

[15] J. Hall, C.E. Rasmussen, and J. Maciejowski. Modelling and
control of nonlinear systems using Gaussian processes with
partial model information. In Proceedings of the 51st Annual
Conference on Decision and Control (CDC), 2012.

12



[16] T. J. Hastie, R. J. Tibshirani, and J. Friedman. The
Elements of Statistical Learning. Data Mining, Inference and
Prediction. Springer, Canada, 2001.

[17] X. Hong, R. J. Mitchell, S. Chen, C. J. Harris, K. Li, and
G. W. Irwin. Model selection approaches for non-linear
system identification: A review. International Journal of
Systems Science, 39(10):925–946, 2008.

[18] Z.Q. Lang, S.A. Billings, R. Yue, and J. Li. Output frequency
response function of nonlinear volterra systems. Automatica,
43(5):805 – 816, 2007.

[19] Y.F. Li, L.J. Li, H.Y. Su, and J. Chun. Least squares support
vector machine based partially linear model identification.
In De-Shuang Huang, Kang Li, and GeorgeWilliam Irwin,
editors, Intelligent Computing, volume 4113 of Lecture
Notes in Computer Science, pages 775–781. Springer Berlin
Heidelberg, 2006.

[20] Alberto Dalla Libera, Ruggero Carli, and Gianluigi
Pillonetto. A novel multiplicative polynomial kernel for
volterra series identification. CoRR, abs/1905.07960, 2019.

[21] I. Lind and L. Ljung. Regressor selection with the analysis
of variance method. Automatica, 41(4):693 – 700, 2005.

[22] I. Lind and L. Ljung. Regressor and structure selection
in NARX models using a structured ANOVA approach.
Automatica, 44:383–395, 2008.

[23] L. Ljung. System Identification - Theory for the User.
Prentice-Hall, Upper Saddle River, N.J., 2nd edition, 1999.

[24] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban
Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017.

[25] G. Pillonetto and A. Chiuso. Tuning complexity in
regularized kernel-based regression and linear system
identification: The robustness of the marginal likelihood
estimator. Automatica, 58:106–117, 2015.

[26] G. Pillonetto and G. De Nicolao. A new kernel-based
approach for linear system identification. Automatica,
46(1):81–93, 2010.

[27] G. Pillonetto, F. Dinuzzo, T. Chen, G. De Nicolao, and
L. Ljung. Kernel methods in system identification, machine
learning and function estimation: a survey. Automatica,
50(3):657–682, 2014.

[28] T. Poggio and F. Girosi. Networks for approximation and
learning. In Proceedings of the IEEE, volume 78, pages 1481–
1497, 1990.

[29] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes
for Machine Learning. The MIT Press, 2006.

[30] W.J. Rugh. Nonlinear System Theory: The Volterra-Wiener
Approach. Johns Hopkins University Press, 1980.

[31] B. Schölkopf, R. Herbrich, and A. J. Smola. A generalized
representer theorem. Neural Networks and Computational
Learning Theory, 81:416–426, 2001.

[32] B. Schölkopf and A. J. Smola. Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond.
(Adaptive Computation and Machine Learning). MIT Press,
2001.

[33] M. Schoukens, Per Mattsson, Torbjörn Wigren, and
J.M.M.G. Noël. Cascaded tanks benchmark combining soft
and hard nonlinearities. In Workshop on Nonlinear System
Identification Benchmarks : April 25-27, 2016, Brussels,
Belgium, pages 20–23, 4 2016.

[34] M. Schoukens and J.P. Nol. Three benchmarks addressing
open challenges in nonlinear system identification. IFAC-
PapersOnLine, 50(1):446 – 451, 2017. 20th IFAC World
Congress.

[35] J. Sjöberg, Q. Zhang, L. Ljung, B. Delyon A. Benveniste,
P. Glorennec, H. Hjalmarsson, and A. Juditsky. Nonlinear
black-box modeling in system identification: A unified
overview. Automatica, 31(12):1691–1724, December 1995.

[36] W. Spinelli, L. Piroddi, and M. Lovera. On the role
of prefiltering in nonlinear system identification. IEEE
Transactions on Automatic Control, 50(10):1597–1602, Oct
2005.

[37] J. G. Stoddard, J. S. Welsh, and H. Hjalmarsson. Em-based
hyperparameter optimization for regularized volterra kernel
estimation. IEEE Control Systems Letters, 1(2):388–393,
2017.

[38] Jeremy G Stoddard and James S Welsh. Volterra kernel
identification using regularized orthonormal basis functions.
arXiv preprint arXiv:1804.07429, 2018.

[39] R. Tibshirani. Regression shrinkage and selection via the
LASSO. Journal of the Royal Statistical Society, Series B.,
58:267–288, 1996.

[40] Y.L. Xu and D.R. Chen. Partially-linear least-squares
regularized regression for system identification. IEEE Trans.
Automat. Contr., 54(11):2637–2641, 2009.

A Proof of Proposition 1

We prove Proposition 1 exploiting the Bayesian inter-
pretation of kernel-based estimation. We recall that in
such context the output y is assumed to be the sum of
a function f sampled on some input locations and of
independent Gaussian noises. The target function f is
modeled as a zero-mean Gaussian random field with the
kernel to define its covariance, see [29]. Then, we have

E[f(ut), f(uj)] = k(ut,uj)

y ∼ N (0,K + γIN )

where K is the kernel matrix previously defined, while
the regularization parameter γ corresponds to the vari-
ance of the measurement noise. If the kernel admits a
closed form expansion in φ, the kernel k can be rewrit-
ten as k(ut,uj) = φT (ut)Λφ(uj), then we have f(ut) =

φT (ut)w with w ∼ N(0,Λ), see [29]. Consequently, the
vector composed by the concatenation of y and w has
Gaussian distribution, more precisely we have[

y

w

]
∼ N

(
0,

[
K + γIN C

CT Λ

])
,

with C = E[ywT ] = ΦTΛ. The proof is concluded
recalling that conditional distribution of w given y is
Gaussian, and its maximum a posteriori estimator cor-
responds to the mean given by

ŵ = CT (K + γIN )−1y = ΛΦα.

13


