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Abstract

This paper studies the variation diminishing property of k-positive linear time-
invariant (LTI) systems, which map inputs with k− 1 sign changes to outputs with at
most the same variation. We characterize this property for the Toeplitz and Hankel
operators of finite-dimensional systems. Our main result is that these operators have
a dominant approximation in the form of series or parallel interconnections of k first
order positive systems. This is shown by expressing the k-positivity of a LTI system
as the external positivity (that is, 1-positivity) of k compound LTI systems. Our
characterization generalizes well known properties of externally positive systems (k =
1) and totally positive systems (k = ∞; also known as relaxation systems).

1 Introduction

Positive systems, that is, models that map positive inputs to positive outputs, have gained
considerable interest in the recent years, e.g., [10, 26, 30, 31]. They appear frequently in net-
works, economics, biology, transport, etc., and are attractive for their favourable analytical
properties. Positivity provides computational scalability in many standard control problems
such as Lyapunov analysis [26], optimal control design [31], or system gain computation [10].
Specific types of positive systems such as the parallel interconnection of first order lags have
already been studied in the context of relaxation systems and passivity [24, 33].

Our goal in the present paper is to connect positive systems to the classical theory
of total positivity, where positivity has been studied as a variation diminishing property.
This approach has a long history in statistics and mathematics [11, 20, 28, 29]. Variation
diminishing properties are expected from any reasonable smoothing operation: a smoothing
filter should not output a signal with more irregularities than the input signal. In the theory
of total positivity, k-positivity refers to the variation diminishing property of inputs with at
most k−1 variations. External (input-output) positivity (k = 1) and total positivity (k = ∞)
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Figure 1: A 1-positive (externally positive) LTI system maps monotone inputs to monotone
outputs. A 2-positive LTI system maps unimodal inputs to unimodal outputs.

are the two extremes of a hierarchical structure. While characterizations for the extreme
cases k = 1 and k = ∞ have been well studied, analogues for the cases 1 < k < ∞, even in
the simplest situation of finite-dimensional linear time-invariant (LTI) systems, are missing.
The objective in this paper is to study the k-positivity of the Hankel and Toeplitz operators
of LTI systems. We build upon the classical theory of Karlin [20] to provide the following
results: first, k-positivity of a positive LTI system is equivalent to external positivity (that
is, 1-positivity) of k compound LTI systems. This is important as it provides us with
computational and theoretical tractability; second, the positivity of the compound systems
implies that the dominant dynamics of a k-positive system has a simple decomposition in
terms of k first-order positive systems: parallel/serial interconnection of first order lags for
the Hankel/Toeplitz operator. In other words, the k-th order dominant approximation of a
k-positive system is totally positive with respect to its operator structure.

The interesting special case of systems with 2-positive Toeplitz operator has been studied
in preliminary work [15]. Such systems map unimodal (single-peaked) inputs to unimodal
outputs, which explains their particular importance in statistics, as kernels that preserve the
unimodality of many important distributions [19, 20, 29] (see Figure 1).

The proposal in that paper is that the variation diminishing property is an important
system property that is amenable to a tractable analysis and open new analysis avenues
for nonlinear systems. While the paper primarily focuses on LTI systems, we suggest in
the example section that the analysis extends to cascades of LTI systems with static non-
linearities. Such structures are frequently used in machine learning and in biology to model
non-linear filters and fading memory operators. We envision that the use of positivity to
characterize the variation diminishing, that is, smoothing, property of such non-linear filters
could find promising applications in the analysis of large-scale interconnections of such basic
elements.

The remainder of the paper is organized as follows. After some preliminaries in Sec-
tion 2, the theory of variation diminishment and total positivity is reviewed in Section 3. In
Section 4, we present our main results for the Hankel operator case, where also the notion
of compound systems is introduced and discussed. Then, in Section 5, we briefly discuss
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analogous for the Toeplitz operator. The paper ends with a presentation of examples in
Section 7 and concluding remarks in Section 7. Proofs are given in the appendix. Our expo-
sition is limited to single-input single-output discrete-time systems, but a similar treatment
for continuous-time systems can be applied.

2 Preliminaries

2.1 Notations

2.1.1 Sets

For S ∈ R, we use S≥k := S∩ [k,∞), e.g., R≥0 = [0,∞) and Z≥0 = N0. Further, for k, l ∈ Z,
we use (k : l) := {k, k + 1, . . . , l} if k ≤ l and (k : l) := {k, k − 1, . . . , l} if l ≤ k. We define
the i− th elements of the r-tuples in In,r := {v = {v1, . . . , vr} ⊂ N : 1 ≤ v1 < · · · < vr ≤ n}
by lexicographic ordering, i.e., for v̄, ṽ ∈ In,r it holds that v̄ < ṽ if and only if v̄i∗ < ṽi∗ ,
i∗ := min{i : v̄i 6= ṽi}. For example, I4,3 is sorted in the order (1, 2, 3), (1, 2, 4), (2, 3, 4).

2.1.2 Matrices

For real valued matrices X = (xij) ∈ R
n×m, including vectors x = (xi) ∈ R

n, we say that
X is nonnegative, X ≥ 0 or X ∈ R

n×m
≥0 , if all elements xij ∈ R≥0. Further, if X ∈ Rn×n,

then σ(X) = {λ1(X), . . . , λn(X)} denotes its spectrum, where the eigenvalues are ordered by
descending absolute value, i.e., λ1(X) is the eigenvalue with the largest magnitude, counting
multiplicity. In case that the magnitude of two eigenvalues coincides, we subsort them by
decreasing real part. The identity matrix in R

n×n is denoted by In. A matrix X ∈ Rnn is
said to be positive semidefinite, X � 0, if X = XT and σ(X) ⊂ R≥0. By Sylvester’s criterion
[18, Theorem 7.2.5] for positive definiteness

X ≻ 0 ⇔ det(X(1:j),(1:j)) > 0, 1 ≤ j ≤ n, (1)

where submatrices are written as XI,J := (xij)i∈I,j∈J with I ⊂ (1 : n) and J ⊂ (1 : m). If I
and J have both cardinality r, then det(XI,J) is also referred to as an r-minor. A minor is
called consecutive, if I and J are intervals. The so-called Desnanot-Jacobi identity

det(X) det(X(2:n−1),(2:n−1)) = det

(

det(X(1:n−1),(1:n−1)) det(X(1:n−1),(2:n))
det(X(2:n),(1:n−1)) det(X(2:n),(2:n))

)

(2)

shows how the determinant can be computed from consecutive minors. The r-th multiplica-
tive compound matrix X[r] of X ∈ Rn×m is defined as the matrix that is made of all r-minors
and whose (i, j)-th entry is defined by det(X(I,J)), where I is the i-th and J is the j-th
element in In,r and Im,r, respectively. For example, if X ∈ R3×3, then X[r] reads





det(X{1,2},{1,2}) det(X{1,2},{1,3}) det(X{1,2},{2,3})
det(X{1,3},{1,2}) det(X{1,3},{1,3}) det(X{1,3},{2,3})
det(X{2,3},{1,2}) det(X{2,3},{1,3}) det(X{2,3},{2,3})



 .
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By the Cauchy-Binet formula [20] with X ∈ R
n×p and Y ∈ R

p×m

det((XY )I,J) =
∑

K∈Ip,r

det(XI,K) det(YK,J), (3)

where I ∈ In,r, J ∈ Jm,r and r ≤ p, it is easy to verify the following properties [12,
Chapter 6].

Lemma 1. Let X ∈ Rn×p, Y ∈ Rp×m and r ∈ Z≥1.

i) C[r](XY ) = X[r]Y[r].

ii) σ(X[r]) = {
∏

i∈I λi(X) : I ∈ In,r}.

iii) If X � 0, then X[r] � 0.

Finally, X ∈ Rn×n is referred to as Toeplitz (Hankel, respectively) if X is constant along
its (anti-, respectively) diagonals.

2.1.3 Functions

In the following, we introduce several notations for functions g : Z → R ∪ {±∞}. We

write g ≥ 0 for a nonnegative function g : Z → R≥0 and g(i : j) :=
(

g(i) . . . g(j)
)T

for
snapshots. Further, for compositions with σ : R → R, define σ(g)(t) := σ(g(t)). By denoting
the (1-0) indicator function of S ⊂ Z as

1S(t) :=

{

1 t ∈ S
0 t /∈ S

,

we express the Heaviside function as s(t) := 1R≥0
(t) and the unit pulse function as δ(t) :=

1{0}(t). The k-th forward difference of g : Z → R is abbreviated by ∆(k)g(t) := ∆(k−1)g(t+
1)−∆(k−1)g(t) with ∆(1)g(t) := g(t+ 1)− g(t).

We call g : Z → R ∪ {∞} convex if for all t1, t2 ∈ Z and 0 ≤ λ ≤ 1 it holds that

λg(t1) + (1− λ)g(t2) ≥ min
u∈B(z)

g(u) (4)

where z := λt1 + (1 − λ)t2 and B(z) := {t ∈ Z : |z − t| < 1}. g is convex if and only if
∆(2)g(t) ≥ 0 for all t [34]. If −g is convex, then g is called concave. Further, for an interval
S ⊂ Z we call g : S → R≥0 ∪ {∞} logarithmically (log-)convex on S if log(g) is convex
or equivalently g(t)g(t + 2) − g(t + 1)2 ≥ 0 for all t ∈ S. Analogously, g is logarithmically
(log-)concave if 1

g
is log-convex or g(t + 1)2 − g(t)g(t + 2) ≥ 0 for all t ∈ S. The sets of all

bounded functions is denoted by ℓ∞.
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2.2 Linear discrete time systems

We consider finite dimensional causal linear discrete time-invariant (LTI) systems with
(scalar) input u and (scalar) output y. The impulse response is the output corresponding to
the input u(t) = δ(t). The transfer function of the system is

G(z) =

∞
∑

t=0

g(t)z−t = r

∏m

i=1 z − zi
∏n

j=1 z − pi
, (5)

where m ≤ n, r ∈ R, pi and zi are referred to as poles and zeros, which are both sorted
in same way as the eigenvalues of a matrix. For national convenience, we assume that all
systems are non-zero and strictly proper, i.e., m < n. The tuple (A, b, c) is then referred to
as a state-space realization if

x(t+ 1) = Ax(t) + bu(t), y(t) = cx(t), (6)

with A ∈ Rn×n, b, cT ∈ Rn. It holds then that

g(t) = cAt−1bs(t− 1) (7)

In this work, we assume that g, u, y ∈ ℓ∞, that the poles and zeros of a transfer function
are disjoint and that G(z) 6≡ 0. If the same applies to c(zIn − A)−1b, then (A, b, c) is called
minimal and G(z) = c(zIn − A)−1b. Further, if the system has simple poles then by the
partial fraction decomposition G(z) =

∑n

i=1
ri

z−pi
. A system G(z) that has all poles at zero

is called a finite impulse response (FIR) system.
The Hankel operator

(Hgu)(t) :=

−1
∑

τ=−∞

g(t− τ)u(τ) =

∞
∑

τ=1

g(t+ τ)u(−τ), t ≥ 0

describes the output y(t) corresponding to the input u(t) = u(t)(1−s(t)). It is a mapping
from past inputs (t ∈ (−∞, 0) to future outputs (t ≥ 0) under the convolution with the
impulse response. The Toeplitz operator

(Tgu)(t) :=

t
∑

τ=0

g(t− τ)u(τ), t ≥ 0

maps a future input u(t), t ≥ 0, to the corresponding output y(t), t ≥ 0. In a state-space
model, the Hankel operator models the free response of the system for an initial condition
x(0) (that parametrizes the past input), while the Toeplitz operator models the input-output
behavior under the assumption that x(0) = 0. By defining for j ≥ 1

Hg(t, j) :=











g(t) g(t+ 1) . . . g(t+ j − 1)
g(t+ 1) g(t+ 2) . . . g(t+ j)

...
...

. . .
...

g(t+ j − 1) g(t+ j) . . . g(t− 2(j − 1))











5



with t ≥ 1 and

Tg(t, k) :=











g(t) g(t− 1) . . . g(t− k + 1)
g(t+ 1) g(t) . . . g(t− j)

...
...

. . .
...

g(t+ k − 1) g(t+ k − 2) . . . g(t)











with t ≥ 0, these operators can be represented by the finitely truncated matrix representa-
tions Hj

gu := Hg(1, j)u(−1 : −j) and T j
g u := Tg(0, j)u(0 : j), as Hgu = limj→∞Hj

gu and
Tgu = limj→∞ T j

g u. In particular, for a state-space realization (A, b, c)

Hg(t, j) = Oj(A, c)At−1Cj(A, b) (9)

with the extended controllability and observability matrices

Cj(A, b) :=
(

b Ab . . . Aj−1b
)

, (10a)

Oj(A, c) :=
(

cT ATcT . . . ATj−1
cT
)T

. (10b)

If (A, b, c) is a minimal realization, it holds then that rank(Hg(1, j)) = j for j ≤ n.

3 The Variation Diminishing Property

The variation of a sequence or vector u is defined as the number of sign changes in u, i.e.,

S(u) :=
∑

i≥1

1R<0(ũiũi+1), S(0) := 0

where ũ is obtained from deleting all zero entries in u. A linear map X is said to be order
preserving k-variation diminishing (OVDk), k ∈ Z≥0, if for all u with S(u) ≤ k it holds that

i. S(Xu) ≤ min{rank(X)− 1, S(u)}.

ii. The sign of the first non-zero elements in u and Xu coincide whenever S(u) = S(Xu).

If the second item is dropped, X is simply called k-variation diminishing. Investigations
of such linear such mappings have a long history. They include the determination of real
poles [11], applications in interpolation theory [20, 29], vibrational systems [13], computer
vision [21] as well as bounding the number of sign-changes in an impulse response [6, 7]. The
theory applies to finite dimensional matrices as in [20, 28] as well as to convolution operators
[19, 20, 27, 29].

The goal of this paper is to provide a characterization of OVDk for finite-dimensional LTI
systems. We study separately the variation diminishing property for the Hankel operator
and for the Toeplitz operator. We start our investigations by reviewing the most well-known
cases of k = 0, k = 1 and k = ∞. The case k = 0 will be instrumental for our new
developments from which the other cases can be recovered as part of our general analysis.
We conclude this section by a short review of total positivity theory.

6



3.1 OVD0-systems

A Toeplitz OVD0-system G(z) maps zero variation inputs u ≥ 0 to zero variation outputs
y ≥ 0, which coincides with the definition of so-called externally positive systems [9, 23].
Since u(t) = δ(t) ≥ 0, it equivalently holds that g(t) ≥ 0. An important frequency domain
property of an externally positive systems is their dominant approximation in form of a first
order lag.

Proposition 1. Let G(z) be an externally positive system with dominant pole p1. Then,
p1 ≥ 0 and all real zeros of the system are smaller than p1. Further, if G(z) =

∑

i≥1
ri

z−pi
,

then r1 > 0.

In particular, every first order lag G(z) = r1
z−p1

with r1, p1 ≥ 0 is externally positive.

Note that the verification of external positivity is in general NP-hard [2], but under mild
conditions good sufficient certificates [5, 9, 17] are available.

3.2 OVD1-systems

By definition, OVD1 systems are OVD0 systems that map inputs u with one sign change
to outputs y with at most one sign change, where the order of the sign changes coincide
if S(u) = S(y) = 1. In the statistics literature, OVD1 integral kernels are called strongly
unimodal [19, 20, 27, 29]. This terminology reflects the fact that due to linearity, one can
equivalently consider the variation diminishment of the forward differences, meaning that
unimodal (S(∆(1)u) ≤ 1) inputs are mapped to unimodal outputs. As the inputs δ(t) and
δ(t + 1) are unimodal, it follows that g needs to be unimodal for G(z) to be Toeplitz and
Hankel OVD1, respectively.

Unfortunately, this is not a sufficient characterization. On the one hand, the Hankel case
requires that g is log-convex on Z>0. In particular, this means that g is convex unimodal
and therefore monotonically decreasing [4]. On the other hand, the Toeplitz case needs g
to be log-concave on Z≥0 [20]. The only systems that are both log-convex and -concave are
first order ones, where the inequalities hold with equality. To illustrate these differences,
consider

G1(z) =
r1

z − p1

r2
z − p2

, G2(z) =
r1

z − p1
+

r2
z − p2

with r1, r2, p1, p2 > 0. G1(z) is Toeplitz OVD1 as the parallel interconnection of Toeplitz
OVD1 systems. However, as a second order system, g1 cannot be log-convex. The opposite
holds for G2(z) as log-convexity is preserved under summation (see Lemma 3).

Our results will show that those basic transfer functions are somewhat fundamental. In
particular, Toeplitz OVD1 requires dominant dynamics in the form of G1(z) while Hankel
OVD1 requires dominant dynamics in the form of G2(z).
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3.3 Totally OVD-systems

Totally OVD-systems diminish the variation from all inputs u to outputs y and preserve the
sign change order whenever S(u) = S(y). The statistics literature [1, 20] offers the following
frequency domain characterization.

Proposition 2. For G(z) it holds that

i) G(z) is Toeplitz totally OVD if and only if G(z) =
∏n

i=1
riz+αi

z−pi
αi, ri, pi ≥ 0, i.e., it is

the serial interconnection of first order lags with negative zeros.

ii) G(z) is totally Hankel totally OVD if and only if G(z) =
∑n

i=1
ri

z−pi
, where ri, pi ≥ 0,

i.e., it is the parallel interconnection of first order lags.

Hankel totally positive systems are also considered in [33] under the name of relaxation
systems.

Proposition 3. The following are equivalent:

i. G(z) =
∑n

i=1
ri

z−pi
with ri, pi ≥ 0.

ii. Hg(1, n) ≻ 0 and Hg(2, n) � 0.

iii. (−1)j∆(j)g ≥ 0 for all j ∈ Z≥0

Note that the Hankel operator results have been stated in continuous-time in the litera-
ture. Proofs for the discrete time case are provided in this paper.

3.4 k-positive matrices

Finite-dimensional OVDk−1 linear operators (matrices) are a classical subject of matrix the-
ory, e.g., extensively studied in [20].

Definition 1 (k-positivity). A matrix X ∈ Rn×m is called (strictly) k-positive with k ∈ Z>0

if all j-minors are (positive) nonnegative for 1 ≤ j ≤ k. If k = min{m,n}, we simply say
(strictly) totally positive.

The relationship between OVDk−1 and the above definitions is provided by the following
result, proven in Appendix A.

Proposition 4. Let X ∈ Rn×m with n ≥ m. Then X is k-positive with k ≤ m if and only
if X is OVDk−1.

The reader will notice that the number of k minors of X is combinatorial. Fortunately,
it often suffices to only consider consecutive minors [8, 20].

Proposition 5. If X ∈ Rn×m, k ≤ min{n,m} is such that all consecutive j-minors of X
are positive, 1 ≤ j ≤ k − 1 and all consecutive k-minors of X are nonnegative (positive).
Then, X is (strictly) k-positive.
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4 Hankel k-positivity

In this section, we provide a characterization of Hankel OVDk−1 systems for arbitrary k. We
begin by stating our main results based on the following definition.

Definition 2 (Hankel k-positivity). G(z) is called Hankel (strictly) k-positive if the Hankel
matrix Hg(1, N) is (strictly) N -positive for all N ≥ k. We say that G(z) is Hankel (strictly)
totally positive if k = ∞.

Our main tool for the analysis is the concept of j-th compound system.

Definition 3 (Compound Systems). For G(z) and j ∈ Z≥1, we define the j-th compound
system G[j](z) by the impulse response g[j](t) := det(Hg(t, j)), t ≥ 1.

Our first main result is a characterization of Hankel OVDk in terms of Hankel k-positivity
through the compound systems.

Theorem 1. If G(z) is an n-th order system with k ≤ n, then the following are equivalent:

i. G(z) is Hankel OVDk−1.

ii. G(z) is Hankel k-positive.

iii. The compound systems G[j](z) are externally positive for 1 ≤ j ≤ k.

iv. Hg(1, k − 1) ≻ 0, Hg(2, k − 1) � 0 and G[k](z) is externally positive.

v. G[j] is Hankel k − j + 1-positive for 1 ≤ j ≤ k.

The distinction between OVDk−1 and k-positive emphasizes that the former is an input-
output property, while the latter is a matrix property. Our analysis of the compound system
properties yields the second main result: a necessary frequency domain characterization in
terms of dominant approximations.

Theorem 2. Let G(z) =
∑n

i=1
ri

z−pi
have distinct poles and 2 ≤ k ≤ n. If G(z) is Hankel

k-positive, then G(z) = r1
z−p1

+Gr(z), where Gr(z) is Hankel k − 1-positive with r1 > 0.

By applying Theorem 2 recursively to Gr(z), it follows that a Hankel k-positive system
has the decomposition

G(z) =

k−1
∑

i=1

ri
z − pi

+Gr(z)

with externally positive Gr(z). By Propositions 1 and 2, the dominant approximation
∑k

i=1
ri

z−pi
is Hankel totally positive, which demonstrates the bridge between the extreme

cases k = 1 and k = ∞: Hankel k-positive systems have a k-th order dominant approxima-
tion that is totally positive.
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4.1 Hankel total positivity theory

This subsection is devoted to the proof of Theorem 1.

Lemma 2. For G(z) and k ∈ Z≥1, the following are equivalent:

i) G(z) is Hankel OVDk−1.

ii) ∀j ∈ Z≥0 : Hj
gu is OVDk−1 for all u such that Hj

gu ∈ ℓ∞

Note that Hj
gu can be finitely represented by Hg(1, j), which by its repetitive structure

is k-positive if and only if Hg(1, j)(1:j,1:min{j,k}) is k-positive. Proposition 4 yields then the
equivalence between the first and second item in Theorem 1. Further, since all i-minors of
Hg(1, j) are symmetric, it follows from (1) that G(z) is strictly Hankel k-positive if and only
if all i-minors of Hg(1, j), 1 ≤ i ≤ k, are positive definite for all j ≥ k. As shown in [8],
the set of strictly Hankel k-positive systems then inherits the properties of positive definite
matrices.

Lemma 3. For k ∈ Z>0, let (S)HPk denote the set of all (strictly) Hankel k-positive
systems. Then, the following hold:

i. HPk is a proper convex cone.

ii. If G1(z) ∈ SHPk1 and G2(z) ∈ (S)HPk2
, then

(a) G1(z) +G2(z) ∈ SHPmin{k1,k2}.

(b) GP (z) ∈ (S)HPmin{k1,k2}
with gp = g1g2.

iii. SHPk is dense in HPk.

iv. Gk(z) =
∑k

i=1
ki

z−pi
∈ SHPk ∩ HP∞ if all ki, pi > 0 and pi are distinct.

It follows from Lemma 3 that G(z) is Hankel k-positive if and only if G(z) + εGk(z) is
strictly Hankel k-positive for all ε > 0. By continuity, it thus suffices to prove our results
under strict Hankel k-positivity. In particular, since then rank(Hg(1, j)(1:j,1:k})) = k, j ≥ k,
the equivalence between item two and three in Theorem 1 follows from Proposition 5. The
remaining equivalences are shown in the appendix.

4.2 Realization of compound systems

Next, we would like to proof Theorem 2 and Propositions 2 and 3. We begin by applying
Lemma 1 to (9), which yields

g[j](t) = det(Hg(t, j)) = Oj(A, c)[j]A
t−1
[j] Cj(A, b)[j],

i.e, G[j](z) admits the state-space realization

(A[j], Cj(A, b)[j],Oj(A, c)[j]). (11)
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Note that g[j] ≡ 0 for j > n, since rank(Hg(t, j)) ≤ n, meaning that Hankel n-positivity
is equivalent to Hankel total positivity. A diagonal state-space representation leads then to
a characterization of the transfer function G[j](z) directly in terms of the partial fraction
expansion of G(z).

Theorem 3. Let G(z) =
∑n

i=1
ri

z−pi
. Then, for 2 ≤ j ≤ n it holds that

G[j](z) =
∑

v∈In,j

∏j

i=1 rvi
∏

(i,j)∈In,2
(pvi − pvj)

2

z −
∏j

i=1 pvi
. (12)

Consequently, if G(z) is Hankel k-positive, then r1, . . . , rk > 0 and p1, . . . , pk ≥ 0.

The last claim is a consequence of external positivity of G[j], 1 ≤ j ≤ k from Theorem 1
and Proposition 1. In the appendix, we show how Theorem 2 follows from Theorem 3 as
well as the following generalization of the third item in Proposition 3.

Lemma 4. Let G(z) be externally positive and gd := −∆(1)g. If Gd(z) is Hankel k-positive,
then G(z) is Hankel k-positive. Vice-versa, if G(z) =

∑n

i=1
ri

z−pi
with ki > 0 and pi ≥ 0, then

Gd(z) is Hankel totally positive.

Indeed, the equivalence between the first and third item in Proposition 3 is a recursive
application of Lemma 4 to gd. Further, since G[n](z) is a first-order system, checking its
external positivity is equivalent to Hg(1, n) = g[n](1) > 0 and Hg(2, n) = g[n](2) ≥ 0. Thus,
by Proposition 2, Theorem 1 and (1), we recover the equivalence between the first and second
item in Proposition 3.

Hence, once we have verified that we can recover Proposition 2, our analysis covers
Proposition 3. For systems with simple poles, this is immediate from Theorem 1 together
with a recursive application of Theorem 2. To see that Theorem 2 remains true in case of
repeated poles, one should notice that if

G(z) =
l

∑

a=1

ma
∑

b=1

rba
(z − pa)b

with m1 > 0, then through our compound system realization, it is easy to show that G[1](z)
has a repeated dominant real pole. However, this contradicts the log-convexity of g on Z>0

in Theorem 1. Inductively, we can conclude the same for G[j] and mj with 1 ≤ j ≤ k − 1.
In particular, if pk−1 = 0, then G[j] is of order k − 1. We summarize this as follows.

Proposition 6. Let G(z) =
∑l

a=1

∑ma

b=1
rba

(z−pa)b
be Hankel k-positive. Then, m1 = · · · =

mk−1 = 1 and pk−1 > 0 for k ≤
∑l

a=1 ma. In particular, if G(z) is Hankel totally positive,
then all poles are simple.
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5 Toeplitz k-positivity

The analysis of Toeplitz k-positive systems essentially follows the same steps as in the pre-
vious section, by replacing the Hankel matrix Hg(t, j) with the Toeplitz matrix Tg(t, j). The
key observation is to note that if t − j ≥ 0, then det(Tg(t, j)) = ξ(j) det(Hg(t − j + 1, j))
with

ξ(j) :=

{

1 j mod 4 ≤ 1

−1 else
. (13)

This yields the following analogue to Theorem 1.

Theorem 4. Let G(z) and k ∈ Z≥1 be such that the k− 1-th largest pole is non-zero. Then,
we have the equivalences:

I. G(z) is Toeplitz OVDk−1.

II. G(z) is Toeplitz k-positive.

III. ξ(j)G[j] is externally positive for 1 ≤ j ≤ k and det(Tg(t, j)) > 0 for t0 ≤ t ≤ j−1 and
1 ≤ j ≤ k − 1, where t0 := min{t : g(t) 6= 0}.

Remark 1. The equivalence between the first two items in Theorem 4 remains true if the
k − 1-th largest pole is zero. However, in order to be able to apply Proposition 5, we
implicitly added the assumption that none of the first k−1 compound systems is a non-zero
FIR system. This is not necessary in the Hankel case, since it is implied by log-convexity of
G[j], 1 ≤ j ≤ k − 1 (see Theorem 1).

Then, Theorem 3 provides a characterization of the poles and coefficients.

Corollary 1. Let G(z) =
∑n

i=1
ri

z−pi
, k ∈ Z>0 and m := min{k, n}. If G(z) is Toeplitz

k-positive, it holds that (−1)i+1ri > 0 for 1 ≤ i ≤ m and p1, . . . , pm ≥ 0.

For k = 2, this means that while the sum of two first order lags is Hankel totally positive,
its difference is Toeplitz totally positive (provided external positivity). Further, we derive
the following analogue to Theorem 2.

Theorem 5. Let G(z) =
∑n

i=1
ri

z−pi
have distinct poles and 2 ≤ k ≤ n. If G(z) is Toeplitz

k-positive, then G(z) = z
z−p1

Gr(z), where Gr(z) is Toeplitz k − 1-positive and all real zeros
are smaller than pmin{k,n}.

6 Examples

In this section, we will discuss several examples of OVDk systems, which we use to illustrate
our theory as well as to point out future directions and relationships to recent related work.

12



6.1 Interconnections of first-order lags

Consider the two systems

Ga(z) =
r1

z − p1
and Gb(z) =

r2
z − p2

− r3
z − p3

where it is assumed that r1 > 0, r2 ≥ r3 > 0 and p2 > p3 > 0. The impulse responses

ga(t) = r1p
t−1
1 and gb(t) = (r2p

t−1
2 − r3p

t−1
3 ), t ≥ 1

are nonnegative and thus both systems are Toeplitz and Hankel OVD0. In particular, since

(Hgau)(t) = r1p
t
1

−1
∑

τ=∞

p−τ−1
1 u(τ) =: r1p

t
1x(0)

with x(0) a constant, S(Hgau) = 0 and Hgu ≥ 0 for all u ≥ 0. Thus, proving that Ga(z) is
Hankel totally OVD. Similarly,

(Tgau)(t) = r1p
t
1

t−1
∑

τ=0

p−τ−1
1 u(τ) =: r1p

t
1x(t)

and since the damped summation x is only able to follow the sign changes of u, it follows
that Ga(z) is also Toeplitz totally OVD. The compound systems introduced in Theorems 1
and 4 simplify this analysis: it suffices to see that Ga[j](z) = 0, j ≥ 2.

Next note that−Gb[2] =
r2r3(p2−p3)2

z−p2p3
is externally positive (see Theorem 3), which by Theo-

rems 1 and 4 implies thatGb(z) is Toeplitz, but not Hankel, totally OVD. This shows that the
difference of Hankel totally positive systems does not remain totally positive (cf. Lemma 3).

Finally, let us consider G(z) = Ga(z) + Gb(z) with p1 > p2. As the sum of externally
positive systems, G(z) is Hankel and Toeplitz OVD0. However, by Corollary 1 and Propo-
sition 2, G(z) can neither be Toeplitz OVD1 nor Hankel totally OVD. To determine when
G(z) is Hankel OVD1, we require by Theorem 1 that

G[2](z) =
r1r2(p1 − p2)

2

z − p1p2
− r1r3(p1 − p3)

2

z − p1p3
− r2r3(p2 − p3)

2

z − p2p3

is externally positive. This is the case if and only if

r1r2(p1 − p2)
2 ≥ r1r3(p1 − p3)

2 + r2r3(p2 − p3)
2.

An illustration of these properties for the Hankel and Toeplitz operators of G(z) are given
in Figure 2.

13



1 2 3 4 5 6 7

−8
−6
−4 t

(H
g
u
)(
t)

1 2 3 4 5 6 7

−0.5
0

0.5
t

(T
g
u
)(
t)

1 2 3 4 5 6 7

−2
−1
0 t
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u
)(
t)

(a) Output of the Hankel operator, where u is zero except for u(−1 : −2) = (1,−10).

(b) Output of the Toeplitz operator, where u is zero except for u(0 : 1) = (10,−8.5) and
(Tgu)(1) = 13.

(c) Output of the Hankel operator, where u is zero except for u(−1 : −3) = (10.9,−21.5, 9.7).

Figure 2: Hankel and Toeplitz operator responses for the Hankel OVD1 system G(z) =
Ga(z) + Gb(z) with r1 = p1 = 0.9, r2 = p2 = 0.5 and r3 = p3 = 0.1: (2a) S(u) = 1 is
diminished to S(Hgu) = 0; since S(Hgu) 6= S(u), it is not required that sign((Hgu)(0)) =
sign(u(−1)). (2b) S(u) = 1 is increased to S(Tgu) = 2; thus, Tg cannot be OVD1. (2c)
S(u) = S(Hgu) = 2, but Hg cannot be OVD2, because sign((Hgu)(0)) 6= sign(u(−1)).
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r1
z−p1

r3
z−p2

u
Σ

y

Figure 3: A single-input perceptron with ri, pi ≥ 0, i = 1, 2, 3, is totally Hankel OVD from
∆(1)u to ∆(1)y, i.e., it diminishes local extrema from past inputs u to future outputs y.

6.2 Static Non-Linearities

Even though the OVDk property has been traditionally studied for linear mappings [20], as an
input-output property, it can also be defined for non-linear systems. As a first step towards
a non-linear systems theory, the case of an LTI system with static output non-linearity is
discussed.

We begin by noticing that a static non-linearity σ(y), which is nonnegative for y ≥ 0 and
nonpositive for y < 0, is variation preserving, i.e., S(Hgu) = S(σ(Hgu)). Thus, σ(Hgu) is
OVDk if and only if G(z) is Hankel OVDk. Non-linearties with this property are commonly
found, e.g., in a (dead-zone) relay or a saturation.

For nonnegative σ, such as the sigmoid activation fiction, the OVDk property may seem
less informative, since S(σ(Hgu)) = 0 for all G(z) and u. However, as the sigmoid function
is monotonically non-decreasing, it follows from the chain rule that it preserves the number
of local extrema. Then, since (Hg∆

(1)u)(t) = ∆(1)(Hgu)(t), σ(Hgu) is order-preserving local
extrema diminishing if and only if G(z) is Hankel OVDk. Single input neurons or logistic
regression units as modelled in Figure 3 are, therefore, local extrema diminishing. As such
models typically come with multiple in- and outputs, the study of variation diminishing
multi-input-multi-output systems is as an important future task.

Analogues considerations also apply to the Toeplitz operator.

6.3 Heavy-ball method

The so-called heavy-ball method for (convex) optimization was designed by Polyak to damp
the possibly high number of local extrema in the iterates of the well-known gradient descent
approach [14, 25]. For a convex function f : R → R, the iterates x(k) of this method are
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given by the closed-loop system

x(k + 1) = x(k) + αu(k) + β(x(k)− x(k − 1))

y(k) =
d

dx
f(x)

∣

∣

∣

∣

x=xk

u(k) = −y

for constant α, β > 0. Since the linear system from u to x reads G(z) = αz
(z−1)(z−β)

, it is
Toeplitz totally OVD by Proposition 2. Further, as the derivatives of convex functions are
non-decreasing [3], it follows as above that the entire open loop system from u to y is local
extrema diminishing.

To also analysis the closed-loop system, let us assume that f is quadratic. Then, y(k) =
ax − b with a > 0, i.e., y is the response of a linear closed-loop system to a step with
height b. It is easy to show that the closed-loop system is Toeplitz totally OVD if and
only if β ≥ (

√
aα + 1)2. This observation verifies the intuition that the required amount of

momentum (damping) for variation diminishment scales with the the gain of the gradient,
which in the optimization literature is associated with the Lipschitz constant of the gradient
[14]. Then, choosing x(0) = 0 results in iterates without local extrema. In particular, local
extrema from noisy gradients (which may be modelled as time-varying b) can be diminished
independently of the noise distribution. Since suggested choices for α and β [14, 25] do
not necessarily result in closed-loop total OVD, an investigation of the effects of Toeplitz
k-positive designs to convergence rates and robustness seems highly desirable.

This application illustrates the relevance of variation diminishing theory in optimization
and motivates the extension of our theory to non-linear negative feedback interconnections.
Note that in case of multi-dimensional iterates, the algorithm as well as our analysis applies
component-wise. Further, since G(z) admits a minimal realization (A, b, c) with totally
positive A, it becomes evident that the analysis of external k-positivity in this paper is
related to the study of k-positive dynamical systems [22, 32].

7 Conclusion

We have studied the variation diminishing property of the Toeplitz and the Hankel operator
of finite-dimensional causal LTI systems. Each class defines different refinements of the
system property of external positivity. While the theory of totally positive operators is
classical in mathematics [20], the state-space realization of finite-dimensional LTI systems
sheds new light onto the properties of k-totally positive systems. In particular, we have
provided a bridge between external positivity and total positivity. A key insight of the present
paper is that the k-positivity of a LTI system can be studied via the classical positivity
property of associated compound systems.

The present work has focused on external open-loop k-positivity. Future work should
investigate the relationship to the internal property as studied in the recent work [22, 32]
as well as feedback interconnections. Implications of k‘-positivity for model reduction are
studied in [16].
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Appendix

A Proof of Proposition 4

By [20, Theorem 5.2.4], it follows that X being k-positive implies that X is OVDk−1. To
show the converse, first note that if X is OVDk−1, then also any submatrix X(1:n),J ∈ Rn×k

is OVDk−1, because one can choose u such that ui = 0 for all i ∈ (1 : m) \ J . If we can
show that X(1:n),J ∈ Rn×k is then k-positive for all such J , our claim follows. To this end
note that X(1:n),J is k-positive provided that rank(X(1:n),J) = k by [20, Theorem 5.1.5]. If
rank(X(1:n),J) = r < k, then all j-minors of X(1:n),J with j > r are zero and it suffices to

verify that X(1:n),Ĵ ∈ Rn×r is r-positive for all Ĵ ⊂ J . As before, if rank(X(1:n),Ĵ) = r, then
X(1:n),Ĵ is r-positive and otherwise it suffices to consider all smaller subsets of columns.

B Proof of Proposition 2

The proof uses the following simple lemma.

Lemma 5. Let {xk}k∈N with xk ∈ Rn and x⋆ := limk→∞ xk ∈ Rn. Then, limk→∞ S(xk) ≥
S(x⋆).

Proof. By the convergence of xk, there exists N ∈ N such that ∀i : xN
i x

⋆
i > 0 if x⋆

i 6= 0.
Thus, S(xN ) ≥ S(x⋆).

First note that for all u with Hgu ∈ ℓ∞ and S(Hgu) < ∞, there exists an Nu ∈ N such
that

S((Hgu)(0 : Nu − 1)) = S(Hgu) (14)

As limj→∞(Hj
gu)(0 : Nu − 1) = (Hgu)(0 : Nu − 1), it holds by Lemma 5 that

lim
j→∞

S(Hj
gu) ≥ S(Hgu), (15)

which under the assumption of the second item implies the first. Conversely, if the first item
holds, then

k − 1 ≥ S(u) ≥ S(u1[−j,−1]) ≥ S(Hg(u1[−j,−1]))

≥ S((Hg(u1[−j,−1]))(0 : j)) = S(Hj
gu).
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C Proof of Theorem 1

The equivalences between the first three items have been discussed in the main text. Since
item five implies item three, we are left with showing that item three implies items four and
five and item four implies item three. We first show these for the strictly Hankel k-positive
case.

Item three is then equivalent to Hg(t, k) being strictly totally positive for all t ≥ 1 by
Proposition 5, which by (1) is equivalent to Hg(t, j) ≻ 0 for all 1 ≤ j ≤ k and t ≥ 1. In
particular, this implies item four. Furthermore, by Lemma 1, Hg(t, k)[j] ≻ 0 for all 1 ≤ j ≤ k
and t ≥ 1, which through deletions of columns and rows implies that Hg[j](t, i) ≻ 0 for all
1 ≤ i ≤ k − j + 1. By the equivalence above, this implies that G[j] is strictly Hankel
k − j + 1-positive.

To see that item four implies item three, we next show the following: if g[k] > 0 and
g[j](t) > 0 for all 1 ≤ t ≤ 2l+k−j and 1 ≤ j ≤ k − 1 with l ∈ Z≥0, then also g[j](t) > 0 for
1 ≤ t ≤ 2k−j+l+1. Induction over l, where item four corresponds to the case l = 0 by (1),
then implies item three. To show our claim, first note that by (2)

g[j−2](t+ 2)g[j](t) = g[j−1](t)g[j−1](t+ 2)− g2[j−1](t + 1). (16)

with g[0] ≡ 1. Then by assumption, g[k−1](t+2) >
g2
[k−1]

(t+1)

g[k−1](t)
and g[k−1](t) > 0 for 1 ≤ t ≤ 2l+1,

which requires that g[k−1](2
l+2 − 1), g[k−1](2

l+2) > 0. The cases of j < k follow analogously
by induction.

Finally by Lemma 3, our equivalences also follow for non-strict Hankel k-positive systems
by using non-strict inequalities. Nonetheless, Hg(1, k−1) ≻ 0 remains strict, because by item
five (or (16)) g[j] is log-convex on Z>0 for 1 ≤ j ≤ k − 1 and thus requires that g[j](1) > 0.

D Proof of Theorem 3

The proof of Theorem 3 uses the following simple lemma, which follows by applying [18,
p. 37] to

Cn(A, b)) = diag(b)











1 p1 . . . pn−1
1

1 p2 . . . pn−1
2

...
...

...
1 pn . . . pn−1

n











.

Lemma 6. For b ∈ Cn, A = diag(p1, . . . , pn) ∈ Cn×n

det(Cn(A, b)) = (−1)n
n
∏

i=1

bi
∏

(i,j)∈In,2

(pj − pi). (17)

Let G(z) be realized by the matrices A = diag(p1, . . . , pn) and c = bT =
(√

r1 . . .
√
rn
)

and (Ā, b̄, c̄) denote the corresponding j-th compound system realization in (11). Then Ā
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is diagonal and b̄ = c̄T, where the l-th diagonal entry in Ā reads
∏j

i=1 pvi , v being the l-th

element in In,j. Further, b̄l = det(Cj(Av,v, bv)) =
∏j

i=1

√
rvi

∏

(i,j)∈In,2
(pvj −pvi) by Lemma 6.

Thus, the claimed form of the transfer function follows. The last claim then follows from
applying Proposition 1 to the external positivity of G[j](z) (see Theorem 1).

E Proof of Lemma 4

Proof. ⇒: By definition of Hankel k-positivity and (1)), it holds that H−∆(1)g(t, j) =
Hg(t, j)−Hg(t+1, j) � 0 for all t ≥ 1 and 1 ≤ j ≤ k. Therefore, Hg(t, j)− limt→∞ Hg(t, j) =
∑∞

l=tH−∆(1)g(l, j) � 0. Since G1(z) = r1
z−p1

is totally positive and

limt→∞ Hg(t, j) = limt→∞ Hg1(t, j), we get that Hg(t, j) � 0, which by Theorem 1 proves the
claim.

⇐: It is easy to verify that H−∆(1)gi
(t, j) � 0 for all j and each Gi(z) =

ki
z−pi

. Therefore,

Gd(z) is Hankel totally positive by Theorem 1 and Lemma 3.

F Proof of Theorem 2

It suffices to show the result under the assumption that p1 = 1 and pn 6= 0. To see this note
that the case of p1 = 0 is trivial and multiplying g(t) with pt1, p1 > 0, i.e., a Hankel totally
positive first order lag allows us to recover the case 0 < p1 < 1 by Lemma 3. Finally, if
pn = 0, then rn only affects Hg(1, j) and otherwise the system can be treated as of order
n− 1. Therefore, let g(t) = (r1+ gr(t))s(t− 1). Since ∆(1)g = ∆(1)gr, the claim is proven by
Lemma 4 once we can show that H−∆(1)g is k − 1-positive.

By Proposition 5, it is suffices to show that det(H−∆(1)g(t, j)) > 0 for all 1 ≤ j ≤ k − 1.
We begin by noticing that det(Hg(t, j)) > 0 for t ≥ 1 and j ≤ n, because pn 6= 0. In
particular, successive row subtractions yield that

0 < det(Hg(t, j)) = det(H̃g(t, j)) (18)

with

H̃g(t, j) :=











−∆(1)g(t) . . . −∆(1)g(t+ j − 1)
...

...

−∆(1)g(t+ j − 2) . . . −∆(1)g(t+ 2j − 2)
g(t+ j − 1) . . . g(t+ 2j − 2)











.

for all 1 ≤ j ≤ k and t ≥ 1. Thus,

det(Hg(t+ 2, j − 1)) det(H−∆(1)g(t, j − 1)) >

det(Hg(t + 1, j − 1)) det(H−∆(1)g(t+ 1, j − 1)).

By applying (2) to det(H̃g(t, j)) and using the substitution in (18). In other words,
det(H−∆(1)g(·, j − 1)) can switch sign at most once from positive to negative. However,
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by letting Gi(z) :=
ri

z−pi
for i ≥ 2, it follows for the dominant dynamics

∑j

i=1Gi(z) of Gr(z)
by Theorem 3 and Lemma 4 that

H−∆(1)
∑j

i=2 gi
(t, j − 1) =

j
∑

i=2

H−∆(1)gi
(t, j − 1) ≻ 0,

which implies that det(H−∆(1)g(t, j − 1)) > 0 for sufficiently large t ≥ 1. Hence,
det(H−∆(1)g(t, j − 1)) > 0 for all t ≥ 1.

G Proof of Theorem 5

The proof is similar to the Hankel case. Using Theorem 4, our goal is to show that if p1 = 1
then det(Tgr(t, j)) > 0 for all 1 ≤ j ≤ k−1, where G(z) = z

z−1
Gr(z), i.e., g(i) :=

∑i

τ=0 gr(τ).

Noticing that g(t)pt−1
1 s(t− 1) defines a Toeplitz k-positive systems for 1 > p1 > 0 , recovers

the asymptotically stable case.
Note that by (2), it holds that g[j] is log-concave for all 1 ≤ j ≤ k − 1. Then, by the

assumption that G(z) has at most a simple pole in zero, it follows from Theorem 3 that
g[j](t), t ≥ 0, can only be zero on some initial finite interval. Since the system remains
Toeplitz OVDk−1 under time shifts, we can assume by Theorem 4 that det(Tg(t, j)) > 0 for
all t ≥ 1 and 1 ≤ j ≤ k − 1. For 1 ≤ j ≤ k we have then

det(Tg(t, j)) ≥ 0 ⇔ det(T̃ (t, j)) ≥ 0 (19)

with

T̃ (t, j) :=











g(t) . . . g(t− j + 1)
gr(t+ 1) . . . gr(t− j)

...
...

gr(t + j − 1) . . . gr(t)











. (20)

Using (2) as well as the facts that det(Tg(t, j − 1)) = det(T̃g(t, j − 1)) yields

det(Tg(t, j − 1)) det(Tgr(t, j − 1)) ≥
det(Tg(t− 1, j − 1)) det(Tgr(t + 1, j − 1)). (21)

By way of contradiction, let j be the smallest integer such that that there exists t∗ > 0 with
det(Tgr(t

∗, j − 1)) ≤ 0. Then, det(Tgr(t, j − 1)) ≤ 0 for all t ≥ t∗ by (21), i.e., the dominant
dynamics of −Gr [j−1](z) have to be externally positive. By Theorem 3 and Corollary 1, this
implies that

Gr(z) =
n

∑

i=2

r̄i
z − pi

+
r̄0
z

with (−1)j r̄j−1 ≤ 0. However, by Corollary 1 and partial fraction decomposition of G(z), it
is easy to verify that (−1)j r̄j−1 > 0, which provides the contradiction.
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