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Abstract

The problem of distributed identification of linear stochastic system with unknown coefficient θ∗ over time-

varying networks is considered. For estimating θ
∗, each agent in the network can only access the input and

the binary-valued output of the local system. Compared with the existing works on distributed optimization and

estimation, the binary-valued local output observation considered in the paper makes the problem challenging. By

assuming that the agent in the network can communicate with its adjacent neighbours, a stochastic approximation

based distributed identification algorithm is proposed, and the consensus and convergence of the estimates are

established. Finally, a numerical example is given showing that the simulation results are consistent with the

theoretical analysis.

Index Terms

Distributed system identification, binary-valued sensor, stochastic approximation, consensus, convergence, strong

consistency

I. INTRODUCTION

In recent years, the wireless sensor networks (WSN) [1], [2] have received much attention from re-

searchers of diverse areas, including consensus seeking [3]–[6], multi-agent optimization [7]–[9], resource

allocation (RA) [10], [11], and multi-unmanned aerial vehicle (MUAV) control [12] etc. For WSNs, usually,

there is no central node where the collected data can be processed, but there are a number of senors,

called agents, which have limited capacity in computation, observation, and information communication.

The agents in WSNs are required to cooperatively accomplish a global objective by using their local

observations and information obtained from communication with their adjacent neighbors. Over the

centralized approach, the distributed approach has the advantages in robustness on network link failure,

in privacy protection, and in reduction on communication and computation cost, see, e.g., [3]–[9].

In this paper, we consider the distributed identification of linear stochastic systems with unknown

vector coefficient θ∗ over time-varying networks with binary sensors. Each agent in the network is aimed

at estimating θ∗, but it can only access the input and the binary-valued output of the local system. Due to

the limited sensing and computing capacity, each agent cannot identify θ∗ by using its local observations

only, while for identifiability it needs to exchange information with its adjacent neighbors.

The distributed identification problem has been studied in many works. The diffusion least mean square

(LMS) algorithm is proposed in [13], [14], where the constant step-sizes are adopted and the mean-square

errors of estimates are derived by assuming that the regressors are mutually independent and Gaussian.

The distributed LMS algorithm is also considered in [15], where the bounds for the estimation errors are

obtained. The stochastic approximation (SA) based distributed identification algorithms are introduced in

[16]–[18], where the consistent estimates are derived for θ∗ by assuming stationarity of the observed data

and connectivity of the network. In all of the above works the traditional sensors are equipped in the

network. By this we mean that the sensors generate continuously varying observations. However, for recent

years, the quantized or binary-valued observations have attracted much attention in systems and control
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community, since such kind of sensors are usually with low complexity and with much less operational

cost in comparison with the traditional ones, and hence, they are more attractive for applications [19].

In most of these works the centralized estimation and control problems with quantized or binary-valued

observations are concerned, see [20]–[23] and references therein. The distributed consensus of multi-agent

systems with quantized communications is studied in [24], [32]. However, to the best of our knowledge,

the distributed identification problem with binary-valued sensors has not been discussed yet.

In this paper, the distributed identification of linear stochastic systems over time-varying networks with

binary-valued sensors is considered. First, the local excitation conditions on each agent in the network are

introduced to guarantee identifiability of the unknown coefficient θ∗ of the system. Second, by transforming

the identification task to a root-searching problem, a distributed identification algorithm is introduced.

Each agent relies only on the input, the binary-valued output of the local system, and the information

derived from its adjacent neighbors. Third, it is proved that the estimates generated by the distributed

algorithm are of both consensus and convergence with probability one. Finally, a numerical example is

given demonstrating that the simulation results are consistent with the theoretical analysis.

The rest of the paper is organized as follows. The problem formulation and the distributed identification

algorithm are given in Section 2. The assumptions are introduced in Section 3 and the main results are

given in Section 4. A numerical example is presented in Section 5. Some concluding remarks are addressed

in Section 6. The basic convergence result for DSAAWET and a convergence result for mixing random

series to be used in the paper are given in Appendix.

TABLE I

NOTATIONS

||v||, ||A|| L2 norm of vector v, matrix A

Im m×m identity matrix

1 Vector or matrix with all entries equal

to 1

0 Vector or matrix with all entries equal

to 0

XT Transpose of matrix X

col{x1, . . . , xm} col{x1, . . . , xm} , [xT
1 , . . . , x

T
m]T

IA(x) Indicator function, IA(x) = 1 if

x ∈ A, IA(x) = 0 otherwise

⊗ Kronecker product

E[·] Expectation operator

D⊥ D⊥ , (IN − 11
T

N
)⊗ Il with N the

number of agents in the network and l

the dimension of coefficient vector

sgn(·) sgn(x) = 1 if x ≥ 0, sgn(x) = 0
otherwise

ei Vector with i-th entry being 1 and

others being zero

II. PROBLEM FORMULATION AND DISTRIBUTED IDENTIFICATION ALGORITHM

We first recall some basic concepts in graph theory which will be used in the paper. A time-independent

digraph G = {V, E} is called strongly connected if for any i, j ∈ V , there exists a directed path from i to

j. A directed path is a sequence of edges (i, i1), (i1, i2), . . . , (ip−1, j) in the digraph with distinct agents

ik ∈ V, 0 ≤ k ≤ p− 1, where p is called the length of this path. A nonnegative matrix A is called doubly

stochastic if A1 = 1 and 1
TA = 1

T .

In the paper we consider a network with N agents. The interaction relationship among agents is described

by a time-varying digraph G(k) = {V, E(k)}, where k is the time, V = {1, . . . , N} is the agent set, and

E(k) ⊂ V × V is the edge set. By (i, j) ∈ E(k) we mean that agent j can receive information from

agent i at time k. Assume (i, i) ∈ E(k) for any k = 1, 2, . . . Denote the neighbors of agent i at time
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k by Ni(k) = {j ∈ V : (j, i) ∈ E(k)}. The adjacent matrix associated with the graph is denoted by

W (k) = [wij(k)]
N
i,j=1, where wij(k) > 0 if and only if (j, i) ∈ E(k), otherwise wij(k) = 0.

The dynamics of agent i, i = 1, · · · , N is given by

yi,k+1 = φT
i,kθ

∗ + di,k+1, (1)

where θ∗ ∈ R
l×1 is unknown for all agents, φi,k ∈ R

l×1, yi,k+1 ∈ R, and di,k+1 ∈ R are the input vector,

output, and noise of agent i, respectively. The measured output of agent i is given by a binary sensor

zi,k+1 = I[yi,k+1<ci,k], (2)

where {ci,k}k≥1 is a sequence of time-varying thresholds, which can online be tuned and will be specified

later on. For each agent i ∈ V , the problem of distributed identification is to estimate θ∗ by using its

local input sequence {φi,k}, the binary-valued measurements {zi,k+1}, and the information obtained from

exchange with its adjacent neighbors.

Note that the gradient of the L1 minimization E|yi,k+1 − φT
i,kθ| is E[−φi,ksgn(yi,k+1 − φT

i,kθ)] =
E[−φi,k(1−2I[yi,k+1<φT

i,k
θ])]. For the above identification problem, an intuitive distributed algorithm would

be:

θi,k+1=
∑

j∈Ni(k)

wij(k)θj,k+
1

k
φi,k(1−2I[yi,k+1<φT

i,k
θi,k ]

) (3)

for all i ∈ V , where the first term on the right hand is deemed as a consensus term while the second term is a

gradient descent and the indicators {I[yi,k+1<φT
i,k

θi,k]
}k≥1 are in fact the binary-valued output measurements

of agent i with the time-varying thresholds {ci,k = φT
i,kθi,k}k≥1. Algorithm (3) is in fact a stochastic

approximation algorithm (SAA). For the classical approaches for theoretical analysis of SAA, c.f., the

ordinary differential equation method, some a prioir assumptions are required, such as the estimation

sequence being bounded, see, e.g., [29]. In order to avoid such assumptions, here we introduce a modified

version of (3) by using the expanding truncation technique in [25], [29].

The distributed identification algorithm in this paper is given by:

σi,0 =0, σ̂i,k = max
j∈Ni(k)

σj,k, (4)

θ′i,k+1 =
{ ∑

j∈Ni(k)

wij(k)θj,kI[σj,k=σ̂i,k]

+
1

k
φi,k(1−2I[yi,k+1<φT

i,k
θi,k]

)
}
· I[σi,k=σ̂i,k ], (5)

θi,k+1 =θ′i,k+1I[||θ′i,k+1||≤σ̂i,k], (6)

σi,k+1 =σ̂i,k + I[||θ′
i,k+1||>σ̂i,k], (7)

where {θi,k}k≥1 is the estimation sequence for θ∗ at agent i.
Noting that 1− 2I[yi,k+1<φT

i,k
θi,k ]

= sgn(yi,k+1 − φT
i,kθi,k), the algorithm (5) can be rewritten as follows:

θ′i,k+1 =
{ ∑

j∈Ni(k)

wij(k)θj,kI[σj,k=σ̂i,k]

+
1

k
φi,ksgn(yi,k+1 − φT

i,kθi,k)
}
· I[σi,k=σ̂i,k]. (8)

Remark 1: Note that from the algorithm (4)–(7), the estimate θi,k+1 at agent i only relies on its local

observations {φi,k, zi,k} and the information θj,k, j ∈ Ni(k) obtained from its neighbors. The algorithm

(4)–(7) is a DSAAWET given in [25], where for expanding truncations the sequence of positive numbers

increasingly diverging to infinity is denoted by {Mk}k≥1, but here it is taken as {Mk = k}k≥1. So in (6)

and (7) Mσ̂i,k
turns to be σ̂i,k. By introducing the expanding truncation technique into the algorithm, the
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conditions for its convergence can significantly be relaxed, for example, the martingale difference sequence

(MDS) conditions on observation noises [31] and the boundedness assumption on the estimation sequence

[30], being not required.

III. ASSUMPTIONS ON NETWORK SYSTEMS

The following assumptions are imposed on the network systems.

C1) For each agent i ∈ V , {φi,k}k≥1 is strictly stationary with the density function qi(·) and is an α-mixing

with mixing coefficients {α(k)}k≥1 satisfying α(k) ≤ Cρk1 for some C > 0 and 0 < ρ1 < 1. Further,

supk ||φi,k|| ≤ M < ∞ for some constant M > 0.

C2) The matrix E[
∑N

i=1 φi,kφ
T
i,k] is positive definite for all k.

C3) For any i ∈ V , {di,k} is a sequence of independent and identically distributed (iid) random variables

with the distribution function Fi,d(·) and the density function fi,d(·). Further, it is assumed that

Fi,d(0) = 1
2
, fi,d(·) is continuous, fi,d(0) > 0, and the sequences {φi,k} and {di,k+1} are mutually

independent.

C4) For the time-varying network (V, E(k)), the following conditions are assumed.

a) The adjacent matrices W (k) are doubly stochastic for each k ≥ 0;

b) There exists a constant 0 < κ < 1 such that wij(k) ≥ κ, whenever j ∈ Ni(k) for all i ∈ V and

k ≥ 0;

c) The digraph G∞ = {V, E∞} is strongly connected with E∞ = {(j, i) : (j, i) ∈ E(k) for infinitely

many indices of k};
d) There exists a positive integer B such that

(j, i) ∈ E(k) ∪ E(k + 1) ∪ · · · ∪ E(k +B − 1)

for any (j, i) ∈ E∞ and any k ≥ 1.

Remark 2: If C4) holds, then by Proposition 1 given in [7], there exist constants c > 0 and 0 < ρ2 < 1
such that ∥∥∥∥Φ(k, s)−

1

N
11

T

∥∥∥∥ ≤ cρk−s+1
2 ∀ k ≥ s, (9)

where

Φ(k, s) , W (k) · · ·W (s) ∀ k ≥ s and Φ(k, k + 1) , IN .

Set

yk , col{y1,k, . . . , yN,k} ∈ R
N×1, (10)

φk , [φ1,k, . . . , φN,k] ∈ R
l×N , (11)

f(θ) ,

N∑

i=1

E[φi,ksgn(yi,k+1 − φT
i,kθ)], (12)

fi(θ) , E[φi,ksgn(yi,k+1 − φT
i,kθ)], (13)

Oi,k+1 , φi,ksgn(yi,k+1 − φT
i,kθi,k), (14)

and

ǫi,k+1 ,φi,ksgn(yi,k+1 − φT
i,kθi,k)

− E[φi,ksgn(yi,k+1 − φT
i,kθi,k)]. (15)

By C1) and C3), the functions f(θ) and fi(θ) are free of time k.

Before proving strong consistency of the algorithm (4)–(7), we show the following technical result.
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Lemma 1: Assume that C1)-C3) hold. Then θ∗ is the unique zero of f(θ): f(θ∗) = 0.
Proof : We first show f(θ∗) = 0. By (12) and (1), we have

f(θ) =

N∑

i=1

E[φi,ksgn(yi,k+1 − φT
i,kθ)]

=

N∑

i=1

E[φi,ksgn(di,k+1 − φT
i,k(θ − θ∗))]

=

N∑

i=1

E[φi,kE[sgn(di,k+1 − φT
i,k(θ − θ∗))|φi,k]]. (16)

Since {φi,k} and {di,k+1} are mutually independent by C3), it holds that

E[sgn(di,k+1 − φT
i,k(θ − θ∗))|φi,k]

=(E[sgn(di,k+1 − yT (θ − θ∗))])|y=φi,k

=

∫ +∞

φT
i,k

(θ−θ∗)

fi,d(x)dx−
∫ φT

i,k
(θ−θ∗)

−∞

fi,d(x)dx

=1− 2Fi,d(φ
T
i,k(θ − θ∗)), (17)

where Fi,d(·) and fi,d(·) are the distribution function and the density function of di,k, respectively.

Combining (16) with (17) we obtain

f(θ) =

N∑

i=1

E[φi,k(1− 2Fi,d(φ
T
i,k(θ − θ∗)))]. (18)

From (18) and C3) we know that f(θ∗) = 0. Next, we show that θ∗ is the unique zero of f(·).
Define

G(θ) , E‖yk+1 − φT
k θ‖1, (19)

where yk and φk are given by (10) and (11).

As mentioned above −f(θ) is the gradient of G(θ) denoted by ▽G(θ) [26]. Since G(θ) is convex and

θ∗ is a root of ▽G(θ), to prove the uniqueness of the root it suffices to show that the Hessian matrix

of G(θ) is positive definite at θ∗, or equivalently, to prove that the Jacobian matrix of −f(θ) is positive

definite at θ∗.
Calculating the Jacobian matrix of −f(θ) at θ∗, by (18) we have that

−∂f(θ)

∂θ

∣∣∣
θ=θ∗

=

N∑

i=1

E[φi,kφ
T
i,k · 2fi,d(φT

i,k(θ − θ∗))]
∣∣∣
θ=θ∗

= E[

N∑

i=1

φi,kφ
T
i,k · 2fi,d(φT

i,k(θ − θ∗))]
∣∣∣
θ=θ∗

= E[

N∑

i=1

φi,kφ
T
i,k · 2fi,d(0)]. (20)

Set a , mini=1,...,N fi,d(0). By C3, a > 0. From (20) and by C2) it follows

−∂f(θ)

∂θ

∣∣∣
θ=θ∗

≥ 2a · E[
N∑

i=1

φi,kφ
T
i,k] > 0.
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Hence, θ∗ is the unique zero of f(θ). �

Remark 3: Assumption C2) requires that E[
∑N

i=1 φi,kφ
T
i,k] is positive definite, which is in fact an

identifiability condition for θ∗ in the distributed identification framework. It is clear that this condition

does not ensure that θ∗ is identifiable for each agent i ∈ V based on its local observations {φi,k, zi,k}
only. To see this, let us consider a network system with N = l, i.e., the number of agents is equal to the

dimension of unknown parameter θ∗. For each i ∈ V , let




yi,k+1 = φT
i,kθ

∗ + di,k+1,

φi,k = wi,kei,

zi,k+1 = I[yi,k+1<ci,k],

where {wi,k}k≥1 is a sequence of iid random variables with zero mean and finite variance, and {wi,k}k≥1

and {wj,k}k≥1 are mutually independent for any i 6= j. It is directly verified that the matrix E[
∑N

i=1 φi,kφ
T
i,k]

is positive definite, while for each agent i based on {φi,k, zi,k+1}, only the i-th elements of θ∗ is identifiable.

IV. STRONG CONSISTENCY OF DISTRIBUTED ESTIMATION ALGORITHM

We have the following main result.

Theorem 1: Assume C1)–C4) hold. Then for any i ∈ V , the estimates {θi,k}k≥1 generated by (4)–(7)

are of both consensus and convergence, i.e.,

lim
k→∞

θi,k = θ∗ a.s. ∀ i ∈ V. (21)

As indicated in Remark 1, the algorithm (4)–(7) is a DSAAWET [25]. However, the proof of Theorem 1

is not a straightforward application of the general convergence result of DSAAWET. See [25] or Theorem

2 in Appendix. We first establish Lemmas 2–7.

• In Lemma 2 we first analyze the truncation numbers of agents and show that the differences of

truncation numbers among agents are bounded.

• In Lemmas 3–4 we first show that there exists convergent subsequences {θi,nk
}k≥1, i ∈ V of {θi,k}k≥1, i ∈

V generated from the algorithms (4)–(7), and then analyze the asymptotical properties of estimates

among the convergent subsequences.

• In Lemma 5 we prove the noise condition required by assumption A4) of Theorem 2 given in

Appendix.

• In Lemma 6 we show that the number of truncations in the network is finite and in Lemma 7 we

establish the consensus of the estimates.

Then based on Lemmas 2–7 we can prove Theorem 1.

Let us denote by τi,m , inf{k : σi,k = m} the smallest time when the truncation number of agent i
reaches m, by τm , mini∈V τi,m the smallest time when at least one of agents whose truncation number

has reached m, and by σk , maxi∈V σi,k the largest truncation number among all agents at time k. Define

τ̃j,m , min{τj,m, τm+1}.

The following lemma follows directly from [25].

Lemma 2:

i) (Remark 3.1 in [25]) For {θi,k}k≥1, i ∈ V generated by (3)-(6) with any initial values, it holds that:

θi,k+1 = 0 when σi,k+1 > σi,k. (22)

ii) (Lemma 4.2 in [25]) Assume C4) holds. Then

τ̃j,m ≤ τm +B(N − 1) ∀j ∈ V and m ≥ 0.

iii) (Lemma 5.5 in [25]) Assume C4) holds. If limk→∞ σk = σ < ∞, then there exists an integer k0 > 0
such that

σj,k = σ ∀j ∈ V and k ≥ k0.
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Define

Θk , col{θ1,k, . . . , θN,k},

θk ,
1

N

N∑

i=1

θi,k,

and

Θ⊥,k , Θk − (1 ⊗ Il)θk.

Lemma 3: If C1) and C4) hold, then for {Θk}k≥1 generated by (4)–(7), there exists some bounded

subsequence {Θnk
}k≥1 with σi,nk

= σnk
for any i ∈ V and all sufficiently large k.

Proof : The following analysis is carried out on a fixed sample path.

If limk→∞ σk = σ < ∞, then by iii) in Lemma 2 there exists a positive integer k0 such that there is no

truncation for all agents in the network for k ≥ k0, i.e., σi,k = σ for k ≥ k0 and ∀i ∈ V , and hence the

estimation sequence {Θk}k≥1 is bounded.

Next, we consider the case where limk→∞ σi0,k = ∞ for some i0 ∈ V .

By C4) d) it follows that i0 ∈ Ni(k)
⋃
Ni(k + 1)Ni(k) · · ·

⋃
Ni(k + B − 1) ∀i ∈ V , say, i0 ∈ Ni(k +

l), 0 ≤ l ≤ B − 1. Then σ̂i,k+l = max
j∈Ni(k+l)

σj,k+l ≥ σi0,k+l, and hence limk→∞ σi,k = ∞ ∀i ∈ V and

limk→∞ σk = ∞.

Set D , (N − 1)B and cb ,
√
ND. It suffices to show that for all sufficiently large m > m0 , D,

σi,τm+D = m ∀i ∈ V (23)

and

||Θτm+D|| ≤ cb. (24)

Set {k , τm}m≥1, which is, in fact, a subsequence of the positive numbers. For sufficiently large

m ≥ m0 and any q = 1, . . . , D, let us show that the following assertions take place:

1) For any agent i with σi,k = m it holds that

σi,k+q = m and ||θi,k+q|| ≤ q ≤ m. (25)

2) For any agent j with σj,k < m it holds that

σj,k+q ≤ m (26)

and

||θj,k+q|| ≤ q whenever σj,k+q = m. (27)

We prove 1) and 2) by induction. We first show 1) for q = 1.
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Noting k = τm, by the definition of τm we know that σj,k ≤ m and σj,k−1 < m for any j ∈ V . Noticing

σi,k = m for agent i and (4), we know that σ̂i,k = m. Since σi,k−1 < σi,k, by (22) it follows that θi,k = 0.

Then from (5) we obtain

θ′i,k+1 =
{ ∑

j∈Ni(k)

wij(k)θj,kI[σj,k=σ̂i,k ]

+
1

k
φi,k(1− 2I[yi,k+1<φT

i,k
θi,k]

)
}
· I[σi,k=σ̂i,k ]

=
∑

j∈Ni(k)

wij(k)θj,kI[σj,k=σ̂i,k]

+
1

k
φi,k(1− 2I[yi,k+1<φT

i,k
θi,k]

)

=
∑

j∈Ni(k)

wij(k)θj,kI[σj,k=σ̂i,k]

+
1

k
φi,ksgn(yi,k+1 − φT

i,kθi,k). (28)

For j ∈ Ni(k), if σj,k = σ̂i,k = m, then by noting that σj,k−1 < m and (22), we have θj,k = 0, while if

σj,k < σ̂i,k, we have I[σj,k=σ̂i,k ] = 0. Hence from (28) we obtain

θ′i,k+1 =
1

k
φi,ksgn(yi,k+1 − φT

i,kθi,k). (29)

Assumption C1) indicates that {supk ||φi,k||}k≥1 is bounded and hence limk→∞
1
k
||φi,k|| = 0. So there

exists a sufficiently large k0 such that

1

k
||φi,k|| < 1 ∀i ∈ V ∀k ≥ k0. (30)

Noticing k = τm ≥ m, Mm = m, and m0 = D, from (29)–(30) it follows that for sufficiently large

m ≥ (m0 ∨ k0)

||θ′i,k+1|| ≤
1

k
||φi,k|| ≤ 1 ≤ m, (31)

for agent i with σi,k = m. Hence by (6) and (7) it follows that θi,k+1 = θ′i,k+1 and σi,k+1 = σ̂i,k = m,

which by noticing (31) guarantees that ||θi,k+1|| ≤ 1. Thus we have proved 1) for q = 1.

Next, we prove 2) for q = 1.

For agent j with σj,k < m, by definition of k = τm we know that σ̂j,k ≤ m.

If σ̂j,k = m, by noting σj,k < m, from (5) it follows that θ′j,k+1 = 0 and then from (7) σj,k+1 = σ̂j,k = m.

If σ̂j,k < m, then from (7) it follows that σj,k+1 ≤ σ̂j,k + 1 ≤ m. Thus in the case σj,k < m we conclude

that σj,k+1 ≤ m.

Noting σj,k < m and (22), if σj,k+1 = m, then we have that θj,k+1 = 0. Therefore, 2) holds for q = 1.

Next, we assume that 1) and 2) hold for q = 1, . . . , p with p < D. We now prove that they are also

true for q = p+1. We first consider case 1). From the inductive assumption we have σi,k+p ≤ m, i ∈ V ,

and hence σk+p ≤ m. For the agent i with σi,k+p = m, we have σ̂i,k+p = m. Then by (5), we have

θ′i,k+p+1 =
∑

j∈Ni(k+p)

wij(k + p)θj,k+pI[σj,k+p=m]

+
1

k + p
φi,k+psgn(yi,k+p+1 − φT

i,k+pθi,k+p). (32)

By the inductive assumption and (32) and noticing that W (k + p) is doubly stochastic, we have

||θ′i,k+p+1|| ≤ p+
1

k + p
||φi,k+p||. (33)
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Similar to (30) we know that for sufficiently large k0,

1

k + p
||φi,k+p|| ≤ 1 ∀i ∈ V ∀k ≥ k0,

which incorporating with (33) implies that for sufficiently large m ≥ (m0 ∨ k0)

||θ′i,k+p+1|| ≤ p+ 1 ≤ m = σ̂i,k+p. (34)

From the algorithm (6)–(7) by (34) we know that θi,k+p+1 = θ′k+p+1 and σi,k+p+1 = σ̂i,k+p = m. So, we

have proved that 1) holds for q = p+ 1.

We now show that 2) holds for q = p + 1. By the inductive assumption we have σj,k+p ≤ m. For the

case σj,k+p = m, similar to (32)–(34), we can show that 2) holds for q = p+ 1 if σj,k+p = m.

For the case σj,k+p < m, we consider two cases: σ̂j,k+p = m and σ̂j,k+p < m. For the case σ̂j,k+p = m,

since σj,k+p < σ̂j,k+p, by (5) we have that θ′j,k+p+1 = 0 and by (7) we have σj,k+p+1 = σ̂j,k+p = m. For

the case σ̂j,k+p < m, by (7) we have that σj,k+p+1 ≤ σ̂j,k+p + 1 ≤ m. Therefore, for the case σj,k+p < m
we have that σj,k+p+1 ≤ m.

If σj,k+p+1 = m and σj,k+p = m, then by 1) for q = p + 1, we know that ‖θi,k+q+1‖ ≤ p + 1. If

σj,k+p+1 = m and σj,k+p < m, then by (22) we conclude θj,k+p+1 = 0. Thus 2) holds for q = p+ 1.

We now have proved (25)–(27), from which we conclude that τi,m+1 > k + D for any i ∈ V and all

sufficiently large m ≥ (m0∨k0). Since k = τm, by the definition of τm+1 we have τm+1− τm > D. By ii)

in Lemma 2 we obtain τ̃i,m = min(τi,m, τm+1) ≤ τm+D for any i ∈ V , and hence either τi,m ≤ τm+D, or

τm+1 ≤ τm+D. However, the last inequality is impossible, because we have proved that τm+1− τm > D.

Hence we obtain τi,m ≤ τm + D for any i ∈ V , from which it follows that σi,τm+D ≥ m by noticing

σi,τi,m = m. On the other hand, from τi,m+1 > τm +D it follows that σi,τm+D ≤ m for any i ∈ V . The

above analysis yields that σi,τm+D = m for any i ∈ V .

Define the subsequence {θi,τm+D}m≥(m0∨k0) of {θi,k}k≥1, i ∈ V . From (25) and (27) it is seen that

||θi,τm+D|| ≤ D ∀i ∈ V for all large enough m ≥ (m0 ∨ k0) and

||Θτm+D|| ≤
√
N max

i
||θi,τm+D|| ≤

√
ND.

This is (24), and Lemma 3 is proved. �

The following result characterizes properties of {Θm, m = nk, · · · , m(nk, T )} along the bounded

subsequence {Θnk
}k≥1 generated by the algorithm.

Lemma 4: Let {Θnk
}k≥1 be a bounded subsequence generated by (4)–(7) with σi,nk

= σnk
, ∀i ∈ V .

Assume that C1), C3), and C4) hold. Then there exist constants c1 > 0, c2 > 0, and M ′
0 > 0 such that

for sufficiently large k and small enough T > 0 ,

||Θm+1 −Θnk
|| ≤ c1T +M ′

0, (35)

||θm+1 − θnk
|| ≤ c2T (36)

for m = nk, · · · , m(nk, T ) where m(k, T ) = max{m :
∑m

i=k
1
k
≤ T}.

Proof : For simplicity of notations, we set

ak ,
1

k
and Oi,k+1 , φi,ksgn(yi,k+1 − φT

i,kθi,k).

Since {Θnk
}k≥1 is a bounded subsequence with σi,nk

= σnk
∀i ∈ V , from (4)–(7) we know σi,nk

=
σ̂i,nk

∀i ∈ V and derive

θ′i,nk+1 =
∑

j∈Ni(nk)

wij(nk)θj,nk
+ ank

Oi,nk+1.

If there is no truncation at time nk + 1 for any agent i ∈ V , then

θi,nk+1 = θ′i,nk+1 =
∑

j∈Ni(nk)

wij(nk)θj,nk
+ ank

Oi,nk+1,
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and (4)–(7) can be rewritten in the compact form:

Θnk+s+1 =(W (nk + s)⊗ Il)Θnk+s

+ ank+s(F (Θnk+s) + ǫnk+s+1) (37)

with s = 0, where F (Θk) = col{f1(θ1,k), . . . , fN(θN,k)}, ǫk = col{ǫ1,k, . . . , ǫN,k} with fi(·) and ǫi,k
defined by (13) and (15), respectively.

Since {Θnk
}k≥1 is bounded, there exists a constant C > 0 such that

||Θnk
|| ≤ C, k ≥ 1. (38)

Define

c0 , 2
√
N max

i∈V
E||φi,1||+ 1, (39)

M ′
0 , 1 + C(cρ2 + 2), (40)

H1 , max
Θ

{||F (Θ)|| : ||Θ|| ≤ M ′
0 + 1 + C}, (41)

c1 , H1 + c0

(
3 +

c(ρ2 + 1)

1− ρ2

)
and c2 ,

H1 + c0√
N

, (42)

where the constants c > 0 and 0 < ρ2 < 1 are given in (9).

Select T > 0 small enough such that

c1T < 1. (43)

For any k ≥ 1, define

sk , sup{s : nk ≤ s ≤ 2m(nk, T )
∣∣ |Θj−Θnk

|| ≤ c1T+M
′
0,

nk ≤ j ≤ s}. (44)

It is clear that sk ≥ nk, and from (38) and (43), for any k ≥ 1 and nk ≤ s ≤ sk

||Θs|| ≤ c1T +M ′
0 + ||Θnk

|| ≤ M ′
0 + 1 + C. (45)

In the following we will show that sk > m(nk, T ) ∀k ≥ 1. Assume the converse: there exists a

subsequence of {nk, sk}, for simplicity of notations, denoted still by {nk, sk}, such that

sk ≤ m(nk, T ). (46)

We first show that there exists an integer k1 > 1 such that for all k ≥ k1

sk < τσnk
+1. (47)

To prove (47), we consider two cases: 1) limk→∞ σk = ∞ and 2) limk→∞ σk = σ < ∞.

For Case 1), since the truncation bounds {Mk} used in DSAAWET is a sequence of positive numbers

increasingly diverging to infinity as mentioned in Remark 1, there exists a positive integer k1 such that

Mσnk
> M ′

0 + 1 + C for all k ≥ k1. Hence, from (45) we know sk < τσnk
+1. For Case 2), since

limk→∞ σk = σ < ∞, there exists a positive k1 such that σnk
= σ for all k ≥ k1, and hence τσnk

+1 =
τσ+1 = ∞. This implies (47).

From (47) it follows that (37) holds for s : 0 ≤ s ≤ sk − nk − 1.
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Next, we investigate the property of the noise sequence {ǫi,k+1}. For nk ≤ s ≤ sk, we have

1

T

∥∥∥
s∑

m=nk

amǫi,m+1

∥∥∥

≤ 1

T

∥∥∥
s∑

m=nk

1

m
[φi,ksgn(yi,k+1 − φT

i,kθi,k)

− E[φi,ksgn(yi,k+1 − φT
i,kθi,k)]]

∥∥∥

≤ 1

T

s∑

m=nk

1

m
‖φi,m‖+

1

T

s∑

m=nk

1

m
E‖φi,k‖

≤ 1

T

m(nk ,T )∑

m=nk

1

m
‖φi,m‖+

1

T

m(nk ,T )∑

m=nk

1

m
E‖φi,k‖

≤ 1

T

m(nk ,T )∑

m=nk

1

m
[‖φi,m‖ − E‖φi,m‖]

+ 2 · 1
T

m(nk ,T )∑

m=nk

1

m
E‖φi,k‖. (48)

We first analyse
∑m(nk ,T )

m=nk

1
m
[‖φi,m‖ − E‖φi,m‖]. By C1), {φi,k}k≥1 is an α-mixing process. For any

constant ǫ > 0, by boundedness of ‖φi,k‖ we have

∞∑

m=1

1

m2
(E|(‖φi,m‖ − E‖φi,m‖)|2+ǫ)

2
2+ǫ

=O

(
∞∑

m=1

1

m2

)
< ∞. (49)

From (49) and by Theorem 3 in Appendix we have

∞∑

m=1

1

m
[‖φi,m‖ − E‖φi,m‖] < ∞ a.s., (50)

and hence

lim
k→∞

m(nk,T )∑

m=nk

1

m
[‖φi,m‖ − E‖φi,m‖] = 0. (51)

For the second term in (48), we have

2 · 1
T

m(nk ,T )∑

m=nk

1

m
E‖φi,k‖ ≤ 2E‖φi,k‖. (52)

Combining (48), (51), and (52) we obtain

lim sup
k→∞

1

T
‖

s∑

m=nk

1

m
ǫi,m+1‖ ≤ 2E||φi,k||, (53)
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and for sufficiently large k ≥ k1,

1

T
‖

s∑

m=nk

1

m
ǫi,m+1‖ ≤ 2E‖φi,k‖+

1√
N
, (54)

from which we conclude that for sufficiently large k ≥ k1,

‖
s∑

m=nk

amǫm+1‖ ≤ c0T ∀s : nk ≤ s ≤ sk. (55)

Define

Zsk+1 , (W (sk)⊗ Il)Θsk + ask(F (Θsk) + ǫsk+1) (56)

and

zsk+1 ,
1
T ⊗ Il

N
Zsk+1. (57)

It is clear that Zsk+1 coincides with Θsk+1 if there is no truncation at sk + 1.

Multiplying (37) by 1
T⊗Il

N
from left, by noticing 1

T⊗Il

N
(W (s) ⊗ Il) = 1

T⊗Il

N
∀s ≥ 0 for any doubly

stochastic W (s), we derive

θnk+s+1 =θnk+s + ank+s

1
T ⊗ Il

N
(F (Θnk+s) + ǫnk+s+1)

for 0 ≤ s ≤ sk − nk − 1, and hence

θsk =θnk
+

1
T ⊗ Il

N

sk−1∑

m=nk

am(F (Θm) + ǫm+1).

Then, from (56) and (57) it follows that

zsk+1 = θsk +
1
T ⊗ Il

N
ask(F (Θsk) + ǫsk+1)

= θnk
+

1
T ⊗ Il

N

sk∑

m=nk

am(F (Θm) + ǫm+1). (58)

From this, by (55) and the definition of sk, it follows that

‖zsk+1 − θnk
‖

≤‖1
T ⊗ Il

N
‖ · ‖

sk∑

m=nk

am(F (Θm) + ǫm+1)‖

≤ 1√
N

sk∑

m=nk

am‖F (Θm)‖+
1√
N
‖

sk∑

m=nk

amǫm+1‖

=O(T ) (59)

for all sufficiently large k ≥ k1.

By noticing (W (k)⊗ Il) · · · (W (s)⊗ Il) = Φ(k, s)⊗ Il for k ≥ s, from (37) it follows that

Θsk = (Φ(sk, nk)⊗ Il)Θnk

+

sk∑

m=nk

am(Φ(sk, m+ 1)⊗ Il)(F (Θm) + ǫm+1). (60)
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Setting Z⊥,sk+1 , Zsk+1 − (1 ⊗ Il)zsk+1, by (56), (58), and (60) we have

Z⊥,sk+1 =(W (sk)⊗ Il)Θsk + ask(F (Θsk) + ǫsk+1)

−
(
11

T

N
⊗ Il

)
(Θsk + ask(F (Θsk) + ǫsk+1))

=[(Φ(sk, nk)−
1

N
11

T )⊗ Il]Θnk

+

sk∑

m=nk

am[(Φ(sk, m+ 1)− 1

N
11

T )⊗ Il]F (Θm)

+

sk∑

m=nk

am[(Φ(sk, m+ 1)− 1

N
11

T )⊗ Il]ǫm+1, (61)

from which and by (9), (38) and (41) it follows that

‖Z⊥,sk+1‖ ≤ Ccρsk+1−nk

2 +

sk∑

m=nk

amH1cρ
sk−m
2

+ ‖
sk∑

m=nk

am[(Φ(sk, m+ 1)− 1

N
11

T )⊗ Il]ǫm+1‖. (62)

Let us estimate the last term on the right hand side of (62). Set Γn ,
∑n

m=1 amǫm+1. By (55) we derive

||Γs − Γnk−1|| ≤ c0T ∀s : nk ≤ s ≤ sk. (63)

We have the following equalities,

s∑

m=nk

am(Φ(s,m+ 1)⊗ Il)ǫm+1

=

s∑

m=nk

(Φ(s,m+ 1)⊗ Il)(Γm − Γm−1)

=
s∑

m=nk

(Φ(s,m+ 1)⊗ Il)(Γm − Γnk−1)

−
s∑

m=nk

(Φ(s,m+ 1)⊗ Il)(Γm−1 − Γnk−1),

from which it follows that

‖
s∑

m=nk

am(Φ(s,m+ 1)⊗ Il)ǫm+1‖

≤‖Γs − Γnk−1‖

+
s−1∑

m=nk

‖Φ(s,m+ 1)− Φ(s,m+ 2)‖ · ‖Γm − Γnk−1‖

≤c0T +

s−1∑

m=nk

(cρs−m
2 + cρs−m−1

2 )c0T

≤c0T +
c(ρ2 + 1)

1− ρ2
c0T ∀s : nk ≤ s ≤ sk. (64)
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From (55) and (64) it follows that

‖
s∑

m=nk

am[(Φ(s,m+ 1)− 1

N
11

T )⊗ Il]ǫm+1‖

≤(2 +
c(ρ2 + 1)

1− ρ2
)c0T for sufficiently large k ≥ k1. (65)

From (62) and (65) we further obtain

‖Z⊥,sk+1‖ ≤ Ccρ2 + 1 + (2 +
c(ρ2 + 1)

1− ρ2
)c0T (66)

for sufficiently large k ≥ k1.
Since Zsk+1 = Z⊥,sk+1 + (1 ⊗ Il)zsk+1, we derive

‖Zsk+1 −Θnk
‖

=‖(1 ⊗ 1l)zsk+1 + Z⊥,sk+1 −Θ⊥,nk
− (1 ⊗ Il)θnk

‖
≤‖Z⊥,sk+1‖+ ‖Θ⊥,nk

‖+
√
N‖zsk+1 − θnk

‖. (67)

Noticing ||Θ⊥,nk
|| ≤ 2C ∀k ≥ 1, from (59) and (66) we know that for sufficiently large k ≥ k1

‖Zsk+1 −Θnk
‖

≤Ccρ2 + 1 + (2 +
c(ρ2 + 1)

1− ρ2
)c0T +

√
N
H1 + c0√

N
T + 2C

=c1T +M ′
0, (68)

where M ′
0 and c1 are defined by (39) and (40). Therefore,

||Zsk+1|| ≤ ||Θnk
||+M ′

0 + c1T ≤ M ′
0 + 1 + C.

This means that for the algorithm (4)–(7), there is no truncation at sk +1 for sufficiently large k ≥ k1.
Therefore, (37) holds for s = sk − nk and Θsk+1 = Zsk+1 for sufficiently large k ≥ k1. Hence, from (68)

we obtain

||Θsk+1 −Θnk
|| ≤ M ′

0 + c1T,

which contradicts with the definition of sk in (44). Thus we have proved that sk > m(nk, T ) for sufficiently

large k ≥ k1. Consequently, from (44) we know that (35) holds for sufficiently large k.

Since sk > m(nk, T ), similar to (59) it can be proven that (36) holds for sufficiently large k. This

finishes the proof. �

For the observation noises {ǫi,k} defined by (15), the following result takes place.

Lemma 5: If C1), C3), and C4) hold, then for any convergent subsequence {Θnk
}k≥1 of {Θk}k≥1 with

σi,nk
= σnk

∀i ∈ V , it holds that

lim
j→∞

lim sup
k→∞

1

Tj

∥∥∥
m(nk ,Tj)∑

m=nk

1

m
ǫm+1

∥∥∥ = 0 ∀Tj ∈ [0, T ]. (69)

Proof : Since {Θnk
} is a convergent subsequence, by definition we know that {θnk

} is also convergent.

Denote by θ̄ the limit of {θnk
}, i.e., θnk

→ θ̄ as k → ∞. Let {Tj}j≥1 be a sequence of positive numbers

tending to zero with Tj > Tj+1. Let {λn} be a nonincreasing sequence of positive numbers with λn → 0

as n → ∞ such that ‖θnk
− θ̄‖ <

λnk

2
. Denote by S a countable set dense in R

l. Let {θ(n)}n≥1 ⊂ S be

a sequence satisfying ‖θ(n)− θ̄‖ < λn

2
.
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We rewrite the noise ǫi,m+1 as follow:

ǫi,m+1=ǫ
(1)
i,m+1(n)+ǫ

(2)
i,m+1(n)+ǫ

(3)
i,m+1(n)+ǫ

(4)
i,m+1, (70)

where

ǫ
(1)
i,m+1(n) = φi,msgn(yi,m+1 − φT

i,mθi,m)

− φi,msgn(yi,m+1 − φT
i,mθ(n)), (71)

ǫ
(2)
i,m+1(n) = φi,msgn(yi,m+1 − φT

i,mθ)
∣∣∣
θ=θ(n)

− E[φi,msgn(yi,m+1 − φT
i,mθ)]

∣∣∣
θ=θ(n)

, (72)

ǫ
(3)
i,m+1(n) = E[φi,msgn(yi,m+1 − φT

i,mθ)]
∣∣∣
θ=θ(n)

− E[φi,msgn(yi,m+1 − φT
i,mθ)]

∣∣∣
θ=θ

, (73)

and

ǫ
(4)
i,m+1 = E[φi,msgn(yi,m+1 − φT

i,mθ)]
∣∣∣
θ=θ

− E[φi,msgn(yi,m+1 − φT
i,mθ)]

∣∣∣
θ=θi,m

. (74)

To prove the lemma it suffices to verify (69) with ǫm+1 replaced by ǫ
(h)
i,m+1, h = 1, · · · , 4. We first

consider the case h = 1. From the definition of ǫ
(1)
i,m+1(n), it follows that

1

Tj

∥∥∥
m(nk ,Tj)∑

m=nk

1

m
φi,m

[
sgn(yi,m+1 − φT

i,mθi,m)

− sgn(yi,m+1 − φT
i,mθ(n))

]∥∥∥

=
1

Tj

∥∥∥
m(nk ,Tj)∑

m=nk

1

m
φi,m

[
1− 2I[yi,m+1<φT

i,mθi,m]

− 1 + 2I[yi,m+1<φT
i,mθ(n)]

]∥∥∥

=
2

Tj

∥∥∥
m(nk ,Tj)∑

m=nk

1

m
φi,m

[
I[yi,m+1<φT

i,mθi,m]

− I[yi,m+1<φT
i,mθ(n)]

]∥∥∥. (75)

For m = nk, · · · , m(nk, Tj), a direct calculation leads to

|I[yi,m+1<φT
i,mθi,m] − I[yi,m+1<φT

i,mθ(n)]|

≤I[yi,m+1<φT
i,mθi,m,yi,m+1≥φT

i,mθ(n)]

+ I[yi,m+1≥φT
i,mθi,m,yi,m+1<φT

i,mθ(n)]

=I[
φT
i,m(θi,m−θ(n))>yi,m+1−φT

i,mθ(n)≥0
]

+ I[
0>yi,m+1−φT

i,mθ(n)≥φT
i,m(θi,m−θ(n))

]

≤I[
‖yi,m+1−φT

i,mθ(n)‖≤‖φT
i,m(θi,m−θ(n))‖

] (76)
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and

‖θi,m − θ(n)‖
≤‖θi,m − θnk

‖+ ‖θnk
− θ̄‖+ ‖θ̄ − θ(n)‖

≤‖θi,m − θm‖+ ‖θm − θnk
‖+ ‖θnk

− θ̄‖+ ‖θ̄ − θ(n)‖
≤‖θi,m − θm‖+ c2Tj + λnk

+ λn, (77)

where the last inequality follows from Lemma 4 and the fact that ‖θnk
− θ̄‖ <

λnk

2
and ‖θ(n)− θ̄‖ < λn

2
.

Similar to (62) we see that there exist positive numbers c3, c4, c5, and ρ2 ∈ (0, 1) such that

‖Θ⊥,s+1‖ ≤ c3ρ
s+1−nk

2 + c4 sup
m≥nk

am + c5Tj (78)

for sufficiently large k and ∀s : nk ≤ s ≤ m(nk, Tj). Since 0 < ρ2 < 1, for any fixed Tj > 0, there exists

an integer m′ > 0 such that ρm
′

2 < Tj . Since m(nk, Tj)−nk → ∞ as k → ∞, we have nk+m′ < m(nk, Tj)
for all sufficiently large k, and

‖Θ⊥,s+1‖ ≤c4 sup
m≥nk

am + (c3 + c5)Tj

≤c4ank
+ (c3 + c5)Tj (79)

for nk +m′ ≤ s ≤ m(nk, Tj).

We now consider ǫ
(1)
i,k+1(n). From (75) it follows that

1

Tj

∥∥∥
m(nk ,Tj)∑

m=nk

1

m
ǫ
(1)
i,m+1(n)

∥∥∥

≤ 2

Tj

nk+m′∑

m=nk

1

m
‖φi,m‖+

2

Tj

m(nk,Tj)∑

m=nk+m′

1

m
‖φi,m‖

· I[
‖yi,m+1−φT

i,mθ(n)‖≤‖φT
i,m(θi,m−θ(n))‖

]. (80)

Noticing that the integer m′ does not depend on k and ‖φi,k‖ is bounded, we conclude that

lim sup
k→∞

nk+m′∑

m=nk

1

m
||φi,m|| = 0. (81)

We now focus on the second part of (80). From (77) and (79) we have the following chain of equalities

and inequalities,

2

Tj

m(nk ,Tj)∑

m=nk+m′

1

m
‖φi,m‖ · I[

‖yi,m+1−φT
i,mθ(n)‖≤‖φT

i,m(θi,m−θ(n))‖
]

≤ 2

Tj

m(nk ,Tj)∑

m=nk+m′

1

m
‖φi,m‖ · I[

‖yi,m+1−φT
i,mθ(n)‖≤‖φi,m‖·‖θi,m−θ(n)‖

]

≤ 2

Tj

m(nk ,Tj)∑

m=nk+m′

1

m
‖φi,m‖

· I[
‖yi,m+1−φT

i,mθ(n)‖≤‖φi,m‖·
(
(c2+c3+c5)Tj+c4ank

+λnk
+λn

)]
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=
2

Tj

m(nk,Tj)∑

m=nk+m′

1

m

{
‖φi,m‖

· I[
‖yi,m+1−φT

i,mθ(n)‖≤‖φi,m‖·
(
(c2+c3+c5)Tj+c4ank

+λnk
+λn

)]

− E

(
‖φi,m‖

· I[
‖yi,m+1−φT

i,mθ(n)‖≤‖φi,m‖·
(
(c2+c3+c5)Tj+c4ank

+λnk
+λn

)]
)}

+
2

Tj

m(nk ,Tj)∑

m=nk+m′

1

m
E

(
‖φi,m‖

· I[
‖yi,m+1−φT

i,mθ(n)‖≤‖φi,m‖·
(
(c2+c3+c5)Tj+c4ank

+λnk
+λn

)]
)
. (82)

Similar to (50), we have that

lim sup
k→∞

∣∣∣ 2
Tj

m(nk,Tj)∑

m=nk+m′

1

m

{
‖φi,m‖

· I[
‖yi,m+1−φT

i,mθ(n)‖≤‖φi,m‖·
(
(c2+c3+c5)Tj+c4ank

+λnk
+λn

)]

− E

(
‖φi,m‖

· I[
‖yi,m+1−φT

i,mθ(n)‖≤‖φi,m‖·
(
(c2+c3+c5)Tj+c4ank

+λnk
+λn

)]
)}∣∣∣

= 0. (83)

Since {φi,k}k≥0 is strictly stationary and bounded, for the last term in (82) we have

E

(
‖φi,m‖

· I[
‖yi,m+1−φT

i,mθ(n)‖≤‖φi,m‖·
(
(c2+c3+c5)Tj+c4ank

+λnk
+λn

)]
)

≤ CEI[
‖yi,m+1−φT

i,mθ(n)‖≤‖φi,m‖·
(
(c2+c3+c5)Tj+c4ank

+λnk
+λn

)]

= C

∫

Rl

∫

R

I[
‖sT (θ∗−θ(n))+t‖≤‖s‖·

(
(c2+c3+c5)Tj+c4ank

+λnk
+λn

)]

· qi(s)fi,d(t)dsdt, (84)

which, by the dominated convergence theorem, converges to zero by letting k → ∞, then j → ∞, and

finally n → ∞. From (84) and noticing
∑m(nk ,Tj)

m=nk+m′

1
m

< Tj , we have

lim
j→∞

lim sup
k→∞

1

Tj

m(nk ,Tj)∑

m=nk+m′

1

m
E

(
‖φi,m‖

· I[
‖yi,m+1−φT

i,mθ(n)‖≤‖φi,m‖·
(
(c2+c3+c5)Tj+c4ank

+λnk
+λn

)]
)
= 0. (85)

Combining (73), (81), (83), and (85), we obtain that

lim
j→∞

lim sup
k→∞

1

Tj

∥∥∥
m(nk ,Tj)∑

m=nk

1

m
ǫ
(1)
i,m+1(n)

∥∥∥ = 0. (86)
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For ǫ
(2)
i,m+1(n), similar to (50) we can prove that

∞∑

k=1

1

k

[
φi,ksgn(yi,k+1 − φT

i,kθ(n))

− E[φi,ksgn(yi,k+1 − φT
i,kθ(n))])

]
< ∞ a.s. ∀n ≥ 1. (87)

From this by the definition of ǫ
(2)
i,m+1(n), it follows that

lim
j→∞

lim sup
k→∞

1

Tj

‖
m(nk ,Tj)∑

m=nk

1

m
ǫ
(2)
i,m+1‖ = 0. (88)

For ǫ
(3)
i,m+1(n), similar to (75), (76), and (85), we obtain that

1

Tj

∥∥∥
m(nk,Tj)∑

m=nk

1

m
ǫ
(3)
i,m+1(n)

∥∥∥

≤ 2

Tj

m(nk ,Tj)∑

m=nk

1

m
E

{
‖φi,1‖I[

‖yi,2−φi,1θ̄‖≤‖φi,1‖·‖θ(n)−θ̄‖
]
}

≤2E
{
‖φi,1‖I[

‖yi,2−φi,1θ̄‖≤‖φi,1‖·‖θ(n)−θ̄‖]

}
→ 0 (89)

by letting first k → ∞ and then n → ∞. From (89) it follows that

lim
j→∞

lim sup
k→∞

1

Tj

‖
m(nk ,Tj)∑

m=nk

1

m
ǫ
(3)
i,m+1‖ = 0. (90)

Finally, for ǫ
(4)
i,m+1, carrying out a treatment similar to that for (80), we can prove that

lim
j→∞

lim sup
k→∞

1

Tj

∥∥∥
m(nk ,Tj)∑

m=nk

1

m
ǫ
(4)
i,m+1

∥∥∥ = 0. (91)

Combining (86), (88), (90), and (91) leads to (69). �

The next lemma shows that the truncation number of the distributed identification algorithm is finite,

and hence the estimate sequence {θi,k}k≥0 is bounded for any agent i ∈ V .

Lemma 6: If C1)–C4) hold, then

lim
k→∞

σk = σ < ∞ a.s. (92)

Proof : From Lemma 3 we know that the estimate sequence {Θk} generated by (4)–(7) contains a

bounded subsequence {Θnk
} with σi,nk

= σnk
∀i ∈ V . For this bounded subsequence {Θnk

}k≥1, there

exists a constant c0 such that ‖Θnk
‖ ≤ c0. Thus, {θnk

} is also located in the bounded set {θ ∈ R
l : ‖θ‖ ≤

c0}.

Set v(θ) , E‖y2 − φT
1 θ‖1. Since v(θ) is convex, there exists a positive constant c1 > c0 such that

max||θ||<c0 v(θ) < inf ||θ||=c1 v(θ). Since in Lemma 1 it is shown that J = {θ∗}, there exists a nonempty

interval [δ1, δ2] ∈ (max||θ||<c0 v(θ), inf ||θ||=c1 v(θ)) such that d([δ1, δ2], v(J)) > 0.

We now prove (92).

Assume the converse that limk→∞ σk = ∞. Carrying out a treatment similar to the proof of Lemma

5.4 in [25], we can prove that {θnk
} starting from a point in the set {θ ∈ R

l : ‖θ‖ ≤ c0} crosses the

boundary {θ ∈ R
l : ‖θ‖ = c1} infinitely many times. Therefore, for the nonempty interval [δ1, δ2], there
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are infinitely many crossings {v(θnk
), . . . , v(θmk

)}. Here by “crossing [δ1, δ2] by {v(θnk
), . . . , v(θmk

)}”

we mean that v(θnk
) ≤ δ1, v(θmk

) ≥ δ2, and δ1 < v(θs) < δ2 ∀s : nk < s < mk.

Set

Oi,k+1 = fi(θi,k) + ǫi,k+1.

So, the algorithm (4)–(7) is a DSAAWET given in Appendix. Since ak = 1
k
, A1) in Theorem 2 in

Appendix is satisfied. Noticing fi(θ) = E[φi,ksgn(yi,k+1 − φT
i,kθ)] ∀i ∈ V , by (17) and C3), we see

that fi(θ) is continuous. Hence A3) required by Theorem 2 in Appendix holds true. Since f(θ) =∑N

i=1 E[φi,ksgn(yi,k+1 − φT
i,kθ)] and J = {θ∗}, by setting v(θ) = E||yk+1 − φT

k θ||1 it is seen that A2)

is satisfied. Further, in Lemma 5, we have proved that the noise sequence satisfies (69) along the indices

{nk} of any convergent subsequence {Θnk
} with σi,nk

= σnk
∀i ∈ V . Then similar to the proof of Lemma

5.3 in [25], we can show that any nonempty interval [δ1, δ2] with d([δ1, δ2], v(J)) > 0 cannot be crossed

by infinitely many sequences {v(θnk
), . . . , v(θmk

)}. This yields a contradiction.

Thus, the number of truncations must be finite and hence (92) holds. �

The following lemma shows that consensus of the distributed identification algorithms can be achieved.

Lemma 7: (Consensus of Estimates) If C1)–C4) hold, then

‖Θ⊥,k‖−→ 0 as k → ∞ a.s. (93)

Proof : From Lemma 6 we know that, for (4)–(7) the number of truncations is finite. Then by iii) in

Lemma 2 it follows that there exists a positive integer σ such that σ̂i,k = σi,k = σ for any k ≥ k0 = BD+τσ
and any i ∈ V . So for any k ≥ k0, the algorithm (4)–(7) can be rewritten as:

Θk+1 = (W (k)⊗ Il)Θk +
1

k
(F (Θk) + ǫk+1). (94)

Pre-multiplying both sides of (94) with D⊥ , (IN − 11
T

N
)⊗ Il, we obtain that

Θ⊥,k+1 = D⊥(W (k)⊗ Il)Θk +
1

k
D⊥(F (Θk) + ǫk+1). (95)

Set

Ψ(k, s) , [D⊥(W (k)⊗ Il)] · · · [D⊥(W (s)⊗ Il)] ∀k ≥ s,

Ψ(k − 1, k) , INl.

Since {W (k)}k≥1 are doubly stochastic, it directly follows that

Ψ(k, s) = (Φ(k, s)− 1

N
11

T )⊗ Il,

Ψ(k, s)D⊥ = (Φ(k, s)− 1

N
11

T )⊗ Il ∀k ≥ s.

By this and (95), we have

Θ⊥,k+1

=Ψ(k, k0)Θk0 +

k∑

m=k0

1

m
Ψ(k − 1, m)D⊥(F (Θk) + ǫk+1)

=[(Φ(k, k0)−
1

N
11

T )⊗ Il]Θk0

+

k∑

m=k0

1

m
[(Φ(k − 1, m)− 1

N
11

T )⊗ Il]F (Θm)

+
k∑

m=k0

1

m
[(Φ(k − 1, m)− 1

N
11

T )⊗ Il]ǫm+1. (96)
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By the continuity of F (θ) and the boundedness of {Θk} established in Lemma 6, and by noticing (9),

it follows that there exist positive constants c′1, c
′
2, c

′
3 and 0 < ρ2 < 1 such that for all k ≥ k0

‖Θ⊥,k+1‖ ≤c′1ρ
k−1+k0
2 + c′2

k∑

m=k0

1

m
ρk−m
2

+ c′3

k∑

m=k0

1

m
ρk−m
2 ‖ǫm+1‖. (97)

Noticing that 0 < ρ2 < 1 and ǫk is bounded, we have that

k∑

m=k0

1

m
ρk−m
2 −→

k→∞
0, (98)

and

k∑

m=k0

1

m
ρk−m
2 ‖ǫm+1‖ = O

(
k∑

m=k0

1

m
ρk−m
2

)
−→
k→∞

0. (99)

From (97)–(99), we conclude that Θ⊥,k −→
k→∞

0. This finishes the proof. �

We now prove the strong consistency of the estimates generated by (4)–(7).

Proof of Theorem 1: For (21) we only need to show that A1)–A5) required by Theorem 2 in Appendix

hold true.

In the proof of Lemma 6 we have verified A1), A2), and A3). Note that C4) coincides with A5) given

in Appendix. Thus, it remains to verify A4).

By the boundedness of {ǫi,k+1}, it follows that

lim
k→∞

1

k
ǫi,k+1 = 0. (100)

So A4) a) is satisfied. We now verify A4) b).

For agent i, denote by {θi,nk
} any convergent subsequence of {θi,k}. By Lemma 6, we have shown

that along indices {nk} the estimate sequence {Θnk
} is bounded, and for sufficiently large k we have

σj,nk
= σnk

= σ, j ∈ V . So, (35) and (36) in Lemma 4 can be applied for the indices {nk} considered

here.

Similar to Lemma 5, denote by θ̄ the limit of {θi,nk
}, and S a countable set dense in R

l. Let {θ(n)}n≥1 ⊂
S be a sequence tending to θ̄ such that ‖θi,nk

− θ̄‖ ≤ ‖θ(nk)− θ̄‖. Let {λn} ⊂ S be a sequence of positive

numbers with λn → 0 as n → ∞ such that ||θ(n)− θ̄|| < λn

2
. Let {Tj}j≥1 ⊂ S be a sequence of positive

numbers tending to zero with Tj > Tj+1. We rewrite ǫi,m+1 as

ǫi,m+1=ǫ
(1)
i,m+1(n)+ǫ

(2)
i,m+1(n)+ǫ

(3)
i,m+1(n)+ǫ

(4)
i,m+1, (101)

where

ǫ
(1)
i,m+1(n) =φi,msgn(yi,m+1 − φT

i,mθi,m)

− φi,msgn(yi,m+1 − φT
i,mθ(n)), (102)

ǫ
(2)
i,m+1(n) =φi,msgn(yi,m+1 − φT

i,mθ(n))

− E[φi,msgn(yi,m+1 − φT
i,mθ(n))], (103)

ǫ
(3)
i,m+1(n) =E[φi,msgn(yi,m+1 − φT

i,mθ(n))]

− E[φi,msgn(yi,m+1 − φT
i,mθ̄)], (104)
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and

ǫ
(4)
i,m+1 =E[φi,msgn(yi,m+1 − φT

i,mθ̄)]

− E[φi,msgn(yi,m+1 − φT
i,mθi,m)]. (105)

The following proof is similar to that of Lemma 5. Here we only sketch the proof for ǫ
(1)
i,m+1(n).

For m = nk, · · · , m(nk, Tj), we have the following inequality,

‖θi,m − θ(n)‖
≤‖θi,m − θm‖+ ‖θm − θnk

‖+ ‖θnk
− θi,nk

‖
+ ‖θi,nk

− θ̄‖+ ‖θ̄ − θ(n)‖. (106)

By Lemma 7 we know that ‖θi,k−θk‖ −→
k→∞

0. Let {γk} ⊂ S be a sequence of positive numbers tending

to zero as k → ∞ such that ‖θi,k − θk‖ < γk
2

. From (106) and (36), we obtain that

‖θi,m − θ(n)‖ ≤γm + c2Tj + γnk
+ λnk

+ λn. (107)

By using the same analysis as that for Lemma 5 we can prove that

lim
j→∞

lim sup
k→∞

1

Tj

‖
m(nk ,Tj)∑

m=nk

1

m
ǫ
(1)
i,m+1(n)‖ = 0,

and further,

lim
j→∞

lim sup
k→∞

1

Tj

‖
m(nk,Tj)∑

m=nk

1

m
ǫi,m+1‖ = 0 ∀i ∈ V,

which implies A4) b).

Then by Theorem 2 in Appendix it follows that the estimates generated by (4)–(7) converge to θ∗. �

V. NUMERICAL SIMULATION

Consider a network G = (V, E) with V = {1, · · · , N}, N = 100, and E = G(N, pN) being the Poisson

random graph1 with designing parameter 0 ≤ pN ≤ 1. We choose pN = 6/N . Denote by Ni the neighbor

set of agent i and by ni the cardinality of Ni. Set W (k) = [wij]
N
i,j=1 ∀k ≥ 1 with wij =

1
ni

if agent j is

in the set Ni. The dynamics of each agent i ∈ V is given by

yi,k+1 = φT
i,kθ

∗ + di,k+1, zi,k+1 = I[yi,k+1<ci,k],

where yi,k ∈ R
1, θ∗ ∈ R

l, l = 8 and the j-th entry of θ∗ is (1 + 0.1j)
√
j.

Let {ηi,k}k≥1, i = 1, · · · , N be sequences of i.i.d. random variables uniformly distributed over [−1, 1]
with {ηi,k}k≥1 and {ηj,k}k≥1 being mutually independent if i 6= j. At time k, for the regressor φi,k ∈ R

l,

if i mod l 6= 0, then its i mod l-th entry is set to be ηi,k and other entries are set to be 0, while if i
mod l = 0, then its l-th entry is set to be ηi,k and other entries are set to be 0. Assume that {di,k}k≥1,

i ∈ V are sequences of i.i.d. random variables with Gaussian distribution N (0, 0.09) and {ηi,k}k≥1 and

{dj,k+1}k≥1 are mutually independent for i 6= j.

Denote by {θi,k}k≥1, i ∈ V the estimates given by (4)–(7) and by θk = 1
N

∑N

i=1 θi,k the average of

θi,k, i ∈ V . In Figure 1, the dashed lines denote the true values of parameters and the solid lines the

estimates for entries {θjk, j = 1, · · · , l}k≥1 of {θk}k≥1. From the figure we find that the simulation results

are consistent with the theoretical analysis.

1For the details of Poisson random graph, we refer to [27].
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Fig. 1. Estimation sequences of θ
j
k, j = 1, · · · , l.

VI. CONCLUDING REMARKS

The distributed parameter estimation of linear stochastic system over time-varying networks with binary

sensors is considered in the paper. Each agent in the network can only access the input as well as

the binary-valued output of the local system, but aims at estimating the global unknown parameters. A

DSAAWET-based identification algorithm is proposed and the consensus and convergence of the estimates

are established.

For future research, it is of interest to relax the technical assumptions adopted in this paper, in particular,

the boundedness assumption on the regressors. It is also of interest to consider the distributed identification

of nonlinear stochastic systems.

APPENDIX

For a time-varying network (V, E(k)), k ≥ 1 with V = {1, · · · , N}, consider the distributed root-

searching of f(x) =
∑N

i=1 fi(x), on the basis of local observation fi(·) : Rl → R
l of agent i ∈ V and the

information obtained from its adjacent neighbours.

Denote by J , {x ∈ R
l : f(x) = 0} the root set of f(·) and by xi,k ∈ R

l the estimate for the root of

f(·) generated by agent i at time k. The local observation of agent i is given by

Oi,k+1 = fi(xi,k) + ǫi,k+1, (108)

where ǫi,k+1 is the observation noise. With {Mk} being a sequence of positive numbers increasingly

diverging to infinity and x∗ ∈ R
l being a given point known to all agents, the estimates {xi,k}k≥1 at agent

i are generated as follows:

σi,0 =0, σ̂i,k = max
j∈Ni(k)

σj,k, (109)

x′
i,k+1 ={

∑

j∈Ni(k)

wij(k)(xj,kI[σj,k=σ̂i,k] + x∗
I[σj,k<σ̂i,k])

+ akOi,k+1} · I[σi,k=σ̂i,k] + x∗
I[σi,k<σ̂i,k], (110)

xi,k+1 =x′
i,k+1I[||x′

i,k+1||≤Mσ̂i,k
] + x∗

I[||x′

i,k+1||>Mσ̂i,k]
, (111)

σi,k+1 =σ̂i,k + I[||x′

i,k+1||>Mσ̂i,k
], (112)

where ak is the step size.

The following conditions are used:
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A1) ak > 0, ak → 0,
∑∞

k=1 ak = ∞.

A2) There exists a continuously differentiable function v(·) : Rl → R such that supr1≤d(x,J)≤r2
fT (x)vx(x) <

0 for any 0 < r1 < r2 < ∞, where vx(·) denotes the gradient of v(·) and d(x, J) = infy{‖x− y‖ :
y ∈ J} and v(J) , {v(x) : x ∈ J} is nowhere dense. Further, x∗ adopted in (110) and (111) satisfies

that ||x∗|| < c0 and v(x∗) < inf ||x||=c0 v(x) for some positive constant c0.
A3) The local functions fi(·) ∀i ∈ V are continuous.

A4) For any i ∈ V , the noise sequence {ǫi,k+1}k≥0 satisfies

a) limk→∞ akǫi,k = 0;

b) limT→0 lim supk→∞
1
T
||∑m(nk ,tk)

m=nk
amǫi,m|| = 0 for any tk ∈ [0, T ], where m(k, T ) , max{m :∑m

i=k ai ≤ T} and {nk} denotes the indices of any convergent subsequence of {xi,k}.

A5) For the time-varying network (V, E(k)), the following conditions are assumed.

a) The adjacent matrices W (k) are doubly stochastic for each k ≥ 0;

b) There exists a constant 0 < κ < 1 such that wij(k) ≥ κ, whenever j ∈ Ni(k) for all i ∈ V and

k ≥ 0;

c) The digraph G∞ = {V, E∞} is strongly connected with E∞ , {(j, i) : (j, i) ∈ E(k) for infinitely

many k},
d) There exists a positive integer B such that (j, i) ∈ E(k) ∪ E(k + 1) ∪ · · · ∪ E(k +B − 1) for any

(j, i) ∈ E∞ and any k ≥ 1.

Theorem 2: ( [25, Theorem 3.3])

Let {xi,k}, i ∈ V be generated by (109)–(112) with any initial value xi,0. Assume A1)–A3) and A5) hold.

Then X⊥,k −→ 0 and d(xk, J)−→ 0 as k → ∞ on the sample path ω for which A4) holds for all agents,

where xk = 1
N

∑N

i=1 xi,k, Xk = col{x1,k, . . . , xN,k}, and X⊥,k = Xk − (1 ⊗ Il)xk.

Theorem 3: ( [28]) Assume {φk}k≥0 with φk ∈ R
l is an α-mixing with mixing coefficients denoted

by {α(k)}k≥0. Let {Hk(·)}k≥0 be a sequence of functions Hk(·) : Rl → R and EHk(φk) = 0. If there exist

constants ǫ > 0 and γ > 0 such that
∑∞

k=1(E|Hk(φk)|2+ǫ)
2

2+ǫ < ∞ and
∑∞

k=1 log k(log log k)
1+γ(α(k))

2
2+ǫ <

∞, then
∑∞

k=1Hk(φk) < ∞ a.s.
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