
AGreedy andDistributableApproach to theLexicographic

BottleneckAssignmentProblemwithConditions on

Exactness ?

Mitchell Khoo a, Tony A.Wood b, Chris Manzie a, Iman Shames c

aDepartment of Electrical and Electronic Engineering at the University of Melbourne, Melbourne, Australia

bSycamore, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

cCIICADA Lab, School of Engineering, Australia National University, Canberra, Australia

Abstract

Solving the Lexicographic Bottleneck Assignment Problem (LexBAP) typically relies on centralised computation with order
O(n4) complexity. We consider the Sequential Bottleneck Assignment Problem (SeqBAP), which yields a greedy solution to
the LexBAP and discuss the relationship between the SeqBAP, the LexBAP, and the Bottleneck Assignment Problem (BAP).
In particular, we reexamine tools used to analyse the structure of the BAP, and apply them to derive an O(n3) algorithm that
solves the SeqBAP. We show that the set of solutions of the LexBAP is a subset of the solutions of the SeqBAP and analyse
the conditions for which the solutions sets are identical. Furthermore, we provide a method to verify the satisfaction of these
conditions. In cases where the conditions are satisfied, the proposed algorithm for solving the SeqBAP solves the LexBAP
with computation that has lower complexity and can be distributed over a network of computing agents. The applicability of
the approach is demonstrated with a case study where mobile robots are assigned to goal locations.

1 Introduction

In multi-agent systems, assignment problems arise when
a set of tasks must be allocated to a set of agents, where
each allocation of a task to an agent incurs a cost. Re-
views on assignment problems with different objectives
are found in [3,15,8]. The Bottleneck Assignment Prob-
lem (BAP) is an assignment problem with the objective
of minimising the costliest allocation. It appears in time-
critical problems, e.g., when agents carry out tasks si-
multaneously and must complete all tasks in minimum
time. For instance, the BAP arises in [18], where the goal
is to minimise the worst-case positioning time of decoys.

A centralised algorithm relies on a single decision-maker
to aggregate all information from agents to compute
the solution. In contrast, a distributed algorithm is one

? The research is funded by Defence Science and Technol-
ogy Group through research agreements MyIP: 7558, MyIP:
7562 and MyIP: 9156. Corresponding author M. Khoo.
Tel.:+61452523134.

Email addresses: khoom1@student.unimelb.edu.au
(Mitchell Khoo), tony.wood@epfl.ch (Tony A. Wood),
manziec@unimelb.edu.au (Chris Manzie),
iman.shames@anu.edu.au (Iman Shames).

where computation is distributed over agents. Several
centralised algorithms to solve the BAP have been pro-
posed in [7,5,6,16], while a distributed algorithm to solve
the BAP is presented in [10].

Two special cases of the BAP are the Lexicographic
Bottleneck Assignment Problem (LexBAP) [4] and the
Sequential Bottleneck Assignment Problem (SeqBAP)
[19,20]. The former focuses not only on minimising the
costliest allocation, but also the second costliest, and the
third costliest, etc. The latter, which is further elabo-
rated in this paper, is a greedy reformulation of the for-
mer, where each allocation is chosen sequentially with
no regard to the effect on later choices. It is common
to reformulate greedy versions of assignment problems,
e.g., a distributed greedy algorithm for an assignment
problem with submodular utility functions is presented
in [17], while a greedy rescheduling of an exact LexBAP
solution given runtime uncertainty is proposed in [13].

Although a solution of the SeqBAP may not be a solu-
tion of the LexBAP in general, there are conditions for
which the solution sets of the SeqBAP and LexBAP coin-
cide. This motivates the derivation of an algorithm that
solves the SeqBAP. Existing algorithms for solving the
LexBAP, e.g., in [3,4], are not amenable to a distributed

Preprint submitted to Automatica 11 January 2022

ar
X

iv
:2

00
8.

12
50

8v
2

 [
m

at
h.

O
C

]
 7

 J
an

 2
02

2

implementation. In this paper, we develop an approach
to solve the SeqBAP that can be implemented with dis-
tributed computation and provides certificates when the
resulting assignment is also a solution to the LexBAP.

This paper extends the work in [10,11,19] in the following
ways. The distributed algorithm for finding a solution
to the BAP in [10] is extended to develop an algorithm
to produce a solution to the SeqBAP that is similarly
amenable to a distributed implementation. Applying a
BAP algorithm “off-the-shelf” to solve the SeqBAP was
first proposed in [19,20]. However, we henceforth refer
to such an approach as a naive one as it does not exploit
structure in the SeqBAP.

In [11], tools are introduced to identify and exploit struc-
ture of the BAP. In particular, two BAPs with two dis-
tinct subsets of agents and tasks are solved separately
and the solutions to the separate problems are used to
solve the BAP over the combined sets of agents and
tasks efficiently. We draw a parallel to [11] by similarly
analysing the structure of the SeqBAP, and exploit it
to modify the aforementioned naive SeqBAP approach
so that the resulting novel approach has lower worst-
case complexity. We prove that the novel approach has
lower theoretical worst-case complexity than the naive
approach and demonstrate that it also has lower empir-
ical complexity in a case study.

Conditions for which a solution of the LexBAP and Se-
qBAP are unique and equal were introduced in [19]. We
extend this analysis further and determine the full re-
lationship between the SeqBAP and the LexBAP. We
show that the solution set of the LexBAP is a subset of
the solutions of the SeqBAP, which in turn is a subset
of the solution set of the BAP.

By establishing that the SeqBAP is a greedy approxima-
tion of the LexBAP with certifiable conditions for exact-
ness, the main contribution of this paper is the derivation
an efficient algorithm to solve the LexBAP. The benefits
of the proposed algorithm compared to existing litera-
ture are two-fold. Firstly, solving the LexBAP accord-
ing to [3] has a worst-case complexity of O(n4), where n
is number of allocations of tasks to agents that have to
be established. By exploiting structure of the SeqBAP,
we instead present an algorithm for the SeqBAP that
has a worst-case complexity of O(n3). Secondly, this al-
gorithm is intrinsically distributable and can be imple-
mented with computation distributed over agents.

The rest of the paper is organised as follows. In Sec-
tion 2, background graph theory is introduced. In Sec-
tion 3, the BAP, LexBAP, and the SeqBAP are formu-
lated. In Section 4, the relationship between these as-
signment problems is analysed and tools to exploit their
structure are derived. In Section 5, the distributable al-
gorithm for solving the SeqBAP is presented. In Sec-

tion 6, a numerical case study is provided to demonstrate
the implementation of the algorithm.

2 Graph Theoretical Definitions

Consider an undirected graph G = (V, E), where V is
a set of vertices and E is a set of edges. Given G, we
consider the following definitions, as in [10,9].

Definition 1 (Maximum Cardinality Matching)
A matching M of G is a subset of edges M ⊆ E such
that no vertex v ∈ V is incident to more than one edge in
M. A Maximum Cardinality Matching (MCM) Mmax

is a matching of G with maximum cardinality.

Definition 2 (Neighbours) The set of neighbours of
vertex v ∈ V in G is N(G, v) := {k|{v, k} ∈ E}.

Definition 3 (Path) Let distinct vertices v1, v2, ..., vl+1 ∈
V be such that for k ∈ {1, 2, ..., l}, vk+1 ∈ N(G, vk). The
set of edges P = {{vk, vk+1}|k ∈ {1, 2, ..., l}} is a path
between v1 and vl+1, with length l.

Definition 4 (Diameter) Let hij be the length of the
shortest path between vertices i, j ∈ V. The diameter D
of graph G is D := maxi,j∈V hij.

Definition 5 (Alternating path) Given a matching
M and a path P, P is an alternating path relative toM
if and only if each vertex that is incident to an edge in P
is incident to no more than one edge in P ∩M and no
more than one edge in P\M.

A path is a set of edges and its elements are unordered.
However, if the elements of an alternating path relative
toM were arranged in a sequence {v1, v2}, {v2, v3}, ...,
{vl−1, vl}, {vl, vl+1}, then the edges in the sequence al-
ternate between edges inM and edges not inM.

Definition 6 (Free vertex) Given a matching M, a
vertex v ∈ V is free if and only if for all w ∈ V, {v, w} /∈
M.

Definition 7 (Augmenting path) Given a matching
M and a path P between vertices v1 and vl+1, P is an
augmenting path relative to M if and only if P is an
alternating path relative to M and v1 and vl+1 are both
free vertices.

3 Assignment Problem Formulations

Consider a bipartite graph Gb = (Vb, Eb), with vertex set
Vb = Ab ∪ Bb and edge set Eb ⊆ {{i, j}|i ∈ Ab, j ∈ Bb},
where Ab is a set of agents and Bb is a set of tasks such
that Ab ∩ Bb = ∅. Let C(Gb) be the set of all MCMs of
Gb. Let the function w : Eb → R map the edges of Gb to
real-valued weights.

2

Consider an MCM M ∈ C(Gb). Let n = |M|.
Without loss of generality, we denote the edges in
M as M = {{i1, j1}, {i2, j2}, ..., {in, jn}} and as-
sume w({i1, j1}) ≥ w({i2, j2}) ≥ ... ≥ w({in, jn}).
We define the ordered tuple of weights T (M) :=
(w({i1, j1}), w({i2, j2}), ..., w({in, jn}) and the kth
element of the tuple Tk(M) := w({ik, jk}), for
k ∈ {1, 2, ..., n}.

3.1 The Bottleneck Assignment Problem

The BAP for graph Gb is formulated as

BAP :

FindM∈ C(Gb), s.t. (1a)

∀M′ ∈ C(Gb)\{M},
T1(M) ≤ T1(M′). (1b)

We define the bottleneck weight, bottleneck assignment
and the bottleneck edge of a bipartite graph Gb.

Definition 8 (Bottleneck weight) The bottleneck
weight of a bipartite graph Gb is defined as W(Gb) :=
minM∈C(Gb) max{i,j}∈M w({i, j}).

Definition 9 (Bottleneck assignment) The set
of bottleneck assignments of Gb is S(Gb) := {M ∈
C(Gb)|T1(M) =W(Gb)}.

Definition 10 (Bottleneck edge) Given any bottle-
neck assignment M ∈ S(Gb), any edge
e ∈ arg max{i,j}∈M w({i, j}) is a bottleneck edge of Gb.

Definition 11 (Matching-sublevel set) Given a bi-
partite graph Gb = (Vb, Eb) with a matching M, define
a matching-sublevel set ψ(Gb,M) := {e ∈ Eb|w(e) ≤
maxe′∈M w(e′)} and a strict matching-sublevel set
ψS(Gb,M) := {e ∈ Eb|w(e) < maxe′∈M w(e′)}.

The following definition was first introduced in [11] to
capture the structure in the BAP.

Definition 12 (Critical bottleneck edge) LetM be
an MCM of graph Gb. Edge ec is a critical bottleneck edge
of Gb relative toM if and only if ec ∈ arg maxe∈M w(e)
and φ(Gb,M)\{ec} does not contain an augmenting path
relative toM\{ec}, where φ(Gb,M) :=M∪ψS(Gb,M)
and ψS(·) is defined in Definition 11.

In [11], it is shown that a critical bottleneck edge is also
a bottleneck edge. A critical bottleneck edge is used to
identify if an MCM is a solution to (1). From Defini-
tion 12, we observe that the removal of a critical bottle-
neck edge results in the non-existence of an augmenting
path. Applied together with Berge’s Theorem [1], it is
concluded that finding a critical bottleneck edge in an
MCMM implies thatM is a solution to (1).

3.2 The Lexicographic Bottleneck Assignment Problem

A special case of the BAP is the LexBAP. The LexBAP
is formulated as

LexBAP :

FindM∈ C(Gb), s.t. (2a)

∀M′ ∈ {M̃ ∈ C(Gb)|T (M̃) 6= T (M)},
∃k ∈ {z ∈ Z+|z ≤ n}, Tk(M) < Tk(M′),
∀l ∈ {z ∈ Z+|z < k}, Tl(M) = Tl(M′), (2b)

where Z+ is the set of all strictly positive integers. For
example, the tuple T (M1) = (5, 3, 3, 3) is lexicographi-
cally smaller than T (M2) = (5, 4, 3, 2) because its sec-
ond element is smaller and their first elements have equal
weight. The objective of the LexBAP is to choose a lexi-
cographically minimal MCM. Note that while the largest
edge weights of M1 and M2 are equal to 5, they may
not correspond to the same edge. In the greedy approach
below, this ambiguity could lead toM2 being produced
as a solution instead ofM1.

3.3 A Greedy Solution to the Lexicographic Bottleneck
Assignment Problem

A greedy approach to the LexBAP involves sequentially
solving n BAPs, i.e., sequentially choosing the edges
corresponding to T1(M), T2(M), ..., Tn(M) one at a
time. This does not in general produce a solution to the
LexBAP. Each time an edge is selected, it affects the re-
maining selections in the sequence. The greedy selection
of edges may involve an arbitrary choice between edges
with the same weight, e.g.,M1 andM2 from the exam-
ple in the previous section that both have an edge with
weight 5. Therefore, the greedy approach can potentially
produce a suboptimal solution to the LexBAP.

A particular greedy approximation of the LexBAP is
introduced in [19], which we henceforth refer to as Se-
qBAP. To formulate the SeqBAP we first introduce the
notion of the price of absence of an edge. To this end,
let F(Gb) be the cardinality of an MCM of Gb, i.e., given
any MCMM∈ C(Gb), F(Gb) = |M|.

Definition 13 (Price of Absence) Given a bipar-
tite graph Gb = (Vb, Eb), and an edge e ∈ Eb such that
F((Vb, Eb)) = F((Vb, Eb\{e})), the price of the absence
of an edge e is

P (Gb, e) :=W((Vb, Eb\{e}))−W((Vb, Eb)),

where W(·) is defined in Definition 8. If the removal of
an edge e ∈ Eb changes the cardinality of an MCM, i.e.,
F((Vb, Eb)) 6= F((Vb, Eb\{e})), then the price of absence
is defined to be +∞.

3

The price of absence is always non-negative. It is a mea-
sure of how much the bottleneck weight of a graph in-
creases in the absence of a given edge. The so-called ro-
bustness margin in [19] is a special case of the price of ab-
sence. Its value can be used to quantify the sensitivity of
an assignment solution to perturbations of edge weights
as first studied in [14]. This type of sensitivity informa-
tion is exploited in [19] to guarantee collision avoidance
of mobile agents that are assigned to different destina-
tions. We show that the price of absence is also related
to a critical bottleneck edge in the following proposition.

Proposition 1 Given a bipartite graph Gb = (Vb, Eb),
let the MCMM∈ S(Gb) be a bottleneck assignment of Gb
and let edge eb ∈ M be a bottleneck edge of Gb. If eb has
a positive price of absence, then it is a critical bottleneck
edge of Gb relative toM.

PROOF. Assume bottleneck edge eb is not a critical
bottleneck edge of Gb relative to M. By Definition 12,
φ(Gb,M)\{eb} contains an augmenting path P relative
to M\{eb}, where φ(Gb,M) := M ∪ ψS(Gb,M) and
ψS(·) is given in Definition 11. By Berge’s Theorem [1],
M′ :=M\{eb}⊕P is an MCM of Gb, where the operator
⊕ denotes symmetric difference. The weight of all edges
in M′ must be smaller than or equal to w(eb) because
M′ ⊆ φ(Gb,M)\{eb}. This holds asM′ is formed from
the symmetric difference of M\{eb} ⊆ φ(Gb,M)\{eb}
and P ⊆ φ(Gb,M)\{eb}. However, φ(Gb,M)\{eb} ⊂
Eb\{eb} implies that Eb\{eb}must also contain the MCM
M′, i.e., W((Vb, Eb\{eb})) ≯W((Vb, Eb)). 2

The SeqBAP is constructed by sequentially choosing
the bottleneck edge with maximal price of absence and
removing the corresponding bottleneck agent and task
from the graph. Thus, it is a greedy solution to LexBAP.
Given a set of weighted edges E ⊆ Eb, we define

L(E) := arg max
{i,j}∈E

w({i, j}). (3)

The SeqBAP is formulated as

SeqBAP :

Find {{i1, j1}, {i2, j2}, ..., {in, jn}} ∈ C(Gb), (4a)

s.t. ∀k ∈ {z ∈ Z+|z ≤ n},
{ik, jk} ∈ arg max

{i,j}∈L(Mk)
P (Gk, {i, j}), (4b)

Mk ∈ arg min
M∈C(Gk)

max
{i,j}∈M

w({i, j}), (4c)

Gk = (Ak ∪ Bk, Ek), (4d)

Ek = {{i, j} ∈ Eb|i ∈ Ak, j ∈ Bk}, (4e)

where ∀k ∈ {z ∈ Z+|2 ≤ z ≤ n},
A1 = Ab,B1 = Bb, (4f)

Ak = Ak−1\{ik−1}, (4g)

Bk = Bk−1\{jk−1}. (4h)

4 Structure of the BAP, the LexBAP, and the
SeqBAP

We exploit the structure of the BAP, the LexBAP, and
the SeqBAP in two ways. In order to derive an efficient
method to solve the SeqBAP, we consider the role of all
edges with positive price of absence within the BAP, the
LexBAP, and the SeqBAP, and exploit this to circum-
vent the need to find the edge with maximum price of
absence as indicated in (4b). To guarantee that a solu-
tion to the SeqBAP is an exact solution to the LexBAP,
we consider the relationship between their solution sets.
In particular, the subsections are organised as follows.

In Section 4.1, we apply the tools introduced in Sec-
tion 3 to efficiently identify edges with positive price of
absence. In Section 4.2, we show that finding a SeqBAP
solution does not require computation of the explicit
price of absence for each edge in (4b) and only requires
identification of edges with positive price. Additionally,
in Section 4.2 we analyse conditions for a solution to
SeqBAP to be an exact solution to the LexBAP. These
results lead to the derivation of a SeqBAP algorithm in
Section 5, which serves as a greedy approach to finding
a solution to the LexBAP with exactness guarantees.

4.1 Identifying Edges with Positive Price of Absence

The following proposition establishes that an edge with
positive price of absence appears in all solutions to the
BAP. This result is a generalisation of a property of
robustness margins proven in [19].

Proposition 2 Consider a bipartite graph Gb =
(Vb, Eb). If an edge ep ∈ Eb has a positive price of absence,
then ep is an element of every bottleneck assignment of
Gb, i.e., for allM∈ S(Gb), ep ∈M.

PROOF. Consider an arbitrary edge ep ∈ Eb with
P (Gb, ep) = W((Vb, Eb\{ep})) − W((Vb, Eb)) > 0. As-
sume for the sake of contradiction that there exists an
MCM M ∈ S(Gb) such that ep /∈ M. However, this
implies that W((Vb, Eb\{ep})) = W((Vb, Eb)), which
contradicts the assumption that P (Gb, ep) > 0. 2

The following corollary follows from Proposition 2 for a
set of edges with positive price of absence.

Corollary 1 Given a bipartite graph Gb = (Vb, Eb), let
MCM M ∈ S(Gb) be a bottleneck assignment of Gb and
let E′ := {e ∈ M|P (Gb, e) > 0} be the set of edges
with positive price of absence. The set E′ is a subset
of every bottleneck assignment of Gb, i.e., for all M′ ∈
S(Gb), E′ ⊆M′.

4

The following theorem provides a property of an edge ep
that can be exploited to identify whether ep has positive
price of absence.

Theorem 1 Given a bipartite graph Gb = (Vb, Eb),
let MCM M ∈ S(Gb) be a bottleneck assignment of
Gb. The edge ep ∈ Eb has positive price of absence if
and only if there does not exist an augmenting path in
ψ(Gb,M)\{ep} relative toM\{ep}, where the matching-
sublevel set ψ(·) is defined in Definition 11.

PROOF. First, we prove necessity. Assume ep has
positive price of absence. Assume for the sake of
contradiction that there exists an augmenting path
P ′ ⊆ ψ(Gb,M)\{ep} relative to M\{ep}. By Berge’s
Theorem [1], M′ = P ′ ⊕M\{ep} is another MCM of
Gb, where the operator ⊕ denotes symmetric difference.
However,M′ does not contain ep because it is the sym-
metric difference of two sets of edges that both do not
contain ep. This contradicts Proposition 2 because ep is
an edge with positive price of absence and all solutions
to (1) must contain ep.

Next, we prove sufficiency. Assume there does not exist
an augmenting path P ′ ⊆ ψ(Gb,M)\{ep} relative to
M\{ep}. Then, it is not possible to construct an MCM
of Gb from ψ(Gb,M)\{ep}. In other words, without edge
ep, an MCM of Gb must contain at least one edge with
weight larger than the weights of the edges inM. Thus,
ep has positive price of absence. 2

The following corollary follows from Theorem 1 and fur-
ther illustrates the property of an edge with positive
price of absence and its role within the structure of a
matching-sublevel set.

Corollary 2 Given a bipartite graph Gb = (Vb, Eb), let
MCMM∈ S(Gb) be a bottleneck assignment of Gb. The
edge ep = {ap, bp} ∈ Eb has positive price of absence if
and only if the path P = {ep} is a unique alternating
path in the matching-sublevel set ψ(Gb,M) relative toM
between ap and bp.

Fig. 1 illustrates the results from Theorem 1 and Corol-
lary 2 within a simple example.

Selecting edges for an MCM that solves the SeqBAP
in (4a) only requires checking strict positivity of the price
of absence, not the explicit value. In order to evaluate the
price of absence of an edge explicitly, an additional BAP
would have to be solved. Theorem 1 provides a method
to determine if an edge has positive price of absence
without evaluating this extra BAP by instead searching
for an augmenting path. Finding one augmenting path is
less complex than solving one BAP, which itself requires
searching for augmenting paths multiple times.

b1

a2

b2

a3

b3

a4

b4

a1

b5

a5

b6

a6

Fig. 1. Illustration of Theorem 1: The lines in the figure
represent edges in the matching-sublevel set ψ(Gb,M) for a
graph Gb and an MCM M. White nodes represent agents
Ab and black nodes represent tasks Bb. The edges in the
MCM M are shown as solid lines and the edges not in M
are shown as dashed lines. In this example, all edges in
M have positive price of absence except for {a5, b5} and
{a6, b6}. We consider edge {a2, b2} with positive price of ab-
sence. There exists only one alternating path between a2 and
b2, i.e., the path P = {{a2, b2}}. If this edge were removed
from the matching-sublevel set, there would not exist an
augmenting path between a2 and b2. No MCM of Gb can be
constructed using edges contained in ψ(Gb,M)\{{a2, b2}}.
In contrast if edge {a5, b5} were removed, there exists
an augmenting path P = {{a6, b5}, {a6, b6}, {a5, b6}} be-
tween a5 and b5 relative to M\{{a5, b5}}. The matching
M′ = (M\{{a5, b5}, {a6, b6}}) ∪ {{a6, b5}, {a5, b6}} is an
MCM of Gb with all edges in M′ being elements of the set
ψ(Gb,M)\{{a5, b5}}.

4.2 Conditions for Correct Solutions from Greedy Ap-
proach

To find conditions under which an algorithm that solves
the SeqBAP can be used to solve the LexBAP with ex-
actness guarantee, we explore the relationship between
the solutions to the BAP, LexBAP, and SeqBAP.

Proposition 3 Consider a bipartite graph Gb and an
MCMM of Gb. IfM is a solution to the SeqBAP as given
in (4), thenM is a solution to the BAP as given in (1).

PROOF. Let M be a solution to (4). From (4b)
and (4c), {i1, j1} ∈ L(M1), where M1 is a solution
to (1). By Lemma 1 in the appendix, w({i1, j1}) ≥ w(e)
for all edges e ∈ M. Thus, M is also a solution to (1)
since {i1, j1} ∈ L(M1) and {i1, j1} ∈ L(M). 2

Combining the statements from Propositions 2 and 3,
we obtain the following corollary. While Theorem 1 pro-
vides a method to identify an edge with positive price of
absence, Corollary 3 motivates the need to identify edges
with positive price of absence by showing their relevance
in connection to the SeqBAP.

Corollary 3 Consider a bipartite graph Gb = (Vb, Eb).
If an edge ep ∈ Eb has positive price of absence with
respect to Gb, then every MCM M that is a solution to
the SeqBAP given in (4) contains ep, i.e., ep ∈M.

5

Remark 1 Since Corollary 3 also applies for each con-
secutive bipartite graph Gk in (4d), the following holds.
Instead of selecting and removing one edge per iteration
of k in (4b), (4g), (4h), all edges with positive price of
absence in that iteration can be selected and removed as
a batch. Intuitively, edges are “locked” into the solution
whenever they are found to have positive price of absence.

Given Proposition 3, we can go one step further; the
following proposition states that all solutions to the
LexBAP are also solutions to the SeqBAP.

Proposition 4 Consider a bipartite graph Gb and an
MCMM of Gb. IfM is a solution to the LexBAP given
in (2), then M is also a solution to the SeqBAP given
in (4).

PROOF. Assume M = {e1, e2, ..., en} is a solu-
tion to (2). Without loss of generality assume that
w(e1) ≥ w(e2) ≥ ... ≥ w(en). Let M1 = M and
Mk+1 = Mk\{ek} for all k ∈ {1, 2, ..., n − 1}. Then,
it holds that for all k ∈ {1, 2, ..., n}, ek ∈ L(Mk).
Since M is a solution to (2), for all k ∈ {1, 2, ..., n},
Mk ∈ argminM∈C(Gk) max{i,j}∈M w({i, j}), with Gk
defined as in (4d). Then, it remains to show that
ek ∈ argmax{i,j}∈L(Mk) P (Gk, {i, j}). If w(ek) >

w(ek+1), then L(Mk) is a singleton, so ek is triv-
ially the edge with largest price of absence in Gk.
If L(Mk) is not a singleton, then it holds that
L(Mk) = {ek, ek+1, ..., ek+α}, where either k + α = n
or w(ek+α) > w(ek+α+1). For the LexBAP solution,
the choice of which e ∈ L(Mk) is denoted as ek is ar-
bitrary; edges ek, ek+1, ..., ek+α can be rearranged in
any order because their weights are equal. We choose
ek = arg maxe∈{ek,ek+1,...,ek+α} P (Gk, e). Thus for all

k ∈ {1, 2, ..., n}, ek ∈ arg max{i,j}∈L(Mk) P (Gk, {i, j})
by construction as required in (4a). 2

Fig. 2(a) illustrates Propositions 3 and 4. The following
corollary is a special case of Proposition 4, where the
solution set of the SeqBAP is a singleton.

Corollary 4 Consider a bipartite graph Gb and an MCM
M of Gb. IfM is the unique solution to the SeqBAP given
in (4), thenM is also the unique solution to the LexBAP
given in (2).

The converse of Corollary 4 is not true. We provide the
following counterexample with two agents i1, i2 and two
tasks j1, j2, and edges with weights w({i1, j1}) = 2,
w({i1, j2}) = 2, w({i2, j1}) = 1, w({i2, j2}) = 2. In this
case, the LexBAP has a unique solution, but the Se-
qBAP does not. Fig. 2(b) illustrates Corollary 4.

The following proposition provides conditions for exis-
tence of a unique solution to the SeqBAP.

BAP

SeqBAP

LexBAP

(a)

BAP

SeqBAP , LexBAP

(b)

Fig. 2. Venn diagrams of the sets of the solutions to the
BAP given in (1), the SeqBAP given in (4), and the LexBAP
given in (2). The diagram in (a) is for an arbitrary bipartite
graph Gb; this illustrates the general results provided by
Propositions 3 and 4. The diagram in (b) is for the case when
there exist an MCM for which all edges have positive price
of absence; this illustrates Corollary 4.

Proposition 5 Consider a bipartite graph Gb and an
MCM M of Gb. Let M be the solution to the SeqBAP
given in (4). All sequentially selected edges in (4b) have
positive price of absence in their respective graphs Gk
defined in (4d) if and only ifM is a unique solution to (4).

PROOF. Assume all sequentially selected edges in (4b)
have positive price of absence in their respective graphs
Gk. By Corollary 3, every solution to (4) must contain
this set of edges. Thus, the solution is unique.

Assume there exists an edge eq selected in (4b) at itera-
tion q that does not have positive price of absence in Gq.
Then there exists another bottleneck edge of Gq that can
be selected in lieu of eq at iteration q. Thus, the solution
to (4) is not unique. 2

Proposition 5 is stronger than the result in [19], which
only considers the sufficiency but the not necessity of all
edges having positive price for uniqueness of the SeqBAP
solution. The relationship between the solution sets of
the BAP, SeqBAP and LexBAP allows us to re-derive
the following result from [19]. In particular, by combin-
ing Corollary 4 and Proposition 5, we have a sufficient
condition for a solution to the LexBAP being unique.

Corollary 5 Consider a bipartite graph Gb and an MCM
M of Gb. Let M be the solution to the SeqBAP given
in (4). If all sequentially selected edges in (4b) have posi-
tive price of absence in their respective graphs Gk defined
in (4d), thenM is a unique solution to the LexBAP given
in (2).

We in turn note that a sufficient condition for all sequen-
tially selected edges in a solution to the SeqBAP having
positive price of absence is for all weights in the bipar-
tite graph to be distinct. Therefore, if the weights of all

6

edges in Gb are distinct, then the SeqBAP has a unique
solution and this solution is also the unique solution of
the LexBAP. In realistic applicatons, the weights can of-
ten be considered to belong to a non-empty interval of
real numbers. This occurs for instance in applications
where the weights consist of distances between agents
and tasks. In such applications, the situation where the
weights are non-distinct has zero measure.

5 A Distributable Greedy Algorithm for Solv-
ing the LexBAP

We present a method to solve the LexBAP that ex-
ploits the structure analysed in Section 4. In particu-
lar, we introduce Algorithm 1 that solves the SeqBAP.
The algorithm provides certificates for when this solu-
tion to the SeqBAP is also a solution to the LexBAP
and it can be implemented with distributed computa-
tion across agents. The following assumptions model a
distributed setting, where the information available to
each individual agent may be limited.

Assumption 1 Assume an agent i ∈ Ab has access to
the set of incident edges Ei := {{i, j} ∈ Eb|j ∈ Bb}
and access to the weight of each edge in Ei, i.e., the set
Ci := {w({i, j})|{i, j} ∈ Ei}.

Note, Eb =
⋃
i∈Ab Ei and Ev ∩ Ev′ = ∅ for v, v′ ∈ Ab,

v 6= v′.

Assumption 2 Let communication between agents be
modelled by a time invariant, undirected and connected
graph GC = (Ab, EC) with vertex set Ab, edge set EC
and diameter D. Assume all agents i ∈ Ab communicate
synchronously according to a global clock.

Assumption 2 describes the communication between
agents. Synchronous communication refers to communi-
cation where all agents i ∈ Ab share a global clock and
at each time step of the clock, agents exchange informa-
tion with all their neighbours i′ ∈ N(GC , i). Thus, there
is a delay for information to reach a non-neighbouring
agent as that information is relayed through a chain of
agents. This delay is at most D time steps of the global
clock, corresponding to the diameter of GC . Algorithm 1
requires Assumption 2, for example, when agents need
to reach a consensus on the global edge with largest
weight in M in line 8. In this case, agents must make
use of communication to reach a global consensus on the
edge with largest weight as each agent is only initially
aware of its own local edge with largest weight.

Algorithm 1 can be initialised with any arbitrary MCM
M0. Algorithm 1 uses the function AugPath(·) intro-
duced in [10] to solve the SeqBAP. Consider a bipartite
graph Gb = (Vb, Eb), an MCM M, and an edge e ∈ M.
If an augmenting path exists relative to M\{e} within

the set E ⊆ Eb, then the function AugPath(M\{e}, E)
returns an MCM M′ ⊆ E . If an augmenting path does
not exist, then it returnsM\{e}. In [10], it is shown that
AugPath(·) can be implemented with the distributed
setting given in Assumptions 1 and 2. The function
AugPath(·) in Algorithm 1 requires the following as-
sumption on the input graph.

Assumption 3 The graph Gb = (Ab∪Bb, Eb) has cardi-
nalities of agent and task sets satisfiying |Ab| ≥ |Bb| = n,
where n is the cardinality of an MCM of Gb, i.e., the num-
ber of agents is greater than or equal to the number of
tasks.

Algorithm 1 Algorithm for solving the SeqBAP.

Input: Graph Gb = (Vb, Eb) and an MCMM0.
Output: An MCMMb of Gb that is a solution to (4) and
a flag U for it being an exact solution to (2).
1: V̄ ← Vb
2: Ē ← Eb
3: M̄ ←M0

4: Mb ← ∅
5: U ← True
6: while |M̄| > 0 do
7: Ḡ ← (V̄, Ē) . Current graph
8: ē← e ∈ L(M̄) . Find edge with largest weight in M̄
9: Ē ← M̄ ∪ ψS(Ḡ,M̄) . Shrink Ē

10: Mν ← AugPath(M̄\{ē}, Ē\{ē})
11: if Mν 6= M̄ then . ē is not a critical bottleneck edge

12: M̄ ←Mν

13: else . ē is a critical bottleneck edge
14: E′ ← ∅
15: for e′ ∈ M̄ do
16: Mν ← AugPath(M̄\{e′}, ψ(Ḡ,M̄)\{e′})
17: if Mν = M̄ then . P (Ḡ, e′) > 0

18: E′ ← E′ ∪ {e′} . See Corollary 1

19: end if
20: end for
21: if E′ ∩ L(M̄) = ∅ then . See Remark 2

22: U ← False . See Proposition 5
23: E′ ← E′ ∪ {ē}
24: end if
25: V ′ ← {v ∈ Vb|{v, v′} ∈ E′}
26: V̄ ← V̄\V ′. Remove vertices incident to edges in E′

27: Ē ← {{i, j} ∈ Ē|i ∈ V̄ and j ∈ V̄} . Shrink Ē
28: M̄ ← M̄\E′

29: Mb ←Mb ∪ E′

30: end if
31: end while
32: returnMb, U

The algorithm runs by systematically removing elements
from a graph that is initialised with Gb. The following
steps are repeated in each iteration of the while-loop be-
ginning in Line 6. First, one edge from the current graph
is tested to see if it is a critical bottleneck edge. Testing
to see if an edge is a critical bottleneck edge involves an
augmenting path search. If a critical bottleneck edge is
found, all edges with positive price of absence in the cur-
rent MCM are identified. This can be implemented by
again searching for augmenting paths, which can be car-
ried out with AugPath(·). All edges with positive price

7

of absence and all edges adjacent to these edges are re-
moved from the current graph. If none of the bottleneck
edges of the current graph have positive price of absence,
an arbitrary bottleneck edge and the edges adjacent to
it are removed in accordance with (4b) and (4f-4h), see
Remark 2. This ensures the graph reduces by at least
one edge each time a critical bottleneck edge is found.
After making these changes, the next iteration of the
while-loop is commenced on the reduced graph.

Remark 2 If none of the bottleneck edges have positive
price of absence, i.e., E′ ∩ L(M) = ∅, where E′ is given
in Corollary 1 and L(M) is defined in (3), then any
arbitrary bottleneck edge satisfies (4b).

A key observation is that the graph always reduces in
each iteration by removal of edges that are not found
to be critical bottleneck edges, by removal of edges with
positive price of absence together with edges adjacent
to them, or by removal of an edge that is found to be a
critical bottleneck edge together with edges adjacent to
it. The total number of iterations of the while-loop be-
ginning in Line 6 is upper bounded by |Eb|, and depends
on how quickly the pool of candidate critical bottleneck
edges Ē shrinks and how many edges with positive prices
of absence |E′| are found in each iteration.

Theorem 2 Algorithm 1 produces a solution to the Se-
qBAP and can be implemented in the distributed setting
given by Assumptions 1, 2 and 3.

PROOF. We first prove that Algorithm 1 is amenable
to implementation in the distributed setting. To this end,
we observe that Algorithm 1 only requires three proce-
dures, i.e., the procedures of edge removal, finding the
edge with largest weight and searching for an augment-
ing path. All three procedures have been shown to be
distributable in [10] and can therefore be implemented
in the distributed setting.

Next, we apply the results from Section 4 to prove con-
vergence to a SeqBAP solution. A bottleneck assignment
is found in Lines 7 to 13, the proof of which can be found
in [10]. By Corollary 1, we can identify multiple edges in
a SeqBAP solution by checking their positivity of price
of absence. By Theorem 1, this involves augmenting path
searches as indicated by Line 16. The graph is pruned in
Lines 21 to 28 according to how many edges have pos-
itive price of absence, i.e., the number of edges in (4a)
that have been selected so far. Line 23 ensures that at
least one edge is selected in each loop of Algorithm 1.
The process is repeated until all n edges in (4a) have
been selected. 2

Apart from an MCM, the algorithm returns a flag when
this MCM is a unique solution to the LexBAP in accor-
dance with Corollary 5. If the guard in Line 21 is false for

all iterations, then the solution is unique as described in
Corollary 4. If the flag is not returned as true, then the
SeqBAP has multiple solutions and the produced MCM
may not be a solution to the LexBAP.

Proposition 6 Assume the number of agents and the
number tasks in Gb are both equal to n. The worst-case
complexity of Algorithm 1 is O(n3D), where D is the
diameter of the communication graph.

PROOF. At most n2 edges are tested as candidate crit-
ical bottleneck edges in Line 10 of Algorithm 1. Finding
and testing an edge involves a distributed max-consensus
and an augmenting path search. In this setting, these
procedures have orders O(D) and O(nD) respectively,
as shown in [10]. The function AugPath(·) has complex-
ity O(nD) because it exploits the fact that a matching
of size n− 1, and the most recently removed edge ē are
both known inputs. In the worst-case, every edge in Eb
is tested in this way. Therefore, the worst-case complex-
ity of applying these two procedures to every edge is
O(n3D). No edge is tested for being a critical bottleneck
edge more than once, and at most n critical bottleneck
edges must be found.

Each time a candidate proves to be a critical bottle-
neck edge, the test in Line 16 is carried out to identify
edges with positive price of absence. Testing one edge for
positive price according to Theorem 1 involves an aug-
menting path search, which as mentioned, has complex-
ity O(nD). By the contrapositive of Proposition 2, only
edges in the current MCMM are candidates that need
to be tested andM has at most n edges. The complex-
ity of testing all edges in an MCM that has a maximum
cardinality of n is O(n2D).

Testing all edges for being critical bottleneck edges has
complexity O(n3D). Testing edges for positive price of
absence has complexityO(n2D) per MCM, but it is done
at most n times corresponding to the maximum number
of critical bottleneck edges, so in the worst-case it is
also O(n3D). Thus, the complexity of Algorithm 1 is
O(n3D). 2

As a comparison, the centralised algorithm to solve the
LexBAP presented in [3] has complexity O(n4) and in-
volves n iterations of solving both a BAP with a com-
plexity of O(n2.5) [3] and a Linear Sum Assignment
Problem (LSAP) [12,2] with a complexity of O(n3).

With D = 1, Algorithm 1 has a worst-case complexity
of O(n3); D = 1 is a special case corresponding to a
centralised algorithm as agents communicate with to all
other agents. The more complex LSAPs are bypassed by
applying the augmenting path searches in this greedy ap-
proach, yet under the conditions described in Section 4.2
the solution found using either algorithm is identical.

8

A naive greedy approach for solving the LexBAP that
finds n bottleneck edges from scratch, where each subse-
quent bottleneck edge is found without exploiting knowl-
edge of previous bottleneck assignments, has complexity
O(n3.5). This type of naive greedy approach using an
“off-the-shelf” BAP algorithm in sequence was first pro-
posed in [19,20] . On a related note, the complexity of a
SeqBAP algorithm that additionally returns the explicit
prices of absence of edges is also O(n3.5) and requires
solving n iterations of two BAPs. While Algorithm 1 re-
lies on identifying edges with positive price of absence,
the explicit value of the price of absence is never com-
puted. In applications that utilise the value of the price
of absence, e.g., to quantify the robustness of an assign-
ment in [19], additional computation is required.

6 Case Study

Consider n agents represented by points in R2. Each
agent must move from its initial position to one of n goal
positions. The assignment of agents to goal positions
is done by solving the LexBAP, where the weights are
given by the agent-goal distances. All coordinates are
generated from a uniform distribution between values of
0 and 100 normalised distance units. Since the weights
are almost surely distinct, the solution to the SeqBAP
is the solution to the LexBAP and it is unique.

An example application for this case study would be a
ride-sharing service, where the agents are cars and the
goal positions are pick-up locations. Another example
is a drone delivery service or autonomous forklifts in a
warehouse, where the agents are drones or forklifts and
the goal positions are item pick-up locations. Assuming
tasks are executed in parallel, all these applications cor-
respond to a BAP as the longest pick-up time needs to
be minimised. In contrast, minimising the sum of costs
may result in some agents completing their tasks very
quickly at the expense of other agents completing theirs
very slowly. Furthermore from Fig. 2, solving the BAP
allows the possibility of further minimising the sequen-
tial bottleneck edges, i.e., solving the LexBAP. The ben-
efit of this is that the LexBAP itself has further desir-
able properties, e.g., an inherent property that provides
collision avoidance guarantees as proven in [19].

Fig. 3 shows the performance of a centralised version of
Algorithm 1 benchmarked against an algorithm for solv-
ing general LexBAPs and the naive greedy approach for
solving the LexBAP. The LSAP component of the exact
LexBAP method is solved using the Hungarian Algo-
rithm from [12] while the BAP component in both the
exact LexBAP and the naive greedy approach is solved
using an off-the-shelf threshold method from [3]. The
average time for each value of n is taken over 100 real-
isations of agent and task positions. These results are
obtained with an Intel i5-6600 CPU at 3.30GHz. For

all algorithms tested, Fig. 3 shows the average time in-
creases as the number of agents and tasks in the problem
increases, i.e., as n increases.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Number of agents, n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
ve

ra
ge

ti
m

e
(s

)

Exact LexBAP

Naive greedy

Algorithm 1

Fig. 3. Comparison of the runtime of an exact LexBAP al-
gorithm, a naive greedy approach, and Algorithm 1.

From Proposition 6, the theoretical worst-case complex-
ity of Algorithm 1 isO(n3D), which is lower than the the-
orectical worst-case complexities of the exact LexBAP
and naive greedy approach that are order O(n4D) and
O(n3.5D) respectively. On the other hand, Fig. 3 shows
that the empirical complexity of Algorithm 1 is also
lower than the empirical complexities the exact LexBAP
and naive greedy approach for this case study.

The following demonstrates that Algorithm 1 can be
implemented under the distributed setting given by As-
sumptions 1 and 2. Fig. 4 shows one realisation of agent
and task positions with n = 10. First, Algorithm 1 is
applied for the case where any agent can communicate
with all other agents directly in one time step of the
global clock, i.e., the communication graph has diameter
D = 1. Additionally, we consider the case where agents
only communicate with other agents that are located
within a radius of 30 units as illustrated by the shaded
areas in Fig. 4. This results in a communication graph
with diameter D = 5. For both cases, Alogorithm 1 re-
turns the exact the solution of the LexBAP. For the case
with D = 1, it takes 111 time steps for Algorithm 1 to
obtain the solution. For the case with D = 5, it takes
555 time steps.

7 Conclusion

We presented an approach to find an MCM of a bipartite
graph that is the solution to the LexBAP by employing
a method that solves a series of BAPs, where the edges
in the bipartite graph are removed in each iteration. For
each of these BAPs, we showed that if an edge has a pos-
itive price of absence, then that edge is guaranteed to
be an element of the LexBAP solution, and there may
be multiple such edges each time a BAP is solved. We
called this greedy reformulation of the LexBAP the Se-
qBAP. We considered the similarities in structure of a
critical bottleneck edge to an edge with positive price
of absence and used this to derive a method to iden-
tify edges with positive price of absence that involves a
search for augmenting paths. This enables solving the
SeqBAP efficiently. We derived the relationship between

9

0 20 40 60 80 100

x-coordinate

0

20

40

60

80

100
y

-c
oo

rd
in

at
e

Agents

Tasks

Matches

Bottleneck

Fig. 4. Demonstration of Algorithm 1 in a distributed set-
ting. The shaded circles show the communication range of
each agent. Agents are only able to communicate with other
agents within their circles.

the BAP, the SeqBAP, and the LexBAP by comparing
their solution sets. In particular, we showed that the so-
lutions to the LexBAP are a subset of the solutions of
the SeqBAP. We provided conditions for when the Se-
qBAP has a unique solution, which implies that this so-
lution also uniquely solves the LexBAP. Futhermore, we
showed that all edges of the graph having distinct weight
values is a sufficient condition for this uniqueness. We
combined these results into a proposed algorithm that
provides a greedy solution to the LexBAP and a certifi-
cate for when this solution is exact. The algorithm has
a complexity of O(n3), which is lower than methods for
solving the LexBAP that have a complexity of O(n4).
Moreover, the proposed algorithm can be implemented
with computation that is distributed across agents.

References

[1] Claude Berge. Two theorems in graph theory. Proceedings
of the National Academy of Sciences of the United States of
America, 43:842–844, 1957.

[2] Rainer E. Burkard and Eranda Cela. Linear assignment
problems and extensions. Springer, pages 75–149, 1999.

[3] Rainer E. Burkard, Mauro Dell’Amico, and Silvano Martello.
Assignment problems. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, 2009.

[4] Rainer E. Burkard and Franz Rendl. Lexicographic
bottleneck problems. Operations Research Letters, 10:303–
308, 1991.

[5] Ulrich Derigs and Uwe Zimmermann. An augmenting path
method for solving linear bottleneck assignment problems.
Computing, 19:285–295, 1978.

[6] Harold N. Gabow and Robert E. Tarjan. Algorithms for two
bottleneck optimization problems. Journal of Algorithms,
9:411–417, 1988.

[7] Robert S. Garfinkel. An improved algorithm for the
bottleneck assignment problem. Operations Research,
19:1747–1751, 1971.

[8] Brian P. Gerkey and Maja J. Matarić. A formal analysis
and taxonomy of task allocation in multi-robot systems.

The International Journal of Robotics Research, 23:939–954,
2004.

[9] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm
for maximum matchings in bipartite graphs. SIAM Journal
on Computing, 2:225–231, 1973.

[10] Mitchell Khoo, Tony A. Wood, Chris Manzie, and Iman
Shames. Distributed algorithm for solving the bottleneck
assignment problem. IEEE 58th Conference on Decision and
Control, pages 1850–1855, 2019.

[11] Mitchell Khoo, Tony A. Wood, Chris Manzie, and Iman
Shames. Exploiting structure in the bottleneck assignment
problem. arXiv preprint arXiv:2008.10804, 2020. Accepted
in IFAC World Congress.

[12] Harold W. Kuhn. The hungarian method for the assignment
problem. Naval Research Logistics Quarterly, 2:83–97, 1955.

[13] Dimitrios Letsios, Miten Mistry, and Ruth Misener. Exact
lexicographic scheduling and approximate rescheduling.
European Journal of Operational Research, 2020.

[14] Elad Michael, Tony A. Wood, Chris Manzie, and Iman
Shames. Uncertainty intervals for robust bottleneck
assignment. 18th European Control Conference, pages 4204–
4209, 2019.

[15] David W. Pentico. Assignment problems: A golden
anniversary survey. European Journal of Operational
Research, 176:774–793, 2007.

[16] Abraham P. Punnen and K. P. K. Nair. Improved complexity
bound for the maximum cardinality bottleneck bipartite
matching problem. Discrete Applied Mathematics, 55:91–93,
1994.

[17] Guannan Qu, Dave Brown, and Na Li. Distributed greedy
algorithm for multi-agent task assignment problem with
submodular utility functions. Automatica, 105:206–215, 2019.

[18] Iman Shames, Anna Dostovalova, Jijoong Kim, and Hatem
Hmam. Task allocation and motion control for threat-
seduction decoys. IEEE 56th Annual Conference on Decision
and Control, pages 4509–4514, 2017.

[19] Tony A. Wood, Mitchell Khoo, Elad Michael, Chris
Manzie, and Iman Shames. Collision avoidance based on
robust lexicographic task assignment. IEEE Robotics and
Automation Letters, 5:5693–5700, 2020.

[20] L. F. Yeung. Optimal input-output variable assignments for
multivariable systems. Automatica, 27:733–738, 1991.

A Order of Edges Chosen by SeqBAP

Lemma 1 The edges in (4a) have weights such that
w({ik, jk}) ≥ w({ik+1, jk+1}), for all k ∈ {1, 2, ..., n −
1}.

PROOF. For all k ∈ {1, 2, ..., n − 1}, w({ik, jk}) ≥
w(ek) for any ek ∈Mk because from (4a), {ik, jk} is se-
lected from the setL(Mk). The matchingMk\{{ik, jk}}
is an MCM of Gk+1 but not necessarily the solu-
tion to the BAP for the graph Gk+1. On the other
hand, by (4c), Mk+1 is a solution to the BAP
for the graph Gk+1. Thus, w(ek+1) ≤ w(e), where
ek+1 ∈ L(Mk+1) and e ∈ L(Mk\{{ik, jk}}). Therefore,
w({ik, jk}) ≥ w(e) ≥ w(ek+1) = w({ik+1, jk+1}). 2

10

	1 Introduction
	2 Graph Theoretical Definitions
	3 Assignment Problem Formulations
	3.1 The Bottleneck Assignment Problem
	3.2 The Lexicographic Bottleneck Assignment Problem
	3.3 A Greedy Solution to the Lexicographic Bottleneck Assignment Problem

	4 Structure of the BAP, the LexBAP, and the SeqBAP
	4.1 Identifying Edges with Positive Price of Absence
	4.2 Conditions for Correct Solutions from Greedy Approach

	5 A Distributable Greedy Algorithm for Solving the LexBAP
	6 Case Study
	7 Conclusion
	References
	A Order of Edges Chosen by SeqBAP

