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Instability Margin Analysis for Parametrized LTI

Systems with Application to Repressilator

Shinji Hara, Tetsuya Iwasaki, Yutaka Hori

Abstract

This paper is concerned with a robust instability analysis for the single-input-single-output
unstable linear time-invariant (LTI) system under dynamic perturbations. The nominal system
itself is possibly perturbed by the static gain of the uncertainty, which would be the case when
a nonlinear uncertain system is linearized around an equilibrium point. We define the robust
instability radius as the smallest H∞ norm of the stable linear perturbation that stabilizes the
nominal system. There are two main theoretical results: one is on a partial characterization of
unperturbed nominal systems for which the robust instability radius can be calculated exactly,
and the other is a numerically tractable procedure for calculating the exact robust instability
radius for nominal systems parametrized by a perturbation parameter. The results are applied
to the repressilator in synthetic biology, where hyperbolic instability of a unique equilibrium
guarantees the persistence of oscillation phenomena in the global sense, and the effectiveness
of our linear robust instability analysis is confirmed by numerical simulations.

Keywords: analysis of systems with uncertainties, robust instability, instability margin, periodic
oscillation, repressilator

1 Introduction
Feedback control to maintain non-equilibrium state such as oscillation has been recognized as an
important design problem for engineering applications including robotic locomotion (Grizzle et al.
2001, Wu & Iwasaki 2021). Such non-equilibrium state may be robustly maintained if every equi-
librium point is hyperbolically unstable (Pogromsky et al. 1999). This fact motivates robust in-
stability analysis of an equilibrium point subject to perturbations. For linear systems, analysis
of robust instability is equivalent to finding the minimum norm stable controller that stabilizes
a given unstable plant, which is known to be extremely difficult due to the requirements of the
strong stabilization (Youla et al. 1974) and the norm constraint on the controller. The analysis is
further complicated by the fact that equilibrium points may change due to perturbations in non-
linear dynamical systems. When the equilibrium is perturbed, the linearized dynamics would
be altered, and hence an analysis of a fixed linearized system no longer characterizes the robust-
ness property of the equilibrium point. This issue has been pointed out in the context of a robust
stability analysis for Lur’e type nonlinear systems (Wada et al. 1998, 2000), as well as in a robust
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bifurcation analysis (Inoue et al. 2015). Thus, we need to develop a theory to address this issue
properly with a general framework to lay a foundation for the linear robust instability theory.

In this paper, we formally define the robust instability radius (RIR) for single-input-single-output
(SISO) unstable linear time invariant (LTI) systems subject to dynamic perturbations (Inoue et al.
2013a) in a manner analogous to the classical robust stability radius (Hinrichsen & Pritchard 1986).
A key technical result shows that the RIR analysis reduces to a marginal stabilization problem,
leading to two conditions under which the exact RIR is given as the inverse of the static or peak
gain of the system. We will then extend our analysis to rigorously take account of the possible
change of the nominal linear dynamics caused by the perturbation. The main theoretical result
of this part leads to a computationally tractable procedure to find the exact RIR for a class of
parametrized LTI systems. Finally, the effectiveness of the theoretical results will be demonstrated
through numerical simulations by an application to the repressilator (Elowitz & Leibler 2000).

Our approach builds on the preliminary result (Hara et al. 2020), which formalized the robust
instability analysis problem for a fixed LTI system by introducing a notion of the RIR. The con-
tributions of the present paper beyond (Hara et al. 2020) include theoretical justification of the
marginal stabilization approach, a characterization of third order systems for which the RIR can
be found exactly, and an extension to the parametrized LTI systems to account for the change of
the nominal dynamics due to the perturbation.

The remainder of this paper is organized as follows. Sections 2 and 3 are devoted to the analyses
of the RIR for fixed and parametrized LTI systems, respectively. The effectiveness of the theo-
retical results is confirmed by an application to the repressilator model in Section 4. Section 5
summarizes the contributions of this paper and addresses some future research directions.

We use the following notation. The set of real numbers is denoted by R. ℜ(s) denotes the real part
of a complex number s. The set of real rational functions bounded on jR is denoted by RL∞, and
its stable subset by RH∞. The norms in these linear spaces are denoted by ‖ · ‖L∞

and ‖ · ‖H∞
,

respectively. The open left and right half complex planes are abbreviated as OLHP and ORHP,
respectively.

2 Robust Instability Radius for LTI Systems
This section is devoted to the analysis of the robust instability radius (RIR) for a given unstable
transfer function g(s) ∈ RL∞. We will provide two classes of g(s) for which the RIR can be
characterized exactly.

2.1 Definition and Preliminary Results on RIR
Our target system is an unstable system represented by the transfer function g(s) which has no
poles on the imaginary axis, i.e., g(s) ∈ RL∞. Given such g(s), we introduce a set denoted by S(g)
as follows: It is the set of RH∞ functions δ(s) that internally stabilizes g(s) with positive feedback,
that is, S(g) is defined as

S(g) :=
{

δ(s) ∈ RH∞ :

δ(s)g(s) = 1 ⇒ ℜ(s) < 0
δ(s) = 0,ℜ(s) > 0 ⇒ |g(s)| <∞

}

. (1)

The first condition of S(g) means that the characteristic roots of the positive feedback connection
of δ(s) and g(s) are in the OLHP, and the second one implies that δ(s) and g(s) have no unstable
pole/zero cancellation for the internal stability. In this sense, ”stabilization” in this paper means
”internal stabilization.”

Let us first define the robust instability radius (RIR) for a given g(s) ∈ RL∞, which will be useful
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for later developments. The RIR for g(s), denoted by ρ∗, is defined to be the magnitude of the
smallest perturbation that stabilizes g(s), i.e.,

ρ∗ := inf
δ∈S(g)

‖δ‖H∞
. (2)

It is clear from the condition for the strong stabilizability in (Youla et al. 1974) that S(g) is nonempty
and hence ρ∗ for g(s) is finite if and only if the Parity Interlacing Property (PIP) is satisfied, i.e.,
the number of unstable real poles of g(s) between any pair of real zeros in the closed right half
complex plane (including zero at ∞) is even.

Some lower bounds of ρ∗ are known from the literature as follows.

Lemma 1 (Inoue et al. 2013a,b, Hara et al. 2020) Let g(s) ∈ RL∞ be given. Suppose g(s) is strictly
proper and unstable. Then

ρ∗ ≥ ρp := 1/‖g‖L∞
, ‖g‖L∞

:= sup
ω∈R

|g(jω)|. (3)

Moreover, if g(s) has an odd number of unstable poles (including multiplicities) then we have

ρ∗ ≥ ρo := 1/|g(0)|. (4)

The lower bounds given above can readily be calculated, immediately giving an estimate for the
RIR. It will turn out later that each of these bounds is tight for a certain case, providing the exact
value of the RIR ρ∗. To that end, we will develop an approach for characterizing an upper bound
in a tractable manner, and provide conditions under which the upper bound coincides with one
of the lower bounds ρo and ρp. These are addressed in the following subsections.

2.2 Upper bound via marginal stabilization
An upper bound is obtained as ‖δ‖H∞

if a stable stabilizing perturbation δ(s) is found. Since
the closed-loop poles for such perturbation are in the open left half plane, a scaled perturbation
(1−ε)δ(s) is also stabilizing for sufficiently small ε > 0, and has smaller norm (1−ε)‖δ‖H∞

, yield-
ing a better (smaller) upper bound. This observation leads to the fact that the best (least norm)
upper bound is necessarily obtained from a perturbation that marginally stabilizes the closed-
loop system. Hence, we may focus on the search for a marginally stabilizing, stable perturbation
δo(s). However, such δo(s) does not necessarily give an upper bound since a slight perturbation
of δo(s) may not be able to (strictly) stabilize the closed-loop system in general. The following
result shows that an upper bound can always be obtained if marginal stability is achieved with a
single mode on the imaginary axis.

Proposition 1 Consider real-rational transfer functions g(s) and δo(s) having no unstable pole/zero can-
cellation between them, where the former is strictly proper and the latter is proper and stable (possibly
a real constant). Suppose δo(s) marginally stabilizes g(s) with the closed-loop characteristic roots of
δo(s)g(s) = 1 all in the OLHP except for either a pole at the origin or a pair of complex conjugate poles
on the imaginary axis. Then, for almost1 any proper stable transfer function δ1(s), there exists ε ∈ R of
arbitrarily small magnitude |ε| such that the positive feedback with δε(s) := δo(s) + εδ1(s) internally
stabilizes g(s).

See Appendix A for a proof of the proposition.

When a stable perturbation δo(s) achieves marginal stability with multiple modes on the imagi-
nary axis (which is a rather rare occasion), every slight modification of δo(s) may move at least

1This means that an arbitrarily chosen δ1(s) may or may not work to stabilize, but when it does not work, a slight
modification of it can always make it work.
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one purely imaginary pole into the right half plane. In this case, ‖δo‖H∞
is not an upper bound on

the RIR. However, Proposition 1 shows that, when there is a single mode on the imaginary axis
(which is generically expected), almost every perturbation of δo(s) moves the imaginary pole(s)
in a direction transverse to the imaginary axis, and hence it is always possible to strictly stabilize
the closed-loop system. Therefore, an upper bound can be obtained by searching for such δo(s).

Given the extreme difficulty of strong stabilization with the minimum norm controller, Proposi-
tion 1 is significant because (a) the search for such marginally stabilizing δo(s) can be performed
systematically by restricting our attention to some specific class of transfer functions, and (b) this
approach is suitable for the search for the minimum norm, marginally stabilizing perturbation
δo(s). These claims are explained in the next section.

2.3 Search for marginally stabilizing perturbation
First note that marginal stability requires that δo(s) be chosen to satisfy

δo(jωc) = δc := 1/g(jωc), (5)

at a critical frequency ωc ≥ 0, so that s = jωc is a closed-loop pole. If we parametrize a class of
perturbations, then δo(s) satisfying (5) may be determined for each ωc ∈ R, and an upper bound
‖δo‖H∞

on the RIR is obtained when the resulting closed-loop poles (i.e. roots of δo(s)g(s) = 1)
are all in the OLHP except for s = ±jωc (let us call this property ωc-stability).

A reasonable candidate for the class of δo(s) is the set of all-pass transfer functions (Hara et al.
2020). An advantage of using all-pass functions is that the least upper bound on the RIR is ob-
tained for a given ωc since the gap in ‖δo‖H∞

≥ |δo(jωc)| is eliminated regardless of the value of
ωc. The simplest choice is the first (or zeroth) order all-pass function expressed as

δo(s) = b ·
s− a

s+ a
, (a ≥ 0). (6)

There are two requirements for choosing the parameters (a, b) in δo(s). One is (5) and the other is
a ≥ 0 to assure stability 2 of δo(s). A simple calculation leads to |b| = |δc| and ∠(jωc−a)−∠(jωc+
a) + ∠(b) = ∠(δc), which gives the proper choice of (a, b) as follows:

a = ωc tanϕ, b = |δc|, (0 ≤ ϕ < π/2),
a = ωc tan(ϕ+ π/2), b = −|δc|, (−π/2 ≤ ϕ < 0),

(7)

where ϕ := ∠δc/2. Thus, for a given ωc ∈ R, the stable first order all-pass function (6) is uniquely
determined. The gain ‖δo‖H∞

is then an upper bound on the RIR if the ωc-stability is achieved by
δo(s). Sweeping over ωc ∈ R, the least upper bound within this framework can be calculated.

2.4 Simple classes of g(s) for which the exact RIR can be analytically charac-
terized

In view of Lemma 1, important cases occur when the ωc-stability is achieved at ωc = 0 or ωp,
where ωp is the peak frequency at which |g(jωp)| = ‖g‖L∞

holds. In these cases, the exact values
of the RIR is given by ρ∗ = 1/|g(jωc)| because the upper and lower bounds coincide. In particular,
we have the following:

• ρ∗ = ρo if g(s) satisfies Condition 1: g(s) ∈ RL∞ has an odd number of poles (including
multiplicities) in the ORHP, and the constant perturbation δo(s) = 1/g(jωc) achieves the
ωc-stability with ωc = 0.

2a = 0 is allowed since δo(s) becomes constant.
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• ρ∗ = ρp if g(s) satisfies Condition 2: g(s) ∈ RL∞ is unstable, and δo(s) in (6) with (7) achieves
ωc-stability at ωc = ωp.

While it is easy to construct δo(s) numerically for a given g(s) and check ωc-stability of the closed-
loop system, it remains open to fully characterize the class of g(s) which can be ωc-stabilized by
a first-order all-pass function. Here we present a subclass of third order systems for which the
above idea works. This class covers the simplest model of the repressilator in synthetic biology
as seen in Section 4.

Proposition 2 Consider the third order transfer function represented by

g(s) =
ζs− k

s3 + ps2 + qs+ ℓ
, k 6= 0 (8)

(i) g(s) satisfies Condition 1 if and only if

p > 0, ℓ < 0, q + ζℓ/k > 0, (9)

which implies ρ∗ = ρo := 1/|g(0)|.
(ii) g(s) satisfies Condition 2 if

p > 0, ℓ > pq, q2 < 2pℓ, (10)

which implies ρ∗ = ρp := 1/‖g‖L∞
.

See Appendix B for a proof of the proposition.

There are three remarks on the class of g(s) of the form (8) satisfying (10): (i) The requirement of
ℓ > pq is necessary and sufficient for g(s) to have two unstable poles, provided p > 0 and ℓ > 0,
which are guaranteed by the first and third inequalities in (10). (ii) The requirement of q2 < 2pℓ
is a sufficient condition for the infinity norm of g(s) to be attained at a non-zero frequency. (iii) A
class of third order systems represented by g(s) = k/((s + α)(s2 − βs+ γ2)) with 0 < β < γ < α
satisfies (10) and hence Condition 2, which was numerically verified earlier in (Hara et al. 2020).

3 RIR for Parametrized LTI Systems
Here we derive a general theoretical result to provide a computationally tractable method for
characterizing the exact robust instability radius µ∗ for a class of parameterized linear systems
based on the instability radius analysis in the previous section.

3.1 Definition of RIR µ∗

We consider a family of SISO transfer functions ge(s) parameterized by e ∈ R, where we assume
that ge(s) has at least one pole in the ORHP and no poles on the imaginary axis for all e ∈ E :=
(e−, e+) which includes the origin, i.e., e− < 0 < e+. For each e ∈ E, let ∆e be the set of all
perturbations δ(s) ∈ RH∞ that stabilizes ge(s) and satisfies δ(0) = e, i.e.,

∆e := {δ(s) ∈ S(ge) : δ(0) = e }. (11)

The objective is to calculate the robust instability radius µ∗ for ge(s) defined by

µ∗ := inf
e∈E

µ(e), µ(e) := inf
δ(s)∈∆e

‖δ‖H∞
, (12)

where we define µ(e) := ∞ if ∆e is empty and µ∗ := ∞ if ∆e is empty for all e ∈ E. Note that
ρ∗ is identical to µ(e) for ge(s) = g(s) except for the absence of the constraint on the static gain
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δ(0) = e. The idea is that ge(s) is the system obtained by linearization of a nonlinear system
around an equilibrium point, perturbed by the uncertainty δ(s) with static gain e.

As an example, let us consider a dynamically perturbed FitzHugh-Nagumo (FHN) neuron model
presented in (Hara et al. 2020). We will show how to derive the corresponding ge(s) based on the
uncertain FHN model

cv̇ = ψ(v)− (1 + δ(s))w, ψ(v) := v − v3/3,
τẇ = v + α− βw,

with positive constant parameters c, τ , α, and β, where the term w̃ := (1 + δ(s))w represents the
dynamically perturbed w with uncertainty δ(s). Let (v̄, w̄) be an equilibrium point, i.e.,

ψ(v̄) = (1 + e)w̄, v̄ = βw̄ − α

hold, where e := δ(0). It can be verified that the equilibrium is unique if 1 + e > β. Linearizing
the system around (v̄, w̄), the characteristic equation is given by 1 = δ(s)ge(s) with

ge(s) := 1/
(

cτs2 + (βc− τγ)s+ 1− βγ
)

,

where γ := ψ′(v̄) = 1− v̄2. Note that ge(s) depends on e through v̄ since γ is a function of e. The
perturbation δ(s) stabilizes the equilibrium when it stabilizes ge(s) and has the consistent static
gain δ(0) = e.

The term RIR refers to both ρ∗ for a fixed LTI system and µ∗ for parametrized LTI systems. While
the mathematical definitions of ρ∗ and µ∗ are different, both represent the smallest magnitude
of perturbations that stabilize the underlying system (or equilibrium). In the special case where
ge(s) is independent of e (i.e. the equilibrium does not move by perturbation δ(s)) and E = R,
the RIR µ∗ reduces to ρ∗. The final goal of this paper is provide a computable characterization
for the robust instability radius µ∗, which is the magnitude of the smallest perturbation δ(s) that
stabilizes the equilibrium point of the nonlinear system.

3.2 Lemmas for Exact Analysis
This section presents three lemmas as preliminaries. All the proofs are given in Appendix C. Let
us first examine the relationship between µ∗ and ρ∗. The minimum value of µ(e) over e ∈ E is µ∗

as seen in (12). A simple observation shows that µ(e) is closely related to the RIR for linear system
ge(s), denoted by ρ∗(e):

ρ∗(e) := inf
δ∈S(ge)

‖δ‖H∞
. (13)

In particular, ρ∗(e) is a lower bound of µ(e).

Lemma 2 For each e ∈ E, we have

µ(e) ≥ |e|, µ(e) ≥ ρ∗(e).

Based on the results for the linear case, we expect that

ρo(e) := 1/|ge(0)|, ρp(e) := 1/‖ge‖L∞
,

may play an important role in characterizing µ∗. In view of the results in the previous section,
ρ∗(e) is exactly characterized by ρo(e) or ρp(e), provided ge(s) satisfies Condition 1 or 2, respec-
tively. Hence, the key for characterizing µ∗ is to obtain the condition under which the lower
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bound ρ∗(e) on µ(e) is tight, in which case, µ∗ is given by the infimum of ρ∗(e) over e ∈ E. A
technical difficulty is that when a stabilizing perturbation δ(s) is found for ge(s), it is likely that
δ(0) = e is violated and hence such δ(s) cannot be used for the calculation of µ(e) in (12). The
following result is useful for adjusting the static gain of δ(s) by a high pass filter while preserving
the stabilizing property.

Lemma 3 Let γ ∈ R and scalar-valued, strictly proper, real-rational transfer function ℓ(s) be given.
Suppose ℓ(s) has an even number of poles (including multiplicities) in the ORHP and no poles on the
imaginary axis, all the roots of 1 = ℓ(s) are in the OLHP, and

|γ| < 1, ‖γℓ‖L∞
< 1 (14)

hold. Then, for sufficiently small ξ > 0, all the roots of

1 = f(s)ℓ(s), f(s) :=
s+ ξγ

s+ ξ
(15)

are in the OLHP.

Using Lemma 3 and the ideas from the RIR analysis, we can characterize µ(e) as follows.

Lemma 4 Fix e ∈ R, let a strictly proper transfer function ge(s) be given, and consider ∆e and µ(e)
in (11) and (12), respectively. Suppose |e| < ρp(e) := 1/‖ge‖L∞

holds and ge(s) satisfies the following
conditions:

(a) ge(s) satisfies Condition 2.

(b) ge(s) has a nonzero even number of poles (including multiplicities) in the ORHP.

Then µ(e) = ρp(e) holds.

Condition (a) in Lemma 4 guarantees that ρp(e) is the exact linear RIR for ge(s). However, the
smallest perturbation δ(s) does not move the equilibrium to a point at which ge(s) is the corre-
sponding linearization unless δ(0) = e. Condition (b) allows for the use of Lemma 3 to adjust the
static gain of the perturbation so that δ(s) with a high pass filter has the static gain e and thus sta-
bilization of ge(s) corresponds to stabilization of the original equilibrium point of the nonlinear
system. It can be shown that conditions (a) and (b) hold for the class of third order systems with
(10) in Proposition 2.

The static gain adjustment does not work for ge(s) satisfying Condition 1 since the number of
poles in the ORHP is odd, in which case the perturbation with the high pass filter destabilizes
ge(s). Hence, µ(e) = ρo(e) does not hold in general under Condition 1. The property µ(e) ≥
ρ∗(e) = ρo(e) is still useful for obtaining lower and upper bounds on µ∗, but does not seem to
yield an exact characterization of µ∗. Therefore, we will focus on the case where ge(s) satisfies the
conditions in Lemma 4 in the next subsection.

3.3 Exact RIR Analysis
Lemma 4 characterizes µ(e) only when e satisfies |e| < ρp(e), and does not cover all possible
values of e ∈ E. However, it turns out that the minimum of µ(e) over e ∈ E occurs within the
subset of E where |e| < ρp(e) holds, and hence we have a computable description of µ∗ as stated
in the following theorem.

Theorem 1 Consider the parametrized LTI system ge(s) with e ∈ E ⊂ R, where 0 ∈ E. Let E∗ ⊂ E be
the largest interval such that |e| < ρp(e) holds for e ∈ E∗. Then

µ∗ = inf
e∈E∗

ρp(e) (16)
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Figure 1: Computation for Exact RIR µ∗

holds, provided ge(s) satisfies conditions (a) and (b) in Lemma 4 for all e ∈ E∗.

Proof. Let Rin be the infimum of µ(e) over e ∈ E∗ ⊂ E, and Rout be the infimum of µ(e) over
e ∈ E\E∗. Then µ∗ = min(Rin, Rout) by definition. We will show Rin ≤ Rout and hence Rin = µ∗.
For contradiction, suppose Rin > Rout. Then there exists eo ∈ E\E∗ such that µ(eo) < Rin. Let
us consider the case eo > 0. The case eo < 0 can be proven similarly. Since E and E∗ are convex
intervals containing 0, there exists e1 ∈ (0, eo) such that (0, e1) ⊂ E∗ and (e1, eo) ⊂ E\E∗. Then we
have

Rin ≤ ρp(e1) = e1 < eo ≤ µ(eo) < Rin. (17)

Here, Rin ≤ ρp(e1) holds by definition of Rin and (0, e1) ⊂ E∗, ρp(e1) = e1 holds since e1 is
the upper boundary of E∗ at which ρp(e) < |e| is violated,3 e1 < eo and µ(eo) < Rin hold by
definition, and eo ≤ µ(eo) holds due to Lemma 2. However, (17) does not hold, and hence we
conclude Rin ≤ Rout by contradiction.

Theorem 1 provides a computable characterization of µ∗ at an equilibrium point when conditions
(a) and (b) are satisfied. Figure 1 illustrates the situation related to the proof of Theorem 1 by
plotting ρp(e) and |e|. This figure also helps to understand the following concrete procedure to
calculate the exact RIR µ∗:

• Step 1: Determine the subset E∗ ⊂ E defined in Theorem 1 by computing ρp(e) for e ∈ E.

• Step 2: Check conditions (a) and (b) in Lemma 4 for e ∈ E∗. If they are satisfied, then
compute the infimum of ρp(e) over E∗ which provides µ∗. Otherwise, the infimum gives a
lower bound of µ∗.

4 Applications to Repressilator

4.1 Model of Repressilator
We consider a class of biomolecular systems in Fig. 2 motivated by applications in synthetic bi-
ology. This system is called repressilator (Elowitz & Leibler 2000) and consists of three species of
proteins Pi (i = 1, 2, 3), each of which is designed to repress the production of another protein
species using the simple cyclic feedback. It is known that the repressilator in Fig. 2 has a sin-
gle equilibrium point (Hori et al. 2011), and thus, destabilization of the equilibrium point leads

3In general, there are cases where ρp(e) > e at the upper boundary e = e1 of E∗. In this case, ρp(e1) = e1 does
not hold. However, this case occurs only when e = e1 is also the upper boundary of E, and hence eo ∈ E\E∗ must be
negative. That is, whenever we consider the case eo > 0, we must have ρp(e1) = e1 as claimed.
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to oscillatory dynamics of the concentrations of Pi, given that the trajectories are bounded. In
the previous work (Niederholtmeyer et al. 2015), this mechanism was experimentally confirmed
in vitro by tuning the parameters of synthetic biomolecular oscillators (see Potvin-Trottier et al.
(2016) for discussion for in vivo).

DNA

transcrip�on transla�on

ProteinmRNA

Figure 2: Model of the repressilator

The nominal dynamical model of the repressilator is given by the following ordinary differential
equations:

ẋi(t) = −αixi(t) + βiψi(xi−1(t)), i = 1, 2, 3 (18)

where xi(t) is the concentration of protein Pi, αi (> 0) is the degradation rate of Pi, and βi (> 0) is
the gain of the interactions. The index i is defined by modulo 3, implying that x0(t) := x3(t). The
function ψi(·) is a monotone decreasing static nonlinearity called Hill function (Alon 2006) that
represents the rate of protein production. Specifically,

ψi(x) =
Kνi

i

Kνi
i + xνi

, i = 1, 2, 3 (19)

with a Hill coefficient νi and a Michaelis-Menten constant Ki (> 0).

Our theoretical results are verified by the model of a typical experimental setting with the param-
eters chosen based on the experimental data in (Niederholtmeyer et al. 2015);

α1 = 0.4621, β1 = 138.0, K1 = 5.0, ν1 = 3
α2 = 0.5545, β2 = 110.4, K2 = 7.5, ν2 = 3
α3 = 0.3697, β3 = 165.6, K3 = 2.5, ν3 = 3,

(20)

where the units of the parameters αi, βi and Ki are (hr)−1, nM · (hr)−1 and nM, respectively.

We can readily see by a simple calculation that an equilibrium point exists, is unique, and is un-
stable for this nominal parameter case. Consequently, a limit cycle phenomenon can be observed
as seen in Figs. 3 (a) and 3 (b), indicating the blue colored plot of the orbit and the time response,
respectively.

In order to investigate the robustness, we assume that there is one perturbation δ(s), which ap-
proximately represents the net effect of all the perturbations and the uncertainties in the system.
This type of assumption has been made in many applications as a crude but effective approxi-
mation in robust control analysis and design using the small gain condition to avoid increased
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(a) Orbits in (x1, x2, x3) space (b) Time responses (nominal)

Figure 3: Simulations: the repressilator Model

complexity in advanced methods such as µ synthesis. The target system with a multiplicative-
type perturbation δ(s) is then represented as

ẋ1 = −α1x1 + β1ψ1(x3) + w, w = δ̂z
ẋ2 = −α2x2 + β2ψ2(x1),
ẋ3 = −α3x3 + β3ψ3(x2),
z = β1ψ1(x3),

(21)

where δ̂ is the linear operator with the input-output mapping specified by stable transfer function
δ(s). The purpose of this section is to confirm the effectiveness of the theoretical results in the
previous sections on the exact RIRs (ρ∗) and (µ∗) for the repressilator. At an equilibrium, we have

xi =
β̂i
αi

ψi

(

β̂i−1

αi−1
ψi−1

( β̂i−2

αi−2
ψi−2(xi)

)

)

(22)

for i = 1, 2, 3, where β̂1 := (1+ e)β1,, β̂2 := β2, β̂3 := β3, and e := δ(0). The right-hand side of (22)
is a monotonically decreasing function in the positive orthant of x ∈ R

3, and hence there always
exists a unique equilibrium point denoted by xe = [xe1, xe2, xe3]

T . Figure 4 shows the change of
the equilibria due to the change of e.

4.2 Robustness Properties
Let us first show that the repressilator model falls under our analysis framework and the robust
instability radius can be calculated exactly. Noting the cyclic structure of the system, the lineariza-
tion of the system around the equilibrium point is given by

ξ =
(

1 + δ(s)
)

he(s)ξ, ξ := x− xe, (23)

where

he(s) :=
−k

(s+ α1)(s+ α2)(s+ α3)
, (24)

k := −β1β2β3ψ
′
1(xe3)ψ

′
2(xe1)ψ

′
3(xe2) > 0, (25)

and the characteristic equation is expressed as

1 = δ(s)ge(s), ge(s) = he(s)/(1− he(s)). (26)

10



Figure 4: Equilibrium point
Figure 5: Maximum real part of the poles of
ge(s)

It is readily seen that ge(s) in (26) is represented by ge(s) = −k/(s3 + ps2 + qs + ℓ), where p :=
α1+α2+α3 > 0, q := α1α2+α2α3+α3α1 > 0, and ℓ := α1α2α3+k > 0. We now check inequality
conditions (10) in Proposition 2 which guarantee Condition 2. We can verify that

p2 − 2q = (α1 + α2 + α3)
2 − 2(α1α2 + α2α3 + α3α1)

= α2
1 + α2

2 + α2
3 > 0.

This yields 2pℓ−q2 > 2p(pq)−q2 = q{2(p2−2q)+3q} > 0. The remaining condition ℓ > pq implies
the hyperbolic instability of ge(s). The maximum real part of the poles of ge(s) for e ∈ (−1, 1)
plotted in Fig. 5 shows that ge(s) is hyperbolically unstable for e ∈ Eh := (−0.94, 1), and it can be
confirmed that ℓ > pq holds for all e in Eh. Hence, we can conclude that (10) holds, which implies
that conditions (a) and (b) in Lemma 4 hold as remarked just below Lemma 4. Consequently, we
have ρ∗(e) = ρp(e) for δ(0) = e ∈ Eh ⊂ E, and hence we can derive the exact RIR µ∗ by Theorem 1
or the procedure presented at the end of Section 3.3.

For the repressilator, the instability analysis of the equilibrium point is in fact sufficient for ro-
bustness analysis of the oscillatory behavior. A precise statement of the result is given as follows.

Proposition 3 Consider the repressilator in (21), where, with i = 1, 2, 3, all the coefficients αi and βi
are positive, nonlinear functions ψi(x) are bounded, continuously differentiable, and satisfy ψi(x) > 0
and ψ′

i(x) < 0 on x ≥ 0, and perturbation δ(s) is stable. There exists a unique equilibrium point in
the positive orthant. Suppose the equilibrium is hyperbolic and unstable, and the positive orthant remains
to be an invariant set in the presence of the perturbation. Then, the system is oscillatory in the sense of
Yakubovich, i.e., for almost all initial states in the positive orthant, the resulting trajectory satisfies

lim inf
t→∞

xi(t) < lim sup
t→∞

xi(t)

for at least one of the state variables xi.

Proof. The existence and uniqueness of the equilibrium point follows from (22) as discussed ear-
lier. From (21), the dynamics of x1 is described by

x1 = f1(s)ψ1(x3), f1(s) := β ·
1 + δ(s)

s+ α1
.

Since ψ1(x) is a bounded continuous function on x > 0, there is a scalar u1 such that |ψ1(x)| < u1
for all x > 0. Due to the invariance of the positive orthant, x3(t) remains positive and hence
|ψ1(x3(t))| < u1 holds for all t ≥ 0. Since f1(s) is stable, the effect of the initial condition on x1(t)

11



Figure 6: ρp(e) for ge(s) (blue curve) and |e| (red lines)

will eventually die out and we have |x1(t)| ≤ γ1u1 for sufficiently large t, where γ1 is the peak-to-
peak gain (L1 norm) of f1(s). Similar arguments apply to x2, x3, and the states of δ(s), and hence
all the trajectories in the positive orthant are ultimately bounded. The result then follows from
Theorem 1 of (Pogromsky et al. 1999).

The invariance of the positive orthant after a perturbation is a reasonable assumption, given that
the variables xi represent the concentration level of proteins. Hence Proposition 3 basically says
that an oscillation occurs whenever the equilibrium point is unstable because every trajectory
repelled from the equilibrium cannot diverge and has to stay in a bounded set regardless of the
initial condition. Thus, robust instability of the equilibrium implies persistence of the oscillatory
behavior. This type of analysis has been done for nominal oscillations of central pattern generators
(Futakata & Iwasaki 2008), to which our robustness analysis may also apply.

4.3 Illustration by Simulations
We first consider a simple case where the static gain of the perturbation is zero, i.e., δ(0) = e =
0, to confirm that ρ∗(0) = ρp(0) holds when g(s) satisfies Condition 2 described in Section 2.4.
In this case, the nominal equilibrium xo = [21.3, 8.34, 11.8]T remains the same even after the
perturbation, i.e., xe = xo.

Using the analytic expression in the proof of Proposition 2, the exact RIR for this system is ob-
tained as ρ∗(0) = ρp(0) = 0.4049. We can confirm that the value is exact as long as no static
gain perturbation is allowed by numerical simulations, which are not shown here due to the page
limitation.

We here focus on a more realistic case where the perturbation δ(s) has a non-zero static gain
e := δ(0) 6= 0. In contrast with the case of e = 0, the equilibrium point xe varies with e as
already seen in Fig. 4. The goal is to verify Theorem 1 on the exact RIR µ∗. To this end we use
the type of plots as shown in Fig. 1. The values of ρp(e) := 1/‖ge‖L∞

are plotted as a function of
e ∈ Eh = (−0.94, 1) as seen in Fig. 6. Then we have |e| < ρp(e) when −0.6027 < e < 0.3218, which
defines the set E∗. In this interval, ge(s) satisfies conditions (a) and (b) in Lemma 4, and hence we
conclude µ(e) = ρp(e). The smallest value within this interval E∗ is µ(e) = 0.3218, which is the
exact value of the RIR µ∗ at the nominal equilibrium xo since µ(e) ≥ |e| for all e ∈ E, and the red
lines in Fig. 6 give a lower bound on µ(e).

A numerical analysis by simulations depicted in Fig. 7 reconfirms that µ(e) at e = 0.3218 gives

12



(a) Time responses (perturbed: ε = 0.05) (b) Time responses (perturbed: ε = −0.05)

Figure 7: Simulations: Case with change of equilibrium

the exact RIR µ∗. Figure 7 (a) shows the time response for the case of

δ(s) =
s+ ξγ

s+ ξ
·
(1 + ε)b(s− a)

s+ a
, a = 2.253, b = 0.3218

with ε = 0.05, γ = −0.9524, ξ = 0.010, where γ is determined by γ = −1/(1 + ǫ) to ensure that
the high pass filter does not change the static gain. As illustrated in Figure 7 (a), this perturbation
stabilizes ge(s) at e = 0.3218 since it satisfies δ(0) = 0.3218 and ‖δ‖H∞

= 0.3379. On the other
hand, we can observe the maintenance of the periodic oscillation phenomenon if we change the
sign of ε, meaning that the norm of δ(s) is smaller than µ∗ = 0.3218 (See Fig. 7 (b)).

5 Conclusion
This paper has provided two main theoretical results on the robust instability analysis against
stable perturbations. One is on the robust instability radius ρ∗ for SISO LTI systems, and the
other is on the robust instability radius µ∗ for parametrized LTI systems. The effectiveness of the
theoretical results has been illustrated by numerical simulations of the repressilator model. This
example demonstrated that the theoretical quantitative foundation provided in this paper based
on the local stability/instability property can lead to a useful tool in the field of synthetic biology.

The classic theory (Pogromsky et al. 1999) guarantees existence of oscillations which may not be
periodic under instability of equilibrium points and ultimate boundedness of trajectories. How-
ever, periodic orbits may serve better for functional purposes in applications. A recent result on
the analysis of global nonlinear behaviors based on the concept of p-Dominance (Forni & Sepulchre
2019) may be useful to guarantee persistence of a limit cycle for a class of systems. Toward this
direction, our quantitative tool for the instability analysis may be effective for checking the p-
Dominance condition through the spectral splitting.

The future work along this research direction includes a characterization of higher order systems
for which the RIR can be analyzed exactly and its applications to a more general type of biomolec-
ular systems.
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A Proof of Proposition 1
Let δo(s) and g(s) be expressed as the ratios of coprime polynomials δo(s) = bo(s)/ao(s) and
g(s) = n(s)/d(s), respectively. Here, δo(s) may be a real constant with bo ∈ R and ao = 1. Let b1(s)
and a1(s) be coprime polynomials of the same degree. For δ1(s) := b1(s)/a1(s), the characteristic
polynomial of the perturbed closed-loop system is given by p(s) = εq(s) with p(s) := (ao(s)d(s)−
bo(s)n(s))a1(s), and q(s) := ao(s)b1(s)n(s). Since δo(s) marginally stabilizes g(s) with a simple
pole on the imaginary axis (denote it by s = jωc, where ωc may be zero), the nominal characteristic
polynomial p(s) takes the form p(s) = (s − jωc)p̂(s), where p̂(jωc) 6= 0. Hence, the characteristic
equation can be written as s− jωc = εr(s), r(s) := q(s)/p̂(s).

We apply the root locus method and focus on the direction of the root locus around s = jωc

when ε varies between negative and positive values. For small perturbation |ε|, consider the
characteristic root λε that passes through jωc at ε = 0. Note that ∠(λε − jωc) = ∠r(λε) + ∠(ε)
holds for the phase angles. Taking the limit ε→ 0,

∠(λε − jωc) →

{

∠r(jωc), (ε ↓ 0),
∠r(jωc) + π, (ε ↑ 0),

where the limit is well defined due to r(jωc) 6= 0, which is verified as follows. Note that r(jωc) = 0
implies ao(jωc)b1(jωc)n(jωc) = 0. For a generic b1(s), we have b1(jωc) 6= 0. Since δo(s) has no pole
on the imaginary axis, ao(jωc) 6= 0. Thus we conclude n(jωc) = 0. Since s = jωc is a pole of the
nominal closed-loop system with ε = 0, we have bo(jωc)n(jωc) = ao(jωc)d(jωc) = 0. However,
this is a contradiction since δo(s) has no pole on the imaginary axis and (n, d) are coprime. Thus
r(jωc) must be nonzero. Now, we may assume, for a generic δ1(s), that the real part of r(jωc)
is nonzero and ∠r(jωc) 6= ±π/2. Since the phase angle of λε − jωc rotates by π when passing
through ε = 0, we see that λε has a negative real part when ε > 0 or ε < 0. If |ε| is sufficiently
small, the other characteristic roots will stay in the OLHP. Thus we conclude the result.

B Proof of Proposition 2
The proof of the first part is easy. The requirement of the odd number of the ORHP poles of
g(s) is equivalent to ℓ < 0. For a constant δ, the closed-loop characteristic equation is given by
s3 + ps2 + (q − δζ)s + (ℓ + kδ) = 0. When δ = −ℓ/k, one root is at the origin, and the remaining
two roots are in the OLHP if and only if p > 0 and q − δζ = q + ζℓ/k > 0. Thus we have (9).

Now we define ψ(s) := 1/g(s) for the proof of the second part. Letting Ω := ω2, |ψ(jω)|2 is given
by

F (Ω) := (Ω3 + f2Ω
2 − f1Ω + f0)/(ζ

2Ω + k2), (27)

where f2 := p2 − 2q, f1 := 2pℓ − q2 > 0, and f0 := ℓ2 > 0. We now seek the critical frequency ωp

which provides the minimum of F (Ω) by calculating dF (Ω)/dΩ. It is seen that dF (Ω)/dΩ = 0 is
equivalent to

H(Ω) := 2ζ2Ω3 + (ζ2f2 + 3k2)Ω2

+2k2f2Ω− (ζ2f0 + k2f1) = 0. (28)

We show that H(Ω) has a unique positive solution Ωp which corresponds to the critical frequency
ω2
p 6= 0. First note that f0 > 0 and f1 > 0 imply H(0) < 0. dH(Ω)/dΩ is positive for all Ω > 0 if
f2 ≥ 0 and dH(Ω)/dΩ at Ω = 0 is negative if f2 < 0 . These facts conclude that H(Ω) has a unique
positive solution Ωp.
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Hereafter we will show that δo(s) defined by (6) marginally stabilizes g(s), which means that the
characteristic equation 1− δo(s)g(s) = 0, or

(s3 + ps2 + qs+ ℓ)(s+ a)− b(ζs− k)(s− a) = 0 (29)

has a form of

(s2 +Ωp)(s
2 + σ1s+ σ0) = 0 (30)

for a certain positive parameters σ1 and σ0. Comparing the coefficients of (29) and (30), we have

Ax = b, x :=
[

a σ1 σ0
]T
, (31)

A :=









−1 1 0
−p 0 1

−(q + ζb) Ωp 0
kb− ℓ 0 Ωp









, b :=









p
q − ζb− Ωp

ℓ+ kb
0









.

It is clear that rank A = 3 and that Ab :=
[

A b
]

is singular because the determinant of Ab is
equal to (ζ2Ωp+ k2)(F (Ωp)− b2) = 0. This guarantees the existence of the unique solution of (31).

Consequently, the remaining step of the proof is to show the positivity of the solution x, i.e., a > 0,
σ1 > 0, and σ0 > 0. Note that b defined in (7) for ωc = ωp satisfies

|b| = 1/max
ω 6=0

|g(jω)| = min
ω 6=0

|ψ(jω)| < ℓ/|k| = |ψ(0)|

and that a can always be chosen to be positive, depending on the sign of b as described in (7).

Under the assumptions of a > 0 and |kb| < ℓ with p > 0, the 1st and the 4th rows in (31) yield
σ1 = a + p > 0 and σ0 = (ℓ − kb)a/Ωp > 0, respectively. This completes the proof of the second
part.

C Proofs of Lemmas 2, 3, and 4
• Proof of Lemma 2

The first condition µ(e) ≥ |e| follows from the definition of µ(e) in (12) because ‖δ‖H∞
≥ |δ(0)| =

|e| for δ(s) ∈ ∆e. In the second condition, we obtain µ(e) ≥ ρ∗(e) by inspection of (13).

• Proof of Lemma 3

The characteristic equation in (15) can be rewritten as

1 +
ξ

s
L(s) = 0, L(s) :=

1− γℓ(s)

1− ℓ(s)
. (32)

Note that L(s) is stable since 1 = ℓ(s) implies ℜ(s) < 0. We claim that L(s) has an even number
of zeros (including multiplicities) in the ORHP and no zeros on the imaginary axis. This is easy
to see for the case γ = 0 because the zeros of L(s) coincide with the poles of ℓ(s). When γ 6= 0, by
the small gain condition in (14), 1 = γoℓ(s) has no roots on the imaginary axis for all γo such that
|γo| ≤ |γ|. Since ℓ(s) has an even number of poles in the ORHP and no poles on the imaginary axis,
there are even number of roots of 1 = γoℓ(s) in the ORHP when |γo| is nonzero and sufficiently
small. As |γo| increases to |γ|, none of the roots of 1 = γoℓ(s) can go across the imaginary axis,
and hence 1 = γℓ(s) has an even number of ORHP roots. Thus L(s) has no zero on the imaginary
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axis and an even number of zeros in the ORHP. Then the root locus shows that all the roots of the
characteristic equation in (32) are in the OLHP for sufficiently small ξ > 0.

• Proof of Lemma 4

Let δe(s) be a transfer function as described in (a). Then a slight perturbation of δe(s) can stabilize
ge(s) as shown in Proposition 1. That is, for an arbitrarily small ε > 0, there exists a stable transfer

function δ̃e(s) that stabilizes ge(s) and satisfies ‖δe − δ̃e‖H∞
< ε. Now, the static gain of the

perturbation δ̃e(s) is approximately given by δ̃e(0) ∼= δe(0) = ρp(e), and hence this perturbation
may not belong to ∆e. Let the static gain of the perturbation be adjusted by a high pass filter

δ(s) := f(s)δ̃e(s), f(s) :=
s+ ξγ

s+ ξ
, γ :=

e

δ̃e(0)
,

so that δ(0) = e. We will show that δ(s) with sufficiently small ξ > 0 stabilizes ge(s) and hence

δ(s) ∈ ∆e, using Lemma 3 with ℓ(s) := δ̃e(s)ge(s), where the characteristic equation 1 = δ(s)ge(s)
is given by (15). First note that ℓ(s) has an even number of poles in the ORHP and no poles on the

imaginary axis because ge(s) is hyperbolic and satisfies condition (b), and δ̃e(s) is stable. Next, all

the roots of 1 = ℓ(s) are in the OLHP since δ̃e(s) stabilizes ge(s). Also note that |γ| < 1 = ‖f‖H∞

for all ξ > 0 since |δ̃e(0)| ∼= ρp(e) and |e| < ρp(e), and hence ‖δ‖H∞

∼= ρp(e). Moreover, we have
‖γℓ‖L∞

< 1 because

‖γδ̃e‖H∞
= |e| ·

‖δ̃e‖H∞

|δ̃e(0)|
< ρp(e) (33)

holds, where the inequality follows from the fact that ‖δ̃e‖H∞
/|δ̃e(0)| is arbitrarily close to 1 be-

cause δe(s) is all pass and ‖δ̃e − δe‖H∞
is arbitrarily small. Thus, all the conditions in Lemma 3

are satisfied and we conclude that δ(s) with sufficiently small ξ > 0 stabilizes ge(s) and hence
δ(s) ∈ ∆e. The proof is now complete by noting that µ(e) ≤ ‖δ‖H∞

∼= ρp(e) due to the preceding
argument and ρp(e) ≤ µ(e) due to Lemma 2.

17


	1 Introduction
	2 Robust Instability Radius for LTI Systems
	2.1 Definition and Preliminary Results on RIR
	2.2 Upper bound via marginal stabilization
	2.3 Search for marginally stabilizing perturbation
	2.4 Simple classes of g(s) for which the exact RIR can be analytically characterized

	3 RIR for Parametrized LTI Systems
	3.1 Definition of RIR *
	3.2 Lemmas for Exact Analysis
	3.3 Exact RIR Analysis

	4 Applications to Repressilator
	4.1 Model of Repressilator
	4.2 Robustness Properties
	4.3 Illustration by Simulations

	5 Conclusion
	A Proof of Proposition 1
	B Proof of Proposition 2
	C Proofs of Lemmas 2, 3, and 4

