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Abstract

Given an unstable highly nonlinear hybrid stochastic differential delay equation (SDDE, also known as an SDDE with Markovian
switching), can we design a delay feedback control to make the controlled hybrid SDDE become exponentially stable? Recent
work by Li and Mao in 2020 gave a positive answer when the delay in the given SDDE is a positive constant. It is also noted
that in their paper the time lag in the feedback control is another constant. However, time delay in a real-world system is often
a variable of time while it is difficult to implement the feedback control in practice if the time lag involved is a strict constant.
Mathematically speaking, the stabilization problem becomes much harder if these delays are time-varying, in particular, if
they are not differentiable. The aim of this paper is to tackle the stabilization problem under non-differentiable time delays.
One more new feature in this paper is that the feedback control function used is bounded.
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1 Introduction

Recently, Li and Mao [9] successfully investigated the
following stabilization problem: given an unstable highly
nonlinear hybrid SDDE

dx(t) = f(x(t), x(t− δ), r(t), t)dt
+ g(x(t), x(t− δ), r(t), t)dB(t),

(1.1)

how could we design a delay feedback control u(x(t −
τ), r(t), t) to make the controlled system

dx(t) = [f(x(t), x(t− δ), r(t), t) + u(x(t− τ), r(t), t)]dt

+ g(x(t), x(t− δ), r(t), t)dB(t) (1.2)

to be stable? Here the state x(t) takes values in Rd and
the mode r(t) is a Markov chain taking values in a finite
space S = {1, 2, · · · , N}, B(t) is a Brownian motion, f
and g are referred to as the drift and diffusion coefficient,
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respectively, while u is the feedback control function,
δ is a positive constant which stands for the time de-
lay of the given system, and τ another positive constant
which is the time lag between the time when the state
is observed and that when the corresponding feedback
control acts in the system. The high nonlinearity means
that the coefficients f and g do not satisfy the linear
growth condition (see, e.g., [7,12]). For the general the-
ory of hybrid SDDEs we refer the reader to, for example,
[17,21,23], while for the stability theory to [2,6,14,24,25]
and the references therein. In particular, the reader can
find more information on stabilization of hybrid systems
by delay feedback controls in [14,18,19,27].

Although the theory established in [9] is useful in the
area of feedback controls for highly nonlinear hybrid SD-
DEs, there are at least three issues to be addressed in
order to make the theory more useful and applicable:

Q1 The time delay δ in the given SDDE (1.1) is a constant.
Q2 The time lag τ in the feedback control is a (different)

constant.
Q3 The control function u(x, i, t) could be unbounded.

The reasons why we need to address these issues are
because: (1) the time delay is in general a variable of time
in many real-world SDDE models (see, e.g., [4,23,26,28]);
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(2) it is hard and costs more to design a feedback control
with a strict constant time lag but will be much easier
and cost less if the time lag is within a certain time
interval; (3) the cost of feedback control is in general
proportional to |u(x(t − τ), r(t), t)| and hence the cost
will be reduced if a bounded control function u could be
designed. The aim of this paper is to address all these
issues positively. Our new theory will not only applicable
to much wider class of hybrid SDDE systems in the real
world but the delay feedback controls could also be more
easily implemented while the corresponding costs might
be reduced.

Mathematically speaking, it is no trivial to investigate
any of these issues (see, e.g., the technical proof of The-
orem 2.4 below). Let us discuss Q1 a bit more to see this
point of view. Replacing the time delay δ in the SDDE
(1.1) with time-varying delay δt, we recall a frequently
imposed condition in the stability study is that δt is dif-
ferentiable with its derivative being bounded by a pos-
itive number less than 1 (see, e.g., [4,15]). This condi-
tion has been imposed only because of the mathematical
technique used—the technique of time change but might
not be a natural feature of SDDE models in the real
world (see, e.g., [5,11,20,22]). For example, discontinu-
ous or sawtooth delays occur frequently in sampled-data
controls or network-based controls where delays are com-
monly referred to as fast varying delays (no assumptions
on the delay-derivatives). Also, data are usually buffered
and sent through a network in packets traveling indepen-
dently from each other, and the delay changes abruptly
when processing proceeds from a packet to the subse-
quent one (see, e.g., [3,29]). A simplest case is that the
time delay in a network is larger during business hours
than other time. Such a time delay can be described by
a piecewise constant function, e.g.,

δt =

∞∑
k=0

(
hI[k,k+1/3)(t) + h1I[k+1/3,k+1)(t)

)
, (1.3)

where h > h1 > 0, the time unit is one day and [0, 1/3)
and [1/3, 1) are business and no business period per day,
respectively. But, even such a simple function is not dif-
ferentiable. These show clearly that to make the stabi-
lization theory more useful, we should avoid imposing
the differentiability on the time delay δt. Of course, Q1
will become more challenged as the stability study of sys-
tems with non-differentiable time-varying delay is much
harder than constant or differentiable delay. Similarly,
we see another challenge if we replace the constant time
lag τ in the controlled SDDE (1.2) with time-varying lag
τt which is only Borel measurable and takes values in a
time interval, say (0, τ̄ ]. To see the challenge due to Q3,
we only briefly point out here that the class of bounded
control functions is much smaller than unbounded func-
tions as in [9] and hence the design of a feasible control
function becomes much harder. We will explain much
more in Section 3 below. Tackling these new challenge

makes the mathematics presented in this paper to be
significantly different from [9].

In summary, it is necessary to investigate three issues
listed above in order to make the stabilization theory
more useful in applications. New mathematics needs to
be developed to tackle these issues. Let us begin to de-
velop our new theory on the stabilization problem.

2 Uncontrolled SDDE

2.1 Notation and assumptions

Throughout this paper, unless otherwise specified, we
use the following notation. Let Rd be the d-dimensional
Euclidean space and |x| denotes the Euclidean norm of
x ∈ Rd. Let R+ = [0,∞). Let AT denote the trans-

pose of a vector or matrix A. Let |A| =
√

trace(ATA)
be the trace norm of a matrix A. If A is a symmet-
ric real-valued matrix (A = AT ), denote by λmin(A)
and λmax(A) its smallest and largest eigenvalue, respec-
tively. For h > 0, denote by C([−h, 0];Rd) the family
of continuous functions ϕ from [−h, 0] → Rd with the
norm ‖ϕ‖ = sup−h≤u≤0 |ϕ(u)|. Denote by C(Rd;R+)

the family of continuous functions from Rd to R+. If
both a, b are real numbers, then a ∧ b = min{a, b} and
a∨b = max{a, b}. If A is a set, denote by IA its indicator
function; that is, IA(z) = 1 if z ∈ A and 0 otherwise.

Let (Ω,F ,P) be a complete probability space with its
filtration {Ft}t≥0 satisfying the usual conditions (i.e., it
is increasing and right continuous while F0 contains all
P-null sets). Let B(t) = (B1(t), · · · , Bm(t))T be an m-
dimensional Brownian motion defined on the probability
space. Let r(t), t ≥ 0, be a right-continuous Markov
chain on the same probability space taking values in
a finite state space S = {1, 2, · · · , N} with generator
Γ = (γij)N×N given by

P{r(t+ ∆) = j|r(t) = i} =

{
γij∆ + o(∆) if i 6= j,

1 + γii∆ + o(∆) if i = j,

where ∆ > 0. Here γij ≥ 0 is the transition rate from
i to j if i 6= j while γii = −

∑
j 6=i γij . We assume that

the Markov chain r(·) is independent of the Brownian
motion B(·) under P.

As mentioned in Section 1, one of the key features in this
paper is that the time delay in the given unstable SDDE
is a non-differentiable function of time. To be precise, we
state it as an assumption.

Assumption 2.1 The time-varying delay δt is a Borel
measurable function from R+ to [h1, h] and has the prop-
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erty that

h̄ := lim sup
∆→0+

(
sup
s≥−h

µ(Ms,∆)

∆

)
<∞, (2.1)

where h1 and h are both positive constants with h1 < h,
Ms,∆ = {t ∈ R+ : t − δt ∈ [s, s + ∆)} and µ(·) denotes
the Lebesgue measure on R+.

It is worth noting that many time-varying delay func-
tions in practice satisfy this assumption. For example,
the left-limited-right-continuous piecewise constant
function

δt =
∞∑
k=0

mkI[tk,tk−1)(t), t ≥ 0, (2.2)

satisfies Assumption 2.1 with h̄ = [(h − h1)/∆∗] + 2,
where mk ∈ [h1, h] and 0 = t0 < t1 < · · · < tk → ∞
with ∆∗ := infk≥0(tk+1 − tk) > 0 while [(h− h1)/∆∗] is
the integer part of (h− h1)/∆∗. Moreover, if δt is a Lip-
schitz continuous function with its Lipscitiz coefficient
h2 ∈ (0, 1), namely

|δt − δs| ≤ h2(t− s), ∀ 0 ≤ s < t <∞, (2.3)

the δt satisfies Assumption 2.1 with h̄ = 1/(1−h2). Spe-
cially, if δt is differentiable and its derivative is bounded
by h2 ∈ (0, 1), then δt satisfies Assumption 2.1. These
examples show that there is a rich class of functions δt.
It should also be pointed out that we must have h̄ ≥ 1.
This can be seen from the following useful lemma.

Lemma 2.2 Let Assumption 2.1 hold. Let T > 0 and
ϕ : [−h, T − h1]→ R+ be a continuous function. Then

∫ T

0

ϕ(t− δt)dt ≤ h̄
∫ T−h1

−h
ϕ(t)dt. (2.4)

Proof. By Assumption 2.1, for any ε > 0, there is a
positive number ∆̄ such that

sup
s≥−h

µ(Ms,∆)

∆
≤ h̄+ ε, ∀∆ ∈ (0, ∆̄). (2.5)

Note that −h ≤ t− δt ≤ T − h1 for t ∈ [0, T ]. Let n be
any large integer such that ∆ := (T − h1 + h)/n < ∆̄.
Set tu = −h+ u∆ for u = 0, 1, · · · , n. By the definition
of the Riemann-Lebesgue integral, we have

∫ T

0

ϕ(t− δt)dt = lim
n→∞

n−1∑
u=0

µ(Mtu,∆)ϕ(tu).

But, by (2.5), µ(Mtu,∆) ≤ (h̄+ ε)∆. Hence

∫ T

0

ϕ(t− δt)ds ≤ lim
n→∞

n−1∑
u=0

(h̄+ ε)∆ϕ(tu)

= (h̄+ ε)

∫ T−h1

−h
ϕ(t)dt. (2.6)

Letting ε→ 0 yields the required assertion (2.4). 2

If we let ϕ(t) = 1 for all t ≥ −h, the lemma shows that
T ≤ h̄(T − h1 + h) for any T > 0, which implies h̄ ≥
limT→∞ T/(T−h1+h) = 1. In other words, Assumption
2.1 forces h̄ ≥ 1 inexplicitly.

As explained in Section 1, the constant delay in the
SDDE (1.1) is replaced by δt in this paper. To be pre-
cise, the given unstable system discussed in this paper
is described by the nonlinear hybrid SDDE

dx(t) = f(x(t), x(t− δt), r(t), t)dt
+ g(x(t), x(t− δt), r(t), t)dB(t),

(2.7)

with the initial data

{x(t) : −h ≤ t ≤ 0} = ξ ∈ C([−h, 0];Rd), (2.8)

where the coefficients f : Rd ×Rd × S ×R+ → Rd and
g : Rd × Rd × S × R+ → Rd×m are Borel measurable
functions. We impose the following assumption on the
coefficients.

Assumption 2.3 Both coefficients f and g are locally
Lipschitz continuous. Moreover, there exist positive con-
stants p, q, α1, α2, α3 with p ∧ q > 2 such that

xT f(x, y, i, t) +
q − 1

2
|g(x, y, i, t)|2

≤ α1(|x|2 + |y|2)− α2|x|p + α3|y|p
(2.9)

for all (x, i, t) ∈ Rd × S ×R+.

It should be emphasized that we do NOT require α2 >
α3, which differs significantly from many existing papers,
e.g., [4,9]. Theorem 2.4 below hence covers much more
general hybrid SDDEs.

2.2 Global solution

The following theorem does not only show the existence
and uniqueness of the global solution but also the finite-
ness of the moments of the solution.

Theorem 2.4 Under Assumptions 2.1 and 2.3, equa-
tion (2.7) with the initial data (2.8) has a unique global
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solution x(t) on [−h,∞) and the solution has the prop-
erties that for all t ≥ 0

E|x(t)|q <∞ (2.10)

and

E
∫ t

0

|x(s)|p+q−2ds <∞. (2.11)

Proof. The local Lipschitz condition guarantees that
the hybrid SDDE (2.7) with the initial data (2.8) has
a unique maximal local solution, denoted by x(t) on
[−h, e∞), where e∞ is the explosion time (see, e.g., [23]).
We need to show e∞ =∞ a.s. For each integer k ≥ ‖ξ‖,
define the stopping time

σk = e∞ ∧ inf{t ∈ [0, e∞) : |x(t)| ≥ k},

where throughout this paper we set inf ∅ =∞. As σk is
increasing, it has a limit and we set σ∞ = limk→∞ σk.
Obviously, σ∞ ≤ e∞ a.s. We divide the whole proof into
two steps.

Step 1. Restrict t ∈ [0, h1]. Noting that −h ≤ t− δt ≤ 0
we see x(t− δt) = ξ(t− δt) so is already known. By the
Itô formula and Assumption 2.3, it is easy to show that

E|x(t ∧ σk)|q − |ξ(0)|q

≤ E
∫ t∧σk

0

q|x(s)|q−2
[
α1(|x(s)|2 + |x(s− δs)|2)

− α2|x(s)|p + α3|x(s− δs)|p
]
ds. (2.12)

But, by the well-known Young inequality,

|x(s)|q−2|x(s− δs)|2 ≤ |x(s)|q + |x(s− δs)|q

and

α3|x(s)|q−2|x(s− δs)|p

≤ 0.5α2|x(s)|p+q−2 + α4|x(s− δs)|p+q−2,

where

α4 =
p

p+ q − 2
α

p+q−2
p

3

( 2(q − 2)

α2(p+ q − 2)

) q−2
p+q−2

.

Hence

E|x(t ∧ σk)|q + 0.5qα2E
∫ t∧σk

0

|x(s)|p+q−2ds

≤ |ξ(0)|q + α5 + 2qα1E
∫ t∧σk

0

|x(s)|qds, (2.13)

where

α5 = q

∫ h1

0

[
α1|x(s− δs)|q + α4|x(s− δs)|p+q−2

]
ds,

which is finite clearly. It follows from (2.13) that

E|x(t ∧ σk)|q ≤ |ξ(0)|q + α5 + 2qα1

∫ t

0

E|x(s ∧ σk)|qds.

An application of the well-known Gronwall inequality
yields

E|x(t ∧ σk)|q ≤ (|ξ(0)|q + α5)e2qα1h1 =: α6 (2.14)

for all t ∈ [0, h1], where throughout this paper we use =:
to stand for ‘denoted by’. This implies

kqP(σk ≤ h1) ≤ E|x(h1 ∧ σk)|q ≤ α6.

Letting k → ∞ we see that P(σ∞ ≤ h1) = 0 and hence
σ∞ ≥ h1 a.s. We can now letting k → ∞ in (2.14) to
obtain

E|x(t)|q ≤ α6, ∀t ∈ [0, h1]. (2.15)

Setting t = h1 in (2.13) and then letting k →∞ we also
get

E
∫ h1

0

|x(s)|p+q−2ds ≤ α7, (2.16)

where α7 = (|ξ(0)|q + α5 + 2qα1α6h1)/(0.5qα2).

Step 2. Restrict t ∈ [0, 2h1]. We have just shown that up
to time h1, x(t) has properties (2.15) and (2.16). We also
observe that −h ≤ t− δt ≤ h1 whenever t ∈ [0, 2h1]. In
other words, we already have x(t − δt) from Step 1. By
Lemma 2.2,∫ 2h1

0

|x(s− δs)|p+q−2ds ≤ h̄
∫ h1

−h
|x(s)|p+q−2ds.

Consequently, using (2.16), we have

E
∫ 2h1

0

|x(s− δs)|p+q−2ds

≤h̄h‖ξ‖p+q−2 + h̄α7 <∞. (2.17)

It is easy to see that (2.12) still holds for t ∈ [0, 2h1]. In
the same way as (2.13) was proven, we can show that

E|x(t ∧ σk)|q + 0.5qα2E
∫ t∧σk

0

|x(s)|p+q−2ds

≤ |ξ(0)|q + α8 + 2qα1E
∫ t∧σk

0

|x(s)|qds, (2.18)

where

α8 = q

∫ 2h1

0

[
α1|x(s− δs)|q + α4|x(s− δs)|p+q−2

]
ds,
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which is finite by (2.15) and (2.17). From (2.18), we can
show in the similar fashion as in Step 1 that σ∞ ≥ 2h1

a.s.,

E|x(t)|q <∞, ∀ t ∈ [0, 2h1]

and

E
∫ 2h1

0

|x(s)|p+q−2ds <∞.

Repeating Step 2 for t ∈ [0, 3h1] and then [0, 4h1] etc.,
we can show that σ∞ =∞ a.s. and assertions (2.10) and
(2.11) hold. The proof is therefore complete. 2

2.3 Boundedness

Theorem 2.4 shows the finiteness of the moments of the
solution. In this subsection we are going to show the
boundedness of the moments. For this purpose, we need
to strengthen Assumption 2.3 slightly.

Assumption 2.5 Assumption 2.3 holds and ᾱ1 > ᾱ2h̄,
where

ᾱ1 = qα2 −
α3q(q − 2)

p+ q − 2
and ᾱ2 =

α3qp

p+ q − 2
. (2.19)

Theorem 2.6 If Assumptions 2.1 and 2.5 hold, then the
solution of the SDDE (2.7) with the initial data (2.8) has
the properties that

sup
0≤t<∞

E|x(t)|q <∞ (2.20)

and

lim sup
t→∞

1

t

∫ t

0

E|x(s)|p+q−2ds <∞. (2.21)

Proof. Let ε1 > 0 be the unique root to the equation

ᾱ1 − ε1 = h̄(ᾱ2 + ε1)eε1h. (2.22)

By the Itô formula and Assumption 2.3, it is easy to
show that

eε1tE|x(t)|q − |ξ(0)|q ≤ E
∫ t

0

eε1s
(
ε1|x(s)|q

+ q|x(s)|q−2
[
α1(|x(s)|2 + |x(s− δs)|2)

− α2|x(s)|p + α3|x(s− δs)|p
])
ds. (2.23)

It should be mentioned that based on Theorem 2.4, we
no longer need to use the technique of stopping times. A

simple application of the Young inequality shows

eε1tE|x(t)|q − |ξ(0)|q

≤ E
∫ t

0

eε1s
(
ᾱ3|x(s)|q + ᾱ4|x(s− δs)|q

− ᾱ1|x(s)|p+q−2 + ᾱ2|x(s− δs)|p+q−2
)
ds, (2.24)

where ᾱ3 = ε1 + 2α1(q − 1), ᾱ4 = 2α1 but ᾱ1 and ᾱ2

have been defined in the statement of the theorem. It
then follows

eε1tE|x(t)|q − |ξ(0)|q

≤ E
∫ t

0

eε1s
(
ᾱ5 − (ᾱ1 − ε1)|x(s)|p+q−2

+ (ᾱ2 + ε1)|x(s− δs)|p+q−2
)
ds, (2.25)

where
ᾱ5 = 2 sup

u≥0

[
ᾱ3u

q − ε1u
p+q−2

]
.

But, by Lemma 2.2, we can show that∫ t

0

eε1s|x(s− δs)|p+q−2ds

≤eε1h
∫ t

0

eε1(s−δs)|x(s− δs)|p+q−2ds

≤h̄eε1h
(
h‖ξ‖p+q−2 +

∫ t

0

eε1s|x(s)|p+q−2ds
)
.

Substituting this into (2.25) and making use of (2.22),
we get

eε1tE|x(t)|q − |ξ(0)|q ≤ ᾱ5

ε1
eε1t + hh̄(ᾱ2 + ε1)eε1h‖ξ‖p+q−2.

This implies

E|x(t)|q ≤ |ξ(0)|q + hh̄(ᾱ2 + ε1)eε1h‖ξ‖p+q−2 +
ᾱ5

ε1

for all t ≥ 0, which is the first assertion (2.20).

To show the second assertion, we let ε2 > 0 be the unique
root to the equation ᾱ1 − 2ε2 = (ᾱ2 + ε2)h̄. In a similar
fashion as (2.25) was proven, we can show that

E|x(t)|q − |ξ(0)|q

≤ E
∫ t

0

(
ᾱ6 − (ᾱ1 − ε2)|x(s)|p+q−2

+ (ᾱ2 + ε2)|x(s− δs)|p+q−2
)
ds, (2.26)

where

ᾱ6 = 2 sup
u≥0

[
2α1(q − 1)uq − ε2u

p+q−2
]
.
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But, by Lemma 2.2,∫ t

0

|x(s− δs)|p+q−2ds

≤h̄
(
h‖ξ‖p+q−2 +

∫ t

0

|x(s)|p+q−2ds
)
.

Hence

0 ≤ |ξ(0)|q + ᾱ6t+ h̄h(ᾱ2 + ε2)‖ξ‖p+q−2

− ε2E
∫ t

0

|x(s)|p+q−2ds. (2.27)

This implies

lim sup
t→∞

1

t

∫ t

0

E|x(s)|p+q−2ds ≤ ᾱ6/ε2 <∞

as required. The proof is therefore complete. 2

It is worth noting that if h̄ = 1 (e.g., in the case of
constant delay), ᾱ2 > ᾱ3h̄ is equivalent to α2 > α3, and
the latter was imposed in [9]. In other words, Theorem
2.6 is a generalization of Theorem 2.3 in [9].

3 Controlled SDDE

3.1 Solution

The solution of the given hybrid SDDE (2.7) has finite or
bounded moments under Assumption 2.3 or 2.5, respec-
tively, but it may not tend to 0 exponentially in moment
or with probability 1 (i.e., exponentially stable). In this
case, we may required to design a delay feedback control
u(x(t− τt), r(t), t) for the controlled SDDE

dx(t) = [f(x(t), x(t− δt), r(t), t) + u(x(t− τt), r(t), t)]dt
+ g(x(t), x(t− δt), r(t), t)dB(t) (3.1)

to become stable. Here the control function u : Rd×S×
R+ → Rd is Borel measurable, while τt is a function on
R+ which stands for the time lag between the time when
the state observation is made and the time when the
corresponding control reaches the system. We impose an
assumption on τt.

Assumption 3.1 The control time lag τt is a Borel mea-
surable function from R+ to [0, τ̄ ], where τ̄ is a positive
number.

It is worth noting that we impose a much weaker con-
dition on the control time lag τt than the time delay δt
in the given SDDE. This enables the feedback control to

be implemented more easily. Naturally we need slightly
adjust the initial data by imposing

{x(t) : −h0 ≤ t ≤ 0} = ξ ∈ C([−h0, 0];Rd), (3.2)

where h0 = h∨ τ̄ . The class of feasible control functions
to be used in this paper is described in the following
assumption.

Assumption 3.2 The control function u : Rd × S ×
R+ → Rd is bounded and, moreover, there exists a posi-
tive number β such that

|u(x, i, t)− u(y, i, t)| ≤ β|x− y| (3.3)

and u(0, i, t) ≡ 0 for all (x, y, i, t) ∈ Rd ×Rd × S ×R+.

As explained in Section 1, the reason why we ask the con-
trol function to be bounded is because that, in general,
the control cost is proportional to |u(x(t − τt), r(t), t)|.
The bounded condition on u is not imposed in [9]. This
means the class of feasible control functions is smaller
than that in [9]. However, there are still lots of such
control functions. For example, u(x, i, t) = FiGiπr(x),
where Fi ∈ Rd×l and Gi ∈ Rl×d for some 1 ≤ l ≤ d with
either Gi or Fi being known but Fi or Gi to be designed,
respectively; while r > 0 and πr : Rd → Sr := {x ∈ Rd :
|x| ≤ r} defined by

πr(x) = (|x| ∧ r)x/|x|, x ∈ Rd, (3.4)

where throughout this paper we set x/|x| = 0 when
x = 0. Another example is

u(x, i, t) = FiGi(sin(x1/r), · · · , sin(xd/r))
T .

The following theorem shows that any such a feasible
control function preserves the property of the unique
global solution.

Theorem 3.3 If Assumptions 2.1, 2.3, 3.1 and 3.2 hold,
then the controlled SDDE (3.1) with the initial data (3.2)
has a unique global solution x(t) on [−h0,∞) which has
properties (2.10) and (2.11). If, moreover, Assumption
2.3 is strengthened to Assumption 2.5, then the solution
has properties (2.20) and (2.21).

This theorem can be proven in a similar fashion as The-
orems 2.4 and 2.6 were proven. The reason why we can
impose a weaker condition on τt than we did on δt is
because u is globally Lipschitz continuous. We omit the
proof here. To close this subsection, we introduce a tech-
nical assumption.

Assumption 3.4 There exist constants K > 0, q1 > 1
and qi ≥ 1 (2 ≤ i ≤ 4) such that

|f(x, y, i, t)| ≤ K(|x|+ |y|+ |x|q1 + |y|q2),

|g(x, y, i, t)| ≤ K(|x|+ |y|+ |x|q3 + |y|q4)
(3.5)
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for all (x, y, i, t) ∈ Rd ×Rd × S ×R+. Moreover, p and
q in Assumption 2.3 satisfy

q > (p+ q1 − 1) ∨ (2(q1 ∨ q2 ∨ q3 ∨ q4)), (3.6)

p ≥ 2(q1 ∨ q2 ∨ q3 ∨ q4)− q1 + 1. (3.7)

3.2 Rules for the control function

In this subsection, we shall propose a couple of rules. We
will then show in the next subsection that if the control
function u to be designed can meet these rules, then the
controlled SDDE (3.1) will be stable. Our first rule is:

Rule 3.5 Design the control function u : Rd×S×R+ →
Rd so that we can find real numbers ai, āi, positive num-
bers ci, c̄i and nonnegative numbers bi, b̄i, di, d̄i (i ∈ S)
such that

xT [f(x, y, i, t) + u(x, i, t)] +
1

2
|g(x, y, i, t)|2

≤ ai|x|2 + bi|y|2 − ci|x|p + di|y|p
(3.8)

and

xT [f(x, y, i, t) + u(x, i, t)] +
q1

2
|g(x, y, i, t)|2

≤ āi|x|2 + b̄i|y|2 − c̄i|x|p + d̄i|y|p
(3.9)

for all (x, y, i, t) ∈ Rd ×Rd × S ×R+; while both

A1 := −2diag(a1, · · · , aN )− Γ,

and A2 := −(q1 + 1)diag(ā1, · · · , āN )− Γ
(3.10)

are nonsingular M-matrices; and moreover,
1 > h̄ζ1, ζ2 > h̄ζ3,

1 > ζ4[q1−1+2h̄]
q1+1 ,

ζ5 >
ζ6[q1−1+ph̄]
p+q1−1 ,

(3.11)

where q1 is the same as in Assumption 3.4,

(θ1, · · · , θN )T = A−1
1 (1, · · · , 1)T ,

(θ̄1, · · · , θ̄N )T = A−1
2 (1, · · · , 1)T ,

(3.12)

ζ1 = max
i∈S

2θibi, ζ2 = min
i∈S

2θici,

ζ3 = max
i∈S

2θidi, ζ4 = max
i∈S

(q1 + 1)θ̄ib̄i,

ζ5 = min
i∈S

(q1 + 1)θ̄ic̄i, ζ6 = max
i∈S

(q1 + 1)θ̄id̄i.

(3.13)

In the definition above we use the theory of nonsingular
M-matrices (see, e.g., [23, Section 2.6]), by which we see
that all θi and θ̄i defined by (3.12) are positive.

The control functions used in this paper are required to
be bounded in addition to the global Lipschitz continuity.
These functions are very much different from those used
in [9] and we have explained why we need to impose the
bounded condition in this paper.

Let us explain why we propose Rule 3.5. Assuming that
the feedback control acts instantly, namely τt = 0, we
observe that the controlled SDDE (3.1) becomes

dx(t) = [f(x(t), x(t− δt), r(t), t) + u(x(t), r(t), t)]dt

+ g(x(t), x(t− δt), r(t), t)dB(t). (3.14)

Define a function U : Rd × S → R+ by

U(x, i) = θi|x|2 + θ̄i|x|q1+1, (x, i) ∈ Rd × S (3.15)

while define a function LU : Rd ×Rd × S ×R+ → R by

LU(x, y, i, t)

= 2θi

[
xT [f(x, y, i, t) + u(x, i, t)] +

1

2
|g(x, y, i, t)|2

]
+ (q1 + 1)θ̄i

(
|x|q1−1xT [f(x, y, i, t) + u(x, i, t)]

+ 0.5|x|q1−1|g(x, y, i, t)|2

+ 0.5(q1 − 1)|x|q1−3|xT g(x, y, i, t)|2
)

+
N∑
j=1

γij(θj |x|2 + θ̄j |x|q1+1), (3.16)

where θi and θ̄i have been defined by (3.12). It is worth
mentioning that L is in fact the diffusion operator acting
on C2,1 functions with respect to (3.14) but we here
prefer to treat LU as a single function. By (3.8), (3.9)
and (3.12), (3.13), we have

LU(x, y, i, t)

≤ −|x|2 + ζ1|y|2 − ζ2|x|p + ζ3|y|p

− |x|q1+1 + ζ4|x|q1−1|y|2 − ζ5|x|p+q1−1 + ζ6|x|q1−1|y|p

≤ −|x|2 + ζ1|y|2 − ζ2|x|p + ζ3|y|p +
2ζ4
q1 + 1

|y|q1+1

−
(

1− ζ4(q1 − 1)

q1 + 1

)
|x|q1+1 +

ζ6p

p+ q1 − 1
|y|p+q1−1

−
(
ζ5 −

ζ6(q1 − 1)

p+ q1 − 1

)
|x|p+q1−1. (3.17)

In a similar way as [4, Theorem 3.1] was proven but
using condition (3.11) and Lemma 2.2, we can show
that the SDDE (3.14) is exponentially stable. In other
words, the control function u(x, i, t) satisfying Rule 3.5
will stabilize the given SDDE if the feedback control
acts instantly, namely the feedback control has the form
of u(x(t), r(t), t). However, as explained in Section 1,
we should use the delay state feedback control u(x(t −
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τt), r(t), t) in practice. That is, the controlled SDDE
should be of the form (3.1) instead of (3.14). Comparing
(3.1) with (3.14), we observe that if τt, the time lag be-
tween the time when the state is observed and that when
the feedback control reaches the system, is sufficiently
small, equation (3.1) should behave similarly to what
equation (3.14) performs (i.e., stable). As τt is bounded
by τ̄ , this means τ̄ needs to be sufficiently small. To de-
scribe ”sufficiently small” precisely while to cope with
the polynomial growth of the coefficients f and g, we
now propose the second rule.

Rule 3.6 Find eight positive constants υj (1 ≤ j ≤ 8)
with υ4 > υ5h̄ and υ6 ∈ (0, 1/h̄), and a function W ∈
C(Rd;R+), such that

LU(x, y, i, t) + υ1

(
2θi|x|+ (q1 + 1)θ̄i|x|q1

)2
+ υ2|f(x, y, i, t)|2 + υ3|g(x, y, i, t)|2

≤ −υ4|x|2 + υ5|y|2 −W (x) + υ6W (y), (3.18)

and

υ7|x|p+q1−1 ≤W (x) ≤ υ8(1 + |x|p+q1−1) (3.19)

for all (x, y, i, t) ∈ Rd ×Rd × S ×R+.

It is not very difficult to show that this rule can always
be met under Assumptions 2.3 and 3.4.

3.3 Exponential stabilization

We can finally establish our theory on the exponential
stabilization.

Theorem 3.7 Let Assumptions 2.1, 2.3, 3.1 and 3.4
hold. Design a control function u in the feasible class
(i.e., satisfying Assumption 3.2) to meet Rule 3.5 and
then find eight positive constants υj (1 ≤ j ≤ 8) and a
function W ∈ C(Rd;R+) to meet Rule 3.6. If we further
make sure

τ̄ <

√
(υ4 − υ5h̄)υ1

2β2
∧
√
υ1υ2√
2β
∧ υ1υ3

β2
∧ 1

4
√

2β
, (3.20)

then the solution of the controlled SDDE (3.1) with the
initial data (3.2) has the property

lim sup
t→∞

1

t
log(E|x(t)|2) < 0. (3.21)

That is, the controlled SDDE (3.1) is exponentially stable
in mean square.

Proof. We will use the method of Lyapunov functionals
to prove the theorem (please see, e.g., [2,8,9] for more
details on the method). For this purpose, we define two

segments x̃t := {x(t + s) : −2h0 ≤ s ≤ 0} and r̃t :=
{r(t+ s) : −h0 ≤ s ≤ 0} for t ≥ 2h0. For x̃t and r̃t to be
well defined for 0 ≤ t < 2h0, we set x(s) = ξ(−h0) for
s ∈ [−2h0,−h0) and r(s) = r(0) for s ∈ [−2h0, 0). The
Lyapunov functional is defined by

V (x̃t, r̃t, t) = U(x(t), r(t)) + (β2/υ1)Ψ(t) (3.22)

for t ≥ 2h0, where U has been defined by (3.15) and

Ψ(t) =

∫ 0

−τ̄

∫ t

t+s

[
τ̄ |fv + uv|2 + |gv|2

]
dvds. (3.23)

Here throughout this proof we use the following sim-
plified notations fv = f(x(v), x(v − δv), r(v), v), uv =
u(x(v − τv), r(v), v), gv = g(x(v), x(v − δv), r(v), v) for
v ≥ 0. By the generalized Itô formula (see, e.g., [23]) and
the fundamental theory of calculus, it is straightforward
to show that

dV (x̃t, r̃t, t) ≤ LV (x̃t, r̃t, t)dt+ dM(t) (3.24)

on t ≥ 2h0, where

LV (x̃t, r̃t, t) = LU(x(t), x(t− δt), r(t), t)
− [2θr(t) + (q1 + 1)θ̄r(t)|x(t)|q1−1]xT (t)

× [u(x(t), r(t), t)− u(x(t− τt), r(t), t)]
+ (β2τ̄ /υ1)

[
τ̄ |ft + ut|2 + |gt|2

]
− (β2/υ1)

∫ t

t−τ̄

[
τ̄ |fv + uv|2 + |gv|2

]
dv, (3.25)

in which LU has been defined by (3.16). By Theorem
3.3 and Assumptions 3.2 and 3.4 as well as Rule 3.5, it
is obvious that

E|LV (x̃t, r̃t, t)| <∞, ∀t ≥ 2h0. (3.26)

Let ε be a sufficiently small positive number, which will
be determined later. It is standard to show that for t ≥
2h0,

eεtEV (x̃t, r̃t, t)− C1

≤
∫ t

2h0

eεs
(
εEV (x̃s, r̃s, s) + ELV (x̃s, r̃s, s)

)
ds, (3.27)

where C1 = e2εh0EV (x̃2h0 , r̃2h0 , 2h0). Set η1 =
mini∈S θi, η2 = maxi∈S θi and η3 = maxi∈S θ̄i. Then

η1e
εtE|x(t)|2 ≤ C1 +

εβ2

υ1
Φ1(t)

+

∫ t

2h0

εeεs
(
η2E|x(s)|2 + η3E|x(s)|q1+1

)
ds

+

∫ t

2h0

eεsELV (x̃s, r̃s, s)ds, (3.28)
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where

Φ1(t)

=E
∫ t

2h0

eεs
(∫ 0

−τ̄

∫ s

s+u

[
τ̄ |fv + uv|2 + |gv|2

]
dvdu

)
ds.

In a similar fashion as in [9], we can show that

ELV (x̃s, r̃s, s)

≤ −
(
υ4 −

4τ̄2β4

υ1
)E|x(s)|2 + υ5E|x(s− δs)|2

− EW (x(s)) + υ6EW (x(s− δs))

− β2

4υ1
E
∫ s

s−τ̄

[
τ̄ |fv + uv|2 + |gv|2

]
dv. (3.29)

On the other hand, we obviously have

E|x(s)|q1+1 ≤ E|x(s)|2 + E|x(s)|p+q1−1

≤ E|x(s)|2 + υ−1
7 EW (x(s)). (3.30)

Substituting (3.29) and (3.30) into (3.28) while noting
by Lemma 2.2 that∫ t

2h0

eεsE|x(s− δs)|2ds ≤ h̄eεh
∫ t

−h
eεsE|x(s)|2ds

and∫ t

2h0

eεsEW (x(s− δs))ds ≤ h̄eεh
∫ t

−h
eεsEW (x(s))ds,

we get

η1e
εtE|x(t)|2 ≤ C2 +

εβ2

υ1
Φ1(t)− β2

4υ1
Φ2(t)

−
(
υ4 −

4τ̄2β4

υ1
− εη2 − εη3 − υ5h̄e

εh
)∫ t

2h0

eεsE|x(s)|2ds

−
(

1− εη3

υ7
− υ6h̄e

εh
)∫ t

2h0

eεsEW (x(s))ds (3.31)

for t ≥ 2h0, where C2 = C1 + h̄eεh
∫ 2h0

−h eεs[υ5E|x(s)|2 +

υ6EW (x(s))]ds and

Φ2(t) = E
∫ t

2h0

eεs
(∫ s

s−τ̄

[
τ̄ |fv + uv|2 + |gv|2

]
dv
)
ds.

On the other hand, it is easy to see that

Φ1(t) ≤ τ̄Φ2(t).

Recalling that 1 > υ6h̄ and (3.20), we can now choose a
sufficiently small ε ∈ (0, 1/(4h0)) such that

υ4 −
4τ̄2β4

υ1
− εη2 − εη3 − υ5h̄e

εh ≥ 0

and

1− εη3

υ7
− υ6h̄e

εh ≥ 0.

Consequently, it follows from (3.31) that

E|x(t)|2 ≤ (C2/η1)e−εt, ∀t ≥ 2h0, (3.32)

which implies the required assertion (3.21). The proof is
hence complete. 2

The following theorem shows that if Assumption 2.3 is
strengthened into Assumption 2.5, stronger results can
be obtained.

Theorem 3.8 If all conditions in Theorem 3.7 hold ex-
cept Assumption 2.3 is replaced with Assumption 2.5,
then the solution of the controlled SDDE (3.1) with the
initial data (3.2) has the properties that

lim sup
t→∞

1

t
log(E|x(t)|q̄) < 0, ∀q̄ ∈ [2, q) (3.33)

and

lim sup
t→∞

1

t
log(|x(t)|) < 0 a.s. (3.34)

That is, the controlled SDDE (3.1) is not only exponen-
tially stable in Lq̄ but also almost surely exponentially
stable.

The proof is standard (see, e.g., [9]) so is omitted.

4 Example

Due to the page limit, we will only discuss one example
but the theoretical results established in this paper are
illustrated fully.

Example 4.1 Consider the scalar hybrid SDDE

dx(t) = f(x(t), x(t− δt), r(t))dt
+ g(x(t), x(t− δt), r(t))dB(t)

(4.1)

on t ≥ 0, but we will omit mentioning the initial data.
Here the coefficients f and g are defined by

f(x, y, 1) = x(−1.5x2 + 2y), g(x, y, 1) = σ1xy,

f(x, y, 2) = x(−2.1x2 + y), g(x, y, 2) = σ2xy

for x, y ∈ R, where σ1, σ2 are two arbitrary numbers,
B(t) is a scalar Brownian motion, r(t) is a Markov chain
on the state space S = {1, 2} with its generator Γ =

9
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(
−2 2

1 −1

)
, and

δt =
∞∑
k=0

[
(0.1 + 0.1(t− 2k))I[2k,2k+1)(t)

+ (0.2− 0.1(t− 2k − 1))I[2k+1,2(k+1))(t)
]
.

This is a simple version of the hybrid SDDE food chain
model (see, e.g., [1,15]). It is easy to see that δt satisfies
Assumption 2.1 with h1 = 0.1, h = 0.2 and h̄ = 1.1111.
It is also easy to show that Assumption 2.3 holds for
p = 4, α1 = 4, α2 = 1, α3 = (q − 1)2[(σ4

1/4) ∨ (σ4
2/16)]

and any q > 2. (It is possible to do better but we do not
want to make it more complicated.) By Theorem 2.4,
the SDDE (4.1) has a unique global solution x(t) which
has properties (2.10) and (2.11).

To make Assumption 2.5 hold, it is sufficient if 1 > h̄α3,
namely 4σ4

1 ∨ σ4
2 < 14.4/(q − 1)2. In this case, Theorem

2.6 shows the solution x(t) has properties (2.20) and
(2.21).

We can also check Assumption 3.4 hold with q1 = 3,
q2 = q3 = q4 = 2, p = 4 and any q > 6. In the remaining
part of this example, we will fix q = 7 and σ1 = 0.2,
σ2 = 0.5. By Theorem 2.6, the solution is bounded up to
the 7th moment but the SDDE (4.1) may not be stable.
To stabilize it, we use the delay feedback control to form
the controlled system

dx(t) = [f(x(t), x(t− δt), r(t)) + u(x(t− τt), r(t))]dt
+ g(x(t), x(t− δt), r(t))dB(t), (4.2)

where

u(x, i) = (−3I{1}(i)− 2I{2}(i))πri(x) (4.3)

with r1 = 2.2 and r2 = 1.8 (please recall (3.4) for the
definition of πri(x)), and τt satisfies Assumption 3.1.
Clearly, Assumption 3.2 is satisfied with β = 3. By The-
orem 3.3, this controlled system has the unique solution
x(t) which has properties (2.20) and (2.21). Making use
of the property that

xu(x, i)− 0.1x4 ≤ (−3I{1}(i)− 2I{2}(i))x
2,

we can easily show that, for (x, y, i) ∈ R×R× S ×R+,

x[f(x, y, i) + u(x, i)] +
1

2
|g(x, y, i)|2

≤

{
−3x2 + 2y2 − 1.14x4 + 0.01y4, i = 1,

−2x4 + y2 − 1.6875x4 + 0.0625y4, i = 2,

and

x[f(x, y, i) + u(x, i)] +
q1

2
|g(x, y, i)|2

≤

{
−3x2 + 2y2 − 1.12x4 + 0.03y4, i = 1,

−2x2 + y2 − 1.563x4 + 0.1875y4, i = 2.

Namely, (3.8) and (3.9) hold with a1 = −3, b1 = 2, c1 =
1.14, d1 = 0.01, a2 = −2, b2 = 1, c2 = 1.6875, d2 =
0.0625, ā1 = −3, b̄1 = 2, c̄1 = 1.12, d̄1 = 0.03, ā2 =
−2, b̄2 = 1, c̄2 = 1.563, d̄2 = 0.1875. Consequently,

A1 =

(
8 −2

−1 5

)
and A2 =

(
14 −2

−1 9

)
, which are both

M-matrices. By (3.12) and (3.13), we then have θ1 =
0.1842, θ2 = 0.2368, θ̄1 = 0.0887, θ̄2 = 0.1210, and ζ1 =
0.7368, ζ2 = 0.4200, ζ3 = 0.0296, ζ4 = 0.7096, ζ5 =
0.3974, ζ6 = 0.0908,which satisfy (3.11). In other words,
the control function u(x, i) satisfies Rule 3.5. To verify
Rule 3.6, we note that the function U defined by (3.15)
has the form

U(x, i) =

{
0.18428x2 + 0.0887x4 if i = 1,

0.2368x2 + 0.1210x4 if i = 2.

By (3.17), we get

LU(x, y, i, t) ≤ −x2 + 0.7368y2 − 1.0652x4 + 0.3844y4

− 0.3671x6 + 0.0605y6.

Also(
2θi|x|+(q1+1)θ̄i|x|q1

)2 ≤ 0.2243x2+0.4584x4+0.2343x6,

|f(x, y, i)|2 ≤ 6x4 + 7.91x6 + 4y4 + y6,

|g(x, y, i)|2 ≤ 0.125x4 + 0.125y4.

Choosing υ1 = 0.3, υ2 = 0.02 and υ3 = 0.31, we then
obtain

LU(x, y, i, t) + υ1

(
2θi|x|+ (q1 + 1)θ̄i|x|q1

)2
+ υ2|f(x, y, i, t)|2 + υ3|g(x, y, i, t)|2

≤ −0.9327x2 + 0.7368y2 −W (x) + 0.6544W (y),
(4.4)

where W (x) = 0.7689x4 + 0.1386x6. That is, Rule 3.6
is satisfied with additional υ4 = 0.9327, υ5 = 0.7368,
υ6 = 0.6544, υ7 = 0.1386 and υ8 = 0.9075. Conse-
quently, condition (3.20) becomes τ̄ < 0.0103. By Theo-
rems 3.8, we can therefore conclude that the controlled
SDDE (4.2) with σ1 = 0.2, σ2 = 0.5 and the control
function (4.3) is not only exponentially stable in Lq̄ for
any q̄ ∈ [2, 7) but also almost surely exponentially stable
provided τ̄ < 0.0103.
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5 Conclusion

In this paper we have made some advances in the theory
on stabilization by delay feedback controls for highly
nonlinear hybrid SDDEs. In particular, comparing with
the results in the recent paper [9], we have advanced in
three aspects: (a) The time delay in the given unstable
SDDE is no longer needed to be a constant but a variable
of time which may not have to be differentiable. Our new
theory hence covers a much wider class of SDDEs. (b)
The time lag in the feedback control is now allowed to
take values in an interval but not a constant. Our new
theory can therefore be implemented much more easily.
(c) The control function used is bounded hence our new
theory could reduce the control cost.
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