
DistributedDecision-CoupledConstrainedOptimization

viaProximal-Tracking

Alessandro Falsone a, Maria Prandini a

aDipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy

Abstract

In this paper we deal with decision-coupled problems involving multiple agents over a network. Each agent has its own local
objective function and local constraints, and all agents aim at finding the value of a common decision vector that minimizes the
sum of all agents cost functions and satisfies all local constraints. To this purpose, we introduce a Proximal-Tracking distributed
optimization algorithm that integrates dynamic average consensus within the proximal minimization method. Convergence to
an optimal consensus solution is guaranteed for any value of a constant penalty parameter, under a convexity assumption only,
without requiring differentiability, Lipschitz continuity, or smoothness of the local objective functions. Numerical simulations
show the effectiveness of the proposed scheme.

Key words: Distributed Optimization; Decision-Coupled Optimization; Proximal Algorithm; Gradient-Tracking.

1 Introduction

In the last decade we have been experiencing an increas-
ing pervasiveness of network-connected smart devices in
our everyday life as well as in the energy, transporta-
tion and manufacturing sectors, where cloud-computing
services for remote operation and monitoring have also
been introduced. This technological innovation process
has encouraged a shift of the focus of the control com-
munity from the operation of a single device to the co-
ordination of multiple interacting devices with commu-
nication and computational capabilities. New challenges
then arise in such a multi-agent system scenario, like pri-
vacy concerns if agents are asked to disclose sensitive in-
formation. This calls for the introduction of distributed
algorithms where each agent contributes to the overall
optimal coordination problem solution without sharing
its private information with the others.

In this paper we focus on those coordination problems
that can be formulated as a (convex) mathematical pro-
gram in which each agent has its own cost function and
its own set of local constraints, and the agents collec-
tively aim at finding the value of a common decision

? Corresponding author A. Falsone. Tel. +39-02-23993542.
Fax +39-02-23993412.

Email addresses:
alessandro.falsone@polimi.it (Alessandro Falsone),
maria.prandini@polimi.it (Maria Prandini).

vector which minimizes the sum of their local cost func-
tions and satisfies all their local constraints (decision-
coupled problems). Each agent has access only to its local
cost function and constraints, but the agents can coop-
erate by exchanging their tentative solutions with their
neighbors, according to a given communication topol-
ogy. These problems arise naturally in distributed ma-
chine learning [20] and federated learning [1].

The first distributed algorithms dealing with this set-
up dates back to [12, 23], where a combination of
(sub)gradient iterations and consensus schemes are
proposed either in absence of constraints, [23], or with
agents having local constraints being all equal to a com-
mon constraint set, [12]. Heterogeneous constraints are
firstly considered in [24] albeit convergence of the pro-
posed scheme is shown only for an all-to-all (instead of
neighbor-to-neighbor) communication strategy. Such a
stricter communication assumption is relaxed in [14] at
the expense of requiring the agents local objective func-
tions to be smooth (i.e., differentiable with Lipschitz
continuous gradient). The differentiability assumption
on local objective functions is finally removed in [38].
Different local constraint sets without assuming differen-
tiability are also handled by the approach in [18], where
a distributed scheme based on consensus and proxi-
mal minimization is proposed, which removes the need
to compute (sub)gradients of the objective functions.
In [6] an approach dealing with non-convex objective
functions is also proposed, but it requires smoothness

Preprint submitted to Automatica 4 August 2021

and does not handle different local constraints sets. All
the mentioned approaches are applicable to dynamic
communication topologies, but require the consensus
updates to be balanced (doubly stochasticity assump-
tion on the consensus weights), they either assume the
local objective functions to be Lipschitz or the local
constraint sets to be bounded, and employ diminishing
step-sizes (for (sub)gradient-like approaches) or penalty
parameters (for proximal-based methods) to ensure
convergence to the optimal solution, which ultimately
leads to low convergence rates, see, e.g., [14, 23] for two
examples of explicit convergence rates of distributed
(sub)gradient methods.

Some research effort has been successfully devoted to re-
laxing the doubly stochasticity assumption on the con-
sensus weights. More specifically, in [21] the authors pro-
pose to combine a distributed (sub)gradient scheme with
the so-called push-sum protocol proposed in [7], which
requires the matrix to be only stochastic as opposed to
doubly stochastic. The extension is particularly useful
when dealing with directed communication topologies
for which a doubly stochastic matrix is more difficult to
construct in a distributed way, [9]. The push-sum scheme
has been widely adopted ever since to relax the dou-
bly stochasticity assumption of existing distributed ap-
proaches, see, e.g., [5,22]. Note that, in this paper, we fo-
cus on undirected communication topologies, for which
simple algorithms exist to construct a doubly-stochastic
matrix in a distributed way, see e.g. [23, Assumption 6].

As for the time-varying step-size, in [28] the distributed
(sub)gradient algorithm in [23] is modified by adding
a correction term which guarantees convergence for a
constant step-size, at the expense of assuming smooth-
ness of the agents local cost functions, a static commu-
nication topology, and doubly stochasticity of the con-
sensus weights. With an additional strong convexity as-
sumption, the authors show linear convergence rate of
their method. More recently, (sub)gradient-based dis-
tributed approaches have been combined with a tech-
nique known as dynamic average consensus (firstly pro-
posed in [37] and then more deeply discussed in [13])
to provide better convergence rates via constant step-
size. The work in [31] proposes a Newton-Raphson dis-
tributed method which converges with a fixed step-size
under strong convexity and smoothness assumptions on
the local cost functions. The work in [22] significantly
extends the work of [28] guaranteeing convergence with
a (sufficiently small) fixed step-size on dynamic com-
munication topologies and without doubly stochastic-
ity (using the push-sum protocol), but requiring strong
convexity and smoothness. In [25], the authors show
that the method proposed in [22] converges also without
assuming strong convexity, under fixed communication
topologies and doubly stochastic weights. The authors
of [36] further study the method in [22] proving con-
vergence even when the agents have different step-sizes.
Cost functions are assumed to be smooth and radially

unbounded and a linear convergence rate is guaranteed
under an additional strong convexity assumption. The
work in [33] further improves the convergence rate of the
same scheme under the same assumptions. Finally, the
works in [2,35] allow the local cost function of the agents
to be the sum of a smooth term and a non-smooth term,
which are however required to be, respectively, strongly
convex and identical for all the agents. In all mentioned
approaches employing a constant step-size, different lo-
cal constraints are not considered and the step-size pa-
rameter has to be carefully chosen to be sufficiently small
to ensure convergence. For a very recent overview on
distributed optimization approaches we refer the reader
to [20].

Other distributed schemes ensuring fast convergence are
based on the Alternating Direction Method of Multipli-
ers (ADMM, [4]) and firstly appeared in [16, 30]. Un-
der twice differentiability, strong convexity, and smooth-
ness assumptions for the agents’ local objective func-
tions, the authors of [16] developed an ADMM-based
algorithm with a linear convergence rate. An acceler-
ated variant of the same method is proposed in [30].
The work in [10] shows that linear convergence can be
preserved assuming strong convexity of the sum of the
agents local cost functions only, rather than of each
one of them. Finally, the work in [17] establishes con-
vergence with sub-linear rate of the same scheme, but
without requiring strong convexity and smoothness. It is
also worth mentioning that [11] proposes an Augmented
Lagrangian scheme, which is similar to ADMM but in-
volves a nested loop strategy, with a linear convergence
rate under strong convexity and smoothness assump-
tions. The cited ADMM-based approaches do not con-
sider the presence of local constraints and require the
communication topology to be static because they en-
code it inside optimization problem. The ADMM-based
algorithm in [19] instead considers local constraints, but
the agents perform the updates in a sequential (rather
than parallel) fashion. All ADMM-based methods use a
constant penalty parameter, which is the counterpart of
the step-size in gradient-based approaches, but, unlike
gradient-based approaches, its value can be set arbitrar-
ily.

In this paper we propose a novel distributed optimiza-
tion algorithm, called Proximal-Tracking, based on
dynamic average consensus and proximal minimization
to solve convex decision-coupled problems. In contrast
with the previously mentioned approaches, Proximal-
Tracking has the following appealing features:

1. convergence is guaranteed for any value of a single
penalty parameter;

2. different and possibly unbounded local constraints
set are allowed;

3. local cost functions are not required to be differ-
entiable, Lipschitz continuous, or smooth, but only
convex.

2

None of the approaches reviewed above exhibit all these
features jointly. To the best of our knowledge, the only
exceptions are [15,29]. Methods in [15,29] are extensions
of [28] and, differently from our approach, employ a mix
of gradient updates and proximal minimization. Both
are able to handle non-smooth objectives and different
local constraints, and use a constant step-size for the
gradient updates and a constant penalty parameter for
the proximal minimization step. Convergence is guaran-
teed for a sufficiently small step-size, assuming a fixed
communication topology and doubly stochasticity of the
consensus weights. The most recent version [15] allows
each agent to use different step-sizes, but the consensus
weights have to be carefully adapted based on the max-
imum step-size.

As it will be clarified in the sequel, the proposed algo-
rithm has a close connection with the distributed gra-
dient method in [22]. As such, a promising direction of
investigation is the extension of the proposed method to
dynamic communication topologies, by mimicking [22,
Section 3]. This extension appears more difficult for the
approaches in [15,29] since they rely on a reformulation
of the original decision-coupled problem that changes
with the communication topology. This is because all
agents have a copy of the common decision vector and
these copies are forced to be equal through constraints
that encode both the communication topology and the
consensus weights, see [32, Section II-A and II-B], sim-
ilarly to the ADMM-based approaches discussed above.
Furthermore, in the considered numerical example, the
proposed scheme appears to be slightly faster than [15,
29] in terms of convergence rate.

Lastly, we would like to mention that, thanks to the par-
allelism with [22], the proposed method appears prone
to a relaxation of the doubly-stochasticity assumption
to a stochasticity only requirement by leveraging the
push-sum protocol in [7] or mimicking recently devel-
oped gradient-tracking schemes like [34]. Also this relax-
ation requires further investigation and is not presented
here.

The remainder of the paper unfolds as follows. In Sec-
tion 2, after introducing the notation, we formalize the
problem and provide some background useful for the fol-
lowing derivations. In Section 3 we constructively derive
the proposed algorithm and we analyze its convergence.
In Section 4 we showcase the performance on a numeri-
cal example and, finally, in Section 5 we draw some con-
cluding remarks.

Notation We denote with N the set of natural num-
bers, and with R the set of real numbers. For a function
f , we denote by ∂f(x) the subdifferential (i.e., the set
of all subgradients) of f at x. If f is differentiable at x,
then ∂f(x) = {∇f(x)} and ∇f(x) denotes the gradient

of f at x. IX(x) is the indicator function of the set X,
which is equal to zero if x ∈ X and +∞ if x 6∈ X. The
Minkowski sum between sets is denoted by⊕, the Carte-
sian product is denoted as ×, and relint(·) denotes the
relative interior of its argument. The vector in Rn con-
taining all ones is denoted by 1n. The identity matrix
and the zero matrix of order n are denoted by In and 0n

(for brevity, subscript will be omitted when clear from
the context). The Kronecker product is denoted by ⊗.
For a matrix S we write S> to denote its transpose, ρ(S)
to denote its spectral radius, S � 0 when S is positive
definite, and S � 0 when S is positive semi-definite. For
a vector v, ‖v‖ is the Euclidean norm of v, and, for any
matrix S � 0, ‖v‖S is the weighted (semi)norm of v, i.e.,
‖v‖2S = v>Sv.

2 Preliminaries

In this section we describe the problem set-up, recall
the proximal minimization algorithm along its gradient
interpretation, then we introduce our distributed com-
putation framework, and review the gradient-tracking
scheme proposed in [22].

2.1 Optimization Problem and Assumptions

We consider a system composed of N agents which are
willing to collaborate to solve an optimization program
formulated over the entire system. The agents shall agree
on a common value for the decision vector x ∈ Rn which
has to be set to minimize the sum of the agents local
objective functions fi : Rn → R, while satisfying each
agent local constraint setXi ⊆ Rn. Formally, we address
the following mathematical program

min
x

N∑
i=1

fi(x) (P)

subject to: x ∈
N⋂
i=1

Xi.

We impose the following assumption on P.

Assumption 1 (Convexity and well-posedness)
For all i = 1, . . . , N , the function fi is convex and
the set Xi is convex and closed. Moreover, the set
∩Ni=1 relint(Xi) is non-empty. 2

Note that we do not require the local constraint sets
Xi, i = 1, . . . , N , to be neither bounded nor equal to
each other. The following assumption guarantees that
the minimum of P exists and is achieved.

Assumption 2 (Existence of optimal solution)
Problem P admits an optimal solution x?. 2

3

For ease of exposition, let us define for each agent i the
local extended real-valued function ϕi : Rn → R ∪
{+∞} as the sum of its objective function fi(x) with
the indicator function IXi

(x) of its constraint set Xi,
i.e., ϕi(x) = fi(x) + IXi

(x). We can then equivalently
rewrite P as

min
x

ϕ(x) =

N∑
i=1

ϕi(x). (P)

Assumption 1 implicitly requires each Xi to be non-
empty which, together with convexity, makes ϕi a proper
convex function, see [26, p. 24]. Under the additional
closedness requirement of Assumption 1, each ϕi is also

closed, see [26, p. 52]. Assumption 2 implies that
⋂N

i=1Xi

is non-empty and hence also ϕ is proper, [26, p. 24].
Closedness of ϕ directly follows from [26, Theorem 9.3].

2.2 Proximal Minimization Algorithm

An iterative method to compute an optimal solution
of P in a centralized way is given by the proximal-
minimization algorithm (also known as proximal point
algorithm), [3, Chapter 5], which prescribes to update a
tentative solution zk according to the following recursion

zk+1 = argmin
x

ϕ(x) +
1

2c
‖x− zk‖2, (1)

for any c > 0.

Under Assumptions 1 and 2, by [3, Proposition 5.1.3],
the sequence {zk}k≥0 generated by (1) is guaranteed to
converge to some optimal solution of P.

Interestingly, [3, Proposition 5.1.1] shows that itera-
tion (1) is equivalent to

zk+1 = zk − c hk+1 (2a)

hk+1 ∈ ∂ϕ(zk+1), (2b)

which provides us with a gradient interpretation of the
proximal iteration in (1), where the old estimate zk is
updated with a subgradient of ϕ computed at zk+1.
Clearly, (2) cannot be implemented as-is because we
would need to know zk+1 to compute hk+1.

We shall stress that, differently from the standard gra-
dient method, convergence is guaranteed for a constant
step-size c even when ϕ is not smooth, and we will see
that this difference has a direct counterpart in the dis-
tributed framework considered in this paper.

2.3 Distributed Computation Framework

At each iteration k, we assume that the N agents can
communicate with each other according to a graph G =

(V, E), where V = {1, . . . , N} is the set of nodes, each
node representing one agent, and E ⊆ V ×V is the set of
edges, representing the communication links. The pres-
ence of edge (i, j) in E models the fact that agent i re-
ceives information from agent j. We assume that the
communication graph is static (i.e., fixed across itera-
tions) and, consequently, E does not depend on the iter-
ation index k. We denote by Ni = {j ∈ V : (i, j) ∈ E}
the set of neighbors of agent i, assuming that (i, i) ∈ E
for all i = 1, . . . , N . We then impose the following con-
nectivity property on G.

Assumption 3 (Connectivity) The graph G is undi-
rected and connected, i.e., (i, j) ∈ E if and only if (j, i) ∈
E and for every pair of vertices in V there exists a path
of edges in E that connects them. 2

For each edge (i, j) ∈ E , let us associate a weight wij

measuring how much agent i values the information re-
ceived by agent j. If there is no communication link be-
tween agent i and j (i.e., (i, j) /∈ E), then we set wij = 0.
We impose the following assumption on the network
weights.

Assumption 4 (Balanced information exchange)
For all i, j = 1, . . . , N , wij ∈ [0, 1) and wij = wji.
Furthermore

•
∑N

i=1 wij = 1 for all j = 1, . . . , N ,

•
∑N

j=1 wij = 1 for all i = 1, . . . , N ,

and wij > 0 if and only if (i, j) ∈ E. 2

Let W ∈ RN×N be the matrix whose (i, j)-th entry is
wij , often referred to as the consensus matrix. Assump-
tion 4 translates into requiring W to be symmetric and
doubly stochastic, i.e.,W =W> andW1N =W>1N =
1N . We should point out that Assumptions 3 and 4 are
common in the consensus-based distributed optimiza-
tion literature, see, e.g., [23,24], and can be relaxed lever-
aging the push-sum protocol proposed in [7].

Finally, we impose the following additional assumption
on the consensus matrix.

Assumption 5 W is a positive semi-definite matrix.
2

Remark 1 Note that, this assumption is not too restric-
tive as it can be enforced starting from any matrixW ′ sat-
isfying Assumption 4 and letting the agents construct (in
a distributed way) the matrixW = 1

2 (I+W ′). It is worth
mentioning that some other approaches like [15, 28, 29]
directly use 1

2 (I+W ′) inside the algorithm instead of as-
suming the consensus matrix be positive (semi)definite.
We opted for this assumption to keep the notation light.
Lastly, we also refer the reader to [8, Section 3.3.2] for
an alternative way of satisfying Assumption 5.

4

2.4 Gradient-Tracking

Under the additional assumptions that the problem is
unconstrained (i.e., Xi = Rn for all i = 1, . . . , N) and
the local cost functions fi are smooth (i.e., differentiable
with Lipschitz continuous gradient) one can solve P in
a distributed way by means of the gradient-tracking
scheme introduced in [22, Algorithm 1] and known as
DIGing.

In DIGing, a generic agent i stores a local estimate xi,k
of the common decision vector x and a local estimate
gi,k of the network average gradient 1

N

∑N
i=1∇fi(xi,k)

and updates them according to the following steps

xi,k+1 =
∑
j∈Ni

wijxj,k − c gi,k (3a)

gi,k+1 =
∑
j∈Ni

wijgj,k +∇fi(xi,k+1)−∇fi(xi,k), (3b)

with gi,0 = ∇fi(xi,0), for all i = 1, . . . , N . Note that
under the unconstrained and smoothness assumptions
ϕi = fi for all i = 1, . . . , N .

In (3b) agent i updates its own estimate gi,k of the global

quantity 1
N

∑N
i=1∇fi(xi,k) according to a dynamic av-

erage consensus mechanism, [13,37], while in (3a) agent
i performs a gradient update along gi,k starting from the
average between its own tentative solution xi,k and that
of its neighbors.

In (3), gi,k acts as a distributed tracker of the (time-

varying) signal 1
N

∑N
i=1∇fi(xi,k) and steers the agents

to take a common update direction in (3a), while the av-
eraging part of (3a) steers the agents towards consensus
on a common decision vector.

By carefully selecting the step-size coefficient c > 0,
DIGing is guaranteed to converge at a O(1/k) rate for
smooth local objective functions, [25], and at a linear
rate if we further assume the local objective functions to
be strongly convex, [22,25].

3 Proximal-Tracking Distributed Algorithm

In this section we propose our novel distributed opti-
mization algorithm for decision-coupled problems. We
show how we derived it starting from the DIGing and
the proximal-minimization algorithm and we analyze its
convergence properties.

3.1 Algorithm Derivation and Interpretation

Let us first consider the DIGing algorithm in (3) and
show how to modify it to fit the gradient interpreta-
tion in (2) of the proximal algorithm in (1). To this end

we first move from gradients to subgradients by replac-
ing ∇fi(xi,k) in (3b) with a vector vi,k ∈ ∂ϕi(xi,k) like
in (2b), where we also used ϕi in place of fi to allow also
for local constraints Xi. Then we change update (3a) us-
ing gi,k+1 in place of gi,k to mimic (2a). The distributed
counterpart of (2) then reads as

xi,k+1 =
∑
j∈Ni

wijxj,k − c gi,k+1 (4a)

gi,k+1 =
∑
j∈Ni

wijgj,k + vi,k+1 − vi,k (4b)

vi,k+1 ∈ ∂ϕi(xi,k+1), (4c)

with gi,0 = vi,0 and vi,0 ∈ ∂ϕi(xi,0), for all i = 1, . . . , N .
Similarly to the centralized counterpart we discussed in
Section 2.2, the steps in (4) are not implementable as-
is. In the following, we show how to manipulate (4) to
obtain the proposed Proximal-Tracking distributed al-
gorithm.

To ease the notation, let us define ξi,k =
∑

j∈Ni
wijxj,k

and γi,k =
∑

j∈Ni
wijgj,k. By using (4b) in (4a) we ob-

tain the following identity

0 = vi,k+1 + (γi,k − vi,k) + 1
c (xi,k+1 − ξi,k), (5)

which, together with vi,k+1 ∈ ∂ϕi(xi,k+1) yields

0 ∈ ∂ϕi(xi,k+1)⊕{(γi,k−vi,k)}⊕{ 1c (xi,k+1−ξi,k)}. (6)

By interpreting (γi,k − vi,k) as the gradient of (γi,k −
vi,k)>x and 1

c (xi,k+1 − ξi,k) as the gradient of 1
2c‖x −

ξi,k‖2 both evaluated at xi,k+1, condition (6) is equiva-
lent to

0 ∈ ∂ϕi(xi,k+1)⊕ ∂
(
(γi,k − vi,k)>x

)
(xi,k+1)

⊕ ∂
(

1
2c‖x− ξi,k‖

2
)

(xi,k+1). (7)

Under Assumption 1, by [26, Theorem 23.8], condi-
tion (7) is equivalent to

0 ∈ ∂
(
ϕi(x) + (γi,k − vi,k)>x+ 1

2c‖x− ξi,k‖
2
)

(xi,k+1),

which is an optimality condition for xi,k+1 and can be
expressed as

xi,k+1 ∈ argmin
xi

ϕi(xi)+(γi,k−vi,k)>xi+ 1
2c‖xi−ξi,k‖

2,

or, equivalently,

xi,k+1 ∈ argmin
xi∈Xi

fi(xi)+(γi,k−vi,k)>xi + 1
2c‖xi−ξi,k‖

2.

Since the previous optimization problem depends on

5

Algorithm 1 Proximal-Tracking

1: Initialization

2: xi,0 ∈ Rn, vi,0 ∈ Rn, gi,0 = vi,0
3: For each iteration k do

4: ξi,k =
∑

j∈Ni
wij xj,k

5: γi,k =
∑

j∈Ni
wij gj,k

6: xi,k+1 = argmin
xi∈Xi

{
fi(xi) + (γi,k − vi,k)>xi

+ 1
2c‖xi − ξi,k‖

2
}

7: vi,k+1 = 1
c (ξi,k − xi,k+1) + (vi,k − γi,k)

8: gi,k+1 = γi,k + vi,k+1 − vi,k
9: k ← k + 1

quantities at iteration k only, xi,k+1 can now be com-
puted. By means of (5) we can compute vi,k+1 as

vi,k+1 = 1
c (ξi,k − xi,k+1) + (vi,k − γi,k)

and finally gi,k+1 is computed using (4b).

The resulting Proximal-Tracking distributed algorithm
is summarized in Algorithm 1 from the perspective of
agent i.

First of all we shall stress that all steps in Algorithm 1 are
fully distributed, as they use quantities either collected
by agent i from its neighbors (cf. Steps 4 and 5) or locally
available to agent i (cf. Steps 6-8).

Differently from the gradient-tracking scheme in (3), in
Algorithm 1 each agent stores and updates tree quan-
tities: a tentative solution xi,k for P, a subgradient vi,k
of ϕi, which encodes both the local cost function fi and
the local constraints Xi, and a local estimate (tracker)

gi,k of the global quantity 1
N

∑N
i=1 vi,k.

At the beginning of each iteration, agent i constructs
the averages ξi,k and γi,k of its current tentative solu-
tion xi,k and tracker variable vi,k with the correspond-
ing quantities of its neighbors (cf. Steps 4 and 5). Then,
it computes its new tentative solution xi,k+1 by mini-
mizing, subject to its local constraints Xi, an objective
function composed by three terms: its own local objec-
tive fi, a quadratic term that penalizes the distance be-
tween the new solution and the neighbor average ξi,k
(similarly to the work in [18]), and a linear correction
term which counteract the “pull” of fi(xi) with the term
−v>i,kxi (containing the subgradient vi,k at the past it-

eration) and pushes towards the direction given by γi,k,
which is an estimate of the network average subgradient
1
N

∑N
i=1 vi,k (cf. Step 6). Once xi,k+1 is obtained, agent

i computes the value of the subgradient of ϕi at xi,k+1

(cf. Step 7) and then uses this subgradient to update the
tracker variable gi,k+1 (cf. Step 8).

Note that even if each agent stores and updates three

quantities, it only shares with the neighbors two of them:
the tentative solution xi,k and the tracker gi,k. The local
gradient vi,k remains instead a private information, like
the local objective function fi and the local constraints
Xi. In terms of communication load, Proximal-Tracking
is therefore equivalent to the gradient-tracking scheme
in (3).

Consistently with other approaches leveraging a dy-
namic average consensus scheme, the correct initializa-
tion gi,0 = vi,0 of the tracker variable gi,k is crucial for
Proximal-Tracking to work, see [6, 22, 25, 31, 33, 36]. As
for the initialization of xi,k and vi,k, the user can select
any xi,0 ∈ Rn and any vi,0 ∈ Rn. If well-defined, a sen-
sible value for the initialization of the tentative solution
is xi,0 ∈ argminxi∈Xi

fi(xi), while vi,k can be initialized
as vi,0 = 0 to have vi,0 ∈ ∂fi(xi,0).

Finally, the parameter c > 0 in Step 6 is constant and
is similar to the step-size of gradient-tracking schemes
like (3), with the crucial difference that its value in
Proximal-Tracking can be arbitrary. This fact is actu-
ally the distributed counterpart of the available step-
size/penalty parameter choices between the centralized
gradient method, where the step-size has to be chosen
based on the Lipschitz constant of the gradient of the ob-
jective function, and the centralized proximal minimiza-
tion algorithm, where the penalty parameter is freely
tunable. Moreover, leveraging the proximal perspective,
we are also able to handle non-smooth functions and
the presence of different local constraints sets per agent,
similarly to [15,29].

We conclude this section with the main theoretical re-
sult, which establishes the convergence of the proposed
Proximal-Tracking to an optimal solution of P.

Theorem 1 (Optimality) Under Assumptions 1-4,
all sequences {xi,k}k≥0, for all i = 1, . . . , N , generated

by Proximal-Tracking converge to the same optimal so-
lution x? of P and, for each i = 1, . . . , N , the sequence
{vi,k}k≥0 converges to one element of ∂ϕi(x

?). 2

When implementing Algorithm 1, some stopping crite-
rion has to be adopted. Since deriving a stopping crite-
rion based on a desired accuracy level would entail study-
ing the convergence rate of the proposed algorithm, and
the derivation of an explicit convergence rate is left as
a future work, we suggest to stop Algorithm 1 after a
(user-chosen) maximum number of iterations.

3.2 Algorithm Analysis

In this section we guide the reader through the proof of
Theorem 1.

6

3.2.1 Aggregate Reformulation of Proximal-Tracking

To ease the analysis and the notation, let us reformulate
in a compact form the steps collectively performed by
all agents running Proximal-Tracking in parallel.

To this end we define the following bold symbols, which
are network-wide vectors obtained by stacking the cor-
responding (non-bold) quantities of all agents:

xk = [x>1,k · · · x>N,k]>, ξk = [ξ>1,k · · · ξ>N,k]>,

gk = [g>1,k · · · g>N,k]>, γk = [γ>1,k · · · γ>N,k]>,

vk = [v>1,k · · · v>N,k]>.

Leveraging the equivalence between Algorithm 1 and (4)
together with the network-wide notation, the sequences
generated by Proximal-Tracking running over the whole
multi-agent network satisfy the following identities for
all k ≥ 0

xk+1 = Wxk − c gk+1 (8a)

gk+1 = Wgk + vk+1 − vk, (8b)

vk+1 ∈ ∂ϕ(xk+1), (8c)

where ϕ(x) =
∑N

i=1 ϕi(xi) with x = [x>1 · · · x>N]>,
W = W ⊗ In, and we used ξk = Wxk and γk = Wgk,
which represent the network-wide formulations of the
two average terms in (4a) and (4b), respectively. Note
that ϕ : RNn → R ∪ {+∞} while ϕ : Rn → R ∪
{+∞} and, hence, ϕ and ϕ are, in general, different
objects, but if we consider a vector x = 1N ⊗ x, then

ϕ(x) = ϕ(1N⊗x) =
∑N

i=1 ϕi(x) = ϕ(x). Note also that
∂ϕ(xk) = ∂ϕ1(x1,k)× · · · × ∂ϕN (xN,k). Finally, also ϕ
is a proper closed convex function, see [26, p. 24 (proper)
and Theorem 9.3 (closed)].

In (8), identities (8a) and (8b) are linear conditions on
the sequences generated by Algorithm 1, whereas con-
dition (8c) is nonlinear. To prove Theorem 1 we will
study the two sets of conditions separately: we will use
the linear identities to establish relations between two
consecutive iterations of Algorithm 1, and then leverage
the nonlinear condition to turn such relations into an
inequality involving a Lyapunov function.

3.2.2 Properties of the Consensus Matrix

Before starting, let us recall some properties and in-
troduce some identities involving the consensus matrix.
Since we will work with the aggregate reformulation
in (8), we introduce the matrices W∞ = (1

N 1N1
>
N)⊗In,

and W̃ = W −W∞, and we state the results directly for
these extended matrices.

Lemma 1 (Properties of the Consensus Matrix)

Under Assumption 4 we have the following properties
for matrices W , W∞, and W̃ :

W∞z = z̄, (9a)

W∞W = WW∞ = W∞, (9b)

W (1N ⊗ y) = 1N ⊗ y, (9c)

W∞(1N ⊗ y) = 1N ⊗ y, (9d)

W∞(z − z̄) = 0, (9e)

for all y ∈ Rn, z = [z>1 · · · z>N]>, zi ∈ Rn i = 1, . . . , N ,

z̄ = 1
N

∑N
i=1 zi, and z̄ = 1N ⊗ z̄. Adding also Assump-

tion 3 yields

ρ(W̃) < 1, (9f)

(I − W̃)−1(I −W) = I −W∞. (9g)

PROOF. See the Appendix. 2

3.2.3 Averages Properties

We start by stating some important properties regarding
the network averages of the sequences in (8). Define

x̄k =
1

N

N∑
i=1

xi,k, ḡk =
1

N

N∑
i=1

gi,k, v̄k =
1

N

N∑
i=1

vi,k.

For convenience, we also introduce the following vectors,
which contains N copies of the respective average quan-
tities

x̄k = 1N ⊗ x̄k ḡk = 1N ⊗ ḡk v̄k = 1N ⊗ v̄k
= W∞xk, = W∞gk, = W∞vk,

where the second equality of each term is due to (9a).

We are now ready to state the following results.

Lemma 2 (Average Primal Update) Under As-
sumption 4, for all k ≥ 0, we have

x̄k+1 = x̄k − c ḡk+1. (10)

PROOF. The desired result is obtained by left-
multiplying (8a) byW∞, using the identityW∞W = W∞
in (9b) and the definition of x̄k and ḡk. 2

Lemma 3 (Tracking Property) Under Assump-
tion 4, for all k ≥ 0, we have

ḡk = v̄k. (11)

7

PROOF. The result can be proven by induction. At k =
0 we have g0 = v0 (cf. Step 2 in Algorithm 1) and, hence,
ḡ0 = W∞g0 = W∞v0 = v̄0. Assume now that (11) holds
for some k > 0. Then, we can show that it holds for k+1
(thus concluding the proof by induction) as follows

ḡk+1 = W∞gk+1

(a)
= W∞(Wgk + vk+1 − vk)

(9b)
= W∞gk +W∞vk+1 −W∞vk
(b)
= ḡk + v̄k+1 − v̄k
(c)
= v̄k+1,

where (a) is obtained by left-multiplying (8b) by W∞,
(b) using the definition of ḡk and v̄k, and (c) using the
induction step. 2

Combining Lemmas 2 and 3 we see how the proposed
Proximal-Tracking is mimicking the centralized prox-
imal step in (2), the only difference being that x̄k+1

is updated using the average v̄k+1 of the subgradients
vk+1 ∈ ∂ϕ(xk+1) (cf. (8c)) instead of a common sub-
gradient from ∂ϕ(x̄k+1).

3.2.4 Convergence Analysis: Optimality Relation

Under Assumption 2 we know that P admits at least
one optimal solution x?. To ease the notation, let us
introduce the corresponding stacked vector x? = 1N ⊗
x?, and the optimality error e?k = x̄k − x?.

We then start our convergence analysis from the dynam-
ics of the optimality error

e?k+1 = x̄k+1 − x?

(10)
= x̄k − x? − c ḡk+1

= e?k − c ḡk+1.

If we now bring the −c gk+1 term to the left-hand side
and take the square, we obtain

‖e?k+1‖2 + 2e?>k+1c ḡk+1 + ‖c ḡk+1‖2 = ‖e?k‖2, (12)

which constitutes our first building block in the conver-
gence analysis of Proximal-Tracking.

If we substitute c ḡk+1 = x̄k − x̄k+1 (cf. (10)), then
relation (12) is similar to the three-term inequality
in [3, Proposition 5.1.2] used to prove convergence of
the centralized proximal minimization algorithm. How-
ever, while in the centralized case the term 2e?>k+1c ḡk+1
can be proven to be non-negative, this is not the case
for the distributed algorithm.

3.2.5 Convergence Analysis: Error Relations

Since (12) involves average quantities only, the next step
is to study the so-called consensus error, i.e., the dis-
tance of the agents local estimates from the correspond-
ing network averages. To this end, let exk = xk− x̄k and
egk = c(gk − ḡk), and compute

exk+1 = xk+1 − x̄k+1

(a)
= Wxk − x̄k − c(gk+1 − ḡk+1)

(b)
= Wxk − x̄k − egk+1

(c)
= W (xk − x̄k)− egk+1

= Wexk − e
g
k+1

(d)
= W̃exk − e

g
k+1, (13)

where in (a) we used both (8a) and (10), in (b) the def-
inition of egk+1, in (c) we used x̄k = W x̄k by (9c), and
in (d) we subtracted W∞exk , which is zero by (9e), to-

gether with the definition of W̃ = W −W∞.

The next step is to analyze relation (8b). First, let us
introduce what we will show to be the limiting value
of the sequence {vk}k≥0. Consider an optimal solution

x? of P. Let v?i ∈ ∂ϕi(x
?), i = 1, . . . , N , and define

the vector v? = [v?>1 · · · v?>N]>. Under Assumption 1,
by [26, Theorem 23.8],

∂ϕ1(x?)⊕ · · · ⊕ ∂ϕN (x?) = ∂ϕ(x?).

Since x? ∈ argminx ϕ(x), then 0 ∈ ∂ϕ(x?), meaning

that we can choose the v?i ’s such that
∑N

i=1 v
?
i = 0, or,

compactly (cf. (9a)), such that

W∞v
? = 0. (14)

Consider now relation (8b). If we bring the terms at k+1
on the same side and we subtract v? on both sides, we
have

vk+1 − v? − gk+1

(8b)
= vk − v? −Wgk
(a)
= vk − v? − gk + (I −W)gk,

where in (a) we added and subtracted the quantity gk.
To make the consensus error egk appear as input, we

left-multiply the previous relation by c(I − W̃)−1, thus
obtaining

c(I − W̃)−1(vk+1 − v? − gk+1)

= c(I − W̃)−1(vk − v? − gk) + c(I − W̃)−1(I −W)gk
(9g)
= c(I − W̃)−1(vk − v? − gk) + c(I −W∞)gk

8

(a)
= c(I − W̃)−1(vk − v? − gk) + egk , (15)

where (a) is due to (9a) together with the definition of
egk .

Recalling (13) and using the definition uk = c(I −
W̃)−1(vk − v? − gk) in (15), we obtain the following
relations involving the consensus errors exk and egk plus
the additional term uk

exk+1 + egk+1 = W̃exk (16a)

uk+1 = uk + egk , (16b)

which constrain the dynamics of the “out-of-average”
components of the sequences generated by Algorithm 1
and constitute the second building block for our conver-
gence analysis.

3.2.6 Convergence Analysis: Subgradient Condition

In this section we show how the subgradient condi-
tion (8c) can be leveraged to establish a link between
optimality and error relations, thus setting the stage for
the proof of Theorem 1.

By definition of subgradient (see [26, p. 214]), vk+1 ∈
∂ϕ(xk+1) if and only if

ϕ(x) ≥ ϕ(xk+1) + v>k+1[x− xk+1] (17)

for all x ∈ RNn. Note that, for all k ≥ 0, xi,k+1 ∈ Xi,
which is non-empty under Assumption 1, hence
ϕi(xi,k+1) < +∞ and ϕ(xk+1) < +∞ for all k ≥ 0.
Similarly, v? ∈ ∂ϕ(x?) if and only if

ϕ(x) ≥ ϕ(x?) + v?>[x− x?] (18)

for all x ∈ RNn, where ϕ(x?) = ϕ(x?) < +∞ under
Assumption 2. Setting x = x? in (17) and x = xk+1

in (18), multiplying by c > 0, and summing the two
inequalities yields

c[vk+1 − v?]>[xk+1 − x?] ≥ 0. (19)

Noticing that

xk+1 − x? = xk+1 ∓ x̄k+1 − x? = exk+1 + e?k+1

and that e?k+1 = W∞e?k+1 by (9d), yields

c[vk+1 − v?]>W∞e
?
k+1 + c[vk+1 − v?]>exk+1 ≥ 0,

which can be further simplified in

c ḡ>k+1e
?
k+1 + c[vk+1 − v?]>exk+1 ≥ 0,

recalling that W∞v?
(14)
= 0 and W∞vk+1

(9a)
= v̄k+1

(11)
=

ḡk+1. By definition of uk+1, c[vk+1 − v?] = (I −
W̃)uk+1 + c gk+1, hence

c ḡ>k+1e
?
k+1 + c g>k+1e

x
k+1 + ex>k+1(I − W̃)uk+1 ≥ 0.

The inequality can be finally rewritten as

c ḡ>k+1e
?
k+1 + eg>k+1e

x
k+1 + ex>k+1(I − W̃)uk+1 ≥ 0 (20)

noticing that

c g>k+1e
x
k+1

(a)
= c g>k+1(I −W∞)exk+1 + c g>k+1W∞e

x
k+1

(9e)
= c g>k+1(I −W∞)exk+1 + 0

(9a)
= c [gk+1 − ḡk+1]>exk+1

(b)
= eg>k+1e

x
k+1,

where in (a) we added and subtracted W∞ within the
inner product and in (b) we used the definition of egk+1.

Relation (20) links the inner product c ḡ>k+1e
?
k+1 in (12)

with the quantities appearing in the error relations (16),
and constitutes the last building block for the conver-
gence analysis of Proximal-Tracking.

3.3 Proof of Theorem 1

Consider the error relations (16) in the following (equiv-
alent) matrix form

[
I I 0

0 0 I

]
︸ ︷︷ ︸

M


exk+1

egk+1

uk+1


︸ ︷︷ ︸
ζk+1

=

[
W̃ 0 0

0 I I

]
︸ ︷︷ ︸

N


exk

egk

uk


︸ ︷︷ ︸
ζk

from which we can build the following relation

‖ζk+1‖2M>PM = ‖ζk‖2N>PN , (21)

with

P = P> =

[
2I I

I I

]
� 0.

By (20) we have

−eg>k+1e
x
k+1 − ex>k+1(I − W̃)uk+1 ≤ c ḡ>k+1e

?
k+1,

which can be used in the optimality relation (12) to ob-
tain

9

‖e?k+1‖2 − 2eg>k+1e
x
k+1 − 2ex>k+1(I − W̃)uk+1

≤ ‖e?k‖2 − ‖c ḡk+1‖2,

or, compactly,

‖e?k+1‖2 − ζ
>
k+1Cζk+1 ≤ ‖e?k‖2 − ‖c ḡk+1‖2, (22)

with

C =


0 I I − W̃
I 0 0

I − W̃ 0 0


recalling that W̃ is symmetric under Assumption 4.

Summing (21) and (22) we have

‖e?k+1‖2 + ‖ζk+1‖2M>PM−C
≤ ‖e?k‖2 + ‖ζk‖2N>PN − ‖c ḡk+1‖2, (23)

and to show convergence we need to check if

M>PM − C � 0, (24a)

M>PM − C −N>PN = Q � 0. (24b)

Let us start with condition (24a). By simple computa-
tions we get that

M>PM − C =


2I I W̃

I 2I I

W̃ I I

 (25)

which, by the Schur complement lemma, is positive def-
inite if and only if

[
2I I

I I

]
� 0

2I −
[
I W̃

] [2I I

I I

]−1 [
I

W̃

]
� 0.

The first condition is trivially satisfied, while the second
condition is equivalent to

2I−
[
I W̃

] [2I I

I I

]−1 [
I

W̃

]

= 2I −
[
I W̃

] [I −I
−I 2I

][
I

W̃

]
= I + 2W̃ − 2W̃ 2.

Since, under Assumption 5, W̃ � 0 and by (9f) ρ(W̃) <

1, then W̃ � W̃ 2, and hence I + 2W̃ − 2W̃ 2 � I � 0.
Thus condition (24a) is satisfied.

Next, consider (24b). After simple computations we ob-
tain the matrix

Q =


2(I − W̃ 2) I − W̃ 0

I − W̃ I 0

0 0 0


which is positive semi-definite if and only if the reduced
matrix

R =

[
2(I − W̃ 2) I − W̃
I − W̃ I

]
is positive (semi-)definite. Using again the Schur com-
plement lemma, R � 0 if and only if{

I � 0

2(I − W̃ 2)− (I − W̃)2 � 0.

Also in this case, the first condition is trivially satisfied,
while the second condition can be simplified as

2(I − W̃ 2)− (I − W̃)2 = 2I − 2W̃ 2 − I + 2W̃ − W̃ 2

= I + 2W̃ − 3W̃ 2.

Since, under Assumption 5, W̃ � 0 and by (9f) ρ(W̃) <

1, then I � W̃ � W̃ 2 and hence I + 2W̃ − 3W̃ 2 � I −
W̃ 2 � 0, meaning that also condition (24b) is satisfied.

Combining (23) with (24) we obtain

‖e?k+1‖2 + ‖ζk+1‖2P ′

≤ ‖e?k‖2 + ‖ζk‖2P ′ − ‖c ḡk+1‖2 − ‖ζk‖2Q,

with P ′ = M>PM−C � 0 andQ � 0. If we define ek =

[ex>k eg>k]> we can also rewrite the previous inequality
as

‖e?k+1‖2 + ‖ζk+1‖2P ′

≤ ‖e?k‖2 + ‖ζk‖2P ′ − ‖c ḡk+1‖2 − ‖ek‖2R, (26)

with R � 0, which tells us that ‖e?k‖2 + ‖ζk‖2P ′ is a Lya-
punov function for the discrete-time dynamical system
represented by Algorithm 1. From (26) we get that the
sequence

{‖e?k‖2 + ‖ζk‖2P ′}k≥0
is non-increasing and, since it is also positive (recall that
P ′ � 0), then it is convergent and, hence, bounded.
Moreover, summing (26) over k from 0 to ∞ and rear-

10

ranging the terms, we obtain

∞∑
k=0

‖c ḡk+1‖2 + ‖ek‖2R ≤ ‖e?0‖2 + ‖ζ0‖2P ′ <∞,

which, recalling that R � 0 and c > 0, implies

lim
k→∞

‖ḡk‖ = 0
(11)
=⇒ lim

k→∞
‖v̄k‖ = 0, (27a)

lim
k→∞

‖egk‖ = 0
(27a)
=⇒ lim

k→∞
‖gk‖ = 0, (27b)

lim
k→∞

‖exk‖ = 0. (27c)

Since {‖e?k‖2 + ‖ζk‖2P ′}k≥0 is bounded and both ‖e?k‖2

and ‖ζk‖2P ′ are non-negative, then also {e?k}k≥0 and

{‖ζk‖P ′}k≥0 are bounded. Moreover, by definition of ζk
together with P ′ � 0, we have that {exk}k≥0, {egk}k≥0,

and {uk}k≥0 are all bounded. By boundedness of

{uk}k≥0 together with (27b) and (27c), we have that

limk→∞ ‖e?k‖2 + ‖ζk‖2P ′ = limk→∞ ‖e?k‖2 + ‖uk‖2 (re-
call that P ′ equals M>PM − C defined in (25)). Since

uk = c(I − W̃)−1[vk − v? − gk], using (27b), we obtain

lim
k→∞

‖e?k‖2 + ‖ζk‖2P ′ = lim
k→∞

‖e?k‖2 + ‖uk‖2

= lim
k→∞

‖e?k‖2 + ‖c(I − W̃)−1[vk − v?]‖2,

meaning that also the sequence

{‖e?k‖2 + ‖c(I − W̃)−1[vk − v?]‖2}k≥0

is convergent. Moreover, from boundedness of {uk}k≥0
and (I − W̃)−1 being non-singular we have that also
{c[vk − v?]}k≥0 is bounded. By definition of e?k = x̄k −
x? and since x? is fixed, we have that also the sequence
{x̄k}k≥0 is bounded. Similarly, since v? is fixed, then also

the sequence {vk}k≥0 is bounded. Finally, by bounded-

ness of {x̄k}k≥0 and (27c), we infer that the sequence

{xk}k≥0 is also bounded.

Up to now, we showed that the agents estimates xi,k and
gi,k reach consensus on x̄k and ḡk respectively (cf. (27c)
and (27b)), and that Algorithm 1 is stable, meaning that
the generated sequences remain all bounded. Next, we
shall prove that Proximal-Tracking converges to an op-
timal solution of P.

Similarly to Section 3.2.6, by definition of subgradient
(see [26, p. 214]), vk ∈ ∂ϕ(xk) if and only if

ϕ(x) ≥ ϕ(xk) + v>k [x− xk] (28)

for all x ∈ RNn with ϕ(xk) < +∞. Setting x = x? we
obtain

ϕ(x?) ≥ ϕ(xk) + v>k [x? − xk]

(a)
= ϕ(xk)− v>k exk − v>k e?k
(b)
= ϕ(xk)− v>k exk − v̄>k e?k (29)

where we used xk−x? = xk∓ x̄k−x? = exk +e?k in (a)

and e?k
(9d)
= W∞e?k together with W∞vk

(9a)
= v̄k in (b).

Using (27a) together with boundedness of {e?k}k≥0
and (27c) together with boundedness of {vk}k≥0 yields,

lim
k→∞

v̄>k e
?
k = 0 and lim

k→∞
v>k e

x
k = 0,

which can be combined with the limit supremum on both
sides of (29) to get

lim sup
k→∞

ϕ(xk) = lim sup
k→∞

ϕ(xk)− v>k exk − v̄>k e?k
(29)

≤ ϕ(x?)

= ϕ(1N ⊗ x?)

= f(x?). (30)

Since the sequence {(xk,vk)}k≥0 is bounded, it admits

a convergent subsequence {(xk,vk)}k∈K with K ⊆ N.
Let (x̃, ṽ) be its limit point. Since all limit points have to
satisfy limk→∞ ‖exk‖ = 0, then x̃ is such that x̃ = 1N⊗x̃
and hence ϕ(x̃) = ϕ(x̃). Under Assumptions 1 and 2, ϕ
is a closed proper convex function and, by [26, p. 52], it
is lower semi-continuous, i.e.,

ϕ(y) = lim inf
x→y

ϕ(x).

We thus immediately have

ϕ(x̃) = ϕ(x̃)
(a)
= lim inf
K3k→∞

ϕ(xk)
(30)

≤ f(x?),

where (a) is due to lower semi-continuity of ϕ. This
means that the limit point x̃ is an optimal solution for P.

Now taking the limit of (28) across K we have

ϕ(x)
(28)

≥ lim
K3k→∞

ϕ(xk) + lim
K3k→∞

v>k [x− xk]

= lim
K3k→∞

ϕ(xk) + ṽ>[x− x̃]

(a)

≥ ϕ(x̃) + ṽ>[x− x̃],

where (a) is due to ϕ being lower semi-continuous,
which implies ṽ ∈ ∂ϕ(x̃). Moreover, since every

11

limit point of the sequence {vk}k≥0 has to satisfy

limk→∞ ‖v̄k‖ = 0 (cf. (27a)), then W∞ṽ = 0. Since the

sequence {‖x̄k − x?‖2 + ‖c(I − W̃)−1[vk − v?]‖2}k≥0
(recall e?k = x̄k−x?) is convergent for any x? = 1N⊗x?
and any v? such that W∞v? = 0 (cf. (14)), then we can
select x? = 1⊗ x̃ and v? = ṽ to conclude that

lim
K3k→∞

‖x̄k − x?‖2 + ‖c(I − W̃)−1[vk − v?]‖2 = 0,

but since {‖x̄k − x?‖2 + ‖c(I − W̃)−1[vk − v?]‖2}k≥0
is convergent, all its limit points are the same, meaning
that

lim
k→∞

‖x̄k − x?‖2 + ‖c(I − W̃)−1[vk − v?]‖2 = 0.

Since the two terms are both non-negative, (I − W̃)−1

is non-singular, and c > 0, we have that

lim
k→∞

xk
(27c)
= lim

k→∞
x̄k = x? and lim

k→∞
vk = v?,

which concludes the proof. 2

4 Numerical example

To showcase the performance of the proposed algorithm
we test it on a random linear program with N = 50
agents and the following structure

min
x

N∑
i=1

p>i x (31)

subject to: x ∈
N⋂
i=1

{x : Aix ≤ bi},

where x ∈ R10 and, for all i = 1, . . . , N , each component
of pi ∈ R10 and Ai ∈ R50×10 is independently extracted
at random from a Gaussian distribution with zero mean
and unitary variance, and each component of bi ∈ R50

is independently extracted at random from a uniform
distribution over the interval [0, 10]. Since all quantities
in (31) are generated at random, it might happen that
the resulting linear program does not satisfy Assump-
tion 2. If this is the case (we can check it using a cen-
tralized solver), we simply discard that instance of the
problem and generate another one.

Clearly, (31) fits the structure of P and we can there-
fore apply Proximal-Tracking to compute an optimal so-
lution in a distributed way. To this end, we also gen-
erate at random a graph G satisfying Assumption 3, a
matrixW ′, compliant with G, satisfying Assumptions 4,
and then set W = 1

2 (I +W ′) to satisfy Assumption 5.
For comparison purposes we also run the P-EXTRA al-

gorithm from [29] (which is also equivalent to the al-
gorithm in [15] when considering the non-differentiable
term only) using the same matrices W ′ and W.

To assess the impact of the tuning parameter c, we
evaluated the performance of Proximal-Tracking and P-
EXTRA for the following values of the penalty param-
eter c ∈ {10−1, 10−1.5, 10−2, 10−2.5, 10−3, 10−3.5}. For
each c, we run both Algorithm 1 and P-EXTRA for 104

iterations, and we report in Figure 1 (left and right, re-
spectively), on a logarithmic scale, the value of the rel-
ative optimality gap (upper plots)

|p>x̄k − p>x?|
|p>x?|

with respect to an optimal solution x? computed with
a centralized solver and the relative constraint violation
(lower plots)

‖max{Ax̄k − b, 0}‖∞
‖b‖

related to the network average solution x̄k, where p =∑N
i=1 pi, A = [A>1 · · · A>N]>, and b = [b>1 · · · b>N]>. We

report the evolution of x̄k only, as agents local estimates
xi,k behave similarly to x̄k. As can be observed from the
left figure, the proposed algorithm converges to an opti-
mal solution of P in all cases. It is also interesting to note
how the performance of the algorithm is almost the same
for a fairly wide range of values for the penalty param-
eter c, with noticeable slowdowns for the extreme cases
c = 10 and c = 10−4 only. Furthermore, it is interesting
to mention that despite the value of c affects the tran-
sient behavior, for the considered problem the conver-
gence is eventually exponential in all cases, with a rate
(cf. the slopes of the lines in Figure 1) not affected by
c. Similar comments applies also to the P-EXTRA algo-
rithm. However, from Figure 1, it is easy to see how the
proposed Proximal-Tracking is better than P-EXTRA
in terms of convergence rate, as testified by the steeper
slopes in the left plots with respect to those in the right
plots, for all values of c.

5 Conclusion

In this paper we propose a novel distributed optimiza-
tion algorithm for decision-coupled problems, which al-
lows the agents to have different local constraints sets
while requiring only convexity of their local objective
functions and local constraints sets. The algorithm is
proven to converge to an optimal solution for all values
of a constant penalty parameter, and numerical simu-
lations show that a linear convergence rate is achieved
even without the strong convexity assumption. Our fu-
ture research efforts will be devoted to formally estimate
the convergence rate of the proposed algorithm, to re-

12

10−4

10−2

100

102

O
p
ti
m
a
li
ty

g
a
p

0 2000 4000 6000 8000 10000
10−8

10−6

10−4

10−2

100

Iteration k

C
o
n
st
ra
in
t
v
io
la
ti
o
n

c = 10−1 c = 10−1.5 c = 10−2

c = 10−2.5 c = 10−3 c = 10−3.5

10−4

10−2

100

102

O
p
ti
m
a
li
ty

g
a
p

0 2000 4000 6000 8000 10000
10−8

10−6

10−4

10−2

100

Iteration k

C
o
n
st
ra
in
t
v
io
la
ti
o
n

c = 10−1 c = 10−1.5 c = 10−2

c = 10−2.5 c = 10−3 c = 10−3.5

Fig. 1. Relative optimality gap (upper plots) and relative constraint violation (lower plots) of x̄k across iterations of Proxi-
mal-Tracking (left plots) and P-EXTRA (right plots), for different values of the penalty parameter c.

lax the doubly stochasticity assumption with the aid of
the push-sum protocol, and to modify the algorithm in
order to cope with dynamic communication topologies.
Another interesting research direction would be to study
the effect of an inexact minimization step, using as a
starting point the work in [27].

References

[1] Mohammed Aledhari, Rehma Razzak, Reza M. Parizi, and
Fahad Saeed. Federated learning: A survey on enabling
technologies, protocols, and applications. IEEE Access,
8:140699–140725, 2020.

[2] Sulaiman A. Alghunaim, Ernest Ryu, Kun Yuan, and Ali H.
Sayed. Decentralized proximal gradient algorithms with
linear convergence rates. IEEE Transactions on Automatic
Control, 2020. In press.

[3] Dimitri P. Bertsekas and Athena Scientific. Convex
optimization algorithms. Athena Scientific Belmont, 2015.

[4] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and
distributed computation: numerical methods. Prentice hall
Englewood Cliffs, NJ, 1989.

[5] Nicoletta Bof, Ruggero Carli, Giuseppe Notarstefano,
Luca Schenato, and Damiano Varagnolo. Multiagent
newton–raphson optimization over lossy networks. IEEE
Transactions on Automatic Control, 64(7):2983–2990, 2018.

[6] Paolo Di Lorenzo and Gesualdo Scutari. NEXT: In-network
nonconvex optimization. IEEE Transactions on Signal and
Information Processing over Networks, 2(2):120–136, 2016.

[7] Alejandro D. Domı́nguez-Garćıa and Christoforos N.
Hadjicostis. Distributed strategies for average consensus in
directed graphs. In 2011 50th IEEE Conference on Decision
and Control and European Control Conference, pages 2124–
2129. IEEE, 2011.

[8] Alessandro Falsone, Ivano Notarnicola, Giuseppe
Notarstefano, and Maria Prandini. Tracking-ADMM for
distributed constraint-coupled optimization. Automatica,
117:108962, 2020.

[9] Bahman Gharesifard and Jorge Cortés. Distributed strategies
for generating weight-balanced and doubly stochastic
digraphs. European Journal of Control, 18(6):539–557, 2012.

[10] Franck Iutzeler, Pascal Bianchi, Philippe Ciblat, and Walid
Hachem. Explicit convergence rate of a distributed
alternating direction method of multipliers. IEEE
Transactions on Automatic Control, 61(4):892–904, 2015.

[11] Dušan Jakovetić, José M. F. Moura, and João M. F. Xavier.
Linear convergence rate of a class of distributed augmented
Lagrangian algorithms. IEEE Transactions on Automatic
Control, 60(4):922–936, 2015.

[12] Bjorn Johansson, Tamás Keviczky, Mikael Johansson, and
Karl Henrik Johansson. Subgradient methods and consensus
algorithms for solving convex optimization problems. In
IEEE Conference on Decision and Control (CDC), pages
4185–4190, 2008.

[13] S. S. Kia, B. Van Scoy, J. Cortes, R. A. Freeman, K. M.
Lynch, and S. Martinez. Tutorial on dynamic average
consensus: The problem, its applications, and the algorithms.
IEEE Control Systems Magazine, 39(3):40–72, 2019.

[14] Soomin Lee and Angelia Nedic. Distributed random
projection algorithm for convex optimization. IEEE Journal
of Selected Topics in Signal Processing, 7(2):221–229, 2013.

[15] Zhi Li, Wei Shi, and Ming Yan. A decentralized proximal-
gradient method with network independent step-sizes and
separated convergence rates. IEEE Transactions on Signal
Processing, 67(17):4494–4506, 2019.

[16] Qing Ling and Alejandro Ribeiro. Decentralized linearized
alternating direction method of multipliers. In 2014 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5447–5451. IEEE, 2014.

[17] Ali Makhdoumi and Asuman Ozdaglar. Convergence rate
of distributed admm over networks. IEEE Transactions on
Automatic Control, 62(10):5082–5095, 2017.

[18] Kostas Margellos, Alessandro Falsone, Simone Garatti, and
Maria Prandini. Distributed constrained optimization and
consensus in uncertain networks via proximal minimization.
IEEE Transactions on Automatic Control, 63(5):1372–1387,
2018.

[19] João F. C. Mota, João M. F. Xavier, Pedro M. Q. Aguiar,
and Markus Püschel. D-ADMM: A communication-efficient

13

distributed algorithm for separable optimization. IEEE
Transactions on Signal Processing, 61(10):2718–2723, 2013.

[20] Angelia Nedic. Distributed gradient methods for convex
machine learning problems in networks: Distributed
optimization. IEEE Signal Processing Magazine, 37(3):92–
101, 2020.

[21] Angelia Nedić and Alex Olshevsky. Distributed optimization
over time-varying directed graphs. IEEE Transactions on
Automatic Control, 60(3):601–615, 2015.

[22] Angelia Nedić, Alex Olshevsky, and Wei Shi. Achieving
geometric convergence for distributed optimization over time-
varying graphs. SIAM J. on Optimization, 27(4):2597–2633,
2017.

[23] Angelia Nedić and Asuman Ozdaglar. Distributed
subgradient methods for multi-agent optimization. IEEE
Transactions on Automatic Control, 54(1):48–61, 2009.

[24] Angelia Nedić, Asuman Ozdaglar, and Pablo A. Parrilo.
Constrained consensus and optimization in multi-agent
networks. IEEE Transactions on Automatic Control, 55(4),
2010.

[25] G. Qu and N. Li. Harnessing smoothness to accelerate
distributed optimization. IEEE Transactions on Control of
Network Systems, 5(3):1245–1260, 2018.

[26] Ralph Tyrell Rockafellar. Convex analysis. Princeton
University Press, 1970.

[27] Saverio Salzo and Silvia Villa. Inexact and accelerated
proximal point algorithms. Journal of Convex Analysis,
19(4):1167–1192, 2012.

[28] Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. Extra:
An exact first-order algorithm for decentralized consensus
optimization. SIAM Journal on Optimization, 25(2):944–
966, 2015.

[29] Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. A proximal
gradient algorithm for decentralized composite optimization.
IEEE Transactions on Signal Processing, 63(22):6013–6023,
2015.

[30] Wei Shi, Qing Ling, Kun Yuan, Gang Wu, and Wotao Yin.
On the linear convergence of the ADMM in decentralized
consensus optimization. IEEE Transactions on Signal
Processing, 62(7):1750–1761, 2014.

[31] Damiano Varagnolo, Filippo Zanella, Angelo Cenedese,
Gianluigi Pillonetto, and Luca Schenato. Newton-Raphson
consensus for distributed convex optimization. IEEE
Transactions on Automatic Control, 61(4):994–1009, 2016.

[32] Tianyu Wu, Kun Yuan, Qing Ling, Wotao Yin, and
Ali H. Sayed. Decentralized consensus optimization with
asynchrony and delays. IEEE Transactions on Signal and
Information Processing over Networks, 4(2):293–307, 2018.

[33] Chenguang Xi, Ran Xin, and Usman A. S. Khan. ADD-
OPT: Accelerated distributed directed optimization. IEEE
Transactions on Automatic Control, 63(5):1329–1339, 2018.

[34] Ran Xin, Shi Pu, Angelia Nedić, and Usman A. Khan. A
general framework for decentralized optimization with first-
order methods. Proceedings of the IEEE, 108(11):1869–1889,
2020.

[35] Jinming Xu, Ye Tian, Ying Sun, and Gesualdo Scutari.
A unified algorithmic framework for distributed composite
optimization. In 59th IEEE Conference on Decision and
Control (CDC), pages 2309–2316, 2020.

[36] Jinming Xu, Shanying Zhu, Yeng Chai Soh, and Lihua Xie.
Convergence of asynchronous distributed gradient methods
over stochastic networks. IEEE Transactions on Automatic
Control, 63(2):434–448, 2018.

[37] Minghui Zhu and Sonia Mart́ınez. Discrete-time dynamic
average consensus. Automatica, 46(2):322–329, 2010.

[38] Minghui Zhu and Sonia Mart́ınez. On distributed convex
optimization under inequality and equality constraints. IEEE
Transactions on Automatic Control, 57(1):151–164, 2012.

Appendix

Proof of Lemma 1

Recall that W = W ⊗ In, W∞ = (1
N 1N1

>
N) ⊗ In, and

W̃ = W −W∞.

Proof of (9a)

Consider a vector z = [z>1 · · · z>N]>, with zi ∈ Rn for all

i = 1, . . . , N , define z̄ = 1
N

∑N
i=1 zi, and z̄ = 1N ⊗ z̄.

Then,

W∞z = ((1
N 1N1

>
N)⊗ In)z = 1

N


In · · · In
...

. . .
...

In · · · In



z1
...

zN



=


1
N

∑N
i=1 zi
...

1
N

∑N
i=1 zi

 =


z̄
...

z̄

 = 1N ⊗ z̄ = z̄

Proof of (9b)

W∞W = ((1
N 1N1

>
N)⊗ In)(W ⊗ In)

(a)
= ((1

N 1N1
>
NW)⊗ InIn)

(b)
= ((1

N 1N1
>
N)⊗ In) = W∞

and

WW∞ = (W ⊗ In)((1
N 1N1

>
N)⊗ In)

(a)
= ((1

NW1N1
>
N)⊗ InIn)

(b)
= ((1

N 1N1
>
N)⊗ In) = W∞

where in both derivations (a) is due to the mixed-product
property of the Kronecker product and (b) is due to
1
>
NW = 1

>
N andW1N = 1N by the doubly stochasticity

of W under Assumption 4.

14

Proof of (9c)

Let y ∈ Rn, then

W (1N ⊗ y) = (W ⊗ In)(1N ⊗ y)

(a)
= (W1N ⊗ Iny)

(b)
= (1N ⊗ y),

where (a) is due to the mixed-product property of the
Kronecker product and (b) is due to W1N = 1N under
the doubly stochasticity requirement of Assumption 4.

Proof of (9d)

Similarly to the proof of (9c), let y ∈ Rn, then

W∞(1N ⊗ y) = ((1
N 1N1

>
N)⊗ In)(1N ⊗ y)

(a)
= ((1

N 1N1
>
N1N)⊗ Iny)

(b)
= (1N ⊗ y),

where (a) is due to the mixed-product property of the
Kronecker product and (b) is due to 1>N1N = N .

Proof of (9e)

It suffices to see that

W∞z
(9a)
= z̄ = (1N ⊗ z̄)

(9d)
= W∞(1N ⊗ z̄) = W∞z̄

to conclude that W∞(z − z̄) = 0.

Proof of (9f)

We have that

ρ(W̃) ≤ ‖W̃‖ = ‖(W ⊗ In)− (1
N 1N1

>
N ⊗ In)‖

(a)
= ‖(W− 1

N 1N1
>
N)⊗In)‖ (b)

= ‖W− 1
N 1N1

>
N‖‖In‖

(c)
< 1,

where ‖W̃‖ is the spectral norm of W̃ , (a) and (b) are
due to the linearity and spectral property respectively
of the Kronecker product and (c) follows from ‖W −
1
N 1N1

>
N‖ < 1 as a consequence of the Perron-Frobenius

theorem, under Assumptions 3 and 4.

Proof of (9g)

First let us note that (I − W̃) is invertible as a conse-

quence of all eigenvalues of W̃ lying in the open unit
circle due to ρ(W̃) < 1 from (9f). Moreover,

W∞W∞ = (1
N 1N1

>
N ⊗ In)(1

N 1N1
>
N ⊗ In)

(a)
= (1

N21N1
>
N1N1

>
N ⊗ In)

(b)
= (1

N 1N1
>
N ⊗ In) = W∞,

where (a) is due to the mixed-product property of the
Kronecker product and (b) is due to 1

>
N1N = N . The

previous relation can be used to show that

W̃W∞ = WW∞ −W∞W∞ = WW∞ −W∞
(9b)
= W∞ −W∞ = 0. (A.1)

Then, it suffices to compute

(I − W̃)(I −W∞) = I − W̃ −W∞ + W̃W∞
= I −W

where the second equality is due to W̃W∞ = 0 by (A.1)

and W = W̃ +W∞. The desired result is obtained left-
multiplying the previous relation by (I − W̃)−1, which

exists since ρ(W̃) < 1. 2

15

	Introduction
	Preliminaries
	Optimization Problem and Assumptions
	Proximal Minimization Algorithm
	Distributed Computation Framework
	Gradient-Tracking

	Proximal-Tracking Distributed Algorithm
	Algorithm Derivation and Interpretation
	Algorithm Analysis
	Proof of Theorem 1

	Numerical example
	Conclusion
	References

