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Abstract

A system is called prescribed-time attractive if its solution converges at an arbitrary user-defined finite time. In this note,
necessary and sufficient conditions are developed for the prescribed-time attractivity of linear time-varying (LTV) systems. It
is proved that the frozen-time eigenvalues of a prescribed-time attractive LTV system have negative real parts when the time
is sufficiently close to the convergence moment. This result shows that the ubiquitous singularity problem of prescribed-time
attractive LTV systems can be avoided without instability effects by switching to the corresponding frozen-time system at an
appropriate time. Consequently, it is proved that the time-varying state-feedback gain of a prescribed-time controller, designed
for an unknown linear time-invariant system, approaches the set of stabilizing constant state-feedback gains.
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1 Introduction

Prescribed-time systems are characterized by their abil-
ity to converge at an arbitrary finite time and their
robustness to unstable non-vanishing disturbances. In
terms of the user’s knowledge about the settling time,
in finite-time schemes (Bhat and Bernstein 2000, Engel
and Kreisselmeier 2002), it is only known that the sys-
tem non-asymptotically converges at a finite time that
is generally a function of the initial conditions. Fixed-
time schemes provide an upper bound for the settling
time, independent of initial conditions (Polyakov 2011,
Lopez-Ramirez et al. 2018). However, in a prescribed-
time scheme, which is essentially time-varying, the set-
tling time is commanded to the system, which means
that the user is not only aware of the convergence mo-
ment but can arbitrarily specify it just by changing a
parameter. Over the last few years, prescribed-time con-
trollers and observers have been developed in the liter-
ature for different types of systems, which the reader
can refer to Song et al. (2017), Holloway and Krstic
(2019a), Holloway and Krstic (2019b), Krishnamurthy
et al. (2020), Zhou (2020b), Zhou (2020a), Ding et al.
(2020), Zhou and Shi (2021), Shakouri and Assadian
(2021a), and Shakouri and Assadian (2021b).

? This paper was not presented at any IFAC meeting. Cor-
responding author A. Shakouri. Tel. +98-935-2222206.

Email address: a shakouri@outlook.com (Amir
Shakouri).

A prescribed-time controller (or observer) can be de-
signed for unknown linear time-invariant (LTI) sys-
tems using time transformation mapping techniques
(Holloway and Krstic 2019a, Holloway and Krstic 2019b,
Ding et al. 2020, Shakouri and Assadian 2021a) or
parametric Lyapunov equations (Zhou 2020a, Zhou and
Shi 2021) without a complete knowledge of the sys-
tem eigenvalues. In this case, the closed-loop dynamics
of an LTI system under a prescribed-time controller
(or observer) is a linear time-varying (LTV) system.
The stability analysis of LTV systems is considerably
more difficult than the case of LTI systems (Blondel et
al. 2012, Zhou 2016). The eigenvalues of an LTV system
at each time instant, called the frozen-time eigenvalues,
can only be used as a measure of stability for slowly
varying systems (Amato et al. 1993). Generally, the sign
of the frozen-time eigenvalues cannot be used as a nec-
essary or sufficient condition for the stability analysis of
LTV systems 1 .

For an LTI system ẋ = Fx + Gu, a time-varying con-
troller u = K(t, τ)x can be designed (independent of F
and G) such that the solutions of the closed-loop LTV

system ẋ = (F +GK(t, τ))x , A(t, τ)x converge to zero
equilibrium at the commanded time τ > 0 such that u =
K(t, τ)x is bounded (Zhou 2020a). In this case, although

1 For example, a periodic LTV system with a constant pos-
itive frozen-time eigenvalue can be asymptotically stable
(Wu 1974).
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it is known that the closed-loop system ẋ = A(t, τ)x is
prescribed-time attractive (PTA) at t = τ , the frozen-
time eigenvalues of A(t, τ) cannot be explicitly obtained
if F and G are not completely available. In addition,
the prescribed-time schemes suffer from a singularity at
the convergence time. The source of this singularity is
that, despite the boundedness of u = K(t, τ)x, the time-
dependent gain K(t, τ) approaches infinity as t → τ ,
which imposes problems in the practical implementation
of these methods. As a solution, in Zhou (2020b), Zhou
and Shi (2021), and Shakouri and Assadian (2021b) a
switching method is proposed by which the gains’ in-
crement is stopped at a sufficiently short time before
the singularity happens, and afterward, the last calcu-
lated gains are used as constant values. In other words,
speaking in terms of LTV systems, this strategy is based
on switching from the PTA system to the correspond-
ing frozen-time system (evaluated at the switching mo-
ment). This switching method is proposed in the liter-
ature as an intuitive solution and its viability has not
been thoroughly analyzed. In order to prevent instability
after switching, the frozen-time eigenvalues should have
negative real parts at least close to the convergence time.
When the stability of the closed-loop frozen-time system
is guaranteed in a neighborhood of the equilibrium (in-
dependent of the open-loop LTI system), then the time-
varying gain of the prescribed-time controller reaches the
set of stabilizing constant state-feedback gains without
relying on the system model. Therefore, the study of the
frozen-time eigenvalues of PTA systems is motivated by
preventing the divergence risk and retaining closed-loop
stability after reaching a neighborhood of the equilib-
rium, especially when the open-loop LTI system matri-
ces F and G are unknown.

In this note, we deal with general LTV systems. The
results are not limited to prescribed-time schemes, and
they are also valid for finite and fixed-time methods. It
is proved in Theorem 1 that the p-norm of the system
matrix should approach infinity as a necessary condition
for prescribed-time attractivity, i.e., every prescribed-
time attractive LTV system is essentially singular at the
convergence time. Theorem 2 presents a necessary and
sufficient prescribed-time attractivity condition in terms
of the differential Lyapunov equation. Finally, Theorem
3 discusses the frozen-time eigenvalues, which is the core
result of this paper. An example is presented in Section
4 to demonstrate some applications.

2 Preliminaries

2.1 Notations

Let Rm×n denote the space of m × n real matrices, Rn
denote the space of n-dimensional real vectors, and N
denote the space of natural numbers. The n-dimensional
identity matrix is denoted by In. The ith entry of vector
v ∈ Rn is referred to by vi. Let Mij denote the entry of

matrix M on the ith row and jth column. The real part
of the ith eigenvalue of matrixM is shown by λi(M). The
maximum and minimum eigenvalues of a matrix M are
defined as λmax(M) = maxi∈N{λi(M)} and λmin(M) =
mini∈N{λi(M)}, respectively. The n×n diagonal matrix
with entries of vector v ∈ Rn as its diagonal elements
is denoted by diag(v). The absolute value of scalars is
shown by |·|. Symbol ‖·‖p stands for the vector p-norm or
the matrix p-norm (induced by vector p-norm). We use
‖ ·‖ instead of ‖ ·‖2 for simplicity. The logarithmic norm
of matrix M ∈ Rn×n is defined as follows (Ström 1975):

µp(M) = lim
h→0+

‖In − hM‖p − 1

h
(1)

2.2 Problem Formulation

Consider an LTV closed-loop system as follows:

ẋ = A(t, τ)x (2)

where x ∈ Rn is the state vector, τ > 0 is a user-defined
constant, and A(·, ·) : [0,∞) × (0,∞) → Rn×n is a
matrix-valued function.

Definition 1 (Shakouri and Assadian 2021b) Sys-
tem (2) is called (globally uniformly) prescribed-time at-
tractive (PTA) if for every τ > 0 (independent of initial
state and time) its solution satisfies:

lim
t→τ−

‖x(t)‖ = 0 (3)

The frozen-time system corresponding to (2) is the in-
stantaneous LTI system evaluated at each time, which
its eigenvalues are called frozen-time eigenvalues.

We say system (2) is singular if some entries of the sys-
tem matrix approach infinity (or some denominators ap-
proach zero). A system that is not singular is called non-
singular. A singular system can be stable in theory such
that the state vector and its derivatives have finite values
at all times. However, the singularity imposes problems
in the numerical implementation of that system.

It is impossible for a nonsingular LTV system (and all
LTI systems) to be PTA or to show any finite escape
time (see Corollary 1–item 1). However, a nonsingular
LTV system may reach an arbitrary nonzero error bound
at a commanded settling time τ and retain that bound
for t ≥ τ (Ding et al. 2020). This type of nonsingular
LTV systems possesses all practical advantages of PTA
systems and is useful in the successfully implementing
prescribed-time controllers and observers to (unknown)
LTI systems. Therefore, we state the problem statements
of this note as follows:
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Problem 1 Is it possible for a nonsingular LTV system
expressed as ẋ = As(t, τ, σ)x to satisfy ‖x(t)‖ ≤ σ, ∀t ∈
[τ,∞), for every user-defined parameters σ > 0 and τ >
0?

Problem 2 Given that u = K(t, τ)x is a singular PTA
controller for the (unknown) LTI system ẋ = Fx+Gu,
find a nonsingular control law u = Ks(t, τ, σ)x such that
‖x(t)‖ ≤ σ, ∀t ∈ [τ,∞), for every user-defined parame-
ters σ > 0 and τ > 0.

3 Main Results

In this section, we present the main results of the paper
in three theorems. The explicit answers to Problems 1
and 2 are given in Corollaries 2 and 3, respectively.

First, Consider the following lemma that is used in the
proof of Theorem 1:

Lemma 1 (Vrabel 2019) The solution of system (2)
satisfies the following condition:

‖x(0)‖p exp

(
−
∫ t

0

µp[−A(s, τ)]ds

)
≤ ‖x(t)‖p

≤ ‖x(0)‖p exp

(∫ t

0

µp[A(s, τ)]ds

) (4)

Given the upper and lower bounds of Lemma 1, the
following theorem can be directly concluded, which
presents separate necessary and sufficient conditions for
the prescribed-time attractivity of LTV systems.

Theorem 1 System (2) is PTA at t = τ if:

lim
t→τ−

∫ t

0

µp[A(s, τ)]ds = −∞ (5)

In addition, if system (2) is PTA at t = τ and
limt→τ− |Ai,j(t, τ)| exists or is infinity for all i, j ∈ N,
then:

lim
t→τ−

µp[−A(s, τ)] =∞ (6)

and thus:
lim
t→τ−

‖A(t, τ)‖p =∞ (7)

PROOF. Condition (5) is a direct result of the upper
bound of (4) in Lemma 1. Given the limit assumption on
the entries ofA(t, τ), condition (6) is obtainable from the
lower bound of (4). For condition (7), observe that ac-
cording to the properties of logarithmic norm of a square
matrix (Ström 1975), |µp(A(t, τ))| ≤ ‖A(t, τ)‖p. There-
fore, |µp(−A(t, τ))| ≤ ‖A(t, τ)‖p and condition (6) con-
cludes (7). 2

Corollary 1 The matrix of a prescribed-time at-
tractive LTV system, A(t, τ), has at least one entry
with a diverging behavior at t = τ , i.e., ∃i, j ∈ N :
limt→τ− |Aij(t, τ)| =∞. Therefore:

(1) Singularity at t = τ is necessary for prescribed-time
attractive LTV systems.

(2) The closed-loop response of an LTI system ẋ = Fx+
Gu under a time-varying controller u = K(t, τ)x
cannot be PTA unless the p-norm of the controller
gain approaches infinity. A similar conclusion can
be made for the gains of prescribed-time observers.

Remark 1 Note that the necessary conditions (6) and
(7) of Theorem 1 are not valid if the limit conditions on
the entries of A(t, τ) are violated. As a counter example,
consider the scalar system ẋ = a(t, τ)x with a(t, τ) =
−{0.5− sin[1/(τ − t)]} /(τ − t)3 which its limit does not
exist as t → τ . This system is PTA but its eigenvalue
oscillates between −∞ and +∞.

Remark 2 For nonscalar LTV systems, condition (7)
does not guarantee prescribed-time attractivity, even if
the frozen-time eigenvalues have negative real parts (es-
pecially for scalar systems, a similar point is mentioned
in (Zhou 2020a, Remark 1)). As a counter example, con-
sider a system as (2) with A(t, τ) = diag([−1,−1/(τ −
t)]).

Remark 3 For symmetric systems A(t, τ) = AT (t, τ)
(or more generally, systems that are symmetric close
to t = τ , i.e., limt→τ− A(t, τ) = limt→τ− AT (t, τ)),
condition (5) of Theorem 1 can be substituted by

limt→τ−
∫ t
0
λmax(A(s, τ))ds = −∞.

We need the following lemmas to prove Theorems 2 and
3:

Lemma 2 (Amato et al. 2009) Given R ∈ Rn×n and
Γ(·) : [0,∞)→ Rn×n, condition

xT (0)Rx(0) < 1⇒ xT (t)Γ(t)x(t) < 1 (8)

is satisfied for an LTV system ẋ = A(t)x, if and only if
the following differential Lyapunov inequality, with ter-
minal and initial conditions, has a piecewise continuously
differentiable symmetric solution P (t):

Ṗ (s) +AT (s)P (s) + P (s)A(s) < 0, s ∈ (0, t) (9)

P (t) ≥ Γ(t) (10)

P (0) < R (11)

Lemma 3 (Fulton 2000) Let A, B, and C are n × n
Hermitian matrices with eigenvalues a1 ≥ a2 ≥ · · · ≥
an, b1 ≥ b2 ≥ · · · ≥ bn and c1 ≥ c2 ≥ · · · ≥ cn, respec-
tively. If A+B = C, then:

ai + bj ≤ ck, if i+ j = n+ k (12)
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Lemma 4 LetA ∈ Rn×n andB ∈ Rn×n are symmetric.
If A+B ≤ 0 (respectively, A+B < 0), then λmin(A) +
λmax(B) ≤ 0 (respectively, λmin(A) + λmax(B) < 0).

PROOF. Inequality A+B ≤ 0 (respectively, A+B <
0) can be written as A+B = C for some C ≤ 0 (respec-
tively, C < 0). The result is then straightforward by ap-
plying Lemma 3 with i = n and j = k = 1, and knowing
that λmax(C) ≤ 0 (respectively, λmax(C) < 0). 2

Lemma 2 gives necessary and sufficient conditions for
finite-time stability of LTV systems such that the system
solution is constrained by a time-varying hyper-ellipsoid.
The following theorem makes use of Lemma 2 to for-
mulate a condition equivalent to the prescribed-time at-
tractivity of LTV systems.

Theorem 2 System (2) is PTA at t = τ if and only
if there exists ε > 0 such that the following conditions
admit a continuously differentiable P (t):

Ṗ (t) +AT (t, τ)P (t) + P (t)A(t, τ) < 0, t ∈ [τ − ε, τ)
(13)

lim
t→τ−

λmin(P (t)) =∞ (14)

PROOF. Speaking in terms of Lemma 2, the prescribed-
time attractivity of an LTV system is equivalent to
saying that the final hyper-ellipsoid of condition (8)
becomes zero, i.e., limt→τ− λmin(Γ(t)) = ∞. Besides,
apply the rule of Lemma 4 to condition (10) to ob-
tain λmin(Γ(t)) + λmax(−P (t)) ≤ 0 ⇒ λmin(Γ(t)) ≤
λmin(P (t)). Thus, condition (10) needs the satisfaction
of (14). As the prescribed-time attractivity is about the
system’s behavior when t→ τ , there is no other restric-
tions on matrix Γ(t), and condition (9) reduces to (13).
2

Remark 4 Condition (5) of Theorem 1 is generally con-
servative, and its application in the design of PTA sys-
tems is limited to particular forms of systems (e.g., sym-
metric systems). Also, the necessary and sufficient con-
dition discussed in Theorem 2 does not seem to facil-
itate the design process in its present form. The de-
sign of PTA systems can be accomplished in a more ef-
ficient way by other methods proposed in the literature
(Song et al. 2017, Holloway and Krstic 2019a, Krishna-
murthy et al. 2020, Zhou 2020b, Zhou 2020a, Zhou and
Shi 2021, Shakouri and Assadian 2021a).

Theorem 3 Let system (2) be PTA at t = τ such that
limt→τ− |Ai,j(t, τ)| exists or is infinity for all i, j ∈ N.
Then, there exists ε > 0 such that for all t ∈ [τ − ε, τ)
the frozen-time system is asymptotically stable, i.e.:

∃ε > 0 : λmax(A(t, τ)) < 0, ∀t ∈ [τ − ε, τ) (15)

PROOF. As the system is PTA, we know from The-
orem 2 that (13) and (14) hold true. Given condition
(13) and our assumption on the entries of A(t, τ), one

can verify that limt→τ− Ṗi,j(t) exists or is infinity for all

i, j ∈ N. Multiply both sides of P (t) =
∫ t
t0
Ṗ (s)ds (which

is valid for some t0) by an arbitrary constant vector v
and its transpose, then verify that the following inequal-
ity holds:

λmin(P (t))‖v‖2 ≤
∥∥∥∥∫ t

t0

vT Ṗ (s)vds

∥∥∥∥ ≤ λmax(P (t))‖v‖2

(16)
Given (14) we know that λmin(P (t)) approaches in-
finity as t → τ . Thus, from (16) is can be seen that

limt→τ−

∥∥∥∫ tt0 vT Ṗ (s)vds
∥∥∥ =∞. As the limit of vT Ṗ (s)v

exists or is infinity, it must satisfy limt→τ− vT Ṗ (t)v =∞
for every v. Therefore, matrix Ṗ should eventually be
positive-definite and satisfy limt→τ− λmin(Ṗ (t)) = ∞.
Apply the result of Lemma 4 to condition (13) and
obtain:

λmax(AT (t, τ)P (t) + P (t)A(t, τ)) < −λmin(Ṗ (t)) (17)

Substitute limt→τ− λmin(Ṗ (t)) =∞ into (17) to obtain:

lim
t→τ−

λmax

(
AT (t, τ)P (t) + P (t)A(t, τ)

)
= −∞ (18)

Observe that (18) means that as t approaches τ , the term
AT (t, τ)P (t) + P (t)A(t, τ) should be negative-definite,
and therefore, matrix A(t, τ) should be Hurwitz at every
t sufficiently close to τ . 2

Corollary 2 Let system (2) be PTA at t = τ such that
limt→τ− |Ai,j(t, τ)| exists or is infinity for all i, j ∈ N.
Let As(t, τ, σ) be defined as follows:

As(t, τ, σ) =

{
A(t, τ) if ‖x(t)‖ > σ

A(ts, τ) if ‖x(t)‖ ≤ σ
(19)

where ts < τ is the switching time. Then, there exists
σ̄ > 0 such that the solution of the switching system
ẋ = As(t, τ, σ)x satisfies limt→τ ‖x(t)‖ ≤ σ for every σ ∈
(0, σ̄] and the system is asymptotically stable at all t =
[ts,∞). Therefore, the answer to Problem 1 is positive.

Corollary 3 Suppose that K(t, τ) is a time-varying
PTA state-feedback gain for the (unknown) LTI system
ẋ = Fx + Gu such that limt→τ− |Ki,j(t, τ)| exists or is
infinity for all i, j ∈ N and u = K(t, τ)x is guaranteed
to be bounded. Let Ks(t, τ, σ) be defined as follows:

Ks(t, τ, σ) =

{
K(t, τ) if ‖x(t)‖ > σ

K(ts, τ) if ‖x(t)‖ ≤ σ
(20)
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where ts < τ is the switching time. Then, there exists
σ̄ > 0 such that the solution of ẋ = Fx + Gu under the
control law u = Ks(t, τ, σ)x satisfies limt→τ ‖x(t)‖ ≤
σ for every σ ∈ (0, σ̄], the constant state-feedback gain
K(ts, τ) asymptotically stabilizes the system, and u =
Ks(t, τ, σ)x is bounded for all t ∈ [0,∞).

4 Example

In this section, we show the application of Theorem 3
and Corollary 3 in the prescribed-time control of a typi-
cal single-input single-output (SISO) unknown LTI sys-
tem. Consider system ẋ = Fx+Gu, expressed in control-
lable canonical form with unstable open-loop dynamics,
defined as follows:

F =


0 1 0 0

0 0 1 0

0 0 0 1

10 20 30 40

 , G =


0

0

0

1

 (21)

A prescribed-time controller u = K(t, τ)x can be se-
lected for this system regardless of the model with a
time-varying gain K(t, τ) = [K11, K12, K13, K14] for-
mulated as (Shakouri and Assadian 2022, Example 2) 2 :

K11(t, τ) = − 1

α4(τ − t)4
(22a)

K12(t, τ) =
1

(τ − t)3

(
− 4

α3
+

6

α2
− 4

α
+ 1

)
(22b)

K13(t, τ) =
1

(τ − t)2

(
− 6

α2
+

12

α
− 7

)
(22c)

K14(t, τ) =
1

τ − t

(
− 4

α
+ 6

)
(22d)

where α > 0 is a small constant. It can be seen from (22)
that the entries of the controller gain approach infinity as
t→ τ , which is an obstacle in the practical implementa-
tion of u = K(t, τ)x (note that although the gain entries
approach infinity, the control input remains bounded as
proved in (Shakouri and Assadian 2022)). From Theo-
rem 3, we know that the frozen-time eigenvalues of the
closed-loop systemA(t, τ) = F+GK(t, τ) have negative
real parts close to t = τ . To illustrate this fact, we select
α = 0.1, τ = 10, and x(0) = [1, 1, 1, 1]T for a simula-
tion. Fig. 1 shows the frozen-time eigenvalues of A(t, τ),
in which the eigenvalues have negative real parts at all
t ∈ [τ − ε, τ) = [9.34, 10) where ε = 0.66. For instance,
K(9.5, 10) = −[1.6×105, 2.7512×104, 1.948×103, 68] is

2 MATLAB® codes and Simulink® models for
some prescribed-time controllers can be found in
https://github.com/a-shakouri/prescribed-time-control

a constant control gain with which system (21) is asymp-
totically stable. Therefore, a prescribed-time controller
as proposed by Corollary 3, u = Ks(t, τ, σ)x, stabilizes
the system at t = τ with an arbitrary error bound σ > 0,
while the unknown system is asymptotically stable after
t = τ , if σ is selected small enough such that ‖x(t)‖ ≤ σ
occurs after t = τ − ε.

 

Fig. 1. Frozen-time eigenvalues of an LTI system under a
time-varying prescribed-time controller intended to converge
at τ = 10.

5 Conclusions

It has been proved that singularity at the conver-
gence time is necessary for prescribed-time attractive
(PTA) systems. Also, it has been proved that the real
parts of the frozen-time eigenvalues, corresponding to
a PTA system, become negative before the singularity
moment. Therefore, by a state-dependent switching,
a linear time-invariant system under a singular time-
varying prescribed-time controller (or observer) reaches
any nonzero error bound at the intended convergence
time without numerical problems such that the closed-
loop system is asymptotically stable after the switching
occurs.
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