UNIVERSITYOF
BIRMINGHAM

iversity of Birmin am
esearch at Birmingham

Fault diagnosis in labelled Petri nets
Al-Ajeli, Ahmed ; Parker, David

DOI:
10.1016/j.automatica.2021.109831

License:
Other (please provide link to licence statement

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Al-Ajeli, A & Parker, D 2021, 'Fault diagnosis in labelled Petri nets: a Fourier-Motzkin based approach’,
Automatica, vol. 132, 109831. https://doi.org/10.1016/j.automatica.2021.109831

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Contains public sector information licensed under the Open Government Licence v3.0.

http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

*Users may freely distribute the URL that is used to identify this publication.

*Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.

*User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
*Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. May. 2024

https://doi.org/10.1016/j.automatica.2021.109831
https://doi.org/10.1016/j.automatica.2021.109831
https://birmingham.elsevierpure.com/en/publications/9f069a19-5b1d-484f-9214-6f14d55c8e7f

Automatica 132 (2021) 109831

journal homepage: www.elsevier.com/locate/automatica

Contents lists available at ScienceDirect

Automatica

automatica

Brief paper

Fault diagnosis in labelled Petri nets: A Fourier-Motzkin based R

approach”
Ahmed Al-Ajeli **, David Parker”

@ College of Information Technology, University of Babylon, Babylon, Iraq
b School of Computer Science, University of Birmingham, Birmingham, UK

Check for
updates

ARTICLE INFO ABSTRACT

Article history:

Received 7 December 2019

Received in revised form 17 February 2021
Accepted 9 June 2021

Available online xxxx

Keywords:

Discrete-event systems

Petri nets

Fault diagnosis
Fourier-Motzkin elimination

We propose techniques for fault diagnosis in discrete-event systems modelled by labelled Petri nets,
where fault events are modelled as unobservable transitions. The proposed approach combines an
offline and an online algorithm. The offline algorithm constructs a diagnoser in the form of sets of
inequalities that capture the legal, normal and faulty behaviour. To implement the offline algorithm,
we adopt the Fourier-Motzkin method for elimination of variables from these sets of inequalities.
Upon observing an event, the diagnoser is used to determine whether a fault occurred or might have
occurred. The occurrence of a fault can be verified by checking the observed sequence against the sets
of inequalities. This approach has the advantage that the tradeoff between the size of the diagnoser
and the time for computing the diagnosis is achieved. In addition, fault diagnosis in both bounded and
unbounded Petri nets can be addressed.

Crown Copyright © 2021 Published by Elsevier Ltd. All rights reserved.

1. Introduction

The safety and reliability of large complex systems play an im-
portant role in the availability of the services provided by them.
Unfortunately, fault occurrences in such systems are usually un-
avoidable. Fault diagnosis addresses the problem of detecting
and isolating these fault occurrences. Thus, developing automatic
approaches to obtain accurate and timely diagnosis decisions
in such systems enhances their safety and reliability. It is well
known that the problem of fault diagnosis in partially-observed
discrete-event systems (DES) is a complex problem; it has been
studied by many researchers in order to develop methods in
which the time and the space complexity are balanced.

The traditional approach to solving this problem is by assum-
ing that there is a model capturing the behaviour of the system to
be diagnosed (also called the plant). Two formalisms are usually
used in the literature: automata and Petri nets (Basile et al., 2008;
Cabasino et al., 2010; Dotoli et al., 2009; Sampath et al., 1995).
In this formalism, faults are modelled as unobservable events.
The problem of fault diagnosis under partial observation was
first investigated by Sampath et al. (1995). The authors modelled

* The material in this paper was partially presented at the 12th UKACC
International Conference on Control, September 6-7, 2018, Sheffield, UK. This
paper was recommended for publication in revised form by Associate Editor
Prashant Mhaskar under the direction of Editor Thomas Parisini.

* Corresponding author.

E-mail addresses: a.alajeli@uobabylon.edu.iq (A. Al-Ajeli),
d.a.parker@cs.bham.ac.uk (D. Parker).

https://doi.org/10.1016/j.automatica.2021.109831

0005-1098/Crown Copyright © 2021 Published by Elsevier Ltd. All rights reserved.

the system behaviour as a regular language captured by an au-
tomaton and the solution starts by creating, from this model, an
automaton called a diagnoser in which all events are observable.
One of the limitations of this approach, however, is the inability
to handle infinite systems (i.e., unbounded state spaces).

Petri net models provide more attractive graphical and math-
ematical features which can be used for the purpose of dealing
with both finite and infinite systems. An extension to the idea
introduced in the automata context has been proposed for Petri
nets (Cabasino et al., 2010; Jiroveanu et al., 2008; Zhu et al,,
2018). The aim was to reduce the computational cost by only
enumerating a subset of the reachable markings in the system
being diagnosed.

A different idea has been proposed in Basile et al. (2009) and
Dotoli et al. (2009), where they use equations to address the
diagnosis problem, rather than representing the diagnoser as an
automaton. More specifically, the fault diagnosis problem has
been reduced to an integer linear programming (ILP) problem,
which is solved online every time an event is observed. Using
this idea, the space complexity is reduced at the cost of the
time complexity, which could be exponential. For a review of
approaches for fault diagnosis in DES, we refer the reader to Basile
(2014), Cabasino et al. (2012) and Zaytoon and Lafortune (2013).

The above contributions have been demonstrated in the con-
text of Petri nets where no two transitions in the model of the
system share the same label. Extensions to the work of Cabasino
et al. (2011) and Fanti et al. (2013) have been reported
in Cabasino et al. (2010), Dotoli et al. (2009) and Wang et al.

https://doi.org/10.1016/j.automatica.2021.109831
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2021.109831&domain=pdf
mailto:a.alajeli@uobabylon.edu.iq
mailto:d.a.parker@cs.bham.ac.uk
https://doi.org/10.1016/j.automatica.2021.109831

A. Al-Ajeli and D. Parker

(2020) to the cases of labelled Petri nets (LPN) in which there is
no restriction on having unique labels associated with transitions.
These transitions can be simultaneously enabled (indistinguish-
able transitions), but only one of them can fire. In addition, Basile
et al. proposed an approach for both diagnosability and fault
detection in labelled Petri nets exploiting the ILP approach (Basile
et al, 2012). Recently, a diagnostic technique using an online
count vector estimation was designed (Chouchane et al., 2020;
Zhu et al., 2020). These techniques are based on solving a fewer
number of LP problems for an observed sequence of events.

Alternatively, a new approach adopting the idea of variable
elimination from a set of inequalities has been developed for fault
diagnosis in Petri nets (Al-Ajeli & Bordbar, 2016; Al-Ajeli & Parker,
2018). The integer Fourier-Motzkin elimination method (IFME)
has been used for the elimination (Pugh, 1991; Williams, 1976).
IFME is an extension of the Fourier-Motzkin elimination (FME)
method used for inequalities in real variables (Conforti et al.,
2014; Duffin, 1974; Kohler, 1967).

In this paper, we further extend the previous work based on
the IFME method to the case of labelled Petri nets under the as-
sumption that observable transitions might be indistinguishable.
The proposed solution is in two parts: offline and online. The
diagnoser is constructed offline as sets of inequalities. During the
online step, a sequence of observed events (labels) is obtained and
verified against the sets of inequalities constructed in the offline
step to make the diagnosis decisions. It is worth mentioning that
the present approach does not use the IFME method for solving
an ILP problem, neither online nor offline. Instead, the method is
used for the purpose of projecting the space described by a set of
inequalities by eliminating variables.

This paper is structured as follows. In Section 2, a general
background of Petri nets and the IFME method is provided. Sec-
tion 3 presents a description of the fault diagnosis problem in
DES. The details of the proposed approach and a proof of correct-
ness for this approach on the fault diagnosis problem are covered
in Section 4. Conclusions and future directions are discussed in
Section 5.

2. Background
2.1. Petri nets

A Petri net (Murata, 1989) is defined as a four tuple ./ =
(P, T, Pre, Post), where P and T are non-empty finite sets of places
and transitions, respectively; Pre : Px T — Nand Post : P x T —
N are the weights of the arcs from places to transitions and from
transitions to places. We use m = |P| and n = |T| for the number
of places and transitions. For a given transition t € T, an input
(resp. output) place of t is a place p such that Pre(p, t) (resp.
Post(p, t)) is positive. A = Post — Pre is the incidence matrix of a
net.

A state of a Petri net, known as a marking, is represented as
M : P — N capturing the number of tokens in each place.
We sometimes represent a marking as an m x 1 matrix of non-
negative integers. A transition t is enabled at a marking M if
M(p) > pre(p, t) for each input place p of t. An enabled transition
can fire, resulting in a new marking M’, denoted by M 4 M. We
can find the reachable marking M’ by M’ = M + Au, where u is
the n-dimensional firing vector of the transition t. A sequence of
transitions o = t;...t; of T is called enabled at a marking M if
there are markings My, ..., M; so that M 4 M; 3 My--- 4 M;.
In this case, we write M = M; and refer to M, as a marking
reachable from M and o is the firing sequence. We write R(.#", M)
for the set of all markings reachable from M. The initial marking

Automatica 132 (2021) 109831

of the system is represented by an initial marking My. We will
write (%', Mp) for a Petri net with its initial marking Mp.

Suppose that we have a sequence o of (.4, M), then the
Parikh vector # : T* — N" is a map which assigns to every
sequence o a vector #(o') in which each element represents the
number of firings of each transition in o. In other words, for
#(o) : T — N, #(o)(t) is the number of occurrence of t €
T within the sequence o. Sometimes, we also write #(t, o) to
represent the number of the occurrences of t in o.

The set of sequences of transitions resulting in reachable
markings is called the language of the Petri net and is denoted
by L(.#, Mp), i.e. L(.#, Mp) = {o | 3M My > M}. Suppose that
a destination marking M is reachable from M, in a Petri net .4
through a sequence o, we can then find M using the following
state equation:

M =M, +Ax >0 (1)

where A is the incidence matrix of .4/, and x € N" is an n-
dimensional column vector with X = (X1, ..., x,) and x; = #(t;, o)
for t; € T. Then, for any sequence o € L(.#, M), there exists
X = #(o) satisfying (1). The converse is not always true. In some
cases, e.g. acyclic Petri nets, the converse holds too.

Definition 1 (Tsuji & Murata, 1993). Let v = (aq,...,a,) be
a solution of the state equation for a Petri net (.4, My) with a
destination marking M. Then, the firing count subnet with respect
to v is the subnet .4, where each transition t; in .4, is such
that o; > 0 together with its input and output places and its
connecting arcs. My, and M, denote the restrictions of My and
M to places in .4;,.

Lemma 1 (Al-Ajeli & Parker, 2018). Suppose that v is an n x 1
column vector and M is a reachable marking in a Petri net .4 such
that M’ = M + Av > 0. Considering that .4; (see Definition 1)
is cycle-free, then there exists a sequence o € T (T, is the set of
transitions in .4;,) such that M, 5 M; and #(o) = v, where M,
and M, are restrictions of M and M’ to places of .#;,. In addition, o

can fire under M resulting in M’ such that M > M.

Now, suppose that we have a Petri net (.4, Mp), then the
association of a label e € X, where X represents a set of labels
(alphabet), to transitions in .4 is called a labelling function. This
function is defined as A : T — X U {¢}, i.e. A(t) = eor A(t) = ¢
for t € T. Also, this labelling function can be extended to the
Kleene closure of X by A : T* — X* where for each sequence of
transitions o and transition t, A(ot) = A(o)A(t). A labelled Petri
net is defined as a four tuple (.#", My, ¥, A) in which we associate
to each label e € X a set of transitions z(e).

t(e)={t| t € T,e = A(t)} (2)
2.2. Integer Fourier-Motzkin elimination method

The elimination of a variable from a set of inequalities I :=
AX < b, where A ¢ R™" b € R™ and X = (X1,X2,...,X,) € R"
can be achieved by Fourier-Motzkin elimination (FME)
method (Dantzig, 1972; Duffin, 1974). The variables are elim-
inated one by one as explained as follows. It is sufficient to
describe the process of eliminating one variable, as the same
procedure can be repeatedly applied to eliminate the required
number of variables. Also, for the sake of simplicity, all entries in
the last column of A are assumed to be 0, +1 or —1. Assuming
that x, is to be eliminated, I can be rewritten as shown in (3):

°: ax’ <b,i=1,...,m
—Xp <bj, j=mi+1,...,m (3)

It ax +x, <b, k=my+1,...,m

/

_ . ,
| ax

A. Al-Ajeli and D. Parker

where X' = {x1, X2, ... X,_1}, i.e. the same set of variables without
Xn. Also I°, I~ and I are sets of inequalities in I which have
zero, negative and positive coefficients of x,. If I™ is empty, then
all inequalities in I~ can simply be deleted. Likewise, if I~ is
empty, then all inequalities in I can be discarded. Assume that
= max(ajfx/—bj,j =m;+1,...,my)and u = min(b, —a X', k =
my + 1, ..., m). Since the last two lines of (3) are equivalent to
I < x, < u, the variable x, can be eliminated. This yields the
reduced set R in (4) with no x, as an equivalent to (3):

ax <b,i=1,...,m
ajfx/—bjfbk—a{(x/,j:ml—i—l,...,mz, (4)

k=my+1,...,m
Theorem 1 (Duffin, 1974). Assume that the variables Xy 1, ..., Xn

have been eliminated in order by using the FME method described
above from a set of linear inequalities I. This results in the reduced
set R. Then «q,...,a is a solution of R iff there exist values
ka1, - .-, Oy SUCh that aq, ..., Ak, Cgs1, .. ., &y IS a solution of I.

This theorem represents an important result for the purpose
of fault diagnosis, as will be clear in the following sections. An
extension of this result to a set of inequalities having integer-
valued variables has been reported in Pugh (1991) and Williams
(1976). This extension, named Integer FME (IFME), is to ensure
that for any integer solution in R, there exists an integer solution
in I. In this paper, we have chosen the method presented in Pugh
(1991), which better meets our need as it is somewhat simpler
and more efficient.

3. Problem statement

In this section, a description of the problem of fault diagnosis
in DES modelled by labelled Petri nets is given based on the
formulation adopted by Cabasino et al. (2011) and Fanti et al.
(2013). Consider a labelled Petri net (.#", Mg, X', 1), as defined in
Section 2.1. Suppose that the set of transitions T in .4 is parti-
tioned into two sets: observable transitions T, and unobservable
transitions T,. We further assume that faults are unobservable
transitions, i.e. T € Ty, in which Ty is the set of transitions which
are modelling occurrences of faults. The set T, may have other
transitions which model no fault, i.e. they model normal events.

Consider also the projection function # : T — T, U {¢} that
maps unobservable transitions to the empty string ¢, i.e. 7(t) = €
fort € T, while (t) = t for t € T,. The projection function 7 can
be extended to the Kleene-closure of T by 7 : T* — (T, U {€})*,
where for each sequence of transitions o € T* and each transition
t, 7(ot) = m(o)m(t). We assume m(¢) = € and that 7(te) =
mw(et) = € for each t € T,. Moreover, the inverse projection
function is defined as 7' : T — 2{0€UA", Molir(o)=s. s€T5] A [egql
sequence s € T; is such that 77 Y(s) #£ 0.

Let w € X* denote an observed sequence of events (labels),
where w = A(s) and s = 7 (o) for a given sequence o € T*. To
simplify the presentation of this paper, we only consider one type
of fault Ty = {t1, 2, ..., tx}; the extension to multiple types is
straightforward. In particular, to create a set of inequalities for a
given fault type, the transitions representing faults in the other
fault types are considered as normal unobservable transitions.
Since it is not required to uniquely identify occurrences of every
fault of Ty, a firing of any transition t € Ty implies that a fault
has occurred. We suppose that the labels captured by w are
the only information we receive when a sequence of observable
transitions fires. A diagnoser (as formally defined in the following
sections) uses such information to identify if a fault has occurred
or may have occurred.

Automatica 132 (2021) 109831

In this paper, the problem of fault diagnosis is addressed
with the assumption that different transitions could share the
same label, taking into account that these transitions might be
simultaneously enabled.

4. The IFME method for fault diagnosis in LPN

The main results obtained in this paper are covered in this
section. In order to formulate the IFME-based solution, we first
introduce some of necessary definitions and notation.

4.1. Definitions and notations

The IFME-based approach for fault diagnosis essentially relies
on using inequalities. The enabling conditions of Petri nets can be
formed as a set of inequalities. Besides, the presence and absence
of faults can be expressed in the form of inequalities. Suppose that
transition t; € T is a fault transition. Then t; does not appear in a
firing sequence o if and only if ¢ := #(t;, o) = 0 holds. Also, the
occurrence of t; in o can be trivially written as —c := #(t;, o) > 0,
i.e., the negation of c. In addition, we can represent a set of faults
as inequalities by extending the formulation above. Recall that
Tr = {t1, t, ..., t;} is a fault type; we associate two inequalities
—C = ZteTf #(t,0) > 0and ¢ = ZteTf #(t, o) < 0. Then, no
fault of T; appearing in o implies that ¢ holds. In contrast, a fault
of Ty appears in o implies that —c holds. Next, two definitions are
introduced for use in determining the set X(w) described below.

Definition 2. Suppose that e is an inequality of the form a;x; +

-+« 4+ apx, < b in the variables set X = (x1,...,%;),% € N
and ay,...,a,, b € Z. Consider the values «;, ..., o, assigned
to X1, ..., Xp, respectively. Supposing that v = (ay, ..., @), then

the notation v F e means that v satisfies the inequality e if and
only if ajoq + - - - 4+ apa, < b is true.

Definition 3. The diagnosis labelling function: a diagnosis labelling
function D : T x 2T — {N, F, FN} is a mapping that associates to
each sequence of observable transitions s with respect to the fault
type Ty (expressed by c), one of the following diagnosis labels:

e D(s,Tf) = N if Yo € L(.#, Mp) such that w(c) = s, #(0) F €
holds.

e D(s,Tf) = F if Yo e L(#, M) such that (o) = s,
#(o) E —c holds.

e D(s, Ty) = FN if there exist two sequences o1, 03 € L(.#', M)
such that (o) = m(03) = s, but #(o1) £ ¢ and #(o03) E —¢
hold.

Two sets of sequences are defined in the following. The first
set characterises the set of sequences in the language of .4
corresponding to an observed sequence of events w as shown
below:

I'(w) ={o € L(#/,Mp) |s = m(0), w = A(S)} (5)

The second set consists of a number of pairs associated with a
given sequence of observed events. Each pair captures the form
(observed sequence, diagnosis label) expressed in the following
definition:

Definition 4. Suppose that (.#", My, X', 1) is a labelled Petri net.
Given an observed sequence w € X*, we define a set of pairs
associated with @ with respect to the fault type Ty as:

X(w)={(s,1) |30 € I'(w),s =n(0), = D(s, Tr)} (6)

Note that the set X(w) # because w corresponds to a
firing sequence. In the following, the definition of diagnoser is
extended inspired by definitions presented in Cabasino et al.
(2011) and Fanti et al. (2013).

A. Al-Ajeli and D. Parker

71

e
Qﬁ{%k .

to(d)
%< i
17(b) P71
& %F%I%

tlo

f4(c 112

Fig. 1. A labelled Petri net example.

Definition 5. A diagnoser is a function A : ¥* x 27 — {NoFault,
Faulty, Uncertain} that associates with each observed sequence
o € X* with respect to the fault type T; one of the following
diagnosis states:

o Alw, Ty) = NoFault if Yo € I'(w), #(o) F ¢ holds. This
state indicates that there is no sequence having the same
labels as @ containing a fault transition in Ty, i.e. no fault
has occurred.

o Alw, Ty) = Faulty if Yo € I'(w), #(o) £ —c holds. This
state is Faulty as all sequences having the same labels as w
contain a fault transition in Tj.

o A(w, Tr) = Uncertain if there exists two sequences o1, 0y €
I’'(w) such that #(o1) F ¢ and #(o3) F —c hold. In this
case, the behaviour of the system is ambiguous because both
NoFault and Faulty states are possible during the observed
sequence.

Example 1. Consider the labelled Petri net depicted in Fig. 1. In
this net, the initial marking is My = [100000000000]. In the
figure, the set of observable transitions is depicted by solid rect-
angles, while empty rectangles represent unobservable transi-
tions. The labelling function A yields t(¢) = {t3, t4, ts, tg, t11, t13},
t(a) = {1}, (b)) = {tz,t7}, ©(c) = {ts, to, t1a} and z(d) =
{t9, t12}. Moreover, there is one fault type having two fault tran-
sitions ts and t{; denoted by f; and f,, respectively as shown in
the figure. Thus, we have one constraint ¢ := xg +x7; < 0 and its
negation —c := xg + X117 > 0 (also written as =€ := —xg — X11 <
—1). Note that in this Petri net, two transitions sharing the same
label could be enabled simultaneously, e.g. the transitions tg and
t1o-

If we suppose that w = a, then I'(w) = {t;}. In which case,
we are certain that no fault from Ty has occurred, i.e. A(a, Ty) =
NoFault. Assuming now that w = abb, then I'(w) = {tit2t3tststs,
titrtstgt;}. One of these sequences has the fault transition tg,
but the others have none. Hence, A(abb, Ty) = Uncertain. When
observing w = acc, a different diagnosis state is obtained. In
effect, I'(w) = {titiot11t10}. This ensures that a fault (t;;) from
Ty has occurred. Formally, A(acc, Ty) = Faulty.

We end this section by recalling the results obtained in Dotoli
et al. (2009) in the case of Petri nets as expressed in the following
proposition.

Proposition 1 (Dotoli et al, 2009). Given a Petri net (%, Mp)
having no cycle of unobservable transitions and an observed se-
quence of transitions s € T}. Then, there exists a sequence o =

Automatica 132 (2021) 109831

t t)
o1ty ...opty such that My i M — -+ = My Thh My and

S=1ty...ty for o1, ..., on € T if and only if there exists a solution
#(o1), ..., #(op) to the following set of inequalities:

Ay - #(01) = Pre(., t1) — Mo (1)

Ay - (#(o1) +#(02)) = Pre(., &) — Mo —A-u; (2)
S = :

Ay Y #o) = Pre(, th))—Mo—A D w (h)

1<i<h 1<i<h—-1

where A, is the restriction of A on the unobservable transitions and
u; is the firing vector of t; fori=1,...,h — 1.

From Proposition 1, we can infer that if the set of inequalities
. does not have a solution with respect to s = t;...t, then
there does not exist a corresponding sequence o € L(.#", M) such
that o = oty ...opty. The set of inequalities in . can also be
rewritten as:

—Ay - #(01) + Pre(., t1) < My (1)
—Ay - (#(0o1) +#(02)) —A-uy +Pre(., ;) <My (2)

—Ay Y #oi)—A > ui+Pre(,t) <My (h)

1<i<h 1<i<h—-1

where each subset ./, i = 1,...,h, of inequalities in .+,
e.g. 7 = —Ay-#(o1)+Pre(., t1) < My, can simply be represented
by the following general form:

=(-A-X)+y = Mo (7)

given a sequence of transitions o1ty ... ojt;, where y = Pre(., t;)
and x = #(o1ty ...0;7). If we assume that the sequence ot; ... 0;
is enabled at My, then the transition t; is enabled if (7) holds.

4.2. Identification of the legal sequences

Given the set of inequalities I as defined in Section 4.1 in the
sets of variables x and y. Then, assume that the IFME is applied
to I to eliminate the variables corresponding to the unobservable
transitions resulting in the set of inequalities I’. We present the
following proposition to characterise legal sequences (sequences
of observable transitions). In other words, this proposition can be
applied to decide whether a sequence of observable transitions
has at least one corresponding sequence in a labelled Petri net.

Proposition 2. Suppose that (v, My, X, A) is a labelled Petri net
having no cycle of unobservable transitions. Also, assume that I is
the set of inequalities of (7) in the sets of variables X and y. The set
of inequalities I' is as defined above. Then, for any given sequence of
observable transitions s = t; ... ty, there exists a corresponding se-
quence o = ait; ... onty in A such that My =5 My—> - - - 25 My, iff
there exists a vector v/ = (aq, ..., ag, Pre(p1, t), ..., Pre(pm, t) E
I', where o; = #(t;,8'), s =t;...ty_1 and k = |T,|.

Proof. Necessity: If there exists o such that (o) = s, then there
exists v = #(o) such that v F I by the enabling condition. As
a result, there exists a corresponding v’ such that v/ £ I’ by
Theorem 1.

Sufficiency: If there exists v/ k I’, then there exists a corre-
sponding sequence in .#". We prove this case by the induction on
the length of s, denoted by |[s| as follows:

Base case: Assume that |s| = 1. If («q, ..., ak, Pre(p1, t1),
Pre(pm,t1)) E I, where o = 0 for 1 < i < k, then

A. Al-Ajeli and D. Parker

there exists a solution v = (aq,..., a, A1, --., A, Pre(py,
t1), ..., Pre(pm, t1)) £ I by Theorem 1. Assume that v = («q, ...,
o), then the subnet .4;, has only unobservable transitions. Since
A, is cycle free by the assumption, there exists a sequence o €
T,y such that My 2L M and #(o1) = v by Lemma 1. As a result, we

have a sequence o1t; such that My 7 M, for s = t;. This proves
the case.

Induction step: Suppose that the result holds for all s with |s| <
h (Induction hypothesis). Then, we prove that the result holds for

|s| = h. Hence, for s’ = t;...t,_; there exists a sequence o’ =
o1t Oh—1th—1
o1t1...0h—1th—1 such that MO — M1—> s — Mh_1. If we

have s = sty such that (a, ..., ay, Pre(p1, ty), ..., Pre(pm, tp)) E
I', then there exists a solution v = (a1,..., Qk, ki1, .-, On,
Pre(p1, ty), ..., Pre(pm, ty)) £ I by Theorem 1. Assume that v/ =
(@1, ..., Ok, Qg1 ..., 0p) and z = V' — #(o'), z € N, then
M = My_1 + Az > 0. Since the subnet .#; has only unob-
servable transitions and it is cycle free, there exists a sequence
oy, such that Mj_q 2 M with #(op) = z. Further, since v =
(o1, ..o Oy Okt 15 - - -, O, Pre(py, ty), ..., Pre(pm, tn)) E I, then

t] .
M 5 M, Consequently, there exists a sequence o = oty ...onty
in .4+ such that s = t; ... t;. This also proves this case. O

Proposition 2 gives a complete procedure to identify the le-
gal sequences. Identification of these sequences is necessary to
determine the diagnosis states.

4.3. Computing the diagnosis states

Suppose that the set of fault transitions in .4 is T € T, and
all faults are of the same type. We can further suppose that I
is as defined in (7) in variables x and y, ¢ and —c as defined
in Section 4.1. In order to compute the diagnosis state, we first
create two sets I U {c} and I U {—c}. Then, applying the IFME
method to the sets I U {c} and I U {—c} respectively yields the
reduced sets R and R’ created by eliminating every variable corre-
sponding to a transition in the set T,. In the following, we present
the results that capture the details of computing a diagnosis state
upon observing a sequence of events w.

Theorem 2. Suppose that (.4, My, X, A) is a labelled Petri net
having no cycle of unobservable transitions. Also, assume that the
set of inequalities I is as defined in (7). The sets of inequalities R
and R’ plus the inequalities ¢ and —c are described above. Then,
for any given sequence of observable transitions s = s't = (o)
and t € T, such that there exists o € L(.#, My), consider that
v = (aq, ..., Pre(py, t), ..., Pre(pm, t)) is a vector, where o; =
#(t;,s'), s’ =ty...ty_1 and k = |T,|. Then D(s, Ty) is determined as
follows:

N iff v R

F iff vV 2R
DT =1 V FR AV E R

Impossible iff VV ERAV ER

Proof. Case (i) D(s, Ty) = N: By contradiction, assume that v’ ¥ R,
but D(s, Tf) is not N. If v/ ¥ R/, then there does not exist a
corresponding solution of v" in I U {—c} by Theorem 1. But v" has
a corresponding solution, say v, in I because it is coming from a
sequence in L(.#", M), see Section 2.1. Thus, v ¥ —c¢, i.e. v F c.
As a result, Vo' € L(.#, Mp) such that 7(c’) = s, #(o') F ¢
holds. Hence D(s, Ty) is N, see Definition 3. This contradicts the
assumption. The converse is also true.

Case (ii) D(s, Ty) = F: Using a similar argument in the proof
of Case i by replacing R’ with R, we can prove this case.

Automatica 132 (2021) 109831

Algorithm 1 : build the diagnoser (offline step).

Input: A labelled Petri net (4", Mp, X, 1), a set of unobservable transitions T, a
single fault type Ty.
Output: The pair (R, R') plus the set I’

1: Let | < —Ax+ Pre(.,t) < My
2: Letc<— Y X <0, =« > —x < -1
€Ty €Ty

R <~ 1U{~¢}

: for all j € T do

I < IFME_method(I', x;)
R < IFME_method(R, ;)

R < IFME_method(R’, x;)

10: end for

LN uhw

Case (iii) D(s,Tf) = FN: If vV E R, then there exists a
corresponding solution in v = I U {c} by Theorem 1. Hence, there
exists a sequence in L(.#", Mp) which satisfies c. Likewise, we can
prove that if v = R, then there exists another sequence satisfying
—c. Since there are two sequences having the same s, but one of
them satisfies ¢ and the other satisfies —¢, we have D(s, Ty) = FN,
see Definition 3. The converse is also true.

Case (iv) Impossible: It is a contradictory statement to have v/,
which corresponds to an observed sequence, that does not satisfy
¢ and —c at the same time. The converse is also true and this
completes the proof. O

Corollary 1. Assume that (¥, My, X, A) is a labelled Petri net. Then,
for any given sequence of observed events w € X*, considering that
the set X(w) is such that each (s,I) € X(w) is legal, A(w, Ty) is
determined as follows:

NoFault iff v(s,l) € X(w),| =N
Alw, Tr) = § Faulty iff (s, I) € X(w),| =F
Uncertain Otherwise

Proof. A direct proof. O

4.4. Fault diagnosis algorithms

In this section, the algorithms developed for fault diagnosis
in labelled Petri nets are described. In Algorithm 1, steps 7-9
recursively invoke the IFME procedure (explained previously in
Section 2.2) with two parameters. The first parameter represents
the set of inequalities and the second one is the variable to be
eliminated from this set. The output of Algorithm 1 consists of
sets of inequalities I’, R and R'.

The input of Algorithm 2 is the fault type T; and t(e)Ve € X,
in addition to sets of inequalities I’, R and R’. The output of the
algorithm is a diagnosis state from {NoFault, Faulty, Uncertain}
(see Definition 5). This algorithm starts by initialising ' and
X(«'). Then, in step 2 in particular, the algorithm enters into a
loop to estimate the diagnosis state. In step 3, the algorithm waits
until a new event e is observed and then adds it to the previous
sequence /', creating the sequence w. From step 5 to step 21,
the algorithm builds the set X(w). First, the set of all sequences
s € T; corresponding to w in .4 is generated in steps 6-8. The
variables x4, ..., Xk, ¥1, ..., ym are computed and their values are
allocated to the vector v’ (step 9). Then, each generated sequence
is checked to determine whether it has a corresponding sequence
in the Petri net (step 10), see Proposition 2. The function D(s, Tf)
is computed in steps 11-17 by applying Theorem 2. Steps 22-28
determine the diagnosis state A(w, Tf) based on Corollary 1.

A. Al-Ajeli and D. Parker

Algorithm 2 : fault diagnosis (online step).

Input: A single fault type Ty; t(e), Ve € ¥
and the sets R, R’ and I’ as defined in Algorithm 1.
Output: A diagnosis state {NoFault, Faulty, Uncertain}.

1: Initialise o’ =€, X(') =0
2: loop

3: if a new event e is observed then

4: Let v < o'e

5: Initialise X(w) < ¢

6: for all t € 7(e) do

7: for all s’ € X(«') do

8: s« st

9: V' < (#(s'), Pre(p. t), ..., Pre(pm, t))
10: if v/ = I’ then

11: if v ¥ R then

12: D(s,Tf) < N

13: else if v/ # R then

14: D(s, Tg) < F

15: else if v/ = R and V' £ R’ then
16: D(s, Tg) < FN

17: end if

18: X(w) < X(@) U {(s, D(s, Ty))}
19: end if

20: end for

21: end for

22: if V(s, 1) € X(w), | = N then

23: A(w, Tf) < NoFault

24: else if ¥(s,) € X(w), | = F then
25: A(w, Tr) < Faulty

26: else

27: A(w, Tf) < Uncertain

28: end if

29: end if

30: o <« o, X(0') < X(w)

31: end loop

Table 1
The sets of inequalities I and I’ of the net in Fig. 1.

1 I' < IFME(I)

X1+y1 =<1
—X1+X —X5+Y2 <0
—X +x3+y; <0
—X3+X4+X+ys <0
—X4+Xxs+ys <0
—X6+x7+Ys <0
—X7+Xs — X +y7 <0
—Xg +X +ys <0
—X1 +X10 —X11 —X1a + Y9 <0
—X10 +X11 + X12 + Y10 < 0
—X12 +Xi3+y11 <0
—X13+X14+y12 <0
—Xi <0 lic3,45.6.11.13)

x1+y1 <1
X +y3 <0
—X12+y11 <0
—Xg +X+Yys <0
—X2+y3+ya<0
—X10 +X12 + Y10 < 0
—X7+X3 — X9 +y7 <0
—X2+Y3+Yya+ys <0
X2+ X4ty +yn <0
—X2+Xx7+y3+Yya+ys <0
—X1+Y2+y3+Yya+ys <0
—X1+X12 —X1a+ Y9 +y10 <0
—X2+X7+Yy3+Yya+ys+ys <0
—X1+X7+Y2+Yy3+ya+ys +ys <0

4.5. Computational complexity

Using IFME to produce such a diagnoser (Algorithm 1), the
number of inequalities may grow in each elimination step. For
instance, the set of inequalities after the first elimination could
have (%)2 in the worst case, where m is the number of inequali-
ties in the initial set. The final set of inequalities after eliminating
k1 variables (where k; is the number of unobservable transitions)
could have O(mzk1) in the worst case.

Let us consider the computational complexity to compute the
diagnosis (Algorithm 2). This complexity relies on the number
of observed events and the size of the diagnoser. To be precise,
assume that mg is the number of inequalities in I’ U R U R" of
the fault type Ty, then the online step requires in the worst case

Automatica 132 (2021) 109831

O(|X(")] - |z(e)] - mg) to decide the diagnosis state. Note that
|X(')| < |T,| - n1, where n; is the length of the sequence «’'.

We provide a brief comparison in terms of the computational
complexity between the IFME-based approach and the ILP-based
approaches. The latter requires solving a set of ILP problems
online, each of which costs an exponential time in the number
of observed events. While the IFME-based approach requires a
number of verification processes against a set of inequalities, in
each verification, we only require polynomial time in the number
of observed events.

4.6. lllustrative example

Recalling the labelled Petri net of Fig. 1, three sets of inequal-
ities are to be created to represent the diagnoser. We start by
extending the set of inequalities I by adding the inequalities ¢ :=
X6 + %11 < 0 and —¢ := —xg — X1 < —1 in order to obtain I U {c}
and I U {—c}, respectively. Applying the IFME method to the three
sets I, IU{c} and I U {—c} results in the sets I’, R and R’ as shown
in Tables 1 and 2. The resulting sets of inequalities are in the set
of variables {x1, x2, X7, Xg, X9, X10, X12, X14} plus the set of variables
l1<j=<12).

Now, suppose that we observe the sequence w = ab. Two
potential sequences s; = tit; and s, = tit; could correspond
ab. The vector v’ can be computed for s; and s, as follows.
Assume that s; = s|t; and s; = s)t;. In case of s;, we obtain
#(t1,8]) = 1 and #(t;,8]) = 0, vV € {2,7,8,9,10, 12, 14};
also Pre(p,, t;) = 1 and Pre(p;, t;) = 0, Vj = 2, ..., 12. For the
sequence s, we obtain #(t;,s}) = 1 and #(t;,s,) = 0, Vt; €
{2,7,8,9,10, 12, 14}; also Pre(ps,t;) = 1 and Pre(p;,t;) =
0, Vi = {1,2,3,4,5,7,8,9,10, 11, 12}. Hence, the vectors
v; =(1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0) and vj =
(1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0, 0, 0) are determined
for s; and s, respectively. Since v F I, s1 is a legal sequence,
but s, is not (see Proposition 2). Thus, we ignore s, and check
v] against R and R’; we find that v} = R and v; ¥ R'. This implies
that D(sq, T) = N (see Theorem 2). Based on this, the set X(ab) =
{(t1t2, N)}. Since X(ab) contains one sequence with diagnosis label
N, we have NoFault diagnosis state (see Corollary 1).

5. Conclusion

We have presented a new approach for fault diagnosis under
partial observation in labelled Petri net models of DES. This ap-
proach adopts the IFME method to build the diagnoser offline. In
particular, this paper addresses the most general case of fault di-
agnosis in Petri nets in which another source of non-determinism
originates from the fact that different transitions could share
the same label and these transitions could be indistinguishable.
As a result, part of computational effort is required online to
handle this case. By observing a sequence of events (labels), a
set of sequences of transitions corresponding to these observed
sequences is generated. Then, using the diagnoser this set is
analysed to make diagnosis decisions. Since the diagnoser is no
longer represented as an automaton, the IFME-based approach
can be used in both finite and infinite systems. Furthermore,
this current representation of the diagnoser makes the compu-
tational complexity of our approach heavily rely on the number
of unobservable transitions and not state space size.

A future direction of research can investigate the diagnosis of
more complex forms and other types of faults. In addition, decen-
tralised and distributed diagnosis, where many local diagnosers
could monitor the state of the system will be taken into account.

A. Al-Ajeli and D. Parker

Table 2

Automatica 132 (2021) 109831

The sets of inequalities R and R’ of the net in Fig. 1.

R < IFME(I U {c})

R < IFME(I U {—=c})

x1+y1 =1
—X7+X3 —X+y7; <0
—Xg +X9+Yys <0
—X+y; <0
—X+Xx7+y3+Yya+ys <0
X +y3+ys <0
—X1+X+Y2+Yy3+yatys+ys <0
—X1+Y2+tys+yat+ys <0
X +X+Y3+Yya+ys+ys <0
—X2+Yy3+yas+ys <0
—X1 +X12 —X1a+ Yo+ Y10 <0
—X1 +X7+X10— X4+ Y6 +Y9 <0
—X1+X10 —X14+Y9 <0
—X12 +X14 + Y11 +y12 <0
—X12+y11 <0

x1+y1 <1
—X7 +X3 —Xg+y7 <0
—Xg +X9+Yys <0
—X2+y3 <0
—X +x7+y3+Yya+ys <0
—X+Yy;+ya<0
—X1+%+Y2+Yy3+ya+ys+ys <0
—X1+Y2+ys+ya+ys <0
—X3+X +Y3+Yya+ys+ys <0
—X +y3+Yya+ys <0
—X1+X12 —X1a+ Y9 +y10 <0
—X10 +X12 +Y10 <0
—X —X10 + X2+ Y3 +Ya+ Y10 < —1
—X1 — X0t X2 tY2+y3+ya+ys +yio < -1
—X — X0t X12+Y3+Ya+Yys+yio < -1
—X12 + X4 +yn+yn2 <0
—Xx12+y11 <0

References

Al-Ajeli, A., & Bordbar, B. (2016). Fourier-Motzkin method for failure diagnosis
in Petri net models of discrete event systems. In Proceedings of the 13th
international workshop on discrete event systems (pp. 165-170). Xi’an, China.

Al-Ajeli, A., & Parker, D. (2018). Online fault diagnosis in Petri net models
of discrete-event systems using Fourier-Motzkin. In 2018 UKACC 12th in-
ternational conference on control (pp. 397-402). http://dx.doi.org/10.1109/
CONTROL.2018.8516748.

Basile, F. (2014). Overview of fault diagnosis methods based on Petri net models.
In 2014 European control conference (pp. 2636-2642). IEEE.

Basile, F., Chiacchio, P., & De Tommasi, G. (2009). An efficient approach for online
diagnosis of discrete event systems. IEEE Transactions on Automatic Control,
54(4), 748-759.

Basile, F., Chiacchio, P., & De Tommasi, G. (2012). On K-diagnosability of Petri
nets via integer linear programming. Automatica, 48(9), 2047-2058.

Basile, F., Chiacchiot, P., & Tommasi, G. D. (2008). Sufficient conditions for diag-
nosability of Petri nets. In 2008 9th international workshop on discrete event
systems (pp. 370-375). http://dx.doi.org/10.1109/WODES.2008.4605974.

Cabasino, M. P., Giua, A, Marcias, L, & Seatzu, C. (2012). A comparison
among tools for the diagnosability of discrete event systems. In 2012 IEEE
international conference on automation science and engineering (pp. 218-223).
IEEE.

Cabasino, M. P., Giua, A., Pocci, M., & Seatzu, C. (2011). Discrete event diagnosis
using labeled Petri nets. An application to manufacturing systems. Control
Engineering Practice, 19(9), 989-1001.

Cabasino, M. P., Giua, A., & Seatzu, C. (2010). Fault detection for discrete event
systems using Petri nets with unobservable transitions. Automatica, 46(9),
1531-1539.

Chouchane, A., Declerck, P., Khedher, A, & Kamoun, A. (2020). Diagnostic
based on estimation using linear programming for partially observable petri
nets with indistinguishable events. International Journal of Systems Science:
Operations & Logistics, 7(2), 192-205.

Conforti, M., Cornuéjols, G., & Zambelli, G. (2014). Linear inequalities and
polyhedra. In Integer programming (pp. 85-128). Springer.

Dantzig, G. B. (1972). Fourier-Motzkin elimination and its dual: Tech. rep., DTIC
Document.

Dotoli, M., Fanti, M. P., Mangini, A. M., & Ukovich, W. (2009). On-line fault detec-
tion of discrete event systems by Petri nets and integer linear programming.
Automatica, 45(11), 2665-2672.

Duffin, R. (1974). On Fourier’s analysis of linear inequality systems. In M. Balinski
(Ed.), Mathematical programming studies: Vol. 1, Pivoting and extension (pp.
71-95). Springer Berlin Heidelberg, http://dx.doi.org/10.1007/BFb0121242.

Fanti, M. P., Mangini, A. M., & Ukovich, W. (2013). Fault detection by labeled
Petri nets in centralized and distributed approaches. IEEE Transactions on
Automation Science and Engineering, 10(2), 392-404.

Jiroveanu, G., Boel, R. K., & Bordbar, B. (2008). On-line monitoring of large Petri
net models under partial observation. Discrete Event Dynamic Systems, 18,
323-354.

Kohler, D. A. (1967). Projections of convex polyhedral sets: Tech. rep., DTIC
Document.

Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings
of the IEEE, 77(4), 541-580. http://dx.doi.org/10.1109/5.24143.

Pugh, W. (1991). The Omega test: A fast and practical integer programming
algorithm for dependence analysis. In Proceedings of the 1991 ACMJ/IEEE
conference on supercomputing (pp. 4-13). ACM.

Sampath, M. Sengupta, R, Lafortune, S., Sinnamohideen, K., & Teneket-
zis, D. (1995). Diagnosability of discrete-event systems. IEEE Transactions on
Automatic Control, 40(9), 1555-1575.

Tsuji, K., & Murata, T. (1993). On reachability conditions for unrestricted Petri
nets. In Circuits and systems, 1993. 1993 IEEE international symposium on (pp.
2713-2716). IEEE.

Wang, Y., Yin, L, & Zhu, G. (2020). Online fault diagnosis of labeled Petri
nets based on reachability graphs and topological sorting. IEEE Access, 8,
162363-162372.

Williams, H. P. (1976). Fourier-Motzkin elimination extension to integer
programming problems. Journal of Combinatorial Theory. Series A, 21(1),
118-123.

Zaytoon, J., & Lafortune, S. (2013). Overview of fault diagnosis methods for
discret event systems. Annual Reviews in Control, 37, 308-320.

Zhu, G., Feng, L., Li, Z., & Wu, N. (2020). An efficient fault diagnosis approach
based on integer linear programming for labeled Petri nets. IEEE Transactions
on Automatic Control, 1. http://dx.doi.org/10.1109/TAC.2020.3008712.

Zhu, G, Li, Z., & Wu, N. (2018). Model-based fault identification of discrete event
systems using partially observed Petri nets. Automatica, 96, 201-212.

Ahmed Al-Ajeli received the B.Sc. and M.Sc. degrees
in Computer Science from the University of Babylon,
Iraq, in 1999 and 2002, respectively. He worked as
an assistant lecturer at the Department of Computer
Science, the University of Babylon. In 2017, he received
his Ph.D. in Computer Science from the University of
Birmingham, the UK. Currently, he holds an Assistant
Professor position at College of Information Technology,
University of Babylon. His current research inter-
ests include fault diagnosis/prognosis in discrete-event
systems, machine learning and anomaly detection.

David Parker is a Professor of Computer Science at
the University of Birmingham. Prior to that he worked
as a researcher at the University of Oxford. His main
research interests are in formal verification, with a
particular focus on the analysis of probabilistic sys-
tems. He has published over 140 papers in this area
and was co-winner of the 2016 HVC award. He also
leads the development of the widely used probabilistic
verification tools PRISM and PRISM-games

http://dx.doi.org/10.1109/CONTROL.2018.8516748
http://dx.doi.org/10.1109/CONTROL.2018.8516748
http://dx.doi.org/10.1109/CONTROL.2018.8516748
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb3
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb3
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb3
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb4
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb4
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb4
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb4
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb4
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb5
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb5
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb5
http://dx.doi.org/10.1109/WODES.2008.4605974
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb7
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb7
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb7
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb7
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb7
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb7
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb7
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb8
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb8
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb8
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb8
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb8
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb9
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb9
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb9
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb9
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb9
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb10
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb10
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb10
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb10
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb10
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb10
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb10
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb11
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb11
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb11
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb12
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb12
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb12
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb13
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb13
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb13
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb13
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb13
http://dx.doi.org/10.1007/BFb0121242
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb15
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb15
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb15
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb15
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb15
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb16
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb16
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb16
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb16
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb16
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb17
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb17
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb17
http://dx.doi.org/10.1109/5.24143
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb19
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb19
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb19
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb19
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb19
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb20
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb20
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb20
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb20
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb20
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb21
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb21
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb21
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb21
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb21
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb22
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb22
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb22
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb22
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb22
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb23
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb23
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb23
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb23
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb23
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb24
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb24
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb24
http://dx.doi.org/10.1109/TAC.2020.3008712
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb26
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb26
http://refhub.elsevier.com/S0005-1098(21)00351-4/sb26

	Fault diagnosis in labelled Petri nets: A Fourier–Motzkin based approach
	Introduction
	Background
	Petri nets
	Integer Fourier–Motzkin elimination method

	Problem statement
	The IFME method for fault diagnosis in LPN
	Definitions and notations
	Identification of the legal sequences
	Computing the diagnosis states
	Fault diagnosis algorithms
	Computational complexity
	Illustrative example

	Conclusion
	References

