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Abstract

Deep learning (DL) has achieved great success in many applications, but it has been less well analyzed from the theoretical
perspective. The unexplainable success of black-box DL models has raised questions among scientists and promoted the
emergence of the field of explainable artificial intelligence (XAI). In robotics, it is particularly important to deploy DL
algorithms in a predictable and stable manner as robots are active agents that need to interact safely with the physical
world. This paper presents an analytic deep learning framework for fully connected neural networks, which can be applied for
both regression problems and classification problems. Examples for regression and classification problems include online robot
control and robot vision. We present two layer-wise learning algorithms such that the convergence of the learning systems
can be analyzed. Firstly, an inverse layer-wise learning algorithm for multilayer networks with convergence analysis for each
layer is presented to understand the problems of layer-wise deep learning. Secondly, a forward progressive learning algorithm
where the deep networks are built progressively by using single hidden layer networks is developed to achieve better accuracy.
It is shown that the progressive learning method can be used for fine-tuning of weights from convergence point of view. The
effectiveness of the proposed framework is illustrated based on classical benchmark recognition tasks using the MNIST and
CIFAR-10 datasets and the results show a good balance between performance and explainability. The proposed method is
subsequently applied for online learning of robot kinematics and experimental results on kinematic control of UR5e robot with
unknown model are presented.
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1 Introduction

Artificial neural networks (ANNs), or simply neural net-
works (NNs), have been widely deployed in data related
problems, such as regression analysis, data processing,
classification, control and robotics. In robotic applica-
tions, the use of ANNs can be traced back to late 1980s
[1]. The ANNs have been proved to be universal approx-
imators [2,3] where their great potential in identifica-
tion and control of dynamic systems was discussed in [4].
Hence, they have been regarded as a potential approach
to deal with nonlinearities, modeling uncertainties and
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disturbances in robot control systems.

For years, many results in feedback control of robots have
been obtained by focusing on regression problems based
on simple shallow networks. Most studies are based on
one hidden layer networks such as the single-hidden layer
feedforward networks (SLFNs) and radial basis function
networks (RBFNs). There are two notable approaches
in learning of these networks in robotics: the first ap-
proach is training only the output weights, which is still
popular until recently [5,6,7,8,9,10,11,12,13,14]; the sec-
ond approach focuses on training both input and output
weights of the networks [15,16,17,18,19].

In the first approach of training only the output weights,
by using linear output activation functions, the algo-
rithms for updating the last layer of weights of these net-
works resemble those adaptive control techniques where
the model is linear with tunable parameters. Similar
to adaptive control, the convergence and stability of
these algorithms can be ensured by using the Lyapunov
method. Among those early studies in NN based control,
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Sanner and Slotine [5] analyzed the approximation capa-
bility of Gaussian networks and employed them in con-
trol of systems with dynamic uncertainties. The RBFNs
were employed in an indirect controller of a subsystem
and in an adaptive NN model reference controller of an-
other subsystem in underactuated wheeled inverted pen-
dulums [6].While robot control problems are usually for-
mulated for trajectory tracking task, a region adaptive
NN controller with a unified objective bound was syn-
thesized for robot control in task space [7]. In [8], He et
al. proposed an adaptive NN control technique for robots
with full-state constraints which guaranteed the asymp-
totic tracking. Global stability was ensured by using a
NN-based controller for dual-arm robots with dynamic
uncertainties [9]. Recently, the approach of training only
the output weights has been adopted for indirect herding
[10], MIMO nonlinear systems with full-state constraints
[11], quadrotors with time-varying and coupling uncer-
tainties [12], and teleoperation control systems [13]. For
robots with unknown Jacobian matrix, an SLFN-based
controller that guaranteed the stability of the system
were proposed in [14].

In the second approach of training weights in both lay-
ers, besides the output weights, the input weights of the
network are also adjusted. In the 1990s, Chen and Khalil
[15] provided convergence analysis of a learning algo-
rithm that was based on the backpropagation (BP) and
gradient descent (GD) in multilayer NN control of non-
linear systems. In 1996, Lewis et al. [16] proposed a learn-
ing algorithm for updating 2 layers of weights (input
weights and output weights) in a SLFN with Lyapunov-
based convergence analysis. The study paved the way
for more research works in applying SLFNs in dynamic
systems like robotics. In [17], control of nonholonomic
mobile robots was studied and a NN controller was in-
troduced to deal with disturbances and unmodeled dy-
namics. In [18], an adaptive NN-based controller was
proposed for manipulators with kinematic and dynamic
uncertainties. A recurrent NN based control was also de-
veloped for remotely operated vehicles in [19]. In gen-
eral, these works have focused on dynamic systems (of
the form ż = f(z) where z is the state variable) with
the use of shallow networks with linear output activa-
tion functions. For general input-output mappings of the
form y = f(z) which include both regression and clas-
sification problems, deep networks have been shown to
demonstrate better properties as compared to the shal-
low counterparts [20,21,22,23].

Deep networks [24,25] have become dominant inmachine
learning (ML) applications in the last decade. Compar-
ing with shallow networks, deep architectures have been
shown to be more efficient in terms of number of tunable
parameters [20,26]. They are also believed to be better
for learning generalization [22,27]. The deep NNs have
also been shown to be more powerful in function approx-
imation and classification than the single hidden layer
networks [28]. The current boom of ML applications in
many aspects of our life is greatly attributed to deep

learning (DL) algorithms [29,30] in which backpropaga-
tion (BP) [31] plays a major role. DL has replaced many
conventional learning algorithms which saw disadvan-
tages in processing raw data [32]. Many unprecedented
successes in image recognition have been achieved by the
convolutional neural networks (CNNs) [32,33]. However,
DL has been less well analyzed from theoretical perspec-
tive and DL models remain difficult to understand de-
spite the tremendous successes [34].

Various attempts have been made to understand
the properties of deep networks. Layer-wise learning
[35,36,37] is one of the methods to dissect a large net-
work into smaller pieces. One method of training net-
work layer-by-layer is using matrix pseudoinverse as in
[38] and together with functional inverse, as developed
in [39]. The method [39] does not require any compu-
tation of the gradient information and can be applied
to both regression and classification problems. How-
ever, its performance still lags behind the state-of-art
gradient descent DL algorithms in many applications.
Employing the layer-wise method in [39], an iterative
learning algorithm for offline regression problem of
robot kinematics was developed [40] but it was again
limited to shallow networks with one or two hidden
layers. The algorithm [40] was built and analyzed in
continuous time and hence could not be generalized
for classification problems. In addition, the learning of
the input layer was ignored and the weights obtained
were time-varying which thus required averaging of the
weights. Another approach for training deep networks
layer-wisely is greedy layer-wise learning which can
be found in network pre-training [41,42] and forward
thinking algorithm [43]. In this methodology [41,42,43],
training of the multilayer NN is performed by adding
the layers in a forward manner, starting from the first
layer based on the training of shallow networks. One
hidden layer is added at a time, and each training step
involves a single hidden layer feedforward network. Af-
ter training each SLFN, the input weights are kept while
the output weights are discarded. A new hidden layer is
then added on top of the hidden layer of the last SLFN
to create a new SLFN. However, despite the good per-
formance especially in classification problems, there is
no convergence analysis for these algorithms [41,42,43],
which is a common problem in the ML literature.

Robots are active agents which interact physically with
the real world, and applying DL tools in robot control
requires careful consideration [44]. When employing a
deep network in control of robotic systems, one should
guarantee the stability, convergence and robustness be-
cause robots need to be operated in a safe and pre-
dictable manner. Most DL algorithms used in ML com-
munity lack theoretical supports for convergence analy-
sis. Therefore, in spite of many elegant results from ML
research, very few can be directly used in the area of
robot control for the reason of safety. Recently, there has
been an increasing need of building interpretable and
understandable deep neural networks [45]. As a result,
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the field of explainable artificial intelligence (XAI) has
begun to attract more attention from academics [46]. An
XAI project launched by DARPA has aimed for devel-
oping accountable AI with a compromise between per-
formance and explainability [47]. Therefore, establish-
ing a reliable theoretical framework for constructing and
training deep networks, which ensures the convergence,
could open up many XAI applications to robotics.

This paper aims to develop a theoretical framework for
multilayer NNs which can be efficiently applied in op-
erations of robotic systems. Our main focus is on the
study of learning algorithms and training methodologies
for multilayer NNs to enable them for deployment in a
reliable and explainable manner, which is desirable for
control of active agents such as robots. Unlike most liter-
ature on machine learning where the algorithms are con-
sidered from optimization perspective, our methodol-
ogy is formulated based on Lyapunov-like analysis which
aims to bridge the gaps between robotics, control and
machine learning. In this paper, an inverse learning al-
gorithm is first formulated to understand the issues and
difficulties of establishing analytic layer-wise deep learn-
ing and based on this study, an analytic forward progres-
sive algorithm is then proposed to overcome the prob-
lems. The main contributions of this paper are:

i, Development of a theoretical framework to ensure
the convergence of the layer-wise deep learning al-
gorithms. To the best of our knowledge, there is
currently no theoretical result for analysis of deep
learning of fully connected neural networks to ensure
convergence for safe operation of robotic systems.

ii, Development of a forward progressive layer-wise learn-
ing algorithm for deep networks in which the general
input-output function y = f(z) is also considered.
Based on the convergence analysis, it is shown that
the proposed algorithm can be used for fine-tuning of
weights.

iii, Development of a systematic learning or training
methodology in which deep networks can be built
gradually for reliable operations in both online and
offline robotic applications.

The proposed framework is applied to two recognition
tasks using the MNIST [48,49] and CIFAR-10 [50,51]
databases and an online kinematic robot control task us-
ing a UR5e manipulator. Experimental results are pre-
sented to illustrate the performance of the proposed al-
gorithm. It is shown that forward progressive learning
can achieve similar accuracy as compared to gradient
descent method but the main advantage is that the con-
vergence of proposed algorithm can be established in a
systematic way.

2 Problem Statement

Consider a mapping between the input variable z ∈ Rm

and the output variable y ∈ Rp

y = f(z) (1)

The function f : Rm → Rp is assumed to be unknown,
but can be approximated by available input and output
(target) data which are referred to as training data. Our
objective is to develop a theoretical framework to achieve
an approximation (model) of the function f based on
the training data, so that this model can predict well on
unknown new data.

Based on the output variable y, the problem can be
divided into two main types:

• When y is a continuous variable, the problem is known
as a regression problem.

• When y is a categorical variable, the problem is known
as a classification problem.

In the area of robotics, both types of problems can be
found. For instance, when a robot needs to identify (and
label) the objects within its work space, a classification
or a recognition task should be done; but how the robot
makes movement by rotating its joints to reach the po-
sition of the object would be a regression problem.

In order to approximate f , a multilayer feedforward neu-
ral network (MLFN) is used. In this paper, we present
two techniques for training the MLFNs. The first one is
called inverse layer-wise learning which is presented in
section 3. The second one is called forward progressive
learning which is presented in section 4.

An illustration of an n-layer MLFN (n − 1 hidden lay-
ers) is shown in Fig. 1. In this MLFN, the number of
hidden units for the jth hidden layer (1 ≤ j ≤ n− 1) is
denoted as hj ; the activation functions for the jth hid-
den layer are denoted as ϕj : ϕj = [ϕj,1, ϕj,2, . . . , ϕj,hj

]T ;
the activation functions for output layer are denoted as
ϕn: ϕn = σ = [σi,1, σi,2, . . . , σi,p]

T (and hence hn ≜ p);
The n weight matrices are denoted (from input layer to
output layer) as W1,W2, . . . ,Wn where W1 is the ma-
trix of input weights and Wn is the matrix of output
weights. The output of the MLFN as shown in Fig. 1 is
given as follows

yNN = ϕn(Wnϕn−1(Wn−1ϕn−2(. . .

. . .W3ϕ2(W2ϕ1(W1z)) . . . ))) (2)

Since the weights are the tunable parameters, the output
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Fig. 1. Structure of an n-layer feedforward neural network
with input z and target output y.

of the MLFN in (2) can be written as

yNN = yNN (Wj |nj=1, z) (3)
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The denotation shows the dependence of the network
output on the weights Wj (j = 1, . . . , n) and the input

variable z. The output after the (j − 1)
th

hidden layer
(activation values after ϕj−1) is given as

yNN (j−1)(Wl|j−1
l=1 , z) = ϕj−1(Wj−1ϕj−2(. . .

. . .W3ϕ2(W2ϕ1(W1z)) . . . )) (4)

Remark 1: Proving the convergence of deep networks
is a difficult but important task since deep networks are
well-known to be high-dimensional, and the optimiza-
tion problem is highly non-convex. Majority of ML sci-
entists are applying DL in attempts to push empirical
results to higher peaks for various ML tasks despite the
fact that the underlying reason behind the success of
DL remains largely unclear [34,46]. In this paper, the
convergence problem of fully connected deep NNs is for-
mulated and solved by developing a layer-wise learning
framework where the deepNNs are layer-wisely built and
trained through learning of the basic two-layer struc-
tures. Such development would widen the potential ap-
plications of deep learning particularly when a safe and
predictable outcome is desired.

3 Inverse Layer-wise Learning of Multilayer
Feedforward Neural Networks

In this approach, the MLFN is trained layer-by-layer to
ensure the convergence, whichmeans one layer of weights
is learned at a time. In [39], by using functional inverse
and matrix pseudoinverse, equation (2) has been treated
as follows with yNN = y

y = ϕn(Wnϕn−1(Wn−1ϕn−2(

. . .W3ϕ2(W2ϕ1(W1z)) . . . ))) (5)

→ W†
nϕ

−1
n (y) = ϕn−1(Wn−1ϕn−2(

. . .W3ϕ2(W2ϕ1(W1z)) . . . )) (6)

→ · · ·
→ W†

2ϕ
−1
2 (· · ·W†

n−1ϕ
−1
n−1(W

†
nϕ

−1
n (y)) · · · )

= ϕ1(W1z) (7)

where W†
n,W

†
n−1, . . . ,W

†
2 are the Moore-Penrose in-

verses (or pseudoinverses) of matrices Wn,Wn−1, . . .,
W2 respectively; ϕ−1

n ,ϕ−1
n−1, . . . ,ϕ

−1
2 are vectors of in-

verse functions of respective ϕn,ϕn−1, . . . ,ϕ2.

The inverse layer-wise learning is conducted through two
stages in sequence: backward and forward. The learn-
ing process starts with the backward stage (subsection
3.1), where the MLFN is trained layer-wisely from the
output layer to the input layer. After that, the forward
stage takes place (subsection 3.2), where the network is
trained layer-wisely in the forward direction, from the in-
put layer to the output layer. Unlike in [39] where the ker-
nel and range space to solve linear equations were used,
we propose nonlinear update laws to find the weight ma-
trices incrementally so that the convergence is ensured.

3.1 Backward Stage of Inverse Layer-wise Learning

In the first stage of inverse layer-wise learning, the net-
work is trained layer-by-layer from Wn to W1. That
is, Wn is trained first. Then comes Wn−1,Wn−2, . . ..
The backward stage ends with the learning of the
input weights W1. Let us now look into the details
of how the weights in each layer are trained, start-
ing from Wn. Prior to that, all the weight matrices
W1,W2, . . . ,Wn−1,Wn are first randomly initialized.
Let W̄⋆

1,W̄
⋆
2, . . . ,W̄

⋆
n−1,W̄

⋆
n be the respective values

of these matrices after initialization.

3.1.1 Learning of the output weights Wn

During learning of Wn (or the nth layer), the other
weight matrices are frozen at their initialized values
W̄⋆

1,W̄
⋆
2, . . . ,W̄

⋆
n−1. Using these values, we can com-

pute the input of the nth layer, which is also the output

after the (n− 1)
th

hidden layer, by using (4)

ϕ̄
⋆
n−1 = ϕn−1(W̄

⋆
n−1ϕn−2(. . .ϕ2(W̄

⋆
2ϕ1(W̄

⋆
1z)) . . . ))

(8)

Hence, the output of this nth layer (and also of the whole
MLFN), denoted as yNNn, is given as

yNNn(Wn, ϕ̄
⋆
n−1) = ϕn(Wnϕ̄

⋆
n−1) (9)

This is actually equal to the right-hand side of (5) when
setting W1, . . . ,Wn−1 as W̄⋆

1, . . . ,W̄
⋆
n−1, respectively.

Hence, the target for learning of Wn, denoted as yn, is
the direct target y of the whole MLFN as seen on the
left-hand side of (5). That is

yn = y (10)

Given W̄⋆
1,W̄

⋆
2, . . . ,W̄

⋆
n−1, there exists a weight matrix

Wn such that the target provided in (10) can be approx-
imated by the network whose output is given in (9). This
is feasible if the number of neurons hn−1 is sufficiently
large. We have

yn = yNNn(Wn, ϕ̄
⋆
n−1) = ϕn(Wnϕ̄

⋆
n−1) (11)

For learning ofWn, an incremental learning update law,
referred to as one-layer update, is developed to update
the weights at that layer. In this algorithm, the weights in
matrixWn are updated incrementally without inverting
the activation functions in ϕn (and hence the update
law is also called nonlinear). In each step of training, we
use one example of the training data. At the kth step,
(z(k),y(k)) are used, and the target for training Wn in
(10) is given as

yn(k) = y(k) (12)

Equation (11) can be rewritten as

yn(k) = yNNn(Wn, ϕ̄
⋆
n−1(k)) = ϕn(Wnϕ̄

⋆
n−1(k))

(13)
where ϕ̄

⋆
n−1(k) = ϕn−1(W̄

⋆
n−1ϕn−2(

. . .ϕ2(W̄
⋆
2ϕ1(W̄

⋆
1z(k))) . . . )) (14)

Let Ŵn(k) denote the estimated weight matrix at the
kth step of training, the estimated output ŷn(k) at this
kth step is constructed as the direct output of this nth
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layer when its weight matrix is set at Ŵn(k):

ŷn(k) = yNNn(Ŵn(k), ϕ̄
⋆
n−1(k))

= ϕn(Ŵn(k)ϕ̄
⋆
n−1(k)) (15)

The output estimation error in learning ofWn at the kth

step is defined as en(k) = yn(k) − ŷn(k). Hence, from
(13) and (15) we have

en(k) = yNNn(Wn, ϕ̄
⋆
n−1(k))

− yNNn(Ŵn(k), ϕ̄
⋆
n−1(k)) (16)

= ϕn(Wnϕ̄
⋆
n−1(k))− ϕn(Ŵn(k)ϕ̄

⋆
n−1(k)) (17)

Let δn(k) ≜ Wnϕ̄
⋆
n−1(k)− Ŵn(k)ϕ̄

⋆
n−1(k)

= ∆Wn(k)ϕ̄
⋆
n−1(k) (18)

where ∆Wn(k) = Wn − Ŵn(k).

Let us consider the relationship between en(k) and
δn(k): If ϕn is chosen as a vector of monotonically
increasing activation functions whose derivatives are
bounded by fϕn

, then:

i, the corresponding elements of two vectors en(k) and
δn(k) have the same sign, i.e.

en,i(k)δn,i(k) ≥ 0, ∀i = 1..hn (19)

ii, the absolute value of an element of en(k) is less than
or equal to fϕn

times the corresponding element of
δn(k), i.e.

|en,i(k)| ≤ fϕn
|δn,i(k)|, ∀i = 1..hn (20)

The incremental learning law (one-layer update) to up-
date the estimated weights based on the output estima-
tion error is proposed as

Ŵn(k + 1) = Ŵn(k) + Ln(k)en(k)ϕ̄
⋆T
n−1(k) (21)

where Ln(k) ∈ Rhn×hn is a positive diagonal matrix;

ϕ̄
⋆
n−1(k) is calculated using (14); en(k) = yn(k)− ŷn(k)

with yn(k) and ŷn(k) given in (12) and (15), respec-
tively. This update law (21) was developed so that the
convergence could be ensured. Denoting wn,i as the ith

column vector of matrix Wn, ŵn,i(k) the ith column

vector of Ŵn(k) and ϕ̄⋆
n−1,i(k) the i

th element of vector

ϕ̄
⋆
n−1(k), the update law (21) can be rewritten in the

vector form as

ŵn,i(k + 1) = ŵn,i(k) + ϕ̄⋆
n−1,i(k)Ln(k)en(k) (22)

To show the convergence, we define an objective function
as

V (k) =

hn−1∑
i=1

∆wT
n,i(k)∆wn,i(k) (23)

where ∆wn,i(k) = wn,i − ŵn,i(k). The objective func-
tion at the (k + 1)th step is

V (k + 1) =

hn−1∑
i=1

∆wT
n,i(k + 1)∆wn,i(k + 1)

=

hn−1∑
i=1

(∆wn,i(k)− ϕ̄⋆
n−1,i(k)Ln(k)en(k))

T

(∆wn,i(k)− ϕ̄⋆
n−1,i(k)Ln(k)en(k)) (24)

A change of the objective function value when the learn-
ing step goes from kth to (k + 1)th

∆V (k) = V (k + 1)− V (k)

=

hn−1∑
i=1

(
− ϕ̄⋆

n−1,i(k)∆wT
n,i(k)Ln(k)en(k)

− ϕ̄⋆
n−1,i(k)e

T
n (k)L

T
n (k)∆wn,i(k)

+ ϕ̄⋆2
n−1,i(k)e

T
n (k)L

T
n (k)Ln(k)en(k)

)
(25)

From (18), we have δn(k) = ∆Wn(k)ϕ̄
⋆
n−1(k)

=
∑hn−1

i=1 ∆wn,i(k)ϕ̄
⋆
n−1,i(k), hence

∆V (k) = − δTn (k)Ln(k)en(k)− eTn (k)L
T
n (k)δn(k)

+ µn−1(k)e
T
n (k)L

T
n (k)Ln(k)en(k) (26)

with µ̄⋆
n−1(k) ≜

∑hn−1

i=1 ϕ̄⋆2
n−1,i(k). From the properties

stated in (19), (20), we have the following inequality
since Ln(k) is a positive diagonal matrix

δTn (k)Ln(k)en(k) ≥
1

fϕn

eTn (k)Ln(k)en(k) (27)

which finally gives

∆V (k) ≤ − eTn (k)
( 2

fϕn

Ln(k)

− µ̄⋆
n−1(k)L

T
n (k)Ln(k)

)
en(k) (28)

When Ln(k) is chosen such that

2

fϕn

Ln(k)− µ̄⋆
n−1(k)L

T
n (k)Ln(k) > 0 (29)

then ∆V (k) is non-positive for any en(k). That means,
the value of the objective function is a non-increasing
sequence V (k+1) ≤ V (k). Moreover, since the function
V (k) is non-negative, which means that it is bounded
from below, we have ∆V (k) converges to 0 as k tends to
infinity. Thus, from (28), en(k) converges to 0 as k tends
to infinity.

Remark 2: Updating one layer of weights is a
common technique in neural network based control
[5,6,7,8,9,10,11,12,13,14]. In addition, for single-hidden
layer networks (i.e., two-layer networks) with fixed
weights in input-to-hidden layer, it has been shown that
an RBF network is a universal approximator [52], and a
Fourier network can approximate any square integrable
function to any desired accuracy [53]. For networks with
random weights or features in the input-to-hidden layer,
with sufficiently large number of neurons in the hidden
layer, updating only the output weights can also make
the networks universal approximators [54,55,56,57]. In
the case of insufficient number of hidden nodes, the
convergence can also be analyzed (see Remark 4).

Remark 3: With a symmetric positive-definite matrix
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Ln(k), the condition (29) is met if

2

fϕn

I− µ̄⋆
n−1(k)Ln(k) > 0 (30)

where I ∈ Rhn×hn is the identity matrix. As Ln(k) is
also diagonal, condition (29) or (30) suggests that the
matrix Ln(k) can be adjusted to smaller values so that
the left hand side (LHS) of either inequality is positive-
definite. Therefore, one possibility is that Ln(k) is ini-
tialized to an arbitrary value and the LHS of (29) or
(30) is checked for positive definiteness in each learning
step. If the condition is not met, Ln(k) is then reduced
so that the condition is met. Another way for finding
the positive diagonal matrix Ln(k) is by looking at its
diagonal entries lnι(k), ι = 1..hn. Noting that the LHS
of (29) or (30) is also diagonal. Hence, (29) and (30) can
be ensured if

2

fϕn

> µ̄⋆
n−1(k)lnι(k), ∀ι = 1..hn (31)

The condition given by (31) can be easily implemented
to find the diagonal entries and thus the matrix Ln(k)
can be established. Also noting that the range of the
choice of lnι(k) can be made larger with smaller fϕn

or
µ̄⋆
n−1(k). The former can be achieved by changing the

output activation functions and the latter can be done by
normalizing the inputs of previous layers, or setting the
ranges of the weights of previous layers to smaller values,
or making the hidden activation functions bounded with
smaller values.

Remark 4: In case of having an insufficient number
of hidden neurons and/or in presence of measurement
noise, by extending the time domain results in [58], it
can be shown that if

∥en(k)∥ ≥ b

2
(

2Lm

fϕnM
− cML2

M

)[ 4Lm

fϕnM
+

2LM

fϕnm
+

+

√
8Lm

fϕnM
cML2

M +
8LM

fϕnm

(
4Lm

fϕnM
− cML2

M

)
+

(
2LM

fϕnm

)2
]

(32)

and
2Lm

fϕnM
− cML2

M > 0 (33)

then∆V (k) ≤ 0. Here b is the upper bound of the NN ap-
proximation error and measurement noise, Lm and LM

are respectively the minimum and maximum eigenval-
ues of the matrix Ln(k) for ∀k, fϕnm and fϕnM are the
lower and the upper bounds of the derivative of ϕn re-
spectively, and cM is the maximum value of all µ̄⋆

n−1(k).
Therefore, there exists an ultimate bound such that the
error always stay within the bound after reaching it. Not-
ing from (32) that the bound would tend to zero when
the NN approximation error and noise tend to zero.

3.1.2 Learning of the hidden weights Wj with n− 1 ≥
j ≥ 2

AfterWn has been learned and its value in this backward
stage has been obtained as W̄b

n, the target for the (n−

1)th layer is calculated based on the left hand side of
(6) as yn−1 = W̄b†

n ϕ−1
n (yn). Generally, the target for

learning of Wj (or the jth layer), denoted as yj , can
be achieved by calculating backwardly from the target
for the last layer yn = y, using the left-hand sides of
equations from (5) to (7). We have

yj = W̄b†
j+1ϕ

−1
j+1(yj+1) with n− 1 ≥ j ≥ 1 (34)

A graphical illustration of the backward calculation of
the target is shown in Fig. 2.

 

𝐖ഥ𝑛
𝑏 𝐖ഥ𝑛−1

𝑏  
𝝓𝑛 𝝓𝑛−1 𝝓𝑛−2 𝝓𝑗 

𝐖𝑗  
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Fig. 2. Backward transmission of the target in inverse lay-
er-wise learning, from the output layer to the inner layers.

The input of the jth layer is computed similarly to (8)
using (4)

ϕ̄
⋆
j−1 ≜ ϕj−1(W̄

⋆
j−1ϕj−2(. . .ϕ2(W̄

⋆
2ϕ1(W̄

⋆
1z)) . . . ))

(35)

Hence, the output of this jth layer is given as

yNN j(Wj , ϕ̄
⋆
j−1) = ϕj(Wjϕ̄

⋆
j−1) (36)

There exists a weight matrix Wj such that the target
provided in (34) can be approximated by the network
whose output is given in (36)

yj = yNN j(Wj , ϕ̄
⋆
j−1) = ϕj(Wjϕ̄

⋆
j−1) (37)

Similar to learning of Wn, the weights in matrix Wj

are updated incrementally without inverting the acti-
vation functions ϕj . The functions ϕj are chosen to be
monotonically increasing activation functions and their
derivatives are bounded by fϕj

. At the kth step of train-
ing, equation (34) can be rewritten as

yj(k) = W̄b†
j+1ϕ

−1
j+1(yj+1(k)) (38)

and equation (37) can be rewritten as

yj(k) = yNN j(Wj , ϕ̄
⋆
j−1(k)) = ϕj(Wjϕ̄

⋆
j−1(k)) (39)

where ϕ̄
⋆
j−1(k) = ϕj−1(W̄

⋆
j−1ϕj−2(

. . .ϕ2(W̄
⋆
2ϕ1(W̄

⋆
1z(k))) . . . )) (40)

Let Ŵj(k) denote the estimated weight matrix at the
kth step of training, the estimated output ŷj(k) at the

kth step is constructed as the direct output of this jth

layer when its weight matrix is set at Ŵj(k):

ŷj(k) = yNN j(Ŵj(k), ϕ̄
⋆
j−1(k)) = ϕj(Ŵj(k)ϕ̄

⋆
j−1(k))

(41)
The output estimation error in learning of Wj at the
kth step is defined as ej(k) = yj(k)− ŷj(k). Hence,

ej(k) = yNN j(Wj , ϕ̄
⋆
j−1(k))− yNN j(Ŵj(k), ϕ̄

⋆
j−1(k))

(42)

The incremental learning law to update the estimated
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weights based on the output estimation error is proposed
as

Ŵj(k + 1) = Ŵj(k) + Lj(k)ej(k)ϕ̄
⋆T
j−1(k) (43)

where Lj(k) ∈ Rhj×hj is a positive diagonal matrix that
satisfies the following condition

2

fϕj

Lj(k)− µ̄⋆
j−1(k)L

T
j (k)Lj(k) > 0 (44)

with µ̄⋆
j−1(k) ≜

∑hj−1

i=1 ϕ̄⋆2
j−1,i(k); ϕ̄

⋆2
j−1,i(k) being the ith

element of vector ϕ̄
⋆
j−1(k); ϕ̄

⋆
j−1(k) is calculated using

(40); ej(k) = yj(k)−ŷj(k) with yj(k) and ŷj(k) given in
(38) and (41), respectively. Similar to (31), the condition
can be rewritten as (see Remark 3)

2

fϕj

> µ̄⋆
j−1(k)ljι(k), ∀ι = 1..hj (45)

Similarly to the case of Wn, it can be shown that ej(k)
converges as k increases.

3.1.3 Learning of the input weights W1

Learning of W1 is done in the same way as learning of
Wj above by setting j = 1. One point to take note is that

the denotations of ϕ̄
⋆
j−1 and hj−1 in above demonstra-

tions would become ϕ̄
⋆
0 and h0 which do not exist. How-

ever, it is possible to consider that ϕ̄
⋆
0 ≜ z (ϕ̄⋆

0,i ≜ zi)

and h0 ≜ m (m is the dimension of the input vector z).
After learning, we get W̄b

1. The backward stage stops.

3.2 Forward Stage of Inverse Layer-wise Learning

In the forward stage, the network is trained forwardly
from the input layer to the output layer. The inverse
layer-wise learning goes forwards fromW2 until the out-
put weights Wn are retrained.

In this stage, the learning can be conducted similarly to
the backward stage for every layer fromW2 toWn. The
only difference is that in the backward stage, the input of
the jth layer was defined based on the initialized values
of W̄⋆

1,W̄
⋆
2, . . . ,W̄

⋆
j−1 as in (35), but it is now defined

based on the values of weights W̄1,W̄2, . . . ,W̄j−1 that
have been relearned before Wj

ϕ̄j−1 = ϕj−1(W̄j−1ϕj−2(. . .ϕ2(W̄2ϕ1(W̄1z)) . . . ))

with 2 ≤ j ≤ n (46)

with noting that W̄1 = W̄b
1 since there is no forward

learning for W1.

3.3 The Step-by-Step Algorithm

This part summarizes the inverse layer-wise learning of
MLFNs. In each layer, the weights are updated incre-
mentally by a one-layer update law. The details of the
inverse layer-wise learning algorithm are as follows

(i) Initialization: Randomly assign W1,W2, . . . ,Wn.
(ii) Train Wn using update law (21) → obtain W̄b

n
(iii) Backward looping: Learning of Wj (from Wn−1 to

W1)

(a) Set j = n− 1
(b) Train Wj using update law (43) → obtain W̄b

j

(c) Decrease j by 1 and go to step (b) if j ≥ 1
(iv) Forward looping: Learning of Wj again (from W2

to Wn)
(d) Set j = 2
(e) Train Wj using update law (43) with noting that

ϕ̄j−1 in (46) is used instead of ϕ̄
⋆
j−1 → obtain W̄j

(f) Increase j by 1 and go to step (e) if j ≤ n

In learning of each layer, each time when all examples
in the training data have been used is called a loop. In
practice, it can take many loops to train a layer, which
means that each training example can be called upon
many times.

3.4 Classification on MNIST Database and Perfor-
mance Issue of Inverse Layer-wise Learning

MNIST database [49] was used for assessing the per-
formance of the inverse layer-wise learning algorithm to
understand the issues associated with it.

• MNIST is a classical database of handwritten digits. It
contains 60,000 images in the training set and 10,000
images in the test set. All of the black and white im-
ages are centered and have the same size of 28×28
pixels.

3.4.1 Network structure and learning results

In this classification task with MNIST database, we used
the network with the following properties:

• A 3-hidden layer network with structure 784-300-100-
50-10 (300 units, 100 units, and 50 units in hidden
layers). The activation functions at hidden layers are
modified softplus f(x) = log(0.8 + ex) as suggested
in [39], which has its inverse function as log(ex− 0.8).
The activation functions at output are sigmoid f(x) =
1/(1 + e−x).

In this network, there are 4 weight matrices to be
learned: W1,W2, W3 and W4. Before training,
W1 to W4 were randomly initialized. After that, learn-
ing process began with learning of W4 → learning of
W3 → learning of W2 → learning of W1 → relearn-
ing of W2 → relearning of W3 → relearning of W4.
In learning of each layer, the gain matrix L was not a
predefined matrix. Instead, it was calculated from the
respective conditions in (29) and (44) to ensure the con-
vergence of the learning process by using (31) and (45).
The number of loops for training of each layer was 20.

Table 1
Training & test accuracies (%) by inverse layer-wise learning
vs. SGD

Training Test

Inverse layer-wise learning 92.37 92.04

Stochastic gradient descent 99.80 98.36

The results in Table 1 show that although convergence
can be achieved, the accuracy after training by inverse
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layer-wise learning algorithm is not desirable as com-
pared to the stochastic gradient descent (SGD) method
( 92.04% compared to 98.36% on the test set). Noting
that for the purpose of comparing with the best perfor-
mance, the results for SGD method in this paper were
achieved by observing the accuracy directly on the test
set while training and no validation set was used.

3.4.2 Discussions on the results of inverse layer-wise
learning

The inverse layer-wise learning method is non-error-
based, which means that the error at the output layer
of the MLFN is not directly used to adjust all layers of
weights (the output error is only used directly for train-
ing the last layer). Instead, the target is transmitted
backwards to previous layers in a backward transmission
process (please refer to (34) and Fig. 2). Though con-
vergence can now be ensured in leaning, this backward
transmission of target causes some possible problems
that lead to a trade off in accuracy as compared to back-
propagation (like SGD) method. One of the reasons can
stem from the fact that the modified softplus and sig-
moid are only invertible within their ranges. This causes
the distortions in the target values when transmitted
backwardly. Even when all the nonlinear functions are
fully invertible and the targets for previous layer are
right values, training only a layer of weights may not
help in fitting the target for that layer. Therefore the
inverse layer-wise learning method can be used in cases
where a trade off in performance is acceptable while
ensuring the convergence of the learning systems. In the
next section, we present a learning method to achieve a
good balance between accuracy and convergence.

4 Forward Progressive Learning of Multilayer
Feedforward Neural Networks

In this section, we develop a forward progressive lean-
ing (FPL) method based on the layer-wise methodol-
ogy referred in [41,42,43]. Unlike those works [41,42,43]
where there is no convergence analysis, the convergence
can be analyzed in our proposed FPL method. Our main
aim here is to develop an output-error-based layer-wise
learning algorithm so as to overcome the drawback of
the inverse layer-wise leaning method in section 3.

Fig. 3 illustrates the processing details of the algorithms.
The overall structure of the deep network with n weight
matrices to be learned is shown in Fig 3(a). The FPL
starts with learning of the weights in the first layer W1

based on an SLFN (or two-layer network) where the
first hidden layer is directly connected to the output, as
shown in fig 3(b). Two weight matrices, an input weight
matrixW1 and a pseudo output weight matrixW▷

1 , are
learned simultaneously by a two-layer algorithm. After
learning, the matrix W̄1 is kept to form new input for
the next layer while the pseudo output weight matrix
W̄▷

1 is discarded. Fig 3(c) shows the learning of the sec-
ond layer W2 based on a second SLFN with two weight
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Fig. 3. Forward progressive learning (FPL) method, where
an n-layer network is trained layer-wisely through learning of
(n−1) two-layer networks. Each two-layer network is trained
in 2 phases: pre-training (subsection 4.1) and fine-tuning
(subsection 4.2) so as to guarantee the convergence.

matrices W2 and W▷
2 . New input z2 of this SLFN has

been formed by passing z through fixed W̄1. Similarly,
after training we keep W̄2 and discard W̄▷

2 . Fig 3(d)
shows the learning of the jth layer Wj with input zj

and target output y. The FPL continues until the learn-
ing of Wn−1 takes place as shown in Fig 3(e), where the
pseudo output weights are no longer needed. Instead,
the true output weights of the deep net Wn is used and
trained together with Wn−1. After training this SLFN,
the FPL ends.

We now consider a general case when the jth hidden layer
is added. The structure of the SLFN in this case is shown
in Fig. 4. Since W̄1, . . . ,W̄j−1 have been trained, the
input to this SLFN can be calculated similarly to (35)

zj ≜ ϕ̄j−1 = ϕj−1(W̄j−1ϕj−2(

. . .ϕ2(W̄2ϕ1(W̄1z)) . . . )) (47)

The output of the network as shown in Fig. 4 can be
expressed as follows:

yNN (Wj ,W
▷
j , zj) = σ(W▷

j ϕj(Wjzj)) (48)

Each SLFN is trained in two phases. In the first phase,
called pre-training, the proposed one-layer update law
in section 3 is adopted to pre-train the SLFN. In the
second phase, called fine-tuning, a two-layer update law
is developed to fine-tune the weights of the SLFN.

4.1 Pre-training of Single Hidden Layer Feedforward
Networks

The purpose of the pre-training phase is to achieve a suf-
ficiently small estimation error, before further improve-
ment is achieved by a fine-tunning phase.

The proposed one-layer update law for training the last
layer of an MLFN is used to pre-train the SLFN. The
steps of training are as follows:
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to the 𝑗th layer 
𝑗th hidden layer output layer 

𝜎1 𝑦1 

𝜙𝑗,1 

𝜙𝑗,2 

𝜙𝑗,ℎ𝑗 

 𝜎2 𝑦2 
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Fig. 4. The single hidden layer feedforward network (or
two-layer network) for new added jth hidden layer in for-
ward progressive learning. The input zj of this network is
calculated by forwardly propagating z through previous lay-
ers which have been learned, while its target is the overall
target y directly.

• Initialization: Randomly assign Wj and W▷
j to W̄⋆

j

and W̄▷⋆
j respectively.

• W▷
j is trained using update law (21) to obtain W̄▷

j .

After W▷
j has been pre-trained, the entire SLFN will be

trained one more time in a fine-tuning phase.

Noting that the inverse layer-wise algorithm presented
in the previous section can also be used to achieved this
aim.

4.2 Fine-Tuning of Single Hidden Layer Feedforward
Networks

In this subsection, a two-layer update law is developed to
update concurrently both the input weightsWj and the
output weights W▷

j of the SLFN. When the number of
neurons in the hidden layer hj is sufficiently large, there
exist weight matrices Wj and W▷

j such that the target
provided in (1) can be approximated by the network
whose output is given in (48)

y(k) = yNN (Wj ,W
▷
j , zj(k))

= σ
(
W▷

jϕj(Wjzj(k))
)

(49)

As Wj and W▷
j are unknown, they are updated incre-

mentally by two learning laws. Let Ŵj(k) and Ŵ▷
j (k)

denote the estimated weight matricesWj andW▷
j at the

kth step of learning, the estimated output vector ŷ(k)
at the kth step is constructed as the output of the SLFN
when its weights are set at Ŵj(k) and Ŵ▷

j (k)

ŷ(k) = yNN (Ŵj(k),Ŵ
▷
j (k), zj(k))

= σ
(
Ŵ▷

j (k)ϕj(Ŵj(k)zj(k))
)

(50)

The output estimation error at the kth step is defined as
e(k) = y(k)− ŷ(k). Hence,

e(k) = yNN (Wj ,W
▷
j , zj(k))

− yNN (Ŵj(k),Ŵ
▷
j (k), zj(k)) (51)

= σ
(
W▷

jϕj(Wjzj(k))
)

− σ
(
Ŵ▷

j (k)ϕj(Ŵj(k)zj(k))
)

(52)

Let

δ(k) ≜ W▷
jϕj(Wjzj(k))− Ŵ▷

j (k)ϕj(Ŵj(k)zj(k))
(53)

which can be expressed as

δ(k) = Ŵ▷
j (k)∆ϕj(k) + ∆W▷

j (k)ϕ̂j(k)

+ ∆W▷
j (k)∆ϕj(k) (54)

where ∆ϕj(k) ≜ ϕj(Wjzj(k)) − ϕj(Ŵj(k)zj(k)),

ϕ̂j(k) ≜ ϕj(Ŵj(k)zj(k)) and ∆W▷
j (k) ≜ W▷

j−Ŵ▷
j (k).

Consequently, the incremental learning laws (two-layer
update) to update the estimated weight based on the
output estimation error e(k) are proposed as:

Ŵ▷
j (k + 1) = Ŵ▷

j (k) + α1L(k)e(k)ϕ̂
T

j (k) (55)

Ŵj(k + 1) = Ŵj(k) + α0P(k)e(k)zT
j (k) (56)

where α1 and α0 are positive scalars, L(k) ∈ Rp×p is
a positive diagonal matrix, P(k) ∈ Rhj×p is a matrix
depending on the learning step k.

In (55), let w▷
j,i denote the ith column vector of ma-

trix W▷
j , ŵ

▷
j,i(k) the ith column vector of Ŵ▷

j (k) and

ϕ̂j,i(k) the ith element of vector ϕj(k). In (56), let wj,ı

denote the ıth column vector of matrix Wj , ŵj,ı(k) the

ıth column vector of Ŵj(k) and zj,ı(k) the ıth element
of the vector zj(k). The update laws (55) and (56) can
be rewritten in vector form as:

ŵ▷
j,i(k + 1) = ŵ▷

j,i(k) + α1ϕ̂j,i(k)L(k)e(k) (57)

ŵj,ı(k + 1) = ŵj,ı(k) + α0zj,ı(k)P(k)e(k) (58)

To show the convergence, we define an objective function
given by

V (k) =
1

α1

hj∑
i=1

∆w▷T
j,i (k)∆w▷

j,i(k)

+
1

α0

hj−1∑
ı=1

∆wT
j,ı(k)∆wj,ı(k) (59)

where ∆w▷
j,i(k) = w▷

j,i− ŵ▷
j,i(k) and ∆wj,ı(k) = wj,ı−

ŵj,ı(k). From (57) and (58), the objective function at
the (k + 1)th step can be written as

V (k + 1) =
1

α1

hj∑
i=1

∆w▷T
j,i (k + 1)∆w▷

j,i(k + 1)

+
1

α0

hj−1∑
ı=1

∆wT
j,ı(k + 1)∆wj,ı(k + 1) (60)
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Using (57) and (58), a change of the objective function
value when the training step goes from kth to (k + 1)th

can therefore be derived as

∆V (k) = V (k + 1)− V (k)

= − ϕ̂
T

j (k)∆W▷T
j (k)L(k)e(k)

− zT
j (k)∆WT

j (k)P(k)e(k)

− eT (k)LT (k)∆W▷
j (k)ϕ̂j(k)

− eT (k)PT (k)∆Wj(k)zj(k)

+ eT (k)
(
α1µ̂j(k)L

T (k)L(k)

+ α0ρj(k)P
T (k)P(k)

)
e(k) (61)

with µ̂j(k) ≜
∑hj

i=1 ϕ̂
2
j,i(k) and ρj(k) ≜

∑hj−1

ı=1 z2j,ı(k).
From (54) , we have

∆W▷
j (k)ϕ̂j(k)

= δ(k)− Ŵ▷
j (k)∆ϕj(k)−∆W▷

j (k)∆ϕj(k) (62)

Next, substituting into (61) gives

∆V (k) = − δT (k)L(k)e(k)− eT (k)LT (k)δ(k)

+
(
∆ϕj

T (k)Ŵ▷T
j (k)

− zT
j (k)∆WT

j (k)P(k)L−1(k)
)
L(k)e(k)

+ eT (k)LT (k)
(
Ŵ▷

j (k)∆ϕj(k)

− L−T (k)PT (k)∆Wj(k)zj(k)
)

+ eT (k)
(
α1µ̂j(k)L

T (k)L(k)

+ α0ρj(k)P
T (k)P(k)

)
e(k)

+ ∆ϕT
j (k)∆W▷T

j (k)L(k)e(k)

+ eT (k)LT (k)∆W▷
j (k)∆ϕj(k) (63)

After the pre-training phase, the errors are sufficiently
small and hence the last two terms which are of O3 are
negligible as compared to the other terms which are of
O2. Also, let the matrix P(k) be chosen so that ξ(k) ≜
Ŵ▷

j (k)∆ϕj(k) − L−T (k)PT (k)∆Wj(k)zj(k) is zero or
sufficiently small, then the equation (63) becomes

∆V (k) = − δT (k)L(k)e(k)− eT (k)LT (k)δ(k)

+ eT (k)
(
α1µ̂j(k)L

T (k)L(k)

+ α0ρj(k)P
T (k)P(k)

)
e(k) (64)

Similarly to the one-layer update, if the activation func-
tions in σ are monotonically increasing and their deriva-
tives are bounded by fσ, comparing between e(k) in (52)
and δ(k) in (53), then:

i, the corresponding elements of e(k) and δ(k) have the
same sign, i.e.

ei(k)δi(k) ≥ 0, ∀i = 1..p (65)

ii, the absolute values of the elements of e(k) are less

than or equal to fσ times the corresponding elements
of δ(k), i.e.

|ei(k)| ≤ fσ|δi(k)|, ∀i = 1..p (66)

From the properties stated in (65), (66), the following
inequality can be assured

∆V (k) ≤ − 2

fσ
eT (k)L(k)e(k)

+ eT (k)
(
α1µ̂j(k)L

T (k)L(k)

+ α0ρj(k)P
T (k)P(k)

)
e(k) (67)

When L(k) is chosen such that

2

fσ
L(k)−

(
α1µ̂j(k)L

T (k)L(k)

+ α0ρj(k)P
T (k)P(k)

)
> 0 (68)

then ∆V (k) is non-positive for any e(k). That means,
the value of the objective function is a non-increasing
sequence V (k+1) < V (k). Moreover, since the function
V (k) is non-negative, which means that it is bounded
from below, we have ∆V (k) converges as k increases.
Thus, from (67), e(k) converges as k increases.

However, to achieve

ξ(k) = Ŵ▷
j (k)∆ϕj(k)− L−T (k)PT (k)∆Wj(k)zj(k)

≈ 0 (69)

is not straightforward as it depends on the choices of
ϕj . Let us now analyze the choice of P(k).

Discussions: Setting P(k) = ΘT (k)Ŵ▷T
j (k)L(k),

where Θ(k) ∈ Rhj×hj , we have

ξ(k) = Ŵ▷
j (k)

(
∆ϕj(k)−Θ(k)∆Wj(k)zj(k)

)
(70)

To achieve ξ(k) ≈ 0, the matrix Θ(k) should be chosen
such that ∆ϕj(k)−Θ(k)∆Wj(k)zj(k) ≈ 0, or

∆ϕj(k) = ϕj(Wjzj(k))− ϕj(Ŵj(k)zj(k))

≈ Θ(k)∆Wj(k)zj(k) (71)

Noting that the activation functions in the vector ϕj act
element-wisely, therefore it is clearer to look at each ele-
ment of the vector ∆ϕj(k). Its i

th element is denoted as
∆ϕj,i(k) = ϕj,i(wj,rizj(k))− ϕj,i(ŵj,ri(k)zj(k)) where

wj,ri, ŵj,ri(k) are the ith rows of matrices Wj ,Ŵj(k),
respectively. Now let us look at the choice of Θ(k) with
different activation functions ϕj .

It is interesting to note that if the activation functions in
the vectorϕj are chosen as the ReLUs, which are defined
as ϕ(x) = x if x > 0, and ϕ(x) = 0 if otherwise. Hence,
we have ∆ϕj,i(k) =

• ∆wj,ri(k)zj(k) ifwj,rizj(k) ≥ 0 and ŵj,ri(k)zj(k) ≥
0;

• 0 if wj,rizj(k) ≤ 0 and ŵj,ri(k)zj(k) ≤ 0;
• wj,rizj(k) if wj,rizj(k) ≥ 0 and ŵj,ri(k)zj(k) ≤ 0;

10



• −ŵj,ri(k)zj(k) ifwj,rizj(k) ≤ 0 and ŵj,ri(k)zj(k) ≥
0.

We consider wj,rizj(k) and ŵj,ri(k)zj(k) which are
close to each other after the pre-training phase. Hence,
in the last two cases above where they are of opposite
signs, they should be sufficiently small. Therefore, it can
be considered that for these last two cases ∆ϕj,i(k) ≈ 0.
Hence, the matrix Θ(k) in (71) can be chosen as a di-
agonal matrix diag{θ1(k), θ2(k), . . . , θhj (k)} where the
diagonal elements are

θi(k) =

{
1 if ŵj,ri(k)zj(k) ≥ 0

0 otherwise
(72)

Looking back at (72), the value of θi(k) is actually the
derivative of the ReLU function

θi(k) = ϕ̂′
j,i(k) =

dϕj,i(x(k))

dx(k)

∣∣∣
x(k)=ŵj,ri(k)zj(k)

(73)

Generalizing to any differentiable function, we set
Θ(k) = Φ′

j(k) with Φ′
j(k) = diag{θ1(k), θ2(k), . . .,

θhj
(k)} where θi(k) is defined in (73). With this first

order approximation, we have

ϕj(Wjzj(k))− ϕj(Ŵj(k)zj(k)) ≈ Φ′
j(k)∆Wj(k)zj(k)

Hence, equation (71) is satisfied. Now, replace thematrix
P(k) into (56) and rewrite the full update law in (55)
and (56) as follows

Ŵ▷
j (k + 1) = Ŵ▷

j (k) + α1L(k)e(k)ϕ̂
T

j (k) (74)

Ŵj(k + 1) = Ŵj(k) + α0Φ
′T
j (k)Ŵ▷T

j (k)L(k)e(k)zT
j (k)

(75)

It can be seen that these update laws are similar to the
first order gradient descent when the activation func-
tions at the output layer are linear.

The complete condition (68) can now be written as

2

fσ
L(k)−

(
α1µ̂j(k)L

T (k)L(k)

+ α0ρj(k)L
T (k)Ŵ▷

j (k)Φ
′
j(k)

× Φ′T
j (k)Ŵ▷T

j (k)L(k)
)
> 0 (76)

The above condition suggests that the training at the
fine-tuning stage should be done with small gains by set-
ting small values of α0 and α1 so as to ensure conver-
gence. Similarly, the gain matrix L(k) can be initialized
to any arbitrary value, and then adjusted automatically
by monitoring the condition in each update and reduc-
ing it if necessary.

Remark 5: In the analysis of the two-layer update al-
gorithm in the FPL method, condition (71) has been
used for proving the convergence. This condition sug-
gests that the two-layer update algorithm should be used
for fine tuning so as to ensure convergence. That is, a
pre-training phase should first be conducted by using
the inverse layer-wise learning so that the error is rela-
tively small after pre-training. Therefore, based on the
convergence analysis, we propose in this paper that the

training should be done in two phases: pre-training and
fine-tuning, and the condition for the gain matrix in (76)
can be used in the latter phase of training of the net-
work. It is also worth noting that such condition is not
required in the analysis of the inverse layer-wise learning
in section 3.

Remark 6: In case of having an insufficient number
of hidden neurons and/or in presence of measurement
noise, similar to Remark 4, it can be shown that if

∥e(k)∥ ≥
b

2
(

2Lm
fσM

− dML2
M

)
[
4Lm

fσM
+

2LM

fσm

+

√
8Lm

fσM
dML2

M +
8LM

fσm

(
4Lm

fσM
− dML2

M

)
+

(
2LM

fσm

)2
]
(77)

and
2Lm

fσM
− dML2

M > 0 (78)

then ∆V (k) ≤ 0. Here b is the upper bound of the NN
approximation error and measurement noise, and dM is
a positive constant such that

eT (k)
(
α1µ̂j(k)L

T (k)L(k)

+ α0ρj(k)P
T (k)P(k)

)
e(k) ≤ dML2

M∥e(k)∥2 (79)

Therefore, there exists an ultimate bound such that the
error always stay within the bound after reaching it.
Noting from (77) that the bound would tend to zero
when the NN approximation error and noise tend to zero.

4.3 Summary of Forward Progressive Learning Algo-
rithm

The overall algorithm for learning of each SLFN in the
FPL is described as follows:

(i) The first phase: Pre-train the SLFN following the
steps in subsection 4.1.

(ii) The second phase: Fine-tuning of the SLFN:
(a) For each data sample (zj(k),y(k)) in the training

set:
(1) Calculate ŷ(k) using (50).
(2) Calculate e(k) = y(k)− ŷ(k).
(3) Update the weight matrices using laws (74)

and (75) where L(k) should satisfy (76).
(b) Move to the next training sample and repeat (a)

(steps (1) to (3)) until all the samples in the train-
ing set have been used.

(c) When all the data samples in the training set have
been used → finish 1 loop. The training can take
more than 1 loop if necessary.

5 Online Kinematic Control of Robot Manipu-
lators

In this section, we show how the results can be adapted
for online learning of robot kinematics without any mod-
eling.

At each sampling time instance k, the rate of change of
joint variables q̇(k) is related to the rate of change of
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position and orientation of the end effector in sensory
space ẋ(k) as

ẋ(k) = J(q(k))q̇(k) (80)

where J(q(k)) is the overall Jacobian matrix from joint
space to sensory task space.

The relationship in equation (80) can be approximated
by a multilayer network whose output is given in equa-
tion (3)

ẋ(k) = J(q(k))q̇(k) = yNN (Wj |nj=1, q(k), q̇(k)) (81)

It can be seen that the learning algorithms in section 3
and section 4 can be directly applied for offline learning
by setting y = ẋ and inputting to the network q, q̇.
However, for online robot control, a desired trajectory is
specified and hence the learning algorithms need to be
adapted for online learning purpose.

The estimated output of the network at the kth step of
online learning is given as

˙̂x(k) = Ĵ(q(k),ŴΣ(k))q̇(k)

= yNN (Ŵj(k)|nj=1, q(k), q̇(k)) (82)

where ŴΣ(k) stands for all the estimated weight matri-

ces Ŵj(k) for j = 1, 2, . . . , n.

Let the reference joint velocity q̇ based on the sensory
task space feedback be proposed as follows

q̇(k) = Ĵ†(q(k),ŴΣ(k))(ẋd(k)− α∆x(k)) (83)

where Ĵ†(q(k),ŴΣ(k)) is the pseudoinverse matrix of

the estimated Jacobian Ĵ(q(k),ŴΣ(k)); α is a positive
scalar; ∆x(k) = x(k)−xd(k); xd(k) and ẋd(k), respec-
tively, are the desired position and velocity of the end
effector in the sensory task space. Premultiplying (83)

by Ĵ(q(k),ŴΣ(k)) gives

Ĵ(q(k),ŴΣ(k))q̇(k) = ẋd(k)− α∆x(k) (84)

Subtracting (81) and (84) gives

J(q(k))q̇(k)− Ĵ(q(k),ŴΣ(k))q̇(k)

= ẋ(k)− ẋd(k) + α∆x(k) = ∆ẋ(k) + α∆x(k)(85)

Let ε(k) ≜ ∆ẋ(k)+α∆x(k) be the online feedback error
in online learning, from (81) and (82) we have

ε(k) = yNN (Wj |nj=1, q(k), q̇(k))

− yNN (Ŵj(k)|nj=1, q(k), q̇(k)) (86)

Hence, the online feedback error ε(k) here is equal to the
output estimation error as seen in (51). By using ε(k)
for the update laws in section 4 to train the network, the
convergence of this error can be guaranteed.

In most robot systems, the joint positions are mea-
sured by encoders and the joint velocities are obtained
from differentiation of the positions. Similarly, for task
space sensory feedback control, the positions of the end-
effector are measured by a sensor such as a camera and
the velocities are obtained from differentiation.

6 Case Studies

In this section, we present four case studies to illustrate
the performance of the proposed learning algorithms.
The first experiment is on a multivariable function ap-
proximation problem. Next, two classification problems
with the classical MNIST and CIFAR-10 databases are
presented. Finally, a regression problem with an online
tracking control task for a UR5e manipulator is also pre-
sented.

6.1 Nonlinear function approximation

We considered the nonlinear function:

y(z) = e0.5z1sin(
π

4
z2) + 0.2(z1 + z2)

2 (87)

The training and test data were collected randomly in
the range [−2, 2] of z. The training set contained 100
examples and the test set contained 20 examples.

The structure of the fully connected network was as fol-
lows.

• A 2-hidden layer network with structure 2-50-50-1 (2
inputs, 50 and 50 units in hidden layers, 1 output).
The activation functions at hidden layers are modified
softplus f(x) = log(0.8+ex) and those for the output
layer are identity f(x) = x.

With the structure of 2-50-50-1, the full network was
trained by FPL method through training two smaller
SLFNs sequentially: 2-50-1 (Subnet I), 50-50-1 (Subnet
II). Each subnet was trained in 2 phases: pre-training
with 1000 loops and fine-tuning with 50000 loops.

The results for the training and test sets are shown in
Fig. 5a and Fig. 5b. The mean square errors (MSEs) for
these training and test sets are 1.05e-04 and 3.62e-04
respectively.
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Fig. 5. Results for the training set and test set in the function
approximation task.

6.2 MNIST Database

We considered the same network structure as in subsec-
tion 3.4, which was 784-300-100-50-10. Inspired by some
of the configurations used in [48,49] for the same clas-
sification task, we had tested a few network structures
and finally settled with the above architecture which
was sufficiently deep with reasonable number of neu-
rons.We call it the full network. The activation functions
used at hidden layers of this full network were ReLU
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Table 2
Convergence of FPL and SGD on Subnet I with different
gains

Gains FPL SGD

1000, 100, 10 converge diverge

0.1, 0.01, 0.001 converge converge

Table 3
Training & test accuracies (%) by FPL and SGD for MNIST
dataset

FPL SGD

training test training test

Running

5 times

99.94 98.59 99.81 98.47

99.93 98.37 99.81 98.30

99.91 98.43 99.78 98.38

99.92 98.38 99.81 98.26

99.89 98.42 99.78 98.41

Mean values 99.92 98.44 99.80 98.36

f(x) = max(0, x) and those at output layer were sigmoid
f(x) = 1/(1 + e−x).

With the structure of 784-300-100-50-10, the full net-
work was trained through training three smaller single
layer feedforward networks (SLFNs) sequentially: 784-
300-10 (Subnet I), 300-100-10 (Subnet II), and 100-50-
10 (Subnet III). The activation functions used at the
hidden layer of all three nets were the same as those at
the hidden layers of the full network (ReLU), and the
output activation functions of the three nets were also
the same as those of the full network (sigmoid). Each
SLFN was trained in 2 phases: pre-training using one-
layer update and fine-tuning using two-layer update. In
the pre-training phase of each net, the identity output
was used, and in the fine-tuning phase, the sigmoid out-
put was used. After Subnet I (784-300-10) had been fully
trained, its input weights (the layer 783-300) were kept
and frozen, while its output weights (300-10) were dis-
carded. This process creates amodified input layer which
has a dimension of 300. This new input was fed into Sub-
net II (300-100-10) and the training process of Subnet
II began. Similarly, after Subnet II had been trained,
a modified input layer of dimension 100 was created.
Training of Subnet III (100-50-10) took place afterwards.

The choice of gain matrices in pre-training phase of the
three nets could be done similarly to the subsection 3.4,
which is by calculating from the condition in (29). In fine-
tuning phase, the gain matrix should satisfy the condi-
tion stated in (76). This condition seems to suggest that
the training at the ending or fine-tuning stage should
be done with a small gain so as to ensure convergence.
In practice, the gain was initially set to some value, and
then adjusted automatically by monitoring the condi-
tion in each update and reducing it if necessary.

The proposed FPL algorithm was compared with the
SGD method where the network was trained for all lay-
ers together. We first tested the convergence of the FPL
and SGD algorithms on an SLFN whose structure was

the same as Subnet I above by using various different
gains (matrix L in FPL and learning rate in SGD). Since
at this stage FPL iterates for 1 training example at a
time, the batch size in the case of SGD was also set as
1 for consistency. Table 2 shows a summary of the re-
sults. Noting that for FPL, the gain matrix was for ini-
tial setting only since it can be adjusted automatically
by checking the condition (76) during the training pro-
cess. It is seen from the table that FPL can guarantee
the convergence for a wide range of learning gain, while
divergence can occur in SGD in cases where the gain is
large. Another case study on online kinematic control of
robot is presented in subsection 6.4.1 to illustrate the
performance of FPL as compared to SGD in dealing with
new tracking tasks or new circumstances.

After testing the convergence, we compared the training
and test accuracies of the two methods. The learning
rate (LR) for SGD was chosen small enough such that
the loss function converged. The LR was initially set at
0.05, the number of epochs was 100, and the batch size
was 1. The LR was reduced by 2 after half of number of
epochs and by 4 after 3/4 of number of epochs. For the
FPL, the number of loops for training of the last layer
in pre-training phase was 2. In the fine-tuning phases,
the initial setting of the gain matrix for all nets was L =
diag(0.01, · · · , 0.01). For each of the three nets, it took
28 loops with the gain scheduled to be decreasing when
the loop number increased. To evaluate the effectiveness
and consistency of the proposed method with different
initial weights and random feed of training examples,
we ran 5 times for each of FPL and SGD methods. The
results in the 5 runs did not deviate much for both SGD
and FPL. In each time, the accuracy for the test set was
the maximum value (of the whole process with SGD,
and of the process of training Subnet III with FPL),
and the accuracy for the training set was chosen at the
epoch where the test accuracy peaked. We then took
average of the five values to get the mean training and
test accuracies. Similar to the practice in the experiment
in subsection 3.4, since we wanted to observe the best
achievable prediction for each method, no validation set
was used. Instead, both SGD and FPL methods were
evaluated in the same manner using the test set.

The accuracies on training set and test set of the two
methods are given in Table 3. It can be seen that the final
test results of the FPL algorithm are quite similar to the
corresponding results obtained by the SGD method.

6.3 CIFAR-10 Database

The next classification task is based on CIFAR-10
database [51].

• CIFAR-10 is a database that contains color images of
objects in 10 classes. It has 50,000 examples in the
training set and 10,000 examples in the test set. Each
of these images has the size of 32×32 pixels.

For CIFAR-10 dataset, we used a pre-trained convolu-
tional neural network (ResNet-18) to get the output of
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the convolutional part. This is one of the common tech-
niques in transfer learning where the convolutional lay-
ers are fixed as feature extractor, and only the classifier
layers are trained for the specific task. The output or ex-
tracted features were then considered as the input of the
classifier part which was a network with several layers.
The output of the convolutional part had a dimension
of 512. The structure of the fully connected network was
as follows.

• A 2-hidden layer network with structure 512-200-80-
10 (200 units, 80 units in hidden layers). The acti-
vation functions at hidden layers are ReLU f(x) =
max(0, x) and at output layer are sigmoid f(x) =
1/(1 + e−x).

With the structure of 512-200-80-10, the full network
was trained through training two smaller SLFNs sequen-
tially: 512-200-10 (Subnet I), 200-80-10 (Subnet II).

The training and test accuracies of the proposed method
are compared with the SGD method. The SGD trains
all layers of each network all together, with batch size
set to be 1. The SGD method took 300 full epochs and
LR = 0.01 initially. For the FPL algorithm, in the pre-
training phase of the two nets, the number of loops
for training of the last layer was 2. In the fine-tuning
phases, the initial setting of the gain matrix for Sub-
net I was L = diag(0.002, · · · , 0.002) and for Subnet II
was L = diag(0.0005, · · · , 0.0005). It took 128 loops for
fine-tuning of Subnet I and 68 loops for Subnet II, and
the gains were scheduled to be decreasing when the loop
number increased. For each of FPL and SGD methods,
we ran 10 times. In each time, the accuracy for the test
set was the maximum value (of the entire process with
SGD, and of the process of training Subnet II with FPL),
and the accuracy for the training set was chosen at the
epoch where the test accuracy peaked. We then took av-
erage of the five values to get the mean training and test
accuracies.

The accuracies on training set and test set of the two
methods are given in Table 4. We can see that the final
test results of FPL method are quite similar to the corre-
sponding results obtained by SGD method. The slightly
lower mean training accuracy with similar test accuracy
for FPL indicates a marginally better generalization ca-
pability of our method over SGD in this particular prob-
lem.

Remark 7: The choice of LR is highly dependent on the
dataset as well as the training conditions [59,60]. It is one
of the hyper-parameters that needs to be chosen with
care since a high LR can lead to divergence while a low
LR would slow down the training process [60,61]. The
initial LRs used in the experiments of SGD were chosen
from several empirical trials to avoid divergence and to
achieve the highest accuracies for each dataset. As for the
proposed FPL, convergence is no longer an issue when
selecting an initial gain since the gain can be reduced
automatically during training by checking the condition
given in (76). Nevertheless, choosing a suitable initial

Table 4
Training & test accuracies (%) in FPL and SGD for CIFAR-
10 dataset

FPL SGD

training test training test

Running

10 times

94.49 88.24 94.41 88.20

94.14 88.22 94.85 88.17

93.98 88.12 94.17 88.14

94.17 88.19 94.62 88.12

94.41 88.19 94.78 88.20

94.41 88.32 94.71 88.17

94.28 88.15 94.61 88.20

93.99 88.14 94.41 88.24

94.39 88.26 94.74 88.16

94.46 88.17 94.71 88.21

Mean values 94.27 88.20 94.60 88.18

gain would still benefit the training process in terms of
training time and the final results. In order to observe
the best possible outcome for all compared methods, we
have set the best values for the initial gains for both SGD
and FPL such that the highest test accuracies have been
achieved.

6.4 Online Kinematic Control: UR5e Robot

Although it is good to ensure convergence of the deep
learning systems in classifications problems so as to es-
tablish a systematic method instead of trial and error
method for selection of learning gains, it may be some-
times arguable that the convergence analysis is not very
critical in classification problems since there is no harm
to redo the training if divergence occurs. However, for
online training of robots, convergence is crucial in as-
suring a safe operation at all time. In this section, we
firstly show the importance of convergence in the online
learning in robot control by comparing the performance
of SGD and FPL on the simulator. After that, we show
how a deep network can be built progressively by us-
ing FPL method such that the convergence of the on-
line feedback error is guaranteed on the real robot. By
repeating the operations, we shall show that the robot
can gradually learn to execute a task based on feedback
errors of the end effector without any knowledge of the
kinematic model.

The tracking control task was drawing a circle in 3D
space. The desired trajectory in sensory space is a circle
(C1) specified as

x1 = −0.4− 0.06 cos (ωt)− 0.18 sin (ωt)

x2 = 0.2 cos (ωt)− 0.02 sin (ωt)

x3 = 0.5 + 0.02 cos (ωt) + 0.06 sin (ωt) (88)

The units for the coordinates are meter (m). The circle
(C1) has a center at [−0.4, 0, 0.5] and a radius of 0.2 m.
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6.4.1 Convergence tests of SGD and FPL on the simu-
lator

Because of safety reason, we only tested SGD on the
simulator as there is no guarantee of convergence when
using SGD in online learning. For the purpose of com-
parison, FPL was also tested on the same simulator, be-
fore it was finally implemented on the actual robot (in
subsection 6.4.2).

We considered the major axis which includes the first 3
joints q1, q2, q3. A single hidden layer network was built
to approximate the Jacobian matrix of the UR5e robot
through the relationship in (80). To do that, we firstly
learned an SLFN with structure 3-12-3. That is, 3 in-
put nodes (for q1, q2, q3), 12 nodes in the hidden layer
and 3 output nodes (for ẋ1, ẋ2, ẋ3). The activation func-
tions used for the hidden layers were modified softplus
f(x) = log(0.8+ ex) and for the output layer were iden-
tity f(x) = x.

Since the kinematic model is unknown, we needed to first
manually move the robot around the desired trajectory
in order to collect data for offline training of the network.
The data of q, q̇ and ẋ were collected during the manual
movement. After getting the data, we trained the net-
work offline by using SGD method. Different from the
convergence test in the classification task, the learning
rate here was chosen such that the offline learning con-
verged. The obtained weights were then adopted as a
starting point for the learning of Jacobian matrix in the
online training.

We performed the online training using both SGD and
FPL on the simulator of UR5e. The robot was first
moved to an initial position so that the initial error was
zero. The training was then conducted by using the on-
line q̇ command as constructed in (83).

q̇(k) = Ĵ†(q(k),ŴΣ(k))(ẋd(k)− α∆x(k))

The weights of the network were subsequently updated
online using the SGD with estimation error ẋ(k)− ˙̂x(k)
and the FPL with online feedback error ε(k) in (85).

The matrix Ĵ(q(k),ŴΣ(k)) can be calculated based on

current joint variables q(k) and current weights ŴΣ(k).
With both methods, the same gain (learning rate) as
used in the offline learning phase was used. To test the
performance of the robot system in tracking new task,
the desired speed of the end effector was increased (3-5
times) as compared to the original speed when moving
the robot manually.

Fig. 6a shows the plot of the actual path of the robot end
effector by using SGD to approximate the Jacobian ma-
trix. It can be seen that the end effector deviates signifi-
cantly from the desired path during the on-line training.
The program terminated after some time, as the learn-
ing of the network became unstable causing interruption
in the calculation of Ĵ†(q(k),ŴΣ(k)). The result in Fig.
6b shows that the convergence can be ensured by using
FPL to achieve safe on-line learning.

Fig. 6. Desired and actual trajectories of the robot end-effec-
tor in the convergence test of online learning using SGD and
FPL methods: a) SGD - Divergence occurred even though
the same learning rate as in offline learning phase was used;
b) FPL - Convergence was guaranteed by using the proposed
online adjustment of gain matrix.

6.4.2 FPL on the real robot

With the real robot, the real values of joint variables q
and joint velocities q̇ were collected using the internal
communication channel of the robot. The positions x
of the end effector in sensory space were recorded using
a Kinect RGB-D camera. The precision of the RGB-D
camera is approximately 2 mm for measuring distance
between 50 cm to less than 1 m, which was the operating
range of the robot in our experiments. The sampling time
was about 0.07 s. The velocities ẋ were then calculated
by differentiating the positions x.

For the experiment on real robot, a setpoint control task
and a trajectory tracking control task were defined. For
the setpoint control task, the robot end-effector was com-
manded to move to specific positions in the task space.
The setpoint was changed after an interval of every 30
seconds. For the trajectory tracking task, the desired tra-
jectory was the circle (C1) specified by (88). The angular
frequency (or angular speed) ω in (88) was planned in 5
phases. In the first 5 seconds, the desired ω was 0 rad/s,
which aimed to keep the robot at the initial position. The
next 30 seconds (5 s - 35 s) was the acceleration period,
when the desired angular frequency increased gradually
from rest at 0 rad/s to full speed at 2π/30 rad/s (2 rpm).
After that, the robot end effector would move 3 rounds
(revolutions) at full speed in 90 seconds (35 s - 125 s),
before decelerating from full speed to 0 rad/s in the next
30 seconds (125 s - 155 s). Finally, the robot would be
at rest for the last 5 seconds.

Building and training the network: We aimed to
build a two-hidden layer network with structure 3-12-
12-3 to approximate the Jacobian matrix of the UR5e
robot through the relationship in (80). To do that, we
firstly learned an SLFN with structure 3-12-3 (Subnet
I) (similar to the network used in the simulator above).
After Subnet I had been trained, we discarded its output
weights and then added one new hidden layer with 12
neurons. Because the input weights of the newly formed
network were frozen, the training process was continued
with a network of structure 12-12-3 (Subnet II). The 2
subnets were trained sequentially and not alternately.
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That is, Subnet I was trained first. After Subnet I had
been trained in the online task, there was no more train-
ing of Subnet I taking place. Subnet II was then built
and trained in a similar way as Subnet I. The training
process ended after Subnet II had been trained in the
online task.

Training of the first hidden layer network (Subnet
I): Though the proposed online kinematic control algo-
rithm in section 5 can be applied directly, the transient
performance at the initial stage of learning may not be
good since the controller is completely model-free at the
initial stage. To overcome this issue, we adopt a combi-
nation of offline and online trainings so that real-time
feedback control using deep networks can be established
eventually.

After getting the manual data, we first trained the net-
work offline by one-layer pre-training (as in subsection
4.1) and two-layer fine-tuning (as in subsection 4.2). The
obtained weights were then adopted as a starting point
for the learning of Jacobian matrix in the online train-
ing.

For online training, the robot was first moved to an ini-
tial position near the first setpoint for the task of set-
point control, and to an initial position so that the initial
error was zero for the trajectory control task. The train-
ing was then conducted by using the online q̇ command
as constructed in (83). The weights of the network were
subsequently updated online using the two-layer update
with error ε(k). The matrix Ĵ(q(k),ŴΣ(k)) can be cal-
culated based on current joint variables q(k) and current

weights ŴΣ(k).
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Fig. 7. The actual (solid lines) and desired (dashed lines)
positions of robot end-effector in setpoint control tasks.

Training of the secondhidden layer network (Sub-
net II): The learning of this net was similar to that of
Subnet I. Again, offline training was first performed to
avoid poor transient performance. The training data for
offline training of Subnet II were a combination of half
of the amount of manual data and half of the amount of
new data generated in the online training of Subnet I.
After offline training, the online control task was done
similarly to Subnet I.

The actual and the desired positions in the setpoint con-
trol task are shown in Fig. 7a. For the trajectory track-
ing task, the desired and actual trajectories for online
learning are shown in Fig. 8, and the tracking error is
shown in Fig. 9a. It can be observed that the errors are
very small and the actual trajectory follows the desired

Fig. 8. Desired and actual trajectories of the robot end-ef-
fector in sensory space for training cicle (C1).

one very closely. This tells us that building network us-
ing FPL can guarantee the convergence of the tracking
errors in online learning control.

Testing of the trained network: To test the gener-
alization property of the network, we used the Jacobian
matrix obtained after online training of Subnet II above
for a tracking control task with a new trajectory which
was also a circle (C2) with radius of 0.15 m. This circle
was on a new plane which is 0.1 m lower along the x3-axis
compared with (C1). The maximum speed of the move-
ment was at 2π/20 rad/s (or 3 rpm) and the direction
of the movement was opposite. To illustrate the general-
ization property, we also tested the network trained un-
der the task of setpoint control for a new set of setpoints
that were not used in the training.

Fig. 7b shows the control performance for the unseen
setpoints in the setpoint control task. Fig. 9b and 9c
show the tracking errors for the new trajectory (C2). The
initial errors for x3-axis are large (about 0.1 m) as the
robot did not start on the new desired trajectory. The
initial position of the end effector was set as the same as
the old trajectory (C1) used for training. Fig. 9b shows
the tracking errors when the Jacobian is used directly
without any update of the weights. It can be seen that
the peaks in the full-speed period (35 s - 125 s) are similar
to each other (at about 0.01 m), which means that the
errors are the same for each evolution of the movement
of the end effector. This is understandable as the weights
are kept constant during the new tracking control task.
Fig. 9c shows the tracking errors when the Jacobian is
updated during the online control. Only the weights of
the last layer were trained during online learning. It is
observed that the peaks in the full-speed period (35 s -
125 s) now are much smaller than the previous case.

Hence, from this case study, we can see that the FPL
framework ensures the convergence of the tracking errors
in the online learning. The framework also gives quite
good generalization in this experiment in the sense that
even though the test setpoints and trajectory have not
been used for training the networks, the networks still
perform well on these unseen test data. And only the
weights of the last layer are updated during online con-
trol task so as to achieve better tracking performance
for the new trajectory.
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Fig. 9. Performance of the online kinematic control task on the real UR5e robot. The first figure is for the training circle (C1):
a, tracking error (with respect to time) of every coordinate. The last 2 figures are for the testing circle (C2): b, tracking errors
when the weights of the network are fixed and c, tracking errors when the last layer of the network is updated.

7 Conclusion

In this paper, we have presented a layer-wise deep learn-
ing framework in which a multilayer fully connected net-
work can be built and trained such that the convergence
of the algorithm is ensured. The case studies of clas-
sification tasks using MNIST and CIFAR-10 databases
have shown that using the learning framework can yield
similar accuracy as gradient descent method while en-
suring convergence. It has also been shown that a robot
can learn to execute an online kinematic control task in
a safe and predictable manner without any modeling.
We believed that the proposed method would widen the
potential applications of deep learning in the areas of
robotics and control.

This paper considers fully connected deep neural net-
works which can be used for general classification and
approximation problems. For image classification and
pattern recognition problems, a special and important
class of deep networks called convolutional neural net-
works (CNNs) (which include convolutional layers and
fully connected layers) are found to bemore effective. Fu-
ture work would thus be devoted to developing layer-wise
learning method for CNNs and analyzing their learn-
ing convergence. The parameter sharing mechanism in
CNNs, which apparently differs from the fully connected
layers in MLFNs, would be an interesting topic to ex-
plore. Another possibility would be easing the require-
ment of pre-training in the two-layer update algorithm.
Apart from layer-wise learning, future work would also
be devoted to developing methodology to update the
weight matrices of all layers concurrently. From the as-
pect of applications, other online robot control problems
in dynamic vision basedmanipulators or robotic systems
with different kinematic and dynamic structures such as
mobile robots, multiple robot systems, etc would also be
worth exploring.
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