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Abstract

We consider the classical sensor scheduling problem for linear systems where only one
sensor is activated at each time. We show that the sensor scheduling problem has a close
relation to the sensor design problem and the solution of a sensor schedule problem can
be extracted from an equivalent sensor design problem. We propose a convex relaxation to
the sensor design problem and a reference covariance trajectory is obtained from solving
the relaxed sensor design problem. Afterwards, a covariance tracking algorithm is designed
to obtain an approximate solution to the sensor scheduling problem using the reference co-
variance trajectory obtained from the sensor design problem. While the sensor scheduling
problem is NP-hard, the proposed framework circumvents this computational complexity
by decomposing this problem into a convex sensor design problem and a covariance tracking
problem. We provide theoretical justification and a sub-optimality bound for the proposed
method using dynamic programming. The proposed method is validated over several ex-
periments portraying the efficacy of the framework.

Keywords: Kalman filter, sensor design, semidefinite programming, sensor scheduling.

1 Introduction

1.1 Motivation and Prior Work

Advancements in network control systems, distributed systems, and the development of multi-
agent autonomous systems for surveillance require the development of efficient algorithms al-
locating resources to manage the sensory data originating from a large number of sensors
observing different parts of a single or distributed system, see for example, Evans et al. (2005),
Gupta et al. (2006), Zhang & Hristu-Varsakelis (2006), Williams (2007). These problems have
a long history starting with Meier et al. (1967), Athans (1972), and they include static sen-
sor scheduling problems as well as trajectory optimization scenarios for mobile sensors, e.g.,
Williams (2007). In the sensor scheduling problem, we aim to minimize an error criteria (e.g.,
the mean square error) where the error is dependent on sensor measurements over a fixed time
horizon. We are constrained by the number of sensors that can be activated at each time. This
problem has many applications including estimation of spatial phenomenon in Nowak et al.
(2004), target tracking in Masazade et al. (2012), robot navigation in Vitus (2011). Different
methods have been applied to solve these problems. For example, in Nowak et al. (2004) the
scheduler is found by employing hierarchical sensor networks to trade-off the mean square er-
ror and communication cost. Whereas, a sparsity promoting penalty function is added to the
objective function to help find a scheduler in Masazade et al. (2012), and, in Vitus (2011), a
scheduler is found by solving a novel incremental optimization problem.
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The optimization problems solving for optimal sensor schedules are generally mixed-integer
nonlinear programs, and thus, quickly become intractable. Often these optimization problems
do not posses any amenable structure that could be exploited to reduce their computational
complexities. Owing to this difficulty, a whole array of approximation attempts have been
proposed to solve these problems. The work of Meier et al. (1967) proposed a solution that
checks all possible sensor schedules, whereas, Vitus et al. (2012) devised a solution that prunes
the exponentially sized search tree to reduce the search space at the expense of added compu-
tation due to pruning. Joshi & Boyd (2008) relaxed the problem into a convex optimization
problem, a heuristic that often works well in practice. He & Chong (2004) modeled the sensor
scheduling problem as a partially observable Markov decision process (POMDP) and proposed
approximate solutions to solve this POMDP. A stochastic optimization based solution for an
infinite-horizon steady state problem is addressed by Gupta et al. (2006). Greedy solutions
to the sensor scheduling problem have been proposed as well, such as Wang et al. (2004).
Chhetri et al. (2007) propose a greedy solution that also includes integer programming. Some
of these greedy solutions leverage ideas from submodularity, e.g., Tzoumas et al. (2016). These
approaches also include optimizing a slightly different objective function (e.g., convexification
of the objective). Additionally, Liu et al. (2014) has proposed an optimal sensor schedule by
restricting the scheduling in the class of periodic functions. The existence of periodic sen-
sor scheduling has been proven in Orihuela et al. (2014) where a sub-optimal one-step ahead
strategy is thoroughly studied as a possible example of observation scheme.

1.2 Contribution of This Work

We revisit the sensor scheduling problem of linear Gaussian systems and recast it as a sensor
design problem, which, to the best of our knowledge, has not been explored in the past research.
While in a sensor scheduling problem we search for the optimal schedule for a given set of
sensors, in a sensor design problem (details are provided in Section 3.1) we design the optimal
sensors. These two classes of problems are treated differently as their primary objectives
are different. However, sensor scheduling problems have a close connection to sensor design
problems and we show that the former can be expressed as a special case of the latter. We
further demonstrate that a class of sensor design problems can be solved by convex optimization.
Using this derived connection between sensor scheduling problems and sensor design problems,
an approximate solution of a scheduling problem to select one sensor at any time is constructed.
While some of the prior works e.g., Joshi & Boyd (2008) and Tzoumas et al. (2016) modify
the cost function of a scheduling problem to make it convex, we show that the sensor design
problem is already a convex optimization problem when the sensor parameters are restricted
to a convex set. In this approach, we thus avoid the need to solve mixed integer programming
problems which are inherent to sensor scheduling problems.

The contributions of this work are as follows: First, we show that there is a one-to-one con-
nection between sensor scheduling problems and sensor designing problems. Second, we show
that sensor designing problems are indeed convex when the optimization parameters lie within
convex sets. Third, from the equivalent design problem of a scheduling problem, we obtain a
reference covariance trajectory that is used by our tracking algorithm (Algorithm 1) to find a
sensor schedule. Fourth, we use an approximate dynamic programming based argument to
provide guarantees and a sub-optimality bound of our algorithm. Finally, through numerical
experiments, we demonstrate the efficacy of our proposed method over some existing methods,
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e.g., Gupta et al. (2006) and Tzoumas et al. (2016).

The rest of the paper is structured as follows: In Section 2, the problem is formulated as
a nonlinear integer program. In Section 3.1, we propose a solution to this problem where we
construct a sensor design problem, and then in Section 3.2, we provide a covariance-tracking
algorithm to obtain the solution of the original sensor scheduling problem from the solution
of the sensor design problem. We analyze the performance of our algorithm in Section 3.3
using dynamic programming based arguments. Numerical analysis on the performance of our
approach is provided in Section 4. Finally, we conclude this article in Section 5.

2 Problem Formulation

We consider a linear system of the form

Xt+1 = AtXt +Wt, (1)

where Xt ∈ Rn, X0 ∼ N (µ0,Σ0) is the initial state, {Wt}Tt=0 is an i.i.d sequence of Gaussian
random variable with W0 ∼ N (0,W), and Wt is independent of X0 (denoted as Wt⊥⊥X0) for
all t. The dynamical system (1) is equipped with N sensors which are described by

Y i
t = CitXt + V i

t , i ∈ N , {1, . . . , N}, (2)

where {V i
t }Tt=0 is an i.i.d sequence of Gaussian random variables with V i

0 ∼ N (0,V i). Further-
more, for all t, s and i 6= j ∈ N, V i

t and V j
s are independent, i.e., V i

t ⊥⊥ V
j
s , and also V i

t ⊥⊥ X0,
V i
t ⊥⊥Ws.

Only one out of the N sensors are used at any time to obtain the measurements, which
are then used in estimating the state of the system (1). Let σ : [0, T ] → N be a sensor
schedule function such that σ(t) = i denotes that the i-th sensor is used at time t to obtain
the measurement Y i

t corresponding to sensor i. Thus, the received measurements up until time

t can be represented as Yt(σ) , {Y σ(0)
0 , . . . , Y

σ(t)
t }. For a given schedule σ, the estimation

error and the estimation error covariance at time t are defined as et(σ) , Xt−E[Xt|Yt(σ)] and
Pt(σ) , E[et(σ)et(σ)T], respectively. The objective is to find a sensor schedule σ to minimize
a cumulative expected quadratic error

∑T
t=0 E[et(σ)Tet(σ)] over a finite horizon [0, T ], that is,

to minimize
∑T

t=0 tr(Pt(σ)).
We define the following two matrix valued functions to maintain brevity in the subsequent

analysis.

gt(i,M) = M −MCit
T
(CitMCit

T
+ V i)−1CitM, (3a)

ht(M) = At−1MAT
t−1 +W. (3b)

From Kalman filtering theory, we obtain that, for all t,

Pt(σ) = gt(σ(t), Pt|t−1(σ)), (4a)

Pt|t−1(σ) = ht(Pt−1(σ)), P0|−1 = Σ0. (4b)

The optimal sensor scheduling problem is as follows.
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Problem 1 (Sensor scheduling problem) Given a system (1)-(2), find a schedule σ : [0, T ]→
N that solves the following optimization problem:

min
T∑
t=0

tr(Pt(σ))

subject to Pt(σ) = gt(σ(t), Pt|t−1(σ)),

Pt|t−1(σ) = ht(Pt−1(σ)), P0|−1 = Σ0,

with variables σ, Pt, Pt|t−1.

Problem 1 is combinatorial in nature due to the discrete mapping of the scheduling function
σ(·), and generally, it is NP-hard, see e.g., Tzoumas et al. (2016). Majority of the prior works
rely on integer programming or relaxations to solve Problem 1. In this work, we propose an
efficient sub-optimal solution that studies the problem from the perspective of sensor-design
rather than sensor scheduling.

3 Optimal Sensor Schedule

In order to solve Problem 1, we will construct a computationally inexpensive simplified problem
that provides a sub-optimal solution to Problem 1. In this section, instead of looking for a
schedule σ(·), we focus on a seemingly different problem that seeks to design sensors to be used
over the horizon [0, T ].

Before starting our discussion on the sensor design problem and its relation with the schedul-
ing problem of Problem 1, let us define two matrices Qt and Qt|t−1 ( information matrices for
Kalman filtering ) as follows

Qt(σ) , P−1t (σ), Qt|t−1(σ) , P−1t|t−1(σ).

Therefore, from (3a) and (4a), we may write:

Q−1t (σ) = Q−1t|t−1(σ)−Q−1t|t−1(σ)CT
t (σ)S−1t (σ)Ct(σ)Q−1t|t−1(σ),

where St(σ) , Ct(σ)Pt|t−1(σ)Ct(σ)T+Vt(σ) and Ct(σ) , Cσ(t)t , Vt(σ) , Vσ(t). Using Woodbury
equality1, one may equivalently write

Qt(σ) = Qt|t−1(σ) + CT
t (σ)V−1t (σ)Ct(σ). (5)

Using the new variables Qt(σ) and Qt|t−1(σ), Problem 1 is rewritten as Problem 2.

Problem 2 Given a system (1)-(2), find a schedule σ : [0, T ] → N that solves the following
problem:

min

T∑
t=0

tr(Pt(σ))

subject to Pt(σ) = Q−1t (σ), Pt|t−1(σ) = h(Pt−1(σ)),

Qt(σ) = Qt|t−1(σ) + CT
t (σ)V−1t (σ)Ct(σ),

Qt|t−1(σ) = P−1t|t−1(σ), Q0|−1 = Σ−10 ,

with variables σ, Pt, Pt|t−1, Qt, Qt|t−1.

1(A+ UCV )−1 , A−1 −A−1U(C−1 + V A−1U)−1V A−1
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Although, the formulations in Problem 1 and Problem 2 may appear different as their con-
straints are different, one can verify that these two problems are equivalent, and thus, by
solving one, we can recover the solution for the other. Next, we show the advantage of using
Problem 2 over Problem 1 for solving the sensor scheduling problem by discussing a sensor
design problem.

3.1 Sensor Design Problem

In this section, we focus on solving a sensor design problem which is closely related to the
sensor scheduling problem and provides a reasonable heuristic for solving the latter problem.
To that end, a related sensor design problem is presented in Problem 3.

Problem 3 Given a system (1), and the sets Ct and Vt, design a linear sensor Yt = CtXt+Vt
where Vt ∼ N (0,Vt), to solve the following problem:

min

T∑
t=0

tr(Pt)

subject to Pt = Q−1t , Qt = Qt|t−1 +Rt,

Qt|t−1 = (ht(Pt−1))
−1 , Q0|−1 = Σ−10 ,

Rt = CT
t V−1t Ct, Ct ∈ Ct, Vt ∈ Vt,

with variables Pt, Qt, Qt|t−1, Rt, Ct,Vt.

Remark 1 By replacing the constraints Ct ∈ Ct,Vt ∈ Vt with (Ct,Vt) ∈ {(Cit ,V i)}i∈N in
Problem 3, we recover Problem 2.

We may further relax the constraints in Problem 3 to their equivalent linear matrix inequalities
(LMIs) to obtain a relaxed problem. By using Pt � Q−1t and Qt|t−1 � (ht(Pt−1))

−1, and after
some simplifications via using Schur Complement, we obtain the following relaxed problem.

Problem 4 For the given dynamical system (1), design a sensor of the form Yt = CtXt + Vt,
where Vt ∼ N (0,Vt), to solve the following problem:

min

T∑
t=0

tr(Pt)

subject to Qt = Qt|t−1 +Rt,[
Pt I
I Qt

]
� 0,[

W−1 −Qt|t−1 W−1At
AT
tW−1 Qt−1 +AT

tW−1At

]
� 0,

Rt ∈ Rt, Q0|−1 = Σ−10 ,

with variables Pt, Qt, Qt|t−1, Rt, where Rt = {CT
t V−1t Ct | Ct ∈ Ct, Vt ∈ Vt} is a given set of

positive semidefinite matrices which is constructed from the sets Ct and Vt.
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Note that the constraint Rt ∈ Rt in Problem 4 is an equivalent representation of the constraints
Rt = CT

t V−1t Ct, Ct ∈ Ct, Vt ∈ Vt in Problem 3. Once {Rt}Tt=0 is found by solving Problem 4,
{Ct,Vt}Tt=0 can be found by solving

CT
t V−1t Ct = Rt,

for all t = 0, . . . , T. While Problem 4 is a relaxation of Problem 3, the following theorem states
that an optimal solution of Problem 4 is also an optimal solution for Problem 3.

Theorem 1 An optimal solution of the relaxed problem (Problem 4) is also an optimal solution
of the original problem (Problem 3), and vice-versa.

Proof: Firstly, due to the relaxations, any feasible solution of Problem 3 is a feasible solution
for Problem 4, and hence the optimal solution of Problem 3 is a feasible solution for Problem 4.
The theorem is proved once we show that for every feasible solution of Problem 4 there exists
a feasible solution for Problem 3 that produces the same, if not a lesser, objective value. In
order to prove this, let us consider {Pt, Qt, Qt|t−1} to denote a feasible solution of Problem 4
and let us construct a new tuple {P̄t, Q̄t, Q̄t|t−1}, for all t, as follows:

Q̄0|−1 = Q0|−1 R̄t = Qt −Qt|t−1, P̄t = Q̄−1t ,

Q̄t = Q̄t|t−1 + R̄t, Q̄t+1|t =
(
ht+1(P̄t)

)−1
.

(6)

Based on this construction of {P̄t, Q̄t, Q̄t|t−1}, one can verify using mathematical induction
that P̄t � Pt, Q̄t � Qt and Q̄t|t−1 � Qt|t−1 for all t. Matrix R̄t, as defined in (6), satisfies
R̄t ∈ Rt. Therefore, based on (6), one can conclude that {P̄t, Q̄t, Q̄t|t−1} is a feasible solution
of Problem 3 since they satisfy all the constraints of Problem 3. Furthermore, since P̄t � Pt,
it then follows that

∑T
t=0 tr(P̄t) ≤

∑T
t=0 tr(Pt). Thus, an optimal solution of Problem 4 is a

feasible solution of Problem 3, and vice-versa. This completes the proof. �

Due to Theorem 1, the LMI-based relaxations introduced in Problem 4 do not affect the
optimality since an optimal solution of the relaxed problem is also optimal for the original
problem. This is a key advantage of this approach over existing methods. It is noteworthy
that the LMI-based relaxations retain the optimality of a sensor-design problem. Further-
more, Problem 4 is a mixed integer semidefinite program and one could use efficient numerical
techniques, e.g., Gally et al. (2018) to solve it directly.

Note that Problem 4 is convex when Rt is a convex set for all t. Moreover, if Rt is a convex
hull of a set of ` matrices {R1

t , . . . , R
`
t} for all t, then we can replace the constraint Rt ∈ Rt

with the constraints Rt =
∑`

i=1 θ
i
tR

i
t, θit ∈ [0, 1] and

∑`
i=1 θ

i
t = 1. In this case, Problem 4 can

be further simplified to Problem 5.

Problem 5 For the given dynamical system (1), design a sensor of the form Yt = CtXt + Vt,

6



where Vt ∼ N (0,Vt), to solve the following problem:

min

T∑
t=0

tr(Pt)

subject to Qt = Qt|t−1 +
∑̀
i=1

θitR
i
t, Q0|−1 = Σ−10[

Pt I
I Qt

]
� 0,[

W−1 −Qt|t−1 W−1At
AT
tW
−1 Qt−1 +AT

tW−1At

]
� 0,

∑̀
i=1

θit = 1, 0 ≤ θit ≤ 1.

with variables θt, Pt, Qt, Qt|t−1.

At this point, we are ready to address the sensor scheduling problem and its connection to
Problems 3-5.

3.2 Sensor Scheduling Problem

The sensor scheduling problem can be viewed as a sensor design problem if we restrict the design
variables (Ct,Vt) to be one of the elements in the set {(Cit ,V i)}i∈N as mentioned in Remark 1.

Equivalently, if we restrict Rt = {Rit}i∈N in Problem 4, where Rit = Cit
TV i−1Cit , then we recover

a solution to Problem 1. However, solving Problem 4 with the non-convex constraint Rt ∈
{Rit}i∈N is computationally expensive despite the availability of efficient numerical techniques,
e.g., Gally et al. (2018). Therefore, we relax the constraint Rt ∈ {Rit}i∈N as Rt ∈ co

(
{Rit}i∈N

)
where co(·) denotes the convex hull operation. With this convex hull relaxation approach, the
relaxed sensor scheduling problem becomes exactly the same as Problem 5.

By solving a relaxation of Problem 1, as presented in Problem 5, one obtains the variables
{{θit

o}i∈N}Tt=0, or equivalently Rot =
∑N

i=1 θ
i
t
o
Rit and the associated P ot , Q

o
t and Qot|t−1. If,

θit
o ∈ {0, 1} for all i and t, then this relaxed optimal solution {{θit

o}i∈N}Tt=0 is an optimal
schedule for Problem 1. However, in general, the obtained θit

o
are not binary-valued, and hence

the solution of Problem 5 may not readily be useful as a solution to Problem 1. Therefore, we
propose a tracking-based algorithm to use the solution of Problem 5 as a guide to construct a
sub-optimal solution to Problem 1.

Algorithm 1 takes the solution {P ot }Tt=0 obtained from solving Problem 5 as an initial guess,
and initiates P0|−1 at Σ0 as required by (4b). The notation ‖ · ‖F in Algorithm 1 represents

the Frobenius norm. The algorithm produces a covariance trajectory {Pt}Tt=0 that is close to
the reference trajectory {P ot }Tt=0 in Frobenius norm.

The reasoning behind the construction of Algorithm 1 is to keep the error covariance Pt(σ)
close to P ot , since P ot is the best covariance one could possibly obtain given the set of sensors.
The algorithm is reminiscent of a trajectory-tracking problem where P ot serves as the reference
trajectory. In the following we formally provide technical justifications of using such a heuristic
method and its merits using dynamic programming based arguments.
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Algorithm 1 Covariance Tracking Algorithm

Input ← {P ot }Tt=0, P0|−1 = Σ0,
for t = 0 : T

Mt(i)← gt(i, Pt|t−1), i ∈ N,
σ(t)← argmini ‖P ot −Mt(i)‖F
Pt ← gt(σ(t), Pt|t−1),
Pt+1|t ← ht(Pt),

end
Output ← σ.

3.3 Dynamic Programming and Optimality Guarantees

Let us denote the value function associated with Problem 1 to be Ut, which is given as follows

Ut(P ) = min
Pt|t−1=P, {σ(k)}Tk=t

T∑
k=t

tr(Pk(σ)), (7)

where P is a positive semidefinite matrix. Similarly, we denote the value function asso-
ciated with the SDP relaxation of Problem 1 (equivalent to Problem 5 with ` = N and

Rit = Cit
TV i−1Cit) by Uot :

Uot (P ) = min
Pt|t−1=P, {{θik}i∈N}

T
k=t

T∑
k=t

tr(Pk(σ)). (8)

The difference between Ut and Uot is that the feasible choice of a sensor at time t for Ut has to
be one of the {Rit}i∈N (or equivalently {Cit ,V it}i∈N), whereas the feasible choice of a sensor for
Uot is any of the sensors that lie within the convex hull of {Rit}i∈N. Therefore, Uot (P ) ≤ Ut(P )
for all symmetric P � 0. In what follows, we will suppress the Pt|t−1 = P constraint in the
definitions of the value function to maintain notational brevity.

From dynamic programming, one may write

Ut(P ) = min
σ(t)

(
tr(Pt(σ)) + Ut+1(Pt+1|t(σ))

)
= min

σ(t)

(
tr
(
gt(σ(t), P )

)
+ Ut+1

(
ht+1

(
gt(σ(t), P )

)))
,

UT (P ) = min
σ

tr
(
gT (σ, P )

)
.

In the following we will exploit some of the properties of Ut and the solutions obtained from
solving the SDP relaxation (P ot , Q

o
t and P ot|t−1) to solve for an approximate value function

associated with (7).
Before proceeding, let us present some useful properties of the map gt(·, ·) defined in (3)

which will assist us in our subsequent analyses. With a slight variation to Lemma 1-e from
Sinopoli et al. (2004), one can prove that, for any fixed i ∈ N, gt(i,M) is concave in M .
Furthermore, we can characterize the derivative of the function gi(i, ·) by the following lemma.
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Lemma 1 (Vitus et al. (2012)) For each i ∈ N and for any positive semi-definite matrices
M,L, it follows that

dgt(i,M + εL)

dε

∣∣∣
ε=0

= Ht(i,M)LHt(i,M)T, (9)

where Ht(i,M) = (I −MCit
T
(CitMCit

T
+ V i)−1Cit).

Proof: Let us define g̃t(i,M) = (CitMCit
T

+ V i)−1, and therefore,

dg̃t(i,M + εL)

dε
= −g̃t(i,M + εL)CitLC

i
t
T
g̃t(i,M + εL).

Using (3a) and after some simplifications, we obtain

dgt(i,M + εL)

dε

∣∣∣
ε=0

= Ht(i,M)LHt(i,M)T.�

The following proposition shows that the value function Uot is locally Lipschitz, which is an
important component in constructing Algorithm 1.

Proposition 1 For any two symmetric positive semidefinite matrices P and Q with bounded
Frobenius norms, and for all t = 0, . . . , T , there exists a constant K > 0, such that

‖Uot (P )− Uot (Q)‖ ≤ K‖P −Q‖F . (10)

Proof: We prove this in an inductive way. Let us first consider t = T , and hence,

UoT (P )− UoT (Q) = min
{θi}i∈N

tr
(
gT (θ, P )

)
− min
{θi}i∈N

tr
(
gT (θ,Q)

)
(a)

≤ tr
(
gT (θ∗, P )− gT (θ∗, Q)

)
(b)

≤tr(HT (θ∗, Q)(P −Q)HT
T (θ∗, Q))

≤‖P −Q‖F ‖HT
T (θ∗, Q)HT (θ∗, Q)‖F

where θ∗ = [θ1∗, . . . , θN∗] in (a) is a minimizer of tr(gT (θ,Q)), and (b) follows from the concavity
property of the function gT (θ, ·) along with Lemma 1. From the expression of HT (θ∗, Q) in
Lemma 1, along with the fact that Q has a bounded Frobenius norm, one can verify that there
exists a finite K > 0 such that ‖HT

T (θ∗, Q)HT (θ∗, Q)‖F ≤ K. Therefore,

UoT (P )− UoT (Q) ≤ K‖P −Q‖F .

The inductive hypothesis can be proven in a similar way. �
The following proposition states that an upper bound on Ut is found from Uot .

Proposition 2 For any time t and P � 0 with bounded Frobenius norm, there exists a finite
α > 0 such that

Ut(P ) ≤ Uot (P ) + α.

9



Based on these propositions, we are now ready to perform an approximate dynamic program-
ming with the value function Ut(P ) to design a sub-optimal solution as follows. Recall that
the value function Ut(P ) satisfies

Ut(P ) = min
σ(t)

(
tr(Pt(σ)) + Ut+1(Pt+1|t(σ))

)
,

which can be re-written as

Ut(P ) ≤ α+ min
σ(t)

(
tr(Pt(σ)) + Uot+1(Pt+1|t(σ))

)
,

≤ α+ Uot (P ot|t−1)

+ min
σ(t)

(
tr(Pt(σ)) + Uot+1(Pt+1|t(σ))− Uot (P ot|t−1)

)
,

where P ot|t−1 is obtained from the SDP relaxation. More specifically, by solving the SDP

relaxation one obtains {P ot , Qot|t−1, Q
o
t}Tt=0 and from these one can construct P ot|t−1 = Qo−1t|t−1.

Thus, we have that Uot (P ot|t−1) = tr(P ot ) + Uot+1(P
o
t+1|t), and therefore,

Ut(P ) ≤ α+ Uot (P ot|t−1)

+ min
σ

(
tr(Pt(σ)− P ot ) + Uot+1(Pt+1|t(σ))− Uot+1(P

o
t+1|t)

)
≤ α+ Uot (P ot|t−1)

+ min
σ

(
tr(Pt(σ)− P ot ) +K‖Pt+1|t(σ)− P ot+1|t‖F

)
≤ α+ Uot (P ot|t−1)

+ min
σ

(
tr(Pt(σ)− P ot ) +K‖At‖2‖Pt(σ)− P ot ‖F

)
≤ α+ Uot (P ot|t−1) +K1 min

σ
‖Pt(σ)− P ot ‖F , (11)

where K1 = K‖At‖2+
√
n and we have used Proposition 1 and the fact that for any X ∈ Rn×n,

tr(X) ≤
√
n‖X‖F .

Thus performing the optimization minσ ‖Pt(σ)−P ot ‖F essentially minimizes an upper bound
of the value function Ut, or equivalently, an upper bound of

∑T
t=0 tr(Pt). Therefore, in essence,

Algorithm 1 performs an approximate dynamic programming type optimization by minimizing
an upper bound of the value function Ut. The following lemma provides a sub-optimality bound
of Algorithm 1.

Lemma 2 Let σ, σ∗ and θ∗ denote the schedule obtained from Algorithm 1, the true optimal
schedule of Problem 1, and the solution to Problem 5, respectively. Then,

T∑
t=0

tr(Pt(σ)) ≤
T∑
t=0

tr(Pt(σ
∗)) + ε (12)

where ε ,
√
n
∑T

t=0
1−λT+1−t

1−λ βt +
√
n
∑T

t=0 ‖Pt(θ∗) − Pt(σ
∗)‖F , βt , ‖gt(σ∗(t), Pt|t−1(θ∗)) −

Pt(θ
∗)‖F and λ , maxt ‖At−1H(σ∗(t), Pt|t−1(θ

∗))‖2.
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Proof: Note that, for all t, we have

‖Pt(σ)− Pt(σ∗)‖F ≤ ‖Pt(σ)− Pt(θ∗)‖F + ‖Pt(θ∗)− Pt(σ∗)‖F , (13)

where Pt(σ) is the estimation error covariance when the schedule σ is used upto time t. Similar
definitions for Pt(σ

∗) and Pt(θ
∗) as well. Furthermore, Pt(θ

∗) = P ot based on the definition of
θ∗. From Algorithm 1, we have

‖Pt(σ)− Pt(θ∗)‖F = min
i
‖gt(i, Pt|t−1(σ))− Pt(θ∗)‖F

≤ ‖gt(σ∗(t), Pt|t−1(σ))− Pt(θ∗)‖F
≤ ‖gt(σ∗(t), Pt|t−1(σ))− gt(σ∗(t), Pt|t−1(θ∗))‖F + ‖gt(σ∗(t), Pt|t−1(θ∗))− Pt(θ∗)‖F

Due to the concavity of gt(i, ·) and from Lemma 3, we obtain

‖gt(σ∗(t), Pt|t−1(σ))− gt(σ∗(t), Pt|t−1(θ∗))‖F
≤ ‖Ht(σ

∗(t), Pt|t−1(θ
∗))‖2‖Pt|t−1(σ))− Pt|t−1(θ∗)‖F

≤ λt‖Pt−1(σ)− Pt−1(θ∗)‖F

where λt , ‖At−1H(σ∗(t), Pt|t−1(θ
∗))‖2. By defining ηt , ‖Pt(σ) − Pt(θ

∗)‖F and βt ,
‖gt(σ∗(t), Pt|t−1(θ∗))− Pt(θ∗)‖F , we obtain

ηt ≤ ληt−1 + βt, η0 ≤ β0, (14)

where λ = maxt λt. This further gives ηt ≤
∑t

k=0 λ
t−kβk. Notice that gt(σ

∗(t), Pt|t−1(θ
∗))

denotes the error covariance at time t due to selecting the σ∗(t)-th sensor while the prediction
covariance was Pt|t−1(θ

∗). Whereas, Pt(θ
∗) denotes the error covariance at time t starting from

the same prediction covariance of Pt|t−1(θ
∗) and using the relaxed schedule θ∗(t). Therefore,

βt = ‖gt(σ∗(t), Pt|t−1(θ∗)) − Pt(θ∗)‖F denotes the covariance mismatch between the schedules
θ∗ and σ∗, which is caused by the integer nature of the schedule σ∗. Clearly, if the solution to
Problem 5 is integer in nature (i.e., θ∗t ∈ {0, 1}) for all t, then βt = 0 for all t. Also note that

At−1H(σ∗(t), Pt|t−1(θ
∗)) = (At−1−Kt−1C

σ∗(t)
t ), where Kt−1 is the Kalman gain associated with

the schedule θ∗. When the close-loop system is stable, i.e., (At−1−Kt−1C
σ∗(t)
t ) is Hurwitz, we

obtain λ < 1. From (13), (14) and the definition of ηt, we obtain

T∑
t=0

‖Pt(σ)− Pt(σ∗)‖F ≤
T∑
t=0

ηt +

T∑
t=0

‖Pt(θ∗)− Pt(σ∗)‖F

≤
T∑
t=0

λT+1−t − 1

λ− 1
βt +

T∑
t=0

‖Pt(θ∗)− Pt(σ∗)‖F ,

which further leads to,

T∑
t=0

tr(Pt(σ))−
T∑
t=0

tr(Pt(σ
∗)) ≤ ε (15)

where ε ,
√
n
∑T

t=0
λT+1−t−1

λ−1 βt +
√
n
∑T

t=0 ‖Pt(θ∗)− Pt(σ∗)‖F . Equation (15) provides a sub-
optimality bound of Algorithm 1. From the definition of βt, we notice that ε depends on the
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covariance mismatch between the schedules θ∗ and σ∗. �

From the definition of βt, we notice that ε captures the covariance mismatch between the
schedules θ∗ and σ∗, and consequently, portraying the effects of the relaxed sensor design prob-
lem on the overall optimality of the approach. If the optimal covariance {Pt(σ∗)}Tt=0 is “close”
to the covariance from the relaxed optimization {Pt(θ∗)}Tt=0 then the suboptimality bound de-
creases, which is expected. Furthermore, the bound ε depends on the system dimension n and
degrades with the system’s dimension.

4 Numerical Evaluations

We empirically evaluate the performance of our algorithm by applying it on a wide range
of (randomly generated) scenarios and comparing it to (suitable modifications of) Tzoumas
et al. (2016) and Gupta et al. (2006) and a random search algorithm. The random search
algorithm randomly generates 2000 schedules and reports the best among these schedules. It is
noteworthy that the algorithm proposed by Gupta et al. (2006) is for an infinite horizon steady-
state estimation problem and here we adopt this algorithm to our finite horizon problems.

We conduct several experiments by varying the dimensions of the system. Four sets of
experiments were conducted for seven different dimensions of A ∈ Rn×n for n = 4, 6, 8, and 10.
For each dimension n, we generate thirty scenarios by randomly generating thirty A matrices
with eigenvalues in the range [1, 1.5]. For each scenario, we consider four randomly chosen
sensors with different numbers of dimensions (i.e., different number of rows for matrices Ci).
Noise Wt is chosen to have zero mean and unit variance, i.e., Wt ∼ N (0, I). The measurement
noises are V i

t ∼ N (0, V i) where V i is a diagonal covariance matrix whose diagonal elements
are chosen randomly between 0 and 1. We consider a time horizon of T = 100.

In Figure 1 (left), we illustrate the performance of our algorithm compared to the others.
The x-axis represents the dimension of the system and the y-axis represents the cost averaged
over the randomly generated scenarios. As can be seen, our algorithm performs better than
the other algorithms in terms of the cost

∑T
t=0 tr(Pt). We also compare the run-time of these

algorithms in Figure 1 (right). While the run-times for random search and Gupta et al. (2006)
are slightly smaller than ours, their performances are significantly worse than ours. On the
other hand, while the performance of Tzoumas et al. (2016) is comparable to ours, their run-
time is significantly higher compared to ours. In this way the proposed method provides a
balanced trade-off between the computation-time and the objective value.

It is worth mentioning that during our study of sensor scheduling problems, we have noticed
that the optimal schedule converge to a periodic scheduling scheme after a disproportionately
shorter transient period. Similar observation has also been witnessed in other works, e.g.,
Jawaid & Smith (2015) and the optimality of such periodic behaviors is proven in Orihuela
et al. (2014). The periodicity of the optimal policy can be further exploited in our frame-
work to generate optimal scheduling for infinite horizon problems and to further reduce the
computational complexity for finite horizon problems.

4.1 Near-Optimal Performance

While in the last set of experiments we illustrated that our algorithm outperforms the other
algorithms, in this section we quantitatively demonstrate how close to the true optimum our
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Figure 1: Plot of the cost
∑T

t=0 tr(Pt(σ)) and computation times for our algorithm, Tzoumas
et al. (2016), Gupta et al. (2006), and a random schedule algorithm.

Figure 2: Plot of total costs for all permutation of schedules. The gray line corresponds to the
cost by using the schedule resulting from our tracking algorithm.
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solution can be. To compute the optimal schedule, we need to resort to exhaustive searches, and
hence, we reduce the time horizon to T = 9 in order to maintain tractability of the exhaustive
search methods. We randomly pick one of the thirty 10-dimensional scenarios that were used
in the previous experiment. We have 4 available sensors, and hence, the total number of
possible schedules are 410. We compare the performances of all permutations of schedules (410

of them) to the performance resulting from our algorithm by plotting a histogram in Figure 2.
In Figure 2, the x-axis represents the cost (

∑T
t=0 tr(Pt)) and the y-axis represents how many

schedules (out of the 410 possible ones) can achieve that cost2. Such a histogram represents
how likely it is to find a random schedule that will produce a given cost. For this example,
our algorithm finds the optimal schedule, whereas the other algorithms fail to find the optimal
solution.

5 Conclusion

In this paper, we reformulated the sensor scheduling problem as a sensor design problem whose
convex relaxation is solved by a semidefinite programming approach. While such a relaxation
does not readily produce a solution to the scheduling problem, we presented a covariance-
tracking algorithm to construct a sensor schedule from the solution of the sensor design problem.
The foundation of our algorithm is justified by using an approximate dynamic programming
based argument where we show that the tracking based algorithm indeed minimizes an upper
bound of the optimal cost (value function).A sub-optimality bound of our proposed algorithm is
also derived and discussed. Performance of our algorithm is demonstrated on several examples
and compared with several existing methods to show the merit of our framework.
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