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Abstract

We propose a fully asynchronous networked aggregative game (Asy-NAG) where each player
minimizes a cost function that depends on its local action and the aggregate of all players’ actions.
In sharp contrast to the existing NAGs, each player in our Asy-NAG can compute an estimate of
the aggregate action at any wall-clock time by only using (possibly stale) information from nearby
players of a directed network. Such an asynchronous update does not require any coordination among
players. Moreover, we design a novel distributed algorithm with an aggressive mechanism for each
player to adaptively adjust the optimization stepsize per update. Particularly, the slow players in
terms of updating their estimates smartly increase their stepsizes to catch up with the fast ones.
Then, we develop an augmented system approach to address the asynchronicity and the information
delays between players, and rigorously show the convergence to a Nash equilibrium of the Asy-NAG
via a perturbed coordinate algorithm which is also of independent interest. Finally, we evaluate the
performance of the distributed algorithm through numerical simulations.

1 Introduction
An aggregative game is a Nash game where each player’s cost is a function of its action and the aggregate
of all players’ actions, and has been widely used in flow control (Alpcan & Başar 2002, Barrera & Garcia
2014), resource allocation (Ma et al. 2013, Gharesifard et al. 2016), and demand response (Li et al. 2015,
Ma et al. 2013). In this work, we consider the Networked Aggregative Games (NAGs) over a directed
peer-to-peer (P2P) network, where each player individually makes decisions by only using (possibly stale)
information from neighboring players of the network, see Fig. 1 for an illustrative example.

The NAGs can be categorized as synchronous or asynchronous ones depending on whether players
make decisions in a synchronized manner or not. In this paper, we propose an asynchronous NAG
(Asy-NAG), which in fact is fully asynchronous, adopting the asynchronism definition in Herz & Marcus
(1993). To elaborate the differences between the synchronous NAG and the Asy-NAG, we use Fig. 1,
whose running states for each player are shown in Fig. 2. A gray bar represents the computation time
per update of a player and the red arrows represent information flow directions between players. In a
synchronous NAG (Fig. 2a), all players are essentially synchronized to compute at the same wall-clock
time t(k). While in an Asy-NAG (Fig. 2b), each player acts independently without waiting for other
players or delayed messages. Thus, the index k in Fig. 2(a) increases by one only when all players are
synchronized to start their updates, and k in Fig. 2(b) increases whenever a player starts an update.
Importantly, the Asy-NAG does not require any (usually central) coordinator to synchronize the update
process and k is not known to players.

We believe such Asy-NAGs have not been studied yet, even though they are of more practical impor-
tance, in addition to being notoriously difficult to solve. First, players in a non-cooperative aggregative
game can hardly be synchronized to update their actions. For example, players may pause to operate

∗R. Zhu, J. Zhang and K. You are with the Department of Automation and BNRist, Tsinghua University, Beijing 100084,
China. Emails: zhurp19@mails.tsinghua.edu.cn, zjq16@mails.tsinghua.edu.cn, youky@tsinghua.edu.cn.

†T. Başar is with Department of Electrical and Computer Engineering and Coordinated Science Laboratory, University
of Illinois at Urbana-Champaign, Urbana, IL 61801 USA. Email: basar1@illinois.edu.

1

ar
X

iv
:2

10
1.

08
97

3v
1 

 [
m

at
h.

O
C

] 
 2

2 
Ja

n 
20

21



1

2 3

Figure 1: A directed P2P network with three players.
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(a) A synchronous NAG.
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(b) An Asy-NAG.

Figure 2: Comparison of synchronous NAGs and Asy-NAGs.

other tasks, or just remain idle. In fact, the synchronization of a large-scale NAG can be hard and time-
consuming. Second, due to the asynchronicity and information delays, the updating frequency of each
player is unknown and unpredictable. Thus, it is considerably different from the random gossip-based
NAG in Koshal et al. (2016), Salehisadaghiani & Pavel (2016), Cenedese et al. (2020), requiring the
development of a new approach for algorithm design.

For synchronous NAGs, there are a number of distributed algorithms that converge to a Nash equi-
librium (NE) by adopting the consensus-based technique (Koshal et al. 2016, Belgioioso et al. 2020),
ADMM-based methods (Salehisadaghiani et al. 2019), the best response dynamics (Li & Başar 1987b,
Lei et al. 2020), model-free method (Frihauf et al. 2012), etc. It is worth stressing that the random
gossip-based NAG requires a global coordinator, which is key to their algorithm design and does not
satisfy the asynchronism of the Asy-NAGs. Notably, they can be simply modeled as synchronous NAGs
over randomly time-varying networks, which is impossible for our Asy-NAG and an augmented network
has to be constructed in this work. Thus, the existing distributed algorithms for NAGs cannot be applied
to the Asy-NAG.

In fact, the fully asynchronous setting of this work is not new and has been studied for quite a long
history in the parallel and distributed computing problems. Chazan & Miranker (1969) first consider it
for solving linear equations problems with a parallel system. Bertsekas (1983) and Tsitsiklis et al. (1986)
proposed asynchronous coordinate algorithms for fixed point problems. Note that Li & Başar (1987a)
studied asynchronous non-cooperative games based on the best response dynamics and every player is
able to directly access all other players’ actions, which is different from the NAGs. Recently, it has been
exploited for solving distributed optimization problems (Nedić & Ozdaglar 2010, Zhang & You 2019,
Assran & Rabbat 2021, Sha et al. 2020), where players (or computing nodes) cooperate to optimize a
common objective function. This is clearly different from NAGs as each player needs to minimize an
individual cost function.

Accordingly, we propose a novel distributed algorithm with an aggressive stepsizes scheme to find a
NE of the Asy-NAGs. First, we design an asynchronous perturbed push-sum algorithm to dynamically
estimate the aggregate action for each player over the directed network. When being activated to update,
each player uses its locally estimated aggregate action to update its own action. Second, to address the
unpredictable update time instances of players, we propose a novel aggressive scheme for each player to
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adaptively adjust its optimization stepsize per update. Specifically, each player maintains a local counter
to roughly track the maximum number of updates of its neighboring players, based on which slow players
smartly increase stepsizes to catch up with fast ones. Such an aggressive mechanism is in sharp contrast
to the existing works by reducing the stepsize of fast players, and helps to accelerate the convergence
to the NE. A similar idea has been adopted to address the non-exact convergence issue in distributed
optimization problems in Zhang & You (2020).

The proposed algorithm is then proved to converge to an NE of the Asy-NAG asymptotically via an
augmented network approach. Particularly, we use the virtual index k to model the delayed informa-
tion and a sequence of virtual nodes to construct an augmented network. As a byproduct, we propose
a perturbed coordinate pseudo-gradient algorithm for the augmented system, based on which the dis-
tributed algorithm for Asy-NAG is proved to converge to the NE. Finally, we validate the performance
of our algorithm with numerical simulations on the renowned Nash-Cournot games over several directed
networks.

The remainder of the paper is organized as follows. In Section 2, we introduce the AGs and our
Asy-NAG over a P2P network in details. Section 3 proposes the distributed algorithm for the Asy-NAG.
In Section 4, we show how to construct the augmented network and Section 5 provides a novel perturbed
coordinate pseudo-gradient algorithm for the AG. In Section 6, we prove the convergence to an NE of
the proposed algorithm. Section 7 presents the results of numerical experiments. Concluding remarks
are drawn in Section 8. Some technical proofs are included in the appendices.

Notations: Throughout this paper, xT and XT denote the transposes of a vector x and a matrix X,
respectively. Let xTy denote the inner product of vectors x and y, and ‖x‖ =

√
xTx denote the Euclidean

norm of a vector x. We use [x1, · · · ,xn] to denote the horizontal stack of vectors x1, . . . ,xn, and 1n and
0n to denote the n-dimensional vectors with all ones and all zeros, respectively. For a matrix A, we write
[A]ij to denote its (i, j)-th element. For a scalar a, we let bac denote the largest integer less than a. For
a set N , let |N | denote its cardinality, i.e., the number of elements in N . The Minkowski sum of two sets
X and Y is formed by X +Y := {x+y|x ∈ X ,y ∈ Y}, and let aX := {ax|x ∈ X}. Finally, we use ΠX to
denote the Euclidean projection operator over a closed convex set X , i.e., ΠX (x) := arg minz∈X ‖x− z‖.

2 Problem Formulation
Consider a set of n players indexed by N = {1, · · · , n}. For i ∈ N , let fi(xi,x) denote the cost function
of player i, where xi ∈ Xi ⊆ Rp is the action of player i and x := 1

n

∑n
i=1 xi is the aggregate of all players’

actions. The objective of player i in an aggregative game (AG) is to solve a local optimization problem

mininize fi

(
xi,

1
nxi + 1

n

∑n
j 6=i xj

)
subject to xi ∈ Xi,

(1)

where xj , j 6= i, j ∈ N are fixed, and to reach an NE among all players, which is defined in precise terms
below (Başar & Olsder 1998).

Definition 1. An n-tuple of actions

x∗ :=
[
(x∗1)T, (x∗2)T, · · · , (x∗n)T

]T
is a Nash equilibrium (NE) if for all i ∈ N and xi ∈ Xi,

fi (x∗i ,x
∗) ≤ fi

(
xi,

1
nxi + 1

n

∑n
j 6=i x

∗
j

)
.

In a centralized AG, a coordinator is needed to gather the actions from all players to compute and
broadcast the aggregate action x. On the other hand, in a networked AG (NAG), the players are spatially
distributed on a P2P network and each player can only collect information from neighboring players under
the topology of the network G = (N , E), where N is the set of players and E ⊆ N × N is the edge set
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for information directions, i.e., (i, j) ∈ E if and only if i can directly send information to j. We let
N i

in = {j|(j, i) ∈ E} ∪ {i} denote the set of in-neighbors of player i, and N i
out = {j|(i, j) ∈ E} ∪ {i} the

set of out-neighbors of i. In this network, player i is able to collect information from players in N i
in and

broadcast information to players in N i
out. If |N i

in| 6= |N i
out| for some i ∈ N , then G is unbalanced.

In a synchronous NAG, all players are synchronized to update their actions per iteration. In our Asy-
NAG, however, players are free to update without waiting for others by only using available information
from in-neighbors, which brings significant challenges to the algorithm design and analysis.

3 The Distributed Algorithm for the Asy-NAG
In this section, we first introduce some basic conditions for the existence of an NE of the AG and formulate
it as a variational inequality problem. Then, we propose a distributed algorithm for the Asy-NAG where
each player asynchronously maintains an estimate of the aggregate action by using information from its
in-neighbors, and updates its local action by performing a projected pseudo-gradient step.

3.1 Variation Inequality Formulation of the AG
The following condition is widely adopted in the context of AGs (Belgioioso et al. 2020, Liu et al. 2020).

Assumption 1. For each i ∈ N , the action set Xi is convex and compact. Each local objective
function fi(xi, z) is continuously differentiable in (xi, z) over some open set containing Xi × X where
X = 1

n

∑n
i=1 Xi. Moreover, fi(xi, 1

nxi + x−i) is convex in xi over Xi for any fixed x−i = 1
n

∑
j 6=i xj.

Under Assumption 1, the AG in (1) is equivalent to solving a variational inequality problem (Facchinei
& Pang 2007, Proposition 1.4.2) which is to determine an x∗ ∈ X :=

∏n
i=1 Xi such that

(x− x∗)Tφ(x∗) ≥ 0, ∀x ∈ X , (2)

where X and φ are defined as

X :=

n∏
i=1

Xi, φ(x) :=

∇x1f1(xi,x)
...

∇xnfn(xn,x)


and x := [xT

1 , · · · ,xT
n]T ∈ X . The mapping φ is also called a pseudo-gradient mapping. Let

Fi(xi, z) = ∇xifi(xi, z) +
1

n
∇zfi(xi, z), ∀i ∈ N

and

F (x, z) :=

F1(x1, z)
...

Fn(xn, z)

 .
Clearly, φ(x) = F (x,x).

Assumption 2 (Strict monotonicity). The mapping φ(x) is strictly monotone over X in the sense that

(φ(x)− φ(x′))T(x− x′) > 0, ∀x,x′ ∈ X , x 6= x′.

Assumption 3 (Lipschitz continuity). Each mapping Fi(xi, z) is uniformly Lipschitz continuous over
Xi ×X , i.e., there exists some L > 0 such that for all x,x′ ∈ Xi and z, z′ ∈ X ,

‖Fi(xi, z)− Fi(x′i, z′)‖ ≤ L
∥∥[ xz ]−

[
x′

z′

]∥∥ .
Proposition 1 (Koshal et al. 2016). Under Assumptions 1 and 2, the AG in (1) has a unique Nash
equilibrium.
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Algorithm 1 The distributed algorithm for the Asy-NAG — from the view point of player i

Initialization

(i) Randomly select an action xi ∈ Xi.
(ii) Let vi = xi, v′i = vi/di and yi = 1, y′i = yi/di.

(iii) Create local buffers Vi, Yi and Li.
(iv) Let li = 0 and broadcast v′i, y′i and li to its out-neighbors N i

out.

Repeat

• Keep receiving v′j , y′j and lj from each in-neighbor player j ∈ N i
in, and store them into Vi, Yi and

Li, respectively.
• If player i is activated for an update, it computes

(a) wi ← sum(Vi), yi ← sum(Yi), zi ← wi/yi,

(b) l′i ← max(Li), αi ←
∑l′i
t=li

ρ(t),
(c) x−i ← xi,xi ← ΠXi

[xi − αiFi(xi, zi)],
(d) vi ← wi + xi − x−i ,
(e) v′i ← vi/di, y′i ← yi/di,
(f) li ← l′i + 1.

• Broadcast v′i, y′i and li to every out-neighbors N i
out, and empty Vi,Yi,Li.

Until the stopping criterion is satisfied.

3.2 Distributed Algorithm for the Asy-NAG
In this subsection, we propose a push-sum-based distributed algorithm for the Asy-NAG in Algorithm 1
where di := |N i

out| ≤ n is the out-degree of player i and αi is the effective stepsize for the local optimization
of player i. The positive sequence {ρ(t)} is used to dynamically adjust the aggressive stepsize αi.

The idea of Algorithm 1 is very natural. As the synchronous push-sum algorithm (Nedić & Olshevsky
2014) for distributed optimization problems, Line (ii) in the initialization step is used to solve the un-
balancedness issue of the directed network G. However, three local buffers Vi,Yi,Li in Line (iii) are
novelly designed to handle the asynchronicity of the Asy-NAG, which is the striking difference from the
synchronous NAG.

In the repeat step, each player keeps receiving (possibly delayed) information from its in-neighbors,
and store them into the corresponding buffers. Due to asynchronous updates of the Asy-NAG, player i
may have stored zero, one or multiple receptions from a single neighboring player in each buffer when
it is locally activated to update, which is not the case for the gossip-based NAG (Koshal et al. 2016,
Salehisadaghiani & Pavel 2016, Cenedese et al. 2020). Instead of only using the latest reception from
buffers, all data in buffers will be used to compute a new update, see Lines (a)-(f), where sum(·) and
max(·) take, respectively, summation and maximization over all elements in the input set. Then, it
broadcasts the updated vectors to its out-neighbors and empties the buffers. This implies that the
number of receptions in each buffer is usually limited. Interestingly, buffers are essentially not needed in
practice since both summation and maximization in Lines (a)-(b) can be done recursively. For example,
we can simply keep l′i and only update its value to lj if a new lj > l′i has been received from an in-neighbor.

Our key idea for the Asy-NAG is essentially captured in Lines (a)-(b). Informally speaking, li is
designed to roughly track the number of updates in each player and l′i returns the maximum number of
updates among its in-neighbors. If player i finds itself update too slow, e.g., the gap between li and l′i is
large, it increases its stepsize αi to compensate for slow updates. Such an aggressive scheme is in sharp
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contrast with the existing technique to reduce the stepsize of the fast player, hoping to achieve a faster
convergence rate, and was initially proposed in our previous work (Zhang & You 2020) for solving the
distributed optimization problem. The stopping criterion can be chosen such that the update of the local
action and aggregate estimate remain small for a number of consecutive iterations.

The rest of this paper is devoted to proving the convergence of Algorithm 1 to an NE of the Asy-
NAG. We first develop an augmented network approach to address the asynchronicity and information
delays in Algorithm 1, under which we obtain a synchronous coordinate-wise update over the virtual
network. To prove its convergence to an NE, we then propose a coordinate pseudo-gradient algorithm,
which generalizes Algorithm 1 and is of independent interest. Indeed, the fully asynchronous setting has
been adopted for distributed optimization (Zhang & You 2020) and the block coordinate optimization
(Hannah et al. 2018), which however cannot be used for the AG as each player needs to minimize an
individual objective function.

4 An Augmented Network Approach for the Asy-NAG
In this section, we construct an augmented network where a sequence of virtual nodes is introduced for
each player to model the delayed information, based on which Algorithm 1 appears to be synchronous
over the virtual network. Note that the proofs in Koshal et al. (2016), Salehisadaghiani & Pavel (2016),
Cenedese et al. (2020) cannot be directly applied here.

Assumption 4.

(a) (Strong connectivity) G is strongly connected, i.e., there is a directed path between any two
players.

(b) (Bounded information delays) For any edge (i, j) ∈ E, the time-varying information delay from
player i to player j is uniformly bounded by a positive constant τ > 0.

(c) (Bounded activation intervals) Let ti and t+i be two consecutive activation times of player i;
then, there exist τ > 0 and τ <∞ such that τ ≤ |ti − t+i | ≤ τ .

The strong connectivity ensures each player to participate in the decision making process. The
bounded communication delays assumption is common in the literature, see e.g., Yi & Pavel (2020), Lei
et al. (2020). The bounded activation interval is practically satisfied and is almost necessary, e.g., if
τ = ∞, it suggests that some player(s) does(do) not participate in the decision-making process. The
above constants are introduced for theoretical analysis and are not known by any player.

Under Assumption 4(c), the activation time instances for updating must be discrete. Thus, we let
T = {t(k)}k≥0 be an increasing sequence of the activation time instances of all players, i.e., t ∈ T if and
only if there is at least one player being activated at time t. Let Ti ⊆ T be the set of activation times of
player i. Lemma 1 is key to the construction of the augmented network.

Lemma 1 (Zhang & You 2020). The following statements hold.

(a) Under Assumption 4(b), letting b1 = (n− 1)bτ/τc+ 1, each player is activated at least once within
the time interval (t(k), t(k + b1)]. Moreover, let G(k) = (N , E(k)) be the activated network at t(k),
where (i, j) ∈ E(k) if t(k) ∈ Ti and (i, j) ∈ E; then the union of networks

⋃k+b1
t=k G(t) is strongly

connected for any k.

(b) Under Assumptions 4(b) and (c), letting b2 = nbτ/τc + 1 and b = b1 + b2, the message sent from
player i at t(k) can be received by player j before t(k+ b2) and used for computing an update before
t(k + b) for any k and (i, j) ∈ E.

(c) Under Assumption 4, and with b defined as in (b) above, |li(k)−lj(k)| ≤ nb and 0 ≤ li(k+1)−li(k) ≤
nb+ 1 for any i, j ∈ N and k, where li(k) is the value of li at t(k).
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Figure 3: An augmented network of Fig. 1 with b = 2 at t(k). Player 3’s message will be received by
player 2 during the time interval (t(k), t(k+1)], and (3, 2) ∈ E(k). Player 3 will use information from 3(1)

and itself to compute update at t(k+ 1). Suppose that player 2 sends message to player 1 without delay
but player 1 will not be activated until t(k+ 3); then (2, 1(2)) ∈ E(k). The same case applies to player 1.

To construct an augmented network, we introduce b virtual nodes for each player. For player i, let
{i(1), · · · i(b)} be the corresponding sequence of virtual nodes. Denote by Ñ the set containing all players
and virtual nodes. As for the edge set Ẽ(k), edges (i(1), i), (i(2), i(1)), · · · , (i(b), i(b−1)) are always included
in Ẽ(k) for all i. If player i is activated to update at t(k), then one of the edges (i, j), (i, j(1)), (i, j(2)), · · · ,
(i, j(b)) is included in Ẽ , depending on the information delay between players i and j at t(k). Specifically,
if the information from player i is received by player j during (t(k+s), t(k+s+1)] for some s ∈ {0, · · · , b},
then (i, j(s)) ∈ Ẽ(k). Note that we have adopted the convention j(0) = j. Then, G̃(k) = (Ñ , Ẽ(k)) is a
time-varying augmented network of G at t(k). A scenario, related to the network of Fig. 1, is depicted
in Fig. 3.

Now, we reformulate Algorithm 1 as a synchronous algorithm over the time-varying virtual networks
{G̃(k)}. We denote the latest value of xi before time t(k) by xi(k). We adopt similar notations for vi,
wi, zi, yi and li. Letting N (u) = {i(u)|i ∈ N} for u = 1, 2, · · · , b, we enumerate the players before virtual
nodes, e.g., Ñ = {N ,N (1), · · · ,N (b)}. Let ñ = (b + 1)n. Every virtual node i maintains vi(k), wi(k)
and yi(k). Let the augmented state vector be

Ṽ (k) = [v1(k), · · · ,vn(k),vn+1(k), · · · ,vñ(k)]T,

W̃ (k) = [w1(k), · · · ,wn(k),wn+1(k), · · · ,wñ(k)]T,

ỹ(k) = [y1(k), · · · , yn(k), yn+1(k), · · · , yñ(k)]T,

with vi(0) = 0p and yi(0) = 0 for i = n+ 1, · · · , ñ.
Then, Algorithm 1 is compactly written as

W̃ (k + 1) = Ã(k)Ṽ (k),

ỹ(k + 1) = Ã(k)ỹ(k),

zi(k + 1) =
wi(k + 1)

yi(k + 1)
, ∀i ∈ N

xi(k + 1) =

{
ΠXi

[xi(k)− αi(k)Fi(xi(k), zi(k + 1))] , if i ∈ N and t(k) ∈ Ti,
xi(k), if i ∈ N and t(k) /∈ Ti,

Ṽ (k + 1) = W̃ (k + 1) + ∆X(k),

(3)

where
∆X(k) = [x1(k + 1)− x1(k), · · · ,xn(k + 1)− xn(k),0p, · · · ,0p]T.

7



Ã(k) is given as

[Ã(k)]ij =


1/dj , if j ∈ N , t(k) ∈ Tj , i = un+ i′, τji′(k) = u

1, if j ∈ N , t(k) /∈ Tj , and i = j

1, if j /∈ N , and i = j − n
0, otherwise

where dj = |N j
out| is the out-degree of player j and τji′(k) ≥ 0 is the information delay from player j to

node i′ at t(k). If each player can have immediate access to its own action, then τjj(k) = 0 for all j ∈ N
and k ≥ 0. If (j, i) /∈ E , we have τji(k) = ∞ for all i ∈ N . Note that Ã(k) is column-stochastic and
[Ã(k)]ii > 0 for all i ∈ N and k ≥ 0. Thus, yi(k) > 0 always holds and the division in (3) is well-defined.

5 The Perturbed Coordinate Pseudo-gradient Algorithm
Inspired by the block-coordinate method for a single objective function (Nesterov 2012), we first propose
a novel perturbed coordinate pseudo-gradient algorithm (PCPA) which allows partial updates of players
via perturbed pseudo-gradients. Subsequently, we prove its convergence, the results being not only of
independent interest, but also critical to the proof of the convergence of Algorithm 1 in the next section.

Consider the AG in (1) with a single player to update with a perturbed pseudo-gradient per iteration.
We denote the sequence of updating players by {s(0), s(1), · · · }, where s(k) ∈ N , i.e., player s(k) is
selected to update at the kth iteration. An integer-valued sequence {ri(k)} is defined recursively, i.e.,

ri(k + 1) =

{
ri(k) + ∆ri(k), if s(k) = i,

ri(k), otherwise,

and ri(0) = 0 for all i ∈ N . In light of the above sequence, we propose the following PCPA

xi(k + 1) =

{
ΠXi

[
xi(k)− αi(k)F̂i(k)

]
, if s(k) = i,

xi(k), otherwise,
(4)

where
αi(k) =

∑ri(k+1)−1
t=ri(k) ρ(t),

F̂i(k) = Fi(xi(k),x(k)) + εi(k),

and εi(k) is the perturbation of the gradient in (3.1). We make the following assumption.

Assumption 5.

(a) There exists an integer σ1 ≥ 0 such that N ⊆ {s(k + 1), · · · , s(k + σ1)}.

(b) There exists an integer σ2 ≥ 0 such that |ri(k)− rj(k)| ≤ σ2 and ∆ri(k) ≤ σ2 for all i, j ∈ N and
k ≥ 0.

(c) The sequence {ρ(t)} is chosen to satisfy that 0 < ρ(t+ 1) ≤ ρ(t),
∑∞
t=0 ρ(t) =∞,

∑∞
t=0 ρ

2(t) <∞.

(d)
∑∞
k=0 ρ(k)‖εi(k)‖ <∞ for all i ∈ N .

Assumption 5(a) guarantees that each player updates at least once in a bounded time interval, which
is different from the randomized block-coordinated method (Richtárik & Takáč 2014). Assumption 5(b)
ensures the boundedness of the updating time difference between two players. It is obvious that Assump-
tions 5(a)-(b) hold for the Asy-NAG with σ1 = b1 and σ2 = nb+ 1, where b1 and b are defined in Lemma
1. Unlike Yousefian et al. (2013) and Bottou (2010), the perturbation εi(k) is not stochastic. Instead,
it should be controlled by non-increasing sequences in Assumptions 5(c)-(d), which is essential to the
convergence of the PCPA.
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Proposition 2. Suppose that Assumptions 1-3 and 5 hold. Then, the sequence {xi(k)}, i = 1, · · · , n,
generated by the PCPA in (4) converges to the unique NE of the AG in (1).

Proof. See Appendix A.

6 Convergence of Algorithm 1
Under a non-increasing sequence {ρ(t)} in Assumption 5(c), we show that each player is able to asymp-
totically track the aggregate action x(k).

Lemma 2. Under Assumptions 1, 3, 4 and 5(c), let {zi(k)}, i = 1, · · · , n, be the sequence generated by
the augmented network formulation (3) of Algorithm 1. Then, the following statements hold.

(a) For all k ≥ 0,
‖zi(k + 1)− x(k)‖ ≤ B

(
λknM +

∑k
t=0 λ

k−t∆(t)
)
,

where ∆(t) =
∑n
i=1 ‖xi(t + 1) − xi(t)‖ and the constants are defined as B = 8nnb(1 + nnb), λ =

(1− 1
nnb )

1
nb , and M = maxi∈N ,xi∈Xi

‖xi‖.

(b) limk→∞ ‖zi(k + 1)− x(k)‖ = 0, ∀i ∈ N .

(c)
∑∞
k=0 ρ(k)‖zi(k + 1)− x(k)‖ <∞, ∀i ∈ N .

Proof. See Appendix B.

The convergence proof of Algorithm 1 then directly follows from Proposition 2.

Proposition 3. Suppose that Assumptions 1-4 hold and the sequence {ρ(t)} is chosen to satisfy Assump-
tion 5(c). Then, the sequence {xi(k)}, i = 1, · · · , n, generated by the augmented network formulation (3)
of Algorithm 1 converges to the unique NE of the AG in (1).

Proof. Let
εi(k) = Fi(xi(k), zi(k + 1))− Fi(xi(k),x(k)).

Under the Lipschitz continuity of Fi, we have

‖εi(k)‖ ≤ L‖zi(k + 1)− x(k)‖.

Thus, it follows from Lemma 2 that limk→∞ ‖εi(k)‖ = 0 and
∑∞
k=0 ρ(k)‖εi(k)‖ < ∞. Let A(k) denote

the set of updating players at time t(k), i.e., A(k) = {i|t(k) ∈ Ti, i ∈ N}. It follows from Algorithm 1
that

xi(k + 1) =

{
ΠXi

[
xi(k)− αi(k)F̂i(k)

]
, if i ∈ A(k),

xi(k), otherwise,
(5)

where αi(k) =
∑li(k+1)−1
t=li(k) ρ(t), and the perturbed gradient F̂i(k) = Fi(xi(k),x(k)) + εi(k). Then, two

cases are considered.
Case 1: If A(k) is a singleton for all k ≥ 0, it follows from Proposition 2 that xi(k) converges to the

NE.
Case 2: If for some k, A(k) includes multiple elements, say i1, · · · , im, where m = |A(k)| ≤ n, we

can incrementally select the players via m iterations.
Specifically, letting x(0) = x(k) and x(m) = x(k + 1), we can rewrite (5) as

x
(u)
i =

{
ΠXi

[
x

(u−1)
i − αi(k)F̂

(u−1)
i

]
, if i = iu

x
(u−1)
i , otherwise

9



for u = 1, · · · ,m, where

F̂
(u−1)
i = Fi(x

(u−1)
i ,x(u−1)) + ε

(u−1)
i ,

ε
(u−1)
i = εi(k) + Fi(xi(k),x(k))− Fi(x(u−1)

i ,x(u−1)).

This implies that

‖Fi(xi(k),x(k))− Fi(x(u−1)
i ,x(u−1))‖

≤ ‖Fi(xi(k),x(k))− Fi(xi(k),x(u−1))‖+ ‖Fi(xi(k),x(u−1))− Fi(x(u−1)
i ,x(u−1))‖

≤ L

n

u−1∑
s=1

‖xis(k + 1)− xis(k)‖+ L‖xiu−1
(k + 1)− xiu−1

(k)‖

for u = 2, · · · ,m. Moreover, it holds that

‖xis(k + 1)− xis(k)‖ ≤ αis(k)‖F̂ (s−1)
i ‖ ≤ αis(k)(C + εi(k)),

where C = maxx∈X maxi∈N Fi(xi,x) < ∞ due to the compactness of X . Thus, it is easy to verify
that

∑∞
k=0 ρ(k)‖

∑
u ε

(u)
i (k)‖ < ∞. Finally, the convergence of Algorithm 1 follows from Proposition 2

again.

For the Asy-NAGs with strictly monotone pseudo-gradients, it does not seem to be possible to ex-
plicitly evaluate the convergence rate of Algorithm 1, and thus we resort to numerical experiments. In
the next section, numerical results illustrate that such a rate is related to network connectivity and the
level of asynchronicity.

Remark 1. It is interesting to note that the convergence in Proposition 3 is in the deterministic sense,
rather than in the stochastic sense as in Koshal et al. (2016), Salehisadaghiani & Pavel (2016), Cenedese
et al. (2020).

7 Numerical Experiments
In this section, we validate the performance of Algorithm 1 on networked Nash-Cournot games. The
convergence to the NE is confirmed under different network topologies with different numbers of players.
We also compare Algorithm 1 with its synchronous counterpart. Moreover, we validate the advantages
of using the aggressive stepsize in Line (b) of Algorithm 1.

The Nash-Cournot game model is adopted from Koshal et al. (2016). Specifically, consider n firms
competing over L markets. Let firm i’s production and sales at market l be denoted by gil and sil,
respectively, while its cost of production at market l is cil(gil) and defined as

cil(gil) = ailgil + bilg
2
il,

where ail and bil are positive parameters for firm i. The revenue of firm i at market l is pl(sl)sil, where
pl(sl) denotes the sale price at market l and sl =

∑n
i=1 sil is the total sales at market l. The sale price

function captures the inverse demand function and is defined as

pl(sl) = dl − sl,

where dl is the overall demand at market l. Firm i’s production at market l is capacitated by capil. The
transportation costs between any two markets are set to zero. Let xil = (gil, sil) for all l = 1, · · · , L,

10



(a) Cycle (b) Star (c) Log (d) Complete

Figure 4: An illustration of network structures used in experiments.

xi = (xi1, · · · ,xiL)T, and x = (xT
1 , · · · ,xT

n)T, firm i’s optimization problem is then given by the following:

minimize fi(xi,x) =

L∑
l=1

(cil(gil)− sil · pl(sl))

subject to gil, sil ≥ 0, gil ≤ capil,
L∑
l=1

gil =

L∑
l=1

sil.

Let Xi denote the constraint set for firm i. Obviously, for each i, both Xi and fi satisfy Assumption 1,
and the pseudo-gradient mapping φ satisfies Assumptions 2 and 3. Thus, it follows from Proposition 1
that the Nash-Cournot game admits a unique NE. Besides, φ is also strongly monotone1, i.e., there exists
a constant µ > 0 such that for all x,x′ ∈ X ,

(x− x′)T(φ(x)− φ(x′)) ≥ µ‖x− x′‖2.

The Nash-Cournot game consists of n ∈ {5, 10, 20, 30} firms over L = 10 markets. The parameters ail,
bil, and dl are drawn from a uniform distribution. Specifically, for all i ∈ N and l ∈ {1, · · · , L}, we set
ail ∼ U(2, 12), bil ∼ U(2, 3), where U(u1, u2) denotes the uniform distribution over an interval [u1, u2].
The demand dl is drawn from U(90, 100). Moreover, we set the production capacities as capil = 500.

We adopt the Message Passing Interface (MPI) on a multi-core server to simulate the P2P network.
Particularly, the MPI uses n cores to denote the players, and the communication is performed between
neighboring cores in the predefined network. To simulate a heterogeneous environment, the computation
time of player i is sampled from an exponential distribution exp(1/µi)ms. For player i, µi is set as 1+ |µi|
where µi follows the standard normal distribution N(0, 52). The information delays are sampled from
exp(1/5)ms.

In the figures to follow, we plot the trajectories of the normalized suboptimality gap

‖x(t)− x∗‖∞
‖x∗‖∞

.

The curves are averaged over 50 Monte-Carlo simulations with randomly initiated points and sampled
delays.

Firstly, we consider an Asy-NAG with n = 20 players over four network structures which are described
below and illustrated in Figure 4.

• Cycle: every player has only one in-neighbor and one out-neighbor.

• Log : player i sends information to players mod(2j + i, n) + 1, 0 ≤ j < log2 n.

• Star : a player is able to send and receive information from any other player.
1In the experiments, let ρ(t) = ρ to achieve a linear convergence rate, which is to be studied in the future work.
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Figure 5: The suboptimality gap versus the running time. (a) The trajectories of the suboptimality gap
for Algorithm 1 with 20 players over different network structures. (b) The trajectories of the suboptimality
gap for Algorithm 1 with different numbers of players over the log network.
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Figure 6: The suboptimality gap versus the running time. Comparison of Algorithm 1, the asynchronous
algorithm without an aggressive stepsize scheme (Non-adaptive), and the synchronous algorithm with 20
players over the log network.

• Complete: every player sends information to every other player.

Figure 5(a) confirms the convergence of Algorithm 1 to the NE over different network structures. Specifi-
cally, the convergence rate over the complete network is the fastest while that over the cycle is the slowest,
which coincides with the fact that the complete network has the best connectivity. Note that although
the star network seems denser than the log one when n = 20, the algorithm is bottlenecked by the central
player, thus the convergence rate is slower.

Secondly, we consider Asy-NAGs with n = 5, 10, 20, 30 players over the log network. Figure 5 demon-
strates the convergence of Algorithm 1. The asynchronicity of the Asy-NAG increases with the number
of players, which decelerates the convergence rate of the estimated aggregate action. Thus, Algorithm 1
requires more time to converge when the number of players increases.

Finally, we show the effectiveness of the aggressive stepsize scheme over the log network with n = 20
players in Figure 6. While Algorithm 1 converges faster than the one without an aggressive stepsize
scheme, both algorithms outperform their synchronous version.

8 Conclusion
In this paper, we have introduced Asy-NAG, which is challenging due to the full asynchrony of com-
putation and communication. For the AG, we have proposed a distributed algorithm and proved its
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convergence to a Nash equilibrium. It leverages two key ideas: an asynchronous push-sum algorithm to
dynamically track the aggregate action, and an aggressive stepsize scheme to facilitate the convergence.
Moreover, we have developed an augmented system approach to address the asynchronicity and designed
a novel perturbed coordinated algorithm to help prove the convergence. Theoretical results have been
validated by numerical experiments.

Future work will consider the algorithm design for the Asy-NAGs with linear coupling constraints
and the fully asynchronous non-aggregative games. The linear convergence rate for the Asy-NAGs with
strongly monotone pseudo-gradients is also an open problem.

A Proof of Proposition 2
Before the proof of Proposition 2, we state and prove a lemma on the convergence of a deterministic
sequence.

Lemma 3. Let {xk}, {uk}, {wk} and {vk} be four scalar sequences such that

xk+1 ≤ xk − uk + wk + vk, k = 0, 1, · · · (6)

where {xk}, {uk}, {wk} are nonnegative,
∑∞
k=0 wk <∞ and

∑∞
k=0 vk exists. Then, {xk} converges and∑∞

k=0 uk ≤ ∞.

Proof. The proof is motivated by that of Bertsekas (2015, Proposition A.4.4). Using the nonnegativity
of {uk}, we have

xk+1 ≤ xk + wk + vk ≤ xk̄ +

k∑
l=k̄

(wl + vl),

where k̄ ≤ k. By taking upper limit of both sides as k →∞, we have that

lim sup
k→∞

xk ≤ xk̄ +

∞∑
l=k̄

wl +

∞∑
l=k̄

vl. (7)

Since
∑∞
k=0 wk < ∞ and

∑∞
k=0 vk exists, it follows that the left-hand side of (7) is bounded above and

that limk̄→∞
∑∞
l=k̄ vl = 0. By taking the lower limit of the right-hand side (RHS) as k̄ →∞, we have

0 ≤ lim sup
k→∞

xk ≤ lim inf
k̄→∞

xk̄ <∞.

This implies that {xk} converges to a finite value. By writing (6) for the index k set to 0, · · · , k, and
adding, we have

k∑
l=0

uk ≤ x0 +

k∑
l=0

wl +

k∑
l=0

vl − xk+1.

Thus, by taking the limit as k →∞, we have
∑∞
l=0 ul <∞.

Proof of Proposition 2: To simplify notations, let σ = σ1 + σ2 and r̃(k) = maxj∈N rj(k). It follows
from Assumption 5 that every player updates at least once in σ iterations and r̃(k+ t)− r̃(k) ≤ tσ2 ≤ tσ
for any integer t ≥ 0. Let Iki be an indicator function which takes value 1 when s(k) = i and 0 otherwise.
We abuse the notation of stepsize by αi(k) = Iki

∑ri(k+1)−1
t=ri(k) ρ(t). Then, for all i ∈ N ,

‖xi(k + σ)− x∗i ‖2 =

∥∥∥∥∥xi(k)− x∗i +

k+σ−1∑
u=k

[xi(u+ 1)− xi(u)]

∥∥∥∥∥
2

= ‖xi(k)− x∗i ‖2 + ‖xi(k + σ)− xi(k)‖2

+ 2

k+σ−1∑
u=k

[xi(k)− x∗i ]
T[xi(u+ 1)− xi(u)].

(8)
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Since the action set Xi is compact and the mapping Fi is continuous, ‖Fi‖ is bounded. Besides, the
perturbation ‖εi‖ is bounded under Assumption 5. Thus, the perturbed mapping ‖F̂i‖ is bounded. Let
C denote its upper bound; then we have that for u = k + 1, · · · , k + σ,

‖xi(u)− xi(k)‖ =

∥∥∥∥∥
u−1∑
v=k

[xi(v + 1)− xi(v)]

∥∥∥∥∥ ≤ C
ri(u)−1∑
t=ri(k)

ρ(t) ≤ C
r̃(k+σ)−1∑
t=r̃(k)−σ

ρ(t).

Thus, it holds that

ρ̃1i(k) := ‖xi(k + σ)− xi(k)‖2 ≤ C2

r̃(k+σ)−1∑
t=r̃(k)−σ

ρ(t)

2

≤ C2σ(σ + 1)

r̃(k+σ)−1∑
t=r̃(k)−σ

ρ2(t).

It follows from Assumption 5(a) that r̃(k + σ2 + σ)− σ ≥ r̃(k + σ).
Taking summation over k, it yields that

∞∑
k=0

ρ̃1i(k) ≤ C2σ(σ + 1)

∞∑
k=0

r̃(k+σ)−1∑
t=r̃(k)−σ

ρ(t)2 ≤ C2σ2(σ + 1)2
∞∑
t=0

ρ(t)2 <∞.

Next, consider the last term of the RHS of (8), we obtain that
k+σ−1∑
u=k

[xi(k)− x∗i ]
T[xi(u+ 1)− xi(u)]

≤
k+σ−1∑
u=k

[xi(u)− x∗i ]
T[xi(u+ 1)− xi(u)] +

k+σ−1∑
u=k

‖xi(k)− xi(u)‖‖xi(u+ 1)− xi(u)‖.

(9)

Denote the last term of the RHS of (9) by ρ̃2i(k). Similarly, we have
∑∞
k=0 ρ̃2i(k) < ∞. Consider the

first term, when Iui = 1; we then have that

[xi(u)− x∗i ]
T[xi(u+ 1)− xi(u)]

= −‖xi(u+ 1)− xi(u)‖2 + [xi(u+ 1)− x∗i ]
T[xi(u+ 1)− xi(u) + αi(u)F̂i(u)]

+ αi(u)[xi(u)− xi(u+ 1)]TF̂i(u)− αi(u)[xi(u)− x∗i ]
TF̂i(u)

≤ −αi(u)[xi(u)− x∗i ]
TF̂i(u) + αi(u)‖xi(u)− xi(u+ 1)‖‖F̂i(u)‖,

(10)

where the inequality follows from the projection theorem (Bertsekas 2016, Proposition 1.1.4). Similarly,
let ρ̃3i(k) denote the last term of (10), and we have

∑∞
k=0 ρ̃3i(k) <∞.

Considering the first term of the RHS of (10), we obtain

− αi(u)[xi(u)− x∗i ]
TF̂i(u)

= −αi(u)[xi(u)− xi(k)]TF̂i(u)− αi(u)[xi(k)− x∗i ]
T[F̂i(u)− Fi(u)]

− αi(u)[xi(k)− x∗i ]
T[Fi(u)− Fi(k)]− αi(u)[xi(k)− x∗i ]

T[Fi(k)− F ∗i ]

− αi(u)[xi(k)− x∗i ]
TF ∗i

≤ −αi(u)[xi(k)− x∗i ]
T[Fi(k)− F ∗i ]

+ Cαi(u)‖xi(u)− xi(k)‖+ 2Mαi(u)‖Fi(u)− Fi(k)‖+ 2Mαi(u)‖εi(u)‖,

(11)

where we have used Fi(u) and F ∗i for Fi(xi(u),x(u)) and Fi(x∗i ,x
∗) for simplicity, andM = maxi∈N ,x∈Xi

‖x‖.
Note that with the Lipschitz continuity of the mapping Fi, we have that

‖Fi(u)− Fi(k)‖
≤ ‖Fi(xi(u),x(u))− Fi(xi(u),x(k))‖+ ‖Fi(xi(u),x(k))− Fi(xi(k),x(k))‖

≤ L

n

n∑
j=1

‖xj(u)− xj(k)‖+ L‖xi(u)− xi(k)‖.
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Thus, denoting by ρ̃4i(k) the summation over u of the last three terms of (11), we have
∑∞
k=0 ρ̃i4(k) <∞.

Finally, we evaluate the summation over i and u of the first term of the RHS of (11).
By the definition of Iui and αi(u), we know that

n∑
i=1

k+σ−1∑
u=k

αi(u) =

n∑
i=1

ri(k+σ)−1∑
t=ri(k)

ρ(t).

Then, it implies that

n∑
i=1

k+σ−1∑
u=k

−αi(u)[xi(k)− x∗i ]
T[Fi(k)− F ∗i ]

=

n∑
i=1

− r̃(k)−1∑
t=ri(k)

−
r̃(k+σ)−1∑
t=r̃(k)

+

r̃(k+σ)−1∑
t=ri(k+σ)

× ρ(t)[xi(k)− x∗i ]
T[Fi(k)− F ∗i ]

≤ −
r̃(k+σ)−1∑
t=r̃(k)

ρ(t)[x(k)− x∗]T[φ(x(k))− φ(x∗)]−
n∑
i=1

r̃(k)−1∑
t=ri(k)

ρ(t)[xi(k)− x∗i ]
T[Fi(k)− F ∗i ]

+

n∑
i=1

r̃(k+σ)−1∑
t=ri(k+σ)

ρ(t)[xi(k + σ)− x∗i ]
T[Fi(k + σ)− F ∗i ]

+

n∑
i=1

r̃(k+σ)−1∑
t=ri(k+σ)

ρ(t)
{
‖xi(k)− xi(k + σ)‖‖Fi(k)− F ∗i ‖+ ‖xi(k + σ)− x∗i ‖‖Fi(k)− Fi(k + σ)‖

}

= −
r̃(k+σ)−1∑
t=r̃(k)

ρ(t)[x(k)− x∗]T[φ(x(k))− φ(x∗)]− δ(k) + δ(k + σ) + ρ̃5(k).

(12)

Similarly, we may obtain that
∑∞
k=0 ρ̃5(k) <∞. Besides,

δ(k) =

n∑
i=1

r̃(k)−1∑
t=ri(k)

ρ(t)[xi(k)− x∗i ]
T[Fi(k)− F ∗i ],

|δ(k)| ≤
n∑
i=1

r̃(k)−1∑
t=r̃(k)−σ

2Cρ(t)‖xi(k)− x∗i ‖ ≤ 4nMCσρ(r̃(k)− σ),

which implies that δ(k) is bounded and limk→∞ δ(k) = 0. Thus, it immediately holds that

∞∑
k=0

(δ(k + σ)− δ(k)) = −
σ−1∑
k=0

δ(k).

Finally, combining (8), (9), (10), (11) and (12) yields the following key inequality

‖x(k + σ)− x∗‖2 ≤ ‖x(k)− x∗‖2 − 2

r̃(k+σ)−1∑
t=r̃(k)

ρ(t)[x(k)− x∗]T[φ(x(k))− φ(x∗)] + ρ̃(k) + δ̃(k), (13)

where ρ̃(k) =
∑n
i=1

[
ρ̃1i(k) + 2

∑4
j=2 ρ̃ji(k)

]
+ 2ρ̃5(k) and δ̃(k) = 2[δ(k + σ)− δ(k)] satisfying that

ρ̃(k) > 0,

∞∑
k=0

ρ̃(k) <∞,
∞∑
k=0

δ̃(k) exists.
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Letting y(k) = x(kσ), it follows from (13) that

‖y(k + 1)− x∗‖2 ≤ ‖y(k)− x∗‖2 − 2

r̃((k+1)σ)−1∑
t=r̃(kσ)

ρ(t)[y(k)− x∗]T[φ(y(k))− φ(x∗)] + ρ̃′(k) + δ̃′(k), (14)

where ρ̃′(k) = ρ̃(kσ), and δ̃′(k) = δ̃(kσ). We still have

ρ̃′(k) > 0,

∞∑
k=0

ρ̃′(k) <∞,
∞∑
k=0

δ̃′(k) exists.

As (14) satisfies the conditions of Lemma 3, it follows that {‖y(k)− x∗‖} is a convergent sequence and

∞∑
k=0

r̃((k+1)σ)−1∑
t=r̃(kσ)

ρ(t)[y(k)− x∗]T[φ(y(k))− φ(x∗)] <∞.

With similar statements as those in Koshal et al. (2016, Proposition 2), the sequence {y(k)} converges
to x∗. Together with the fact that limt→∞ ρ(t) = 0, it implies that {x(k)} converges to x∗.

B Proof of Lemma 2
Note that Ã(k) is a column-stochastic matrix, i.e., 1TÃ(k) = 1T for all k ≥ 0. Lemma 4 below shows
that the summation of vi(k) is exactly equal to that of xi(k).

Lemma 4. Let Ã(k) be such that
∑n
i=1[Ã(k)]ij = 1 for every j and k ≥ 0. Then,

ñ∑
i=1

vi(k) =

n∑
i=1

xi(k), (15)

where {vi(k)} and {xi(k)} are two sequences generated by (3).

Proof. From the initialization step of Algorithm 1, (15) holds for k = 0. Taking the summation over i on
the both sides of the last step in (3), we have that

ñ∑
i=1

vi(k + 1) =

ñ∑
i=1

ñ∑
j=1

[Ã(k)]ijvj(k) +

n∑
i=1

[xi(k + 1)− xi(k)]

=
ñ∑

j=1

vj(k) +
n∑

i=1

xi(k + 1)−
n∑

i=1

xi(k).

The result (15) is then arrived at by induction.

Defining Φ(k, t) = Ã(k)Ã(k − 1) · · · Ã(k − t), Lemma 5 shows that it converges to a rank one matrix
with identical columns, and that ỹi(k) is positive for all i ∈ N and k ≥ 0.

Lemma 5 (Zhang & You 2020). Under Assumption 4, the following statements are in force.

(a) There exists a nonnegative vector φ(k) satisfying 1Tφ(k) = 1 and

|[Φ(k, t)]ij − φi(k)| ≤ B′λt (16)

for all k ≥ t ≥ 0, where
B′ = 4(1 + nnb), λ =

(
1− 1

nnb

) 1
nb (17)

and b is as defined in Lemma 1(c).
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(b) ỹi(k) =
∑n
j=1[Φ(k, k)]ij ≥ n−nb, ∀i ∈ N , k ≥ 0.

Proof of Lemma 2.

(a) By Lemma 4, we have that x̄(k) = 1
ñ

∑ñ
i=1 ṽi(k). Then, the proof is similar to that of Nedić &

Olshevsky (2014, Lemma 1).

(b) It follows from (3) and the projection theorem that

‖xi(t+ 1)− xi(t)‖ ≤ αi(t)‖Fi(xi(t), zi(t+ 1))‖.

It follows from Assumption 3 that

‖Fi(xi(t), zi(t+ 1))‖ ≤ ‖Fi(xi(t), x̄(t))‖+ L‖zi(t+ 1)− x̄(t)‖.

Thus, ‖Fi(xi(t), zi(t+1))‖ is bounded under Assumption 1 and (a). Besides, it follows from Lemma
1(c) and Assumption 5(c) that limt→∞ αi(t) = 0. Thus, we have that ‖xi(t + 1) − xi(t)‖ → 0 for
all i ∈ N . Then, the rest of the proof and the proof of (c) are similar to that of Nedić & Olshevsky
(2014, Lemma 1).
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