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Abstract

In this article we present a novel discrete-time design approach which reduces the deteriorating effects of sampling on stability
and performance in digitally controlled nonlinear mechanical systems. The method is motivated by recent results for linear
systems, where feedback imposes closed-loop behavior that exactly represents the symplectic discretization of a desired target
system. In the nonlinear case, both the second order accurate representation of the sampling process and the definition of the
target dynamics stem from the application of the implicit midpoint rule. The implicit nature of the resulting state feedback
requires the numerical solution of an in general nonlinear system of algebraic equations in every sampling interval. For an
implementation with pure position feedback, the velocities/momenta have to be approximated in the sampling instants, which
gives a clear interpretation of our approach in terms of the Störmer-Verlet integration scheme on a staggered grid. We present
discrete-time versions of impedance or energy shaping plus damping injection control as well as computed torque tracking
control. Both the Hamiltonian and the Lagrangian perspective are adopted. Besides a linear example to introduce the concept,
the simulations with a planar two link robot model illustrate the performance and stability gain compared to the discrete
implementations of continuous-time control laws. A short analysis of computation times shows the real-time capability of our
method.

Key words: Sampled-data systems, discrete-time control, structure-preserving methods, symplectic integration,
Störmer-Verlet, nonlinear mechanical systems, passivity-based control, energy shaping, computed torque.

1 Introduction

Passivity-based methods are an important framework
for the feedback control of mechanical systems, in par-
ticular in robotics: From potential-based PD control
[25], over a generalized Euler-Lagrangian approach [19],
designs for underactuated systems from both the La-
grangian [28] and the Hamiltonian [20] perspective,
up to a unified approach for different control tasks in
flexible joint robot control [1], energy shaping is a well-
established control design argument. Also computed
torque, i.e., feedback linearization (for this and other
familiar motion control designs in robotics, see e.g.,
[3,22,23]) can be parametrized such that the tracking er-
ror follows a second order ODE with shaped mechanical
structure.

A direct discrete implementation of the continuously de-
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rived control laws in digital, sampled (robot) control
systems leads to performance degradation and insta-
bility, see e.g. [4], and the design of discrete-time con-
trollers based on discrete models is the appropriate an-
swer. Early works are [16], where integrals of motion
are conserved and dynamics is approximated with the
trapezoidal rule, or [17] with the discretization of the
action integral using Euler approximations of the veloc-
ities. The above mentioned trapezoidal rule – which is
conjugate to the symplectic implicit midpoint rule, see
[8], Section VI.8 – is also popular for the high accuracy
discrete implementation of continuously computed robot
controllers, see [22], Section 6.9.2.

Symplectic integration schemes, see e.g. [8], are de-
rived with the goal of preserving the symplecticity
(area/volume preservation in phase space) of the flow
of a Hamiltonian system in discrete time. This property
implies preservation of invariants of motion, and an
excellent long time behavior in the simulation of con-
servative systems due to the conservation of a modified
Hamiltonian. They also go along with a meaningful ap-
proximation of transferred power, which is instrumen-
tal in defining discrete-time port-Hamiltonian systems
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[11]. Symplectic integration is also successfully used in
the solution of optimal control problems, see e.g., [21].
Symplectic schemes are closely related to variational
integrators, which are a dual approach for the structure-
preserving integration of mechanical systems from the
Lagrangian perspective. In particular, symplecticity
of the numerical scheme can be enforced by the con-
struction of the variational integrator [13]. Variational
integrators are as well widely used for the solution of
optimal control problems [18].

Recently, discrete-time eigenvalue assignment based on
the definition of a target system using the – symplec-
tic – implicit midpoint rule was proposed in [12]. Ad-
vantages compared to the implementation of continuous
controllers are unconditional stability w.r.t. the sam-
pling time (within the limits of the sampling theorem)
and the possibility to impose conservative discrete-time
behavior, which corresponds to energy shaping. Conser-
vative (target) dynamics and long time frames are condi-
tions, where symplectic integration schemes for control
show particular advantages compared to other methods
[5].

The main interest of the presented research is the sys-
tematic formulation of discrete-time passivity-based
control techniques for mechanical, in particular robotic,
systems based on symplectic integration. Energy shap-
ing is the central argument of passivity-based controls,
and symplectic numerical schemes guarantee the con-
servation of a modified Hamiltonian. They are therefore
appropriate to endow the closed-loop system with the
desired conservativeness in the energy shaping step.
Our approach is based on a second order accurate de-
scription of the sampled nonlinear mechanical control
system using the implicit midpoint rule. Accordingly,
the target dynamics for control (in the first step energy
shaping) is defined based on this integration scheme.
Comparison of open- and closed-loop system yields the
control law in implicit form. By the solution of a system
of in general nonlinear algebraic equations, the control
input, which then only depends on coordinates and ve-
locities (momenta) at the given sampling instant, can
be computed. In general, only position measurements
are available for feedback, and velocities (momenta)
must be numerically computed. Reconstructing them
using the trapezoidal rule, and therefore enabling pure
position feedback, leads to a beautiful interpretation of
the resulting discrete-time system: It can be considered
the discretization of the underlying continuous-time
target systems with the – symplectic – Störmer-Verlet
scheme on a staggered grid. The application of the ap-
proach to modified target systems – with shaped kinetic
energy, gyroscopic and dissipative forces – is a straight-
forward extension. In order to concentrate on a clear
introduction to this new approach, we restrict ourselves
to the fully actuated case, i.e., all mechanical degrees of
freedom are assumed controlled.

The article is organized as follows. In Section 2 we
give background information on the Hamiltonian and
Lagrangian representation of mechanical systems, the
considered (not only) passivity-based control techniques
and on symplectic integration. Section 3 contains the
main results, which are based on the implicit midpoint
rule (or one-stage Gauss collocation method). The rep-
resentation of the sampling process is followed by the
introduction of discrete-time energy shaping control
from the Hamiltonian point of view and the inclusion of
dissipation an/or gyroscopic forces in the same frame.
Our approach is then formulated as pure position feed-
back. Finally, the dual Lagrangian perspective is con-
sidered, which is more usual when computed torque –
which also can be interpreted in terms of total energy
shaping for the error system – is applied. The interpre-
tation in terms of the Störmer-Verlet scheme brings us
back to symplectic integration. The three simulation
examples – for the control tasks impedance, set point
and trajectory tracking control – in Section 4 illustrate
the quality of our approach and the performance gain
compared to quasi-continuous control. The analysis of
the computation times for the implicitly given control
laws confirms the applicability of our approach on in-
dustrial hardware. We close the article with remarks
and an outlook to further works in Section 5.

2 Preliminaries

We recall the Hamiltonian and Lagrangian representa-
tions of mechanical systems, some popular control tech-
niques from robotics, and we give a brief introduction to
symplectic integration and structure preservation.

2.1 Models of mechanical systems

The dynamics of a simple 1 , lossless mechanical system
can be written in canonical Hamiltonian form[

q̇(t)

ṗ(t)

]
=

[
0 I

−I 0

][
∇qH(q(t), p(t))

∇pH(q(t), p(t))

]
+

[
0

I

]
u(t) (1)

with

H(q(t), p(t)) =
1

2
pT (t)M−1(q(t))p(t) + V (q(t)) (2)

the Hamiltonian. V : Rn → R denotes the potential en-
ergy and the first term represents the kinetic energy T :
Rn×Rn → R withM : Rn → Rn×n the positive definite,
symmetric mass or inertia matrix. q, p ∈ Rn are the gen-
eralized coordinates and momenta, respectively 2 . u(t) ∈
Rn denotes the vector of input forces/torques for the

1 The energy is split in potential and kinetic energy.
2 In this article, we do not assume a differential-geometric
perspective, therefore we identify the spaces of coordinates,
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fully actuated mechanical system. Throughout the paper
we will use the representation

q̇(t) = M−1(q(t))p(t) (3a)

ṗ(t) = −∇qH(q(t), p(t)) + u(t). (3b)

The equivalent second order representation is based on
the Lagrangian

L(q(t), q̇(t)) =
1

2
q̇(t)TM(q(t))q̇(t)− V (q(t)). (4)

The first term is now the mechanical (co-)energy, ex-
pressed in the generalized velocities q̇ ∈ Rn. Hamilto-
nian and Lagrangian representation are coupled via the
Legendre transform with H(q, p) + L(q, q̇) = pT q̇. Eval-
uation of the Euler-Lagrange equations yields then

M(q(t))q̈(t) +C(q(t), q̇(t))q̇(t) +∇V (q(t)) = u(t), (5)

where the Coriolis matrix C : Rn×Rn → Rn×n and the
mass matrix are related via the property that Ṁ − 2C
is skew-symmetric. With the vector of velocities v = q̇,
the first order formulation of (5) is

q̇(t) = v(t) (6a)

v̇(t) = f(q(t), v(t)) +M−1(q(t))u(t), (6b)

where f = −M−1C −M−1∇V .

Remark 1 Neglecting dissipation in the open-loop
model is not a severe restriction, as friction in a modern
motion control structure is typically counteracted via ad-
ditional actions, see e.g. [2] for an overview. Moreover,
the results in the following section can be extended to the
dissipative case in a straightforward manner. Their rep-
resentation for the conservative case is, however, more
compact.

2.2 Control of mechanical systems

We summarize some popular methods for the control of
fully actuated mechanical systems in continuous time,
first from the Hamiltonian, then from the Lagrangian
perspective. Discrete-time versions will be presented in
the following section.

2.2.1 Passivity-based control, energy shaping

The idea of Interconnection and Damping Assignment
Passivity-Based Control (IDA-PBC) is straightforward,
see e.g. [20]. By state feedback, the mechanical control

velocities and momenta with Rn, instead of stressing their
nature on the configuration manifold Q, the tangent and the
co-tangent bundle TQ and T ∗Q, respectively.

system (1) is endowed with a new (artificial) Hamilto-
nian structure[
q̇(t)

ṗ(t)

]
=

[
0 J1(q)

−JT1 (q) F2(q(t), p(t))

][
∇qHd(q(t), p(t))

∇pHd(q(t), p(t))

]
(7)

where

Hd(q(t), p(t)) =
1

2
p(t)TM−1d (q(t))p(t) + Vd(q(t)) (8)

is the shaped Hamiltonian with Md(q) = MT
d (q) > 0 the

artificial inertia matrix and Vd(q) the shaped potential
energy with a strict minimum in the desired equilibrium
configuration q∗. To guarantee that the first equations
of (1) and (7) match, J1(q) = M−1(q)Md(q) must be
chosen. The matrix

F2(q(t), p(t)) = J2(q(t), p(t))−R2(q(t), p(t)) (9)

with J2(·, ·) = −JT2 (·, ·) and R2(·, ·) = RT2 (·, ·) ≥ 0
represents additional gyroscopic terms and dissipation,
which enforces asymptotic stability of the desired equi-
librium 3 . The continuous-time control law is simply ob-
tained by comparison of the second lines of (1) and (7)
(for brevity, we omit all arguments):

u = ∇qH −MdM
−1∇qHd + F2M

−1
d p. (10)

Impedance control, where the “controller attempts to
implement a dynamic relation between manipulator
variables such as end-point position and force” [9],
can, for example, be expressed as an energy shaping
problem. Potential energy and dissipation structure are
assigned according to the desired characteristics of the
virtual spring-damper system. The unifying perspective
of passivity-based control is extensively presented in [1]
for the (underactuated) case of series elastic manipula-
tors with torque feedback.

Remark 2 Obviously, for fully actuated mechanical sys-
tems, the solution of the energy shaping problem is trivial.
It is more difficult in the underactuated case [27], where
the design parameters must satisfy matching equations
for potential and kinetic energy and dissipation.

In this paper, we will first deal with the special case of
only potential energy shaping, i.e., Md(q) = M(q) and
J1(q) = I. The target system can then be written

q̇(t) = M−1(q(t))p(t) (11a)

ṗ(t) = −∇qHd(q(t), p(t)), (11b)

3 If the damping is pervasive, for which a controllability
type criterion can be formulated [15], asymptotic stability of
(linear) mechanical systems can be easily proven also in the
case of a semi-definite damping matrix.
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and the control law boils down to

u(t) = ∇V (q(t))−∇Vd(q(t)). (12)

The results will then be extended to target systems of
the general form

q̇(t) = M−1(q(t))p(t) (13a)

ṗ(t) = bd(q(t), p(t)), (13b)

and the control law

u(t) = ∇qH(q(t), p(t)) + bd(q(t), p(t)), (14)

which includes (7) and (10) as a particular case.

Remark 3 For passivity-based control, without the
port-Hamiltonian perspective, but with a focus on trajec-
tory tracking, we refer for example to [3], Section 2.3.3,
or [23], Section 11.4.2.

2.2.2 PD control with gravity compensation

A standard robot controller for set point stabilization
in joint space, see e.g. [3], Section 2.2.3, or [23], Section
11.2, is

u(t) = ∇V (q(t))−Dq̇(t)−K(q(t)− qd). (15)

qd ∈ Rn is the desired configuration/position vector and
K,D are constant, symmetric positive definite matrices.
The control law (15), applied to (5), generates the target
system

M(q(t))q̈(t)+(C(q(t), q̇(t))+D)q̇(t)+K(q(t)−qd) = 0.
(16)

It represents a mechanical system with the quadratic
potential energy 1

2 (q− qd)TK(q− qd) of a virtual spring
and additional velocity-dependent damping forces.

2.2.3 Computed torque

In extension to (15), the computed torque (feedback lin-
earization) control law, see e.g. [3], Section 2.3.1, or [23],
Section 11.3,

u = Cq̇ +∇V +Mq̈d +MM−1d (−Ke−Dė) (17)

compensates both potential and Coriolis forces in (5).
With e(t) = q(t) − qd(t) the tracking error for a given
trajectory qd : [0,∞) → Rn and constant, symmetric
positive definite matrices Md, K and D, the resulting
dynamical system for the tracking error

Mdë(t) +Dė(t) +Ke(t) = 0 (18)

has a linear mechanical structure, which implies asymp-
totic trajectory tracking, limt→∞ e(t) = 0.

Remark 4 In the context of computed torque methods,
it is interesting to note that the trajectory tracking prob-
lem for rigid and flexible joint robots in continuous time
without velocity measurement has been solved in [14] us-
ing a filtered position feedback.

In the following section we will also use the first order
representation of the target systems (16) and (18),

q̇(t) = v(t) (19a)

v̇(t) = fd(q(t), v(t), t), (19b)

where fd is time-varying in the case of trajectory track-
ing control.

2.3 Symplectic integration

A particular interest in the numerical integration of
Hamiltonian systems is the preservation of structural
properties. Symplecticity refers to area/volume preser-
vation in phase space and implies the conservation of
a modified Hamiltonian in the undamped case, which
can be verified by backward error analysis [8]. From the
Lagrangian point of view, the appropriate discretization
of the Lagrangian and the action functional leads to
discrete variational principles and variational integra-
tors, which also represent symplectic schemes [13,18].
Two classical symplectic methods play a key role in this
article.

2.3.1 Implicit midpoint rule

The numerical solution of a dynamical system ẋ(t) =
f(x(t), t) with the implicit midpoint rule or one-stage
Gauss collocation scheme is computed by

xk+1 = xk + hf(xk+ 1
2
, tk+ 1

2
), (20)

where tk+ 1
2

= tk + h
2 , and the stage value xk+ 1

2
is deter-

mined from the half implicit Euler step

xk+ 1
2

= xk +
h

2
f(xk+ 1

2
, tk+ 1

2
). (21)

Combining both equations, we obtain the simple formula

xk+ 1
2

=
xk + xk+1

2
, (22)

which gives the name to the method. The implicit mid-
point rule is one of the simplest symplectic schemes and
has an approximation order of 2.

2.3.2 Störmer-Verlet scheme

This second order integration scheme goes back to [24]
and [26], where it was first used for numerical integration
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ZOH
Digital

Controller

Mechanical
System h

qrefk uk u(t)
q(t)

q̇(t)

qk

q̇k

Sampled mechanical system

Fig. 1. Sampled mechanical control system. The blue box
represents the discrete-time mechanical system, for which we
will give a second order approximation. The dashed feedback
indicates that velocities are typically not directly measured.
The main result of this paper is symplectic feedback control
design based on exclusively the (red) position feedback.

of models in celestial mechanics and molecule dynamics.
It applies to partitioned systems of the form q̇(t) = v(t),
v̇(t) = f(q(t)). It can be written (among other represen-
tations) as a two-step scheme

qk+1 − 2qk + qk−1 = h2f(qk) (23)

or in a one-step formulation on staggered grids for posi-
tion and velocity,

vk+ 1
2

= vk− 1
2

+ hf(qk)

qk+ 1
2

= qk + hvk+ 1
2
,

(24)

which is the “computationally most economic implemen-
tation” of the Störmer-Verlet scheme [7].

3 Main results

To introduce our control method, we start with the
Hamiltonian representation, as it immediately visualizes
the direct action of the inputs on the momenta, and the
relation between velocities and momenta, which must
be preserved in closed loop. The system is considered as
part of a digital control loop as sketched in Fig. 1.

3.1 Representation of the sampling process

We propose a discrete-time control model, which repre-
sents the sampling process according to Fig. 1 with sec-
ond order accuracy in the time step h. The model has
a particularly simple structure in the update equation
for the coordinates q, which makes it well suited for the
proposed symplectic discrete-time control design.

Assumption 5 We consider piecewise constant inputs
u(t) = uk, tk ≤ t < tk+1, and a constant sampling
time h, i.e., tk = kh, k ∈ N0. The position vector qk
is assumed measurable in every sampling instant. The
initial assumption that q̇k and therefore pk is available,
will be removed for the main result of the paper.

Notation 6 The inverse mass matrices are denoted
M̄(q) := M−1(q) and M̄d(q) := M−1d (q).

The discrete-time control model will be based on the
implicit midpoint rule or one-stage Gauss collocation.

Notation 7 We write the stage values

qk+ 1
2

:=
qk + qk+1

2
and pk+ 1

2
:=

pk + pk+1

2
. (25)

Theorem 8 The implicit discrete-time control model

qk+1 = qk + hM̄(qk+ 1
2
)pk+ 1

2
(26a)

pk+1 = pk − h∇qH(qk+ 1
2
, pk+ 1

2
) + huk (26b)

is a second order approximation of the mechanical system
(3) under piecewise constant input u(t) (zero order hold)
and with sampling time h.

PROOF. The exact solutions of Eqs. (3a) and (3b) at
the end of a sampling interval [tk, tk+1], under the as-
sumption of piecewise constant inputs, are

qk+1 = qk +

∫ tk+1

tk

M̄(q(τ))p(τ) dτ (27a)

pk+1 = pk −
∫ tk+1

tk

∇qH(q(τ), p(τ)) dτ + huk. (27b)

The corresponding terms in (26) are the numerical ap-
proximations of the integrals in (27) with the implicit
midpoint rule or one-stage Gauss quadrature. This
quadrature rule is known to be exact up to polynomial
degree 2, see [8], Section II.1.3. Therefore, (26) approx-
imates (27) with an error o(h2), i.e., of order greater
than 2 in h. 2

In what follows, we consider (26) as the discrete-time
control model, knowing (a) that it approximates the
sampling process with second order accuracy and (b)
that the approximation error oscillates around zero due
to the symplecticity of the integration scheme.

3.2 Potential energy shaping

Our control approach is first presented for conservative
desired closed-loop systems with only modified potential
energy. In that scenario the symplecticity of the implicit
midpoint rule is exploited to guarantee the required con-
servativeness of the discrete-time target system.

To achieve different control tasks like set point,
impedance control or trajectory tracking, however, the
inclusion of dissipation is necessary. Also additional
gyroscopic forces and/or the shaping of the kinetic en-
ergy represent interesting degrees of freedom to impose
desired closed-loop dynamics. Therefore, a generalized
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version of the implicit symplectic control design ap-
proach is presented further below.

The discrete-time update equation for the generalized
coordinates (26a) is not affected by the input uk, other
than the update equation for the momenta (26b), which
can be arbitrarily modified by control due to the assump-
tion of full actuation. This fact suggests the following
definition of the discrete-time target system.

Definition 9 The target system for discrete-time poten-
tial energy shaping is given by

qk+1 = qk + hM̄(qk+ 1
2
)pk+ 1

2
(28a)

pk+1 = pk − h∇qHd(qk+ 1
2
, pk+ 1

2
), (28b)

with Hamiltonian Hd(q, p) = Vd(q) + 1
2p
T M̄(q)p. The

shaped potential energy has a strict minimum at the de-
sired closed-loop configuration: q∗ = arg minq Vd(q).

The so-defined target system is the implicit midpoint
rule discretization of (11), and the following theorem
describes the transition from (26) to (28).

Theorem 10 Take qk+ 1
2

and pk+ 1
2

as solutions of the

system of equations

M(qk+ 1
2
)(qk+ 1

2
− qk) =

h

2
pk+ 1

2
(29a)

pk+ 1
2
− pk = −h

2
∇qHd(qk+ 1

2
, pk+ 1

2
). (29b)

The (implicit) discrete-time potential energy shaping
state feedback control

uk = ∇V (qk+ 1
2
)−∇Vd(qk+ 1

2
) (30)

imposes the target dynamics (11) on the sampled version
of the open-loop system (1) with (a) an error of order
o(h2), as opposed (b) to an error o(h) under the discrete-
time implementation of the continuous-time control law
(12), uk = ∇V (qk)−∇Vd(qk).

PROOF. (a) With the definition of the stage values
qk+ 1

2
and pk+ 1

2
according to (25), the system of equa-

tions (29) is exactly the desired target dynamics (28),
which is a second order approximation of (11). The im-
plicit control law (30) transforms (26b), which is also a
second order approximation of the continuous momen-
tum equation (3b), into (28b). For the proof of state-
ment (b), we obtain the order o(h) of the error between
the two resulting closed-loop systems by Taylor series
expansion around a common expansion point. 2

Remark 11 It is easy to see that (29) represents the
computation of the unknown stage values with an implicit
Euler step of size h

2 , as introduced in (21).

3.3 Total energy shaping

A conservative system as (11) is not the target system for
passivity-based control if the control goal is the asymp-
totic stabilization of a set point or the error along a de-
sired trajectory. Also may only potential energy shaping
be insufficient to modify the dynamic behavior in the
desired way. Therefore, we now formulate the implicit
discrete-time control design for the general target sys-
tem (13), knowing that the control law (14) does the job
in continuous time. We first apply the implicit midpoint
rule to (13).

Definition 12 A generalized discrete-time target sys-
tem, which includes the case (7) of total energy shap-
ing plus damping injection and gyroscopic forces, has the
form

qk+1 = qk + hM̄(qk+ 1
2
)pk+ 1

2
(31a)

pk+1 = pk + hbd(qk+ 1
2
, pk+ 1

2
). (31b)

We can determine the discrete-time control law to bring
the control model (26) into this form in complete accor-
dance with Theorem 10.

Corollary 13 The discrete-time implicit state feedback

uk = ∇qH(qk+ 1
2
, pk+ 1

2
) + bd(qk+ 1

2
, pk+ 1

2
) (32)

with qk+ 1
2

and pk+ 1
2

solutions of the nonlinear system of
equations

M(qk+ 1
2
)(qk+ 1

2
− qk) =

h

2
pk+ 1

2
(33a)

pk+ 1
2
− pk =

h

2
bd(qk+ 1

2
, pk+ 1

2
) (33b)

imposes the discrete-time version (31) of the desired
continuous-time dynamics (13) with an error of order
o(h2) on the sampled mechanical system (3).

PROOF. The proof is parallel to the proof of Theo-
rem 10. Again, (33) in conjunction with the definition of
the stage values (25), represents the target system (31),
which is generated from (26) by the application of the
control law (32). Both discrete-time systems are second
order approximations of the sampled dynamics (27) and
the continuous-time target system (13). 2

Remark 14 Imposing a (strongly) damped target behav-
ior with short-time desired transients is not the typical
scenario for symplectic integration to showcase its advan-
tages. Nevertheless, a structured control design, which
separates energy shaping from the injection of damping
and gyroscopic terms, definitely motivates the use of dis-
cretization schemes with conservation properties.
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3.4 Pure position feedback

As mentioned in the previous section, direct velocity
measurements (from which the momentum can be com-
puted) are typically not available in mechanical (robotic)
control systems. However, the momentum vector pk is
needed in Eq. (33b) to determine the stage values qk+ 1

2

and pk+ 1
2

for the feedback law (32). To get along with

only position measurements, we propose the reconstruc-
tion of pk from the measured position qk and its adja-
cent stage values qk± 1

2
. The resulting discrete-time sys-

tem has a beautiful interpretation in terms of one of the
most prominent symplectic integration schemes.

3.4.1 Potential energy shaping, constant mass matrix

We start again with the case of only potential energy
shaping, and assume this time first a constant mass ma-
trix M = const.

Theorem 15 We consider the implicit control law (30)
with qk+ 1

2
(and pk+ 1

2
) determined from the solution of

the system of equations (29). In addition, we reconstruct
the necessary momentum value in tk = kh via

pk = M
qk+ 1

2
− qk− 1

2

h
. (34)

The value qk is available from measurement, and qk− 1
2

is

a stored previous stage value. Then, (a) the resulting im-
plicit feedback control (30) depends only on position mea-
surements and (b) the closed-loop system is the Störmer-
Verlet discretization of the continuous-time target sys-
tem (11) with M = const.

PROOF. Statement (a) is evident from the fact that
pk is replaced by an expression, which depends on qk
and the stage values qk− 1

2
, qk+ 1

2
that are computed and

stored in every time step. To prove statement (b), we
consider the resulting momentum update equation (28b)
for M = const. and∇qHd = ∇Vd. We substitute pk and
pk+1 according to (34) and obtain

M
qk+ 3

2
− qk+ 1

2

h
−M

qk+ 1
2
− qk− 1

2

h
+ h∇Vd(qk+ 1

2
) = 0.

(35)
Multiplying with hM̄ , this equation boils down to

qk+ 3
2
− 2qk+ 1

2
+ qk− 1

2
= −h2M̄∇qVd(qk+ 1

2
), (36)

which is the two-step formulation (23) of the Störmer-
Verlet scheme on the staggered grid of position stage
values. 2

Remark 16 Combining reconstruction of the momenta
in the sampling instants and the discrete-time target dy-
namics, we obtain

qk+ 1
2

= qk− 1
2

+ hM̄pk (37a)

pk+1 = pk − h∇Vd(qk+ 1
2
), (37b)

which corresponds to the one-step formulation (24),
shifted by h

2 .

Remark 17 The following question can be posed. Does
(37a) contradict the (unchangeable by control) descrip-
tion of the coordinate update in the approximate sam-
pling model (26a)? The answer is no. While the latter
describes the sampling process, the former states a rela-
tion between the stage values, which are not measured,
but which are computation quantities, and which are used
to reconstruct the momenta in the sampling instants.

3.4.2 The general case

We now apply the the reconstruction of momenta (34)
for state feedback to the general class of target systems

q̇(t) = a(q(t), p(t)), ṗ(t) = bd(q(t), p(t)) (38)

with the shortcut a(q(t), p(t)) = M̄(q(t))p(t) and the
subscript “d” for desired, indicating that only the mo-
mentum differential equation is modified by control. In
particular, we describe, for compactness of notation, the
generalized Hamiltonian dynamics (13) in this form.

Theorem 18 The control law (32), with pk+ 1
2

and qk+ 1
2

solutions of (33a) and (33b) and the reconstruction of
the momenta in the sampling instants

pk = M(qk)
qk+ 1

2
− qk− 1

2

h
(39)

leads to a closed-loop system, which is a second order ap-
proximation of the Störmer-Verlet discretization of (13).

PROOF. The Störmer-Verlet discretization of (38) on
staggered grids has the form

qk+ 1
2

= qk− 1
2

+
h

2

(
a(qk− 1

2
, pk) + a(qk+ 1

2
, pk)

)
(40a)

pk+1 = pk +
h

2

(
bd(qk+ 1

2
, pk) + bd(qk+ 1

2
, pk+1)

)
,

(40b)

see [7], Section 1.8, which refers to the original unpub-
lished work [6]. In contrast to that, the target momen-
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tum equation (31b) and Eq. (39) to reconstruct the mo-
menta can be rearranged in the form

qk+ 1
2

= qk− 1
2

+ ha(qk, pk) (41a)

pk+1 = pk + hbd(qk+ 1
2
, pk+ 1

2
). (41b)

With

a(qk− 1
2
, pk) + a(qk+ 1

2
, pk) = (42)

2a(qk, pk) +
∂a

∂q

∣∣∣∣
(qk,pk)

(
(−h

2
q̇k + o(h)) + (

h

2
q̇k + o(h))

)
we verify that (40a) and (41a) differ by an expression of
polynomial degree greater than 2 in h. The same holds
for (40b) and (41b). 2

Remark 19 It is possible to use the momentum equation
(40b) for the target system instead of (31b) and to modify
the reconstruction equation for the momenta as follows,

1

2

(
M̄(qk− 1

2
) + M̄(qk+ 1

2
)
)
pk =

qk+ 1
2
− qk− 1

2

h
, (43)

in order to have (40a) for the update of the coordinates.
For the following practical reasons, we consider it as le-
gitimate to work with the approximation of second order:
(i) The future value pk+1 appears in (40b) as the argu-
ment of a nonlinear function and an additional unknown
which has to be extrapolated from given data, e.g. pk+ 1

2
.

(ii) The quality of the results presented in the next section
confirms the validity of this approximation, and suggests
that the increased complexity and computational effort to
achieve (40) are not justified.

3.5 Lagrangian perspective

We now take the Lagrangian perspective, which can be
more convenient for implementation, as the velocities are
directly measured or reconstructed from the positions
without involvement of the mass matrix. We depart from
the implicit midpoint rule discretization of (6).

Corollary 20 The discrete-time model

qk+1 = qk + hvk+ 1
2

(44a)

vk+1 = vk + hf(qk+ 1
2
, vk+ 1

2
) + hM̄(qk+ 1

2
)uk (44b)

is a second order approximation of the sampled mechan-
ical system.

Under the assumption of piecewise constant inputs, the
proof is similar to the one of Theorem 8.

Definition 21 For the – possibly time-varying –
continuous-time target system (19) the discrete-time

approximation with the implicit midpoint rule is

qk+1 = qk + hvk+ 1
2

(45a)

vk+1 = vk + hfd(qk+ 1
2
, vk+ 1

2
, tk+ 1

2
) (45b)

with tk+ 1
2

= tk + h
2 and the stage values

qk+ 1
2

=
qk + qk+1

2
, vk+ 1

2
=
vk + vk+1

2
. (46)

With (45a) and the definition of the stage value qk+ 1
2
,

we can express vk+ 1
2

as follows:

vk+ 1
2

=
2

h
(qk+ 1

2
− qk), (47)

which allows us to state the following corollary.

Corollary 22 The state feedback

uk = M(qk+ 1
2
)
(
fd(qk+ 1

2
, vk+ 1

2
, tk+ 1

2
)− f(qk+ 1

2
, vk+ 1

2
)
)

(48)
transforms (44) into the target system (45). The stage
values qk+ 1

2
and vk+ 1

2
are solutions of the system of equa-

tions

qk+ 1
2

= qk +
h

2
vk+ 1

2
(49a)

vk+ 1
2

= vk +
h

2
fd(qk+ 1

2
, vk+ 1

2
, tk+ 1

2
). (49b)

For a pure position feedback, the velocities are approxi-
mated by

vk =
qk+ 1

2
− qk− 1

2

h
, (50)

which again yields an interpretation of the resulting tar-
get system in terms of the Störmer-Verlet integration
scheme on staggered grids.

PROOF. Inserting (50) and the corresponding expres-
sion for vk+1 in (45b) yields a second order centered fi-
nite difference approximation of q̈(t) = fd(q(t), q̇(t), t)
in tk+ 1

2
. If fd(q(t), q̇(t), t) = fd(q(t)), this corresponds

exactly to the Störmer-Verlet scheme for a separable
Hamiltonian system on the staggered grid. 2

For the implementation of the described implicit
discrete-time control scheme, note that an initial value
v0 (typically zero) is necessary in the first step. In all
other sampling intervals, the stored value qk− 1

2
is used

for the solution of the system of equations (49), (50).
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4 Numerical experiments

The effectiveness of our approach is now illustrated with
three benchmark examples for fully actuated mechan-
ical systems. The first two examples are presented in
the (port-)Hamiltonian frame, while the Lagrangian per-
spective is assumed in the third example.

4.1 Simulation settings

For all simulation experiments we used Matlab/Simulink
and the following settings. The continuous-time open-
loop system is integrated with the solver ode23 and a
relative tolerance of 10−6. Sample and zero-order hold
according to Fig. 1 are emulated with the correspond-
ing Simulink blocks. Nonlinear systems of equations
to determine the stage values of coordinates and mo-
menta/velocities are solved numerically with fsolve. A
rough estimation of the computation time (using the
commands tic and toc) shows that the equations are
solved in around 5 ms on a sub-standard laptop PC.

4.2 Mass-spring system

High stiffness(es) of the virtual spring(s) in impedance
control lead to oscillations and loss of stability at high
sampling times. On the basic example of a mass-spring
system, we show that the maximum assignable stiffness
can be drastically increased when applying our symplec-
tic discrete-time control design.

The considered system with n = 1 degree of freedom can
be written in the form (1) with Hamiltonian H(q, p) =
1
2kq

2 + 1
2
p2

m and the constant parameters m = 1 kg,
k = 0.5 N/m. The target system[

q̇(t)

ṗ(t)

]
=

[
0 1

−1 −d

][
cq(t)
p(t)
m

]
(51)

has the desired Hamiltonian (only potential energy shap-

ing) Hd(q, p) = 1
2cq

2 + 1
2
p2

m , with a new virtual stiffness
c > k and damping coefficient d = 0.1 Ns/m. By linear-
ity of the target system, the equations (29) can be solved
analytically to determine the symplectic control law

uk = (k − c)qk+ 1
2
− d

m
pk+ 1

2
. (52)

For comparison, we also consider the quasi-continuous
control law

uk = (k − c)qk −
d

m
pk. (53)

The maximum assignable stiffness cmax under both con-
trollers is determined as follows. For every sampling time

h, the limit cmax under the quasi-continuous controller
is determined based on the condition 4

‖eαkhqk‖∞ < 1.1q0, α = 0.1
d

m
, (54)

which means that the coordinate remains confined to the
dashed tube in Fig. 2. The initial conditions are q(0) =
1 m and q̇(0) = 0 m/s. The red curve in Fig. 3 shows
the achievable stiffnesses. At the same time the discrete-
time L2 norm 5 of the input sequence uk on the time
interval [0, Nh]

‖uk‖h =

(
h

N∑
k=0

‖uk‖2
) 1

2

(55)

is stored. The maximum stiffness under the symplectic
controller is now determined also based on the criterion
(54), but under the additional constraint that the L2

norm of the input does not exceed the maximum value
for the quasi-continuous case. Figure 4 shows the norms
of the control signal and the position for the maximum
assigned stiffness in either of the cases.

0 10 20 30 40 50 60 70 80 90 100

−1

−0.5

0

0.5

1

t = kh in s

q k
in

m

Quasi-cont. control
Symplectic control

Fig. 2. Initial value responses qk with maximum achievable
stiffness cmax for h = 0.1 s (see Fig. 3). Not only is cmax

higher under symplectic control, but also the L2 norm ‖qk‖h
is smaller for input signals with identical energy (see Fig. 4).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

h in s

c m
a
x
in

N
/m

Quasi-cont. control
Symplectic control

Fig. 3. Maximum achievable stiffnesses cmax with quasi-con-
tinuous and symplectic control and identical input energy
(55).

4 ‖xk‖∞ is the maximum norm of a discrete-time signal xk.
5 See [10], Section 16.2. The norm tends to the continuous
L2 norm for h → 0.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

h in s

‖q
k
‖ h

(—
),
‖u

k
‖ h

(-
-) Quasi-cont. control

Symplectic control

Fig. 4. With the same input energy ‖uk‖h, the norm of the
coordinate (error) ‖qk‖h is half as big under symplectic con-
trol. In either of the cases, the corresponding maximum stiff-
ness cmax is assigned.

4.3 Two link robot arm, PD controller

In this and the following subsection, we consider
the two link robot arm depicted in Fig. 5. The
(port-)Hamiltonian model has the form (1), (2) with
mass matrix

M(q2) =

[
c1 + c2 + 2c3 cos(q2) c2 + c3 cos(q2)

c2 + c3 cos(q2) c2

]
(56)

and potential energy

V (q1, q2) = c4g cos(q1) + c5g cos(q1 + q2). (57)

The constants c1, . . . , c5 include the arm masses mi, the
arm inertias Ji around the centers of gravity, the total
arm lengths Li, the distances li from the joints to the
centers of gravity and a motor mass mM placed at the
second joint:

c1 = J1 +m1l
2
1 + (mM +m2)L2

1,

c2 = J2 +m2l
2
2, c3 = m2L1l2,

c4 = m1l1 + (mM +m2)L1, c5 = m2l2.

(58)

The parameters for the two links are m1 = m2 =
0.885 kg, J1 = J2 = 3.27 · 10−3 kgm2, L1 = L2 = 0.2 m,
l1 = l2 = 0.1m, the motor (stator) mass is mM = 1.0kg,

and g = 9.81 m/s
2
.

q1

u1

q2

u2

Fig. 5. Two link robot arm

In this simulation study, we consider a PD controller
with gravity compensation according to Subsection
2.2.2. to stabilize the upright position qd = [0 0]T

from the initial configuration q(0) = [π 0]T at
rest. The assigned stiffness and damping matrices are
K = diag{0.1, 0.1} N/m and D = diag{0.1, 0.1} Ns/m.
We compare the closed-loop dynamics under the sym-
plectic implicit control law

uk = ∇V (qk+ 1
2
)−Dq̇k+ 1

2
−Kqk+ 1

2
(59)

with the quasi-continuous implementation

uk = ∇V (qk)−Dq̇k −Kqk. (60)

The implicit control law (59) becomes a pure position
feedback by the reconstruction of the velocity in the sam-
pling instants according to (50).

The results of this simulation study are presented in
Fig. 6 for h = 0.02 s and in Fig. 7 for h = 0.15 s. At
the short sampling time, the symplectic controller per-
fectly matches the prescribed behavior of the target sys-
tem (blue and black curve in Fig. 6a) while the quasi-
continuous implementation already shows a remarkable
deviation (red curve) from the desired dynamics, see also
Fig. 6b for the input signals. Even more impressive is
the situation for h = 0.15 s, where the quasi-continuous
control completely fails, while the symplectic discrete-
time controller produces only a slight deviation from the
target dynamics.

4.4 Two link robot arm, computed torque

Finally, we place a (virtual) massless pencil at the tool
center point (TCP), whose Cartesian coordinates are

ξ =

[
xTCP

yTCP

]
=

[
L1 sin(q1) + L2 sin(q1 + q2)

L1 cos(q1) + L2 cos(q1 + q2)

]
. (61)

The robot is supposed to draw a circle in the Cartesian
task space, according to the reference trajectory 6

ξd(t) =

[
L1 + L2

2 cos(Ωt)

L1 + L2

2 sin(Ωt)

]
(62)

with Ω = 0.1 rad/s. Using the inverse kinematics,
the desired trajectory in the joint space qd(t) and the
velocities q̇d(t) can be computed, which allows to ex-
press a computed torque control law according to Sec-
tion 2.2.3. With the constant diagonal design matrices
Md = diag{0.1, 0.013}kgm2, K = diag{0.3, 0.03}N/rad

6 This would be a path following problem. In the given
context, we simply consider the trajectory tracking problem,
without using dynamic feedforward control.
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(a) Joint angles of the target dynamics (black), under
the symplectic controller (59) (blue) and with the quasi-
continuous implementation of the control law (60) (red).
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(b) Joint torques for symplectic (blue) and quasi-continuous
(red) control.

Fig. 6. PD robot control with h = 0.02 s

and D = diag{0.3, 0.03} Ns/rad, we obtain the quasi-
continuous control law

uk = C(qk, q̇k)q̇k +∇V (qk) +M(qk)q̈d(tk)

+M(qk)M−1d (−K(qk − qd(tk))−D(q̇k − q̇d(tk))).
(63)

The symplectic discrete-time control law according to
(48) follows from replacing the index k with k+ 1

2 in the
terms on the right hand side. As in the previous exam-
ple, no velocity measurement in the sampling instants
is required, as the system of equations (49), with recon-
struction of the velocity (50) using the position stage
values, is solved numerically in every sampling interval.

Exemplary simulation results are depicted in Fig. 8,
which shows phase diagrams of the TCP for different
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(a) Joint angles.
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(b) Joint torques.

Fig. 7. PD robot control with h = 0.15 s

sampling times.

5 Conclusions

We presented a novel, systematic approach for discrete-
time control design of fully actuated mechanical systems.
Our approach is motivated by energy shaping as an in-
termediate step (before damping injection/asymptotic
stabilization), where desired, conservative dynamical be-
havior is imposed to the control system. Symplectic in-
tegration with its conservation properties, in particular
the modified Hamiltonian, is a conceptually straighfor-
ward vehicle to transfer energy shaping arguments to
discrete time.

Departing from a second order accurate description of
the sampling process by the implicit midpoint rule, we
proposed implicit state feedback control laws for differ-
ent control tasks by defining the corresponding target
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Fig. 8. For h = 0.04s (left) the TCP almost perfectly follows
the desired circular trajectory (black: trajectory of the target
system) under the symplectic control law (blue), while the
performance of the quasi-continuous implementation (red)
is not satisfactory. A comparable situation with a useless
red trajectory is shown for h = 0.08 s on the right. Even
for h = 0.15 s (not depicted) the deviations of the symplec-
tic control from the reference are relatively small, while the
behavior of the quasi-continuous control is further deterio-
rated.

systems via the implicit midpoint rule as well. As a par-
ticularly beautiful feature of the design approach, we get
rid of velocity measurements by a simple (trapezoidal
rule) reconstruction of the velocities/momenta, and ob-
tain a closed-loop discrete-time system, which has a clear
interpretation in terms of the famous Störmer-Verlet in-
tegration scheme and its variation for general partitioned
systems.

Simulations of three benchmark examples give clear evi-
dence of the utility of the design method, which removes
deteriorating effects of sampling on stability and perfor-
mance, even at very low sampling rates.

We are currently working on the application of our ap-
proach to serial elastic manipulators, i.e., the underac-
tuated case, including the experimental validation with
flexible light weight robots. The presented approach is –
by the initial use of the implicit midpoint rule – not re-
stricted to mechanical systems. It can be also applied to
further, different classes of nonlinear control problems.
We are also interested in exploiting different types of
sampling mechanisms and higher order approximation
schemes.
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magnétiques. Le Radium, 4(1):2–5, 1907.

[25] M. Takegaki and S. Arimoto. A new feedback method for
dynamic control of manipulators. ASME Journal of Dynamic
Systems, Measurement, and Control, 102:119–125, 1981.

[26] L. Verlet. Computer “experiments” on classical fluids. I.
Thermodynamical properties of Lennard-Jones molecules.
Physical Review, 159(1):98, 1967.

[27] G. Viola, R. Ortega, R. Banavar, J. A. Acosta, and
A. Astolfi. Total energy shaping control of mechanical
systems: Simplifying the matching equations via coordinate
changes. IEEE Transactions on Automatic Control,
52(6):1093–1099, 2007.

[28] C. Woolsey, C. K. Reddy, A. M. Bloch, D. E. Chang, N. E.
Leonard, and J. E. Marsden. Controlled Lagrangian systems
with gyroscopic forcing and dissipation. Eur. J. Control,
10(5):478–495, 2004.

13


	1 Introduction
	2 Preliminaries
	2.1 Models of mechanical systems
	2.2 Control of mechanical systems
	2.3 Symplectic integration

	3 Main results
	3.1 Representation of the sampling process
	3.2 Potential energy shaping
	3.3 Total energy shaping
	3.4 Pure position feedback
	3.5 Lagrangian perspective

	4 Numerical experiments
	4.1 Simulation settings
	4.2 Mass-spring system
	4.3 Two link robot arm, PD controller
	4.4 Two link robot arm, computed torque

	5 Conclusions
	Acknowledgements
	References

