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Abstract

This paper examines the cluster consensus problem of multi-agent systems on matrix-weighted switching networks.
Necessary and/or sufficient conditions under which cluster consensus can be achieved are obtained and quantitative
characterization of the steady-state of the cluster consensus are provided as well. Specifically, if the underlying net-
work switches amongst finite number of networks, a necessary condition for cluster consensus of multi-agent system on
switching matrix-weighted networks is firstly presented, it is shown that the steady-state of the system lies in the inter-
section of the null space of matrix-valued Laplacians corresponding to all switching networks. Second, if the underlying
network switches amongst infinite number of networks, the matrix-weighted integral network is employed to provide
sufficient conditions for cluster consensus and the quantitative characterization of the corresponding steady-state of the
multi-agent system, using null space analysis of matrix-valued Laplacian related of integral network associated with the
switching networks. In particular, conditions for the bipartite consensus under the matrix-weighted switching networks
are examined. Simulation results are finally provided to demonstrate the theoretical analysis.
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1. Introduction

Achieving consensus via local interactions amongst
agents turns out to be an important paradigm in dis-
tributed control of multi-agent networks Mesbahi and
Egerstedt [13], Olfati-Saber et al. [14], DeGroot [7], Zhang
et al. [32]. However, it has long been assumed that the
edges, representing the interaction between neighboring
agents, are weighted by scalars, which apparently ignores
the interdependencies among multi-dimensional states of
neighboring agents. Recently, matrix-weighted network
is introduced to characterize the complicated interactions
amongst the high-dimensional states of agents Trinh et al.
[24], Sun and Yu [22], Pan et al. [16], Tuna [25]. In fact,
matrix-weighted networks naturally arise in scenarios such
as graph effective resistance and its applications in dis-
tributed control and estimation Tuna [26], Barooah and
Hespanha [3], opinion dynamics Friedkin et al. [9], Ye et al.
[31], bearing-based formation control Zhao and Zelazo [33],
coupled oscillators dynamics Tuna [27], and consensus and
synchronization Trinh et al. [24], Tuna [25], Pan et al.
[16], Su et al. [20].

As opposed to scalar-weighted networks, network con-
nectivity does not translate to achieving consensus for
matrix-weighted networks. Rather than achieving con-
sensus, the expansion of the null space of the associated
matrix-valued Laplacian enables the multi-agent system
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on matrix-weighted networks to achieve cluster consensus
(or clustering), even if the underlying network is connected
Trinh et al. [24]. This elegant property enables one to de-
sign desired cluster structures of for multi-agent systems
by elaborately investigating the connection between the
matrix-valued edge weights and the null space of matrix-
valued Laplacian. Notably, achieving the cluster synchro-
nization in coupled oscillator systems has been shown to be
closely related to memory process in human brain Skardal
et al. [19], Ashwin et al. [2], Fell and Axmacher [8], Hipp
et al. [10]. However, achieving desired cluster consensus is
not trivial in the case of scalar-weighted networks, where
network-wide information and specific control strategies
have to be involved Wu et al. [29], Xia and Cao [30]. In
contrast, cluster consensus can be naturally achieved un-
der matrix-weighted networks. Recently, the conditions
of achieving cluster consensus on fixed matrix-weighted
networks were reported in Trinh et al. [24]. Neverthe-
less, the underlying network of a multi-agent system can
vary over time in a great variety of situations Cao et al.
[5], Olfati-Saber and Murray [15], Ren et al. [18], Cao et al.
[4], Meng et al. [12], Anderson et al. [1], Cao et al. [6]. The
continuous-time and discrete-time consensus problem on
time-varying matrix-weighted networks are discussed Pan
et al. [17], Van Tran et al. [28]. Nevertheless, to the best
of our knowledge, the conditions for cluster consensus on
dynamic matrix-weighted networks are still lacking.

This paper is intended to provide quantitative charac-
terization for cluster consensus of multi-agent systems on
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matrix-weighted switching networks. The contribution of
this paper is threefold. First, for the case that the underly-
ing network switches amongst finite number of networks,
necessary condition for the cluster consensus of matrix-
weighted switching networks has been exploited and an
essential connection between cluster consensus value and
the Laplacian matrices of matrix weighted switching net-
works has been established. Second, for the case that the
underlying network switches amongst infinite number of
networks, sufficient conditions for cluster consensus are
obtained by examining the structure of null spaces associ-
ated to the matrix-valued Laplacian of the associated in-
tegral network. Finally, we provide conditions for a class
of specific cluster consensus, namely bipartite consensus,
under the matrix-weighted switching networks, and graph-
theoretic condition is obtained. The results obtained in
this paper provide further insight into the collective be-
havior of multi-agent systems.

The remainder of the paper is organized as follows. Pre-
liminaries and problem formulation are introduced in §2
and §3, respectively, followed by the cluster consensus and
bipartite consensus conditions in §4. Simulation examples
are presented in §5; we provide concluding remarks in §6.

2. Preliminaries

2.1. Notations

Let R, N and Z+ be the set of real numbers, natural
numbers and positive integers, respectively. For n ∈ Z+,
denote n = {1, 2, . . . , n}. A symmetric matrix M ∈ R

n×n

is positive definite(Resp. negative definite), denoted by
M ≻ 0 (Resp. M ≺ 0), if z⊤Mz > 0 (Resp. z⊤Mz < 0)
for all nonzero z ∈ R

n, and is positive (Resp. nega-
tive) semi-definite, denoted by M � 0 (Resp. M � 0),
if z⊤Mz ≥ 0 (Resp. z⊤Mz ≤ 0) for all z ∈ R

n.
The null space of a matrix M ∈ R

n×n is denoted by
null(M) = {z ∈ R

n|Mz = 0}. 1n ∈ R
n and 0d×d ∈ R

d×d

designate the vector whose components are all 1’s and the
matrix whose components are all 0’s, respectively. Let ⌊x⌋
denote the greatest integer less than or equal to x ∈ R.
The sign function sgn(·) : R

n×n 7→ {0,−1, 1} satisfies
sgn(M) = 1 if M � 0 or M ≻ 0, sgn(M) = −1 if M � 0
or M ≺ 0, and sgn(M) = 0 if M = 0d×d.

2.2. Graph Theory

A matrix-weighted switching graph is denoted by G(t) =
(V , E(t), A(t)), where t refers to time index. The node and
edge sets of G are denoted by V = {1, 2, . . . , n} and E(t) ⊆
V × V , respectively. The weight on the edge (i, j) ∈ E(t)
is encoded by the symmetric matrix Aij(t) ∈ R

d×d such
that | Aij(t) |� 0 or | Aij(t) |≻ 0, and Aij(t) = 0d×d for
(i, j) 6∈ E(t). Thereby, the matrix-valued adjacency matrix
A(t) = [Aij(t)] ∈ R

dn×dn is a block matrix such that the
block located in its i-th row and the j-th column is Aij(t).
It is assumed that Aij(t) = Aji(t) for all i 66= j ∈ V and
Aii(t) = 0d×d for all i ∈ V . A bipartition of node set V

of matrix-weighted switching graph G(t) = (V , E(t), A(t))
at time t is two subsets of nodes Vi ⊂ V where i ∈ 2 such
that V1 ∪ V2 = V and V1 ∩ V2 = Ø.

A path of G(t) at time t is a sequence of edges of the form
(i1, i2), (i2, i3), . . . , (ip−1, ip), where nodes i1, i2, . . . , ip ∈ V
are distinct; in this case we say that node ip is reach-
able from i1. The graph G(t) is connected at time t if
any two distinct nodes in G(t) are reachable from each
other. A tree is a connected graph with n ≥ 2 nodes
and n − 1 edges where n ∈ Z+. For matrix-weighted
switching networks, we adopt the following terminology.
An edge (i, j) ∈ E(t) at time t is positive (respectively,
negative) definite or positive (respectively, negative) semi-
definite if the corresponding edge weight Aij(t) is positive
(respectively, negative) definite or positive (respectively,
negative) semi-definite. A positive-negative path of G(t)
at time t is a path such that every edge in this path is
either positive definite or negative definite. A positive-
negative tree of G(t) at time t is a tree such that every
edge in this tree is either positive definite or negative def-
inite. A positive-negative spanning tree of G(t) at time t
is a positive-negative tree containing all nodes in G(t).

3. Problem Formulation

Consider a multi-agent system consisting of n > 1
(n ∈ Z+) agents whose interaction network is charac-
terized by a matrix-weighted switching graph G(t) =
(V , E(t), A(t)). Denote the state of an agent i ∈ V as
xi(t) = [xi1(t), . . . , xid(t)]

⊤ ∈ R
d, evolving according to

the protocol

ẋi(t) = −
∑

j∈Ni(t)

| Aij(t) | (xi(t)−sgn(Aij(t))xj(t)), i ∈ V ,

(1)
where Ni(t) = {j ∈ V | (i, j) ∈ E(t)} denotes the neighbor
set of agent i ∈ V at time t. Note that (1) degenerates
into the scalar-weighted case when Aij(t) = aij(t)I, where
aij(t) ∈ R and I denotes the d× d identity matrix.

Let D(t) = diag {D1(t), · · · , Dn(t)} ∈ R
dn×dn be

the matrix-valued degree matrix of G(t), where Di(t) =∑
j∈Ni

| Aij(t) |∈ R
d×d and i ∈ V . The matrix-valued

Laplacian is subsequently defined as L(t) = D(t) − A(t).
The dynamics of the overall multi-agent system now ad-
mits the form,

ẋ(t) = −L(t)x(t), (2)

where x(t) = [x⊤
1 (t), . . . ,x

⊤
n (t)]

⊤ ∈ R
dn.

Remark 1. It is well-known that network connectivity
plays a central role in determining consensus for scalar-
weighted time-invariant networks Olfati-Saber and Mur-
ray [15]. However, for the matrix-weighted time-invariant
networks, network connectivity is only a necessary condi-
tion for consensus on matrix-weighted networks, it is pos-
sible to achieve cluster consensus even if the network is
connected, which is related with the properties of the null
space of matrix-valued Laplacian matrix for time-invariant
network Trinh [23].
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Definition 1 (Cluster Consensus). The multi-agent sys-
tem (2) admits cluster consensus, if there exists a partition
of node set V , say V1, . . . ,Vl where l ∈ Z+ and l ≤ n, such
that all agents belonging to the same partition achieve con-
sensus, while for any two agents i and j belonging to two
different partitions, lim t→∞xi(t) 6= lim t→∞xj(t). Each
Vi, i ∈ l is referred to as a cluster. In particular, the
cluster consensus is referred to as consensus and bipartite
consensus if l = 1 and l = 2, respectively.

The Definition 1 implies that there exists a vector
x∗ ∈ R

dn such that limt→∞ x(t) = x∗, where x∗ is in-
fluenced by the initial states of the multi-agent system
(2). This work aims to investigate conditions under which
the cluster consensus state of multi-agent system (2) on
matrix-weighted switching networks can be quantitatively
characterized. We adopt the following assumptions on
the underlying matrix-weighted switching network Olfati-
Saber and Murray [15], Ren et al. [18], Cao et al. [4].

Assumption 1. There exists a sequence {tk|k ∈ N}
such that limk→∞ tk = ∞ and the dwell time satisfies
△tk = tk+1 − tk ≥ α for all k ∈ N, where α > 0, t0 = 0,
and G(t) is time-invariant for t ∈ [tk, tk+1) for all k ∈ N.

Assumption 2. In addition to Assumption 1,
the switching networks G(t) is chosen from a finite set
{G1,G2, . . . ,GM} for some M ∈ Z+, and Gi, i ∈ M ap-
pears in the sequence of G(t) for infinitely times.

4. Main Results

In the following part, under the condition that the clus-
ter consensus can be achieved for the multi-agent system
(2), we shall exploit the connection between the cluster
consensus and the null space of matrix-valued Laplacian
matrices associated with a sequence of matrix-weighted
networks. We shall start from the case that the underly-
ing network of multi-agent system (2) switches amongst
finite number of networks, as stated in the Assumption 2.
Before showing the main result of this part, we first ex-
plore the properties of lim

t→∞
x(t), which plays an important

role in the proof of our main result.

Lemma 1. Consider the multi-agent system (2) on a
matrix-weighted switching network G(t) satisfying As-

sumption 2. If the multi-agent system (2) achieves the
cluster consensus, namely, there exists x∗ ∈ R

dn such that
lim
t→∞

x(t) = x∗, then lim
t→∞

L(t)x∗ = 0.

Proof. Denote by Φ(t, 0) as the state transition matrix of
multi-agent system (2) over time interval [0, t], then one
has ‖ Φ(t, 0) ‖≤ 1, thus for any x(0) ∈ R

dn and t > 0,

‖ x(t) ‖≤‖ x(0) ‖ .

In addition, based on ẋ(t) = −L(t)x(t), one can derive

ẍ(t) = (L(t))
2
x(t), therefore,

‖ ẍi(t) ‖≤‖ ẍ(t) ‖≤ β2 ‖ x(t) ‖≤ β2 ‖ x(0) ‖,

where β = max
{i∈M}

‖ Li ‖ and Li is the matrix-valued Lapla-

cian matrix corresponding to Gi, where i ∈ M . Therefore,
according to Lemma 6 in the Appendix, one has,

lim
t→∞

ẋi(t) = 0,

which imply that lim
t→∞

ẋ(t) = 0. Due to

L(t)x∗ = (ẋ(t) + L(t)x∗)− ẋ(t),

and

‖ ẋ(t) + L(t)x∗ ‖ =‖ −L(t) (x(t)− x∗) ‖

≤ β ‖ x(t)− x∗ ‖,

thus, lim
t→∞

L(t)x∗ = 0.

Denote the state transition matrix of multi-agent sys-
tem (2) over time interval [t0, t] as Φ(t, t0), then x(t) =
Φ(t, t0)x(t0), the following lemma presents the properties
of Φ(t, t0) which decides the convergence value of x(t).

Lemma 2. Consider the multi-agent system (2) on a
matrix-weighted switching network G(t) satisfying As-

sumption 2. Then, lim
t→∞

x(t) exists for any x(t0) ∈ R
dn

if and only if lim
t→∞

Φ(t, t0) exists. Moreover, denote by

lim
t→∞

Φ(t, t0) = Φ∗(t0), then [Φ∗(t0)]
i = Φ∗(t0) for any

i ∈ Z+.

Proof. (Sufficiency) Due to x(t) = Φ(t, t0)x(t0) and
lim
t→∞

Φ(t, t0) exists, thus,

lim
t→∞

x(t) = lim
t→∞

Φ(t, t0)x(t0) = Φ∗(t0)x(t0),

i.e., lim
t→∞

x(t) exists.

(Necessity) If lim
t→∞

x(t) exists for any x(t0) ∈ R
dn, with-

out loss of generality, one can choose x(t0) = ei, i ∈ dn,
where ei ∈ R

dn has its i-th component equal to one with
others equal to zero. Then, one has,

lim
t→∞

Φ(t, t0)

=
[
lim
t→∞

Φ(t, t0)e1, . . . , lim
t→∞

Φ(t, t0)edn

]
,

due to lim
t→∞

x(t) exists for any x(t0) ∈ R
dn and lim

t→∞
x(t) =

lim
t→∞

Φ(t, t0)x(t0), one can conclude that lim
t→∞

Φ(t, t0) ex-

ists.

Denote by lim
t→∞

x(t) = x∗, due to the fact lim
t→∞

L(t)x∗ =

0 and Gi, i ∈ M appears in the sequence of G(t) for in-
finitely times, one has L(t)x∗ = 0, therefore, for any
x(t0) ∈ R

dn,

L(t)x∗ = L(t)Φ∗(t0)x(t0) = 0,
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then,

L(t)Φ∗(t0)

= [L(t)Φ∗(t0)e1, . . . , L(t)Φ
∗(t0)edn]

=0dn×dn.

According to the Peano-Baker series form of Φ(t, t0),

Φ(t, t0)

=In +

∞∑

k=1

ˆ t

t0

[−L(σ1)]

ˆ σ1

t0

[−L(σ2)] · · ·

ˆ σk−1

t0

[−L(σk)] dσk · · · dσ2dσ1,

thus, Φ(t, t0)Φ
∗(t0) = Φ∗(t0). Take the limit on both sides

leads to [Φ∗(t0)]
2
= Φ∗(t0), therefore, [Φ∗(t0)]

i
= Φ∗(t0)

for any i ∈ Z+.

Based on the above established Lemmas, we shall
show the relationship between the cluster consensus and
the matrix-valued Laplacian matrix L(t) of the associated
matrix-weighted networks, and further provide the explicit
expression of the cluster consensus value.

Theorem 1. Consider the multi-agent system (2) on
a matrix-weighted switching network G(t) satisfying As-

sumption 2. If lim
t→∞

x(t) = x∗, then

x∗ ∈
⋂

i∈M

null(L(Gi)).

Moreover,

x∗ =

r∑

i=1

(η⊤
i x(t0))ηi,

where ηi ∈ R
dn satisfies span {η1, . . . ,ηr} =⋂

i∈M

null(L(Gi)) and

η⊤
i ηj =

{
1, i = j

0 i 6= j
, ∀i, j ∈ r.

Proof. Since [Φ∗(t0)]
2 = Φ∗(t0), then Φ∗(t0) is idempo-

tent and diagonalizable, and the eigenvalues of Φ∗(t0) are
0 or 1. We shall first prove that the eigenvector space cor-
responding to the eigenvalue 1 of Φ∗(t0) is

⋂
t≥0

null(L(t)).

On the one hand, for any α ∈ span {η1,η2, . . . ,ηr}, due
to L(t)α = 0 for any t ≥ t0, thus Φ(t, t0)α = α. By tak-
ing the limit of Φ(t, t0), it is easy to derive Φ∗(t0)α = α.
Conversely, for an arbitrary α such that Φ∗(t0)α = α,
L(t)α = L(t)Φ∗(t0)α = 0. Therefore, one has Φ∗(t0)ηi =

ηi and η⊤
i Φ

∗(t0) = η⊤
i for any i ∈ r. There exists a ma-

trix P = [η1,η2, . . . ,ηr, ∗, . . . , ∗] together with its inverse

P−1 = [η1,η2, . . . ,ηr, ⋆, . . . , ⋆]
⊤

such that

Φ∗(t0) = P

[
Ir 0
0 0

]
P−1

=
r∑

i=1

ηiη
⊤
i ,

and one can deduce that

x∗ = Φ∗(t0)x(0)

=
r∑

i=1

ηiη
⊤
i x(0)

=

r∑

i=1

(η⊤
i x(0))ηi.

Remark 2. In the Theorem 1, if lim
t→∞

x(t) = x∗ exists for

any initial state x(t0), and
⋂
t≥0

null(L(t)) = {0}, then the

system (2) achieves the asymptotic stability. Also, when⋂
t≥0

null(L(t)) = {1n ⊗ Id}, the average consensus will be

achieved for the system (2).

Remark 3. In the Theorem 1, it is assumed that the
switching network G(t) is constructed from a finite set
of graphs. Here, we shall ask whether or not the con-
clusion holds if the switching network G(t) is constructed
from an infinite set of graphs? To see this, let us choose,
for instance, the multi-agent system ẋ(t) = − 1

⌊t+1⌋2Lx(t),

where L is the matrix-valued Laplacian matrix of a time-
invariant matrix-weighted network. Now, consider the un-
derlying matrix-weighted switching network correspond-
ing to the Laplacian matrix 1

⌊t+1⌋2L. One can see that

limt→∞x(t) = e−
π2

6
Lx(0). Here, the convergence value

is not only related to the null space of L(t), but also
to the other eigenvectors corresponding to the non-zero
eigenvalues. However, if we choose the multi-agent system
ẋ(t) = −⌊t+ 1⌋Lx(t) and L is the same as the above ex-
ample. Let null(L) = span {ξ1, . . . , ξm}, where ξi ∈ R

dn

satisfies

ξ⊤i ξj =

{
1, i = j

0 i 6= j
, ∀i, j ∈ m.

Then, limt→∞x(t) =
∑m

i=1(ξ
⊤
i x(0))ξi. Therefore, the

conclusion in Theorem 1 does not always hold if the
switching network G(t) is constructed from an infinite set
of graphs.

Then, we shall proceed to examine quantitative char-
acterization of cluster consensus achieved on matrix-
weighted switching networks. In particular, we are in-
tended to establish quantitative connection between the
cluster consensus value and specific properties of L(t). To
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this end, we introduce the notion of matrix-weighted inte-
gral network; this notion proves crucial in our subsequent
analysis. In the following discussions, we also assume that
the weight matrix associated with (i, j) ∈ E(t) satisfies
that either sgn(Aij(t)) ≥ 0 or sgn(Aij(t)) ≤ 0 for t ≥ 0.

Definition 2. Pan et al. [17] Let G(t) = (V , E(t), A(t))
be a matrix-weighted switching network. The matrix-
weighted integral network of G(t) over time span [t1, t2) ⊆

[0,∞) is defined as G̃[t1,t2) = (V , Ẽ , Ã), where

Ẽ =




(i, j) ∈ V × V |

t2
ˆ

t1

|Aij(t)|dt ≻ 0 or

t2
ˆ

t1

|Aij(t)|dt � 0




 ,

and

Ã =
1

t2 − t1

t2
ˆ

t1

A(t)dt.

According to Definition 2, let D̃ denote the matrix-
valued degree matrix of G̃[t1,t2), that is,

D̃ =
1

t2 − t1

t2
ˆ

t1

D(t)dt.

Furthermore, let L̃[t1,t2) denote the matrix-valued Lapla-

cian of G̃[t1,t2). Thus,

L̃[t1,t2) = D̃ − Ã =
1

t2 − t1

t2
ˆ

t1

L(t)dt.

Under the definition of the integral network of matrix-
weighted switching networks, we shall explore connections
between the null space of the matrix-valued Laplacian ma-
trices of a sequence of matrix-weighted networks and that
of the corresponding integral network, which proves crucial
in our subsequent analysis. With reference to Assump-

tion 1, we denote G(t) on dwell time t ∈ [tk, tk+1) as
G[tk,tk+1)(t) = Gk and denote the associated matrix-valued

Laplacian as Lk, where k ∈ N.

Lemma 3. Let G(t) be a matrix-weighted switching net-
work satisfying Assumption 1. Then

null(L̃[tk′ ,tk′′ )) =
⋂

i∈k′′−k′

null(Lk′+i−1),

where k′ < k′′ ∈ N.

Proof. On the one hand, we shall prove that
null(L̃[tk′ ,tk′′ )) ⊆

⋂
i∈k′′−k′

null(Lk′+i−1), i.e., for any

η ∈ null(L̃[tk′ ,tk′′ )), one has η ∈ null(Lk′+i−1) for all

i ∈ k′′ − k′. Note that η⊤L̃[tk′ ,tk′′ )η = 0, implying that,

η⊤L̃[tk′ ,tk′′ )η

= η⊤


 1

tk′′ − tk′

tk′′
ˆ

tk′

L(t)dt


η

=
1

tk′′ − tk′

k′′−k′∑

i=1

η⊤Lk′+i−1(tk′+i − tk′+i−1)η

= 0,

due to the fact that Lk′+i−1 is positive semi-definite or pos-
itive definite for all i ∈ k′′ − k′, therefore, η⊤Lk′+i−1η = 0

for all i ∈ k′′ − k′, one has Lk′+i−1η = 0 and η ∈

null(Lk′+i−1) for all i ∈ k′′ − k′, which would imply,

null(L̃[tk′ ,tk′′)) ⊆
⋂

i∈k′′−k′

null(Lk′+i−1).

On the other hand, we shall prove that⋂
i∈k′′−k′

null(Lk′+i−1) ⊆ null(L̃[tk′ ,tk′′ )), i.e., for any

η ∈
⋂

i∈k′′−k′

null(Lk′+i−1), one has η ∈ null(L̃[tk′ ,tk′′ )).

Considering the quantity η⊤L̃[tk′ ,tk′′ )η,

η⊤L̃[tk′ ,tk′′ )η

= η⊤



 1

tk′′ − tk′

tk′′
ˆ

tk′

L(t)dt



η

=
1

tk′′ − tk′

k′′−k′∑

i=1

η⊤Lk′+i−1(tk′+i − tk′+i−1)η

= 0,

due to the fact that L̃[tk′ ,tk′′ ) is positive semi-definite or

positive definite, therefore, L̃[tk′ ,tk′′ )η = 0, which would
imply,

⋂

i∈k′′−k′

null(Lk′+i−1) ⊆ null(L̃[tk′ ,tk′′ )).

Thus,

null(L̃[tk′ ,tk′′)) =
⋂

i∈k′′−k′

null(Lk′+i−1).

Lemma 3 indicates that the intersection of the null
space of matrix-valued Laplacian matrices associated with
a sequence of matrix-weighted networks is equal to the
null space of the corresponding integral network. Using
this fact, we proceed to explore the sufficient conditions
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under which the multi-agent system (2) achieves cluster
consensus; these conditions reveal the connection between
the steady-state of the multi-agent system (2) and the null
space of the related integral network.

Denote the state transition matrix of multi-agent system
(2) over time interval [tk′ , tk′′ ] as

Φ(tk′′ , tk′ ) = e−Lk′′
−1△tk′′

−1 · · · e−Lk′

△tk′ ,

then x(tk′′ ) = Φ(tk′′ , tk′)x(tk′ ), where k′ < k′′ ∈ N.
Let λ1 ≤ λ2 ≤ · · · ≤ λdn be the eigenvalues

of the matrix-valued Laplacian matrix L correspond-
ing to a time-invariant matrix-weighted network. Let
dim(null(L)) = m, where m ∈ dn, namely,

0 = λ1 = · · · = λm ≤ λm+1 ≤ · · · ≤ λdn.

Denote by β1 ≥ β2 ≥ · · · ≥ βdn as the eigenvalues of
e−Lt; then βi(e

−Lt) = e−λi(L)t, i.e., 1 = β1 = · · · = βm ≥
βm+1 ≥ · · · ≥ βdn. In the meantime, the eigenvector cor-
responding to the eigenvalue βi(e

−Lt) is equal to that cor-
responding to λi(L). Therefore, let

dim(
⋂

i∈k′′−k′

null(Lk′+i−1)) = m,

where m ∈ dn, then Φ(tk′′ , tk′)⊤Φ(tk′′ , tk′ ) has at least
m eigenvalues at 1. Let µj be the eigenvalues of
Φ(tk′′ , tk′)⊤Φ(tk′′ , tk′ ), where j ∈ dn such that µ1 = · · · =
µm = 1 and µm+1 ≥ µm+2 ≥ · · · ≥ µdn. Then applying
the facts that Φ(tk′′ , tk′)⊤Φ(tk′′ , tk′) ≥ 0 and

max
j∈dn

µj(Φ(tk′′ , tk′)⊤Φ(tk′′ , tk′ ))

=‖ Φ(tk′′ , tk′)⊤Φ(tk′′ , tk′) ‖

≤ 1,

one has µdn ≤ · · · ≤ µm+2 ≤ µm+1 ≤ 1. The following
lemma thereby provides the relationship between the null
space of the matrix-valued Laplacian of G̃[tk′ ,tk′′ ) and the

eigenvalues of Φ(tk′′ , tk′)⊤Φ(tk′′ , tk′), which is paramount
in the subsequent analysis.

Lemma 4. Let G(t) be a matrix-weighted switching net-

work satisfying Assumption 1. Let dim(null(L̃[tk′ ,tk′′ ))) =
m, where m ∈ dn. Then

µm+1(Φ(tk′′ , tk′)⊤Φ(tk′′ , tk′)) < 1,

where k′ < k′′ ∈ N.

Proof. By contradiction, assume that

µm+1(Φ(tk′′ , tk′ )⊤Φ(tk′′ , tk′)) = 1

for k′ < k′′ ∈ N. According to Lemma 5, there exists a
non-zero η /∈ null(L̃[tk′ ,tk′′ )) such that

‖ η ‖=‖ Φ(tk′′ , tk′)η ‖ .

Denote ηk′ = η and ηk′+i = e−Lk′+i−1△tk′+i−1ηk′+i−1

for all i ∈ k′′ − k′. Moreover, λj(e
−Lk′+i−1△tk′+i−1) ≤ 1

for all j ∈ dn, thereby,

‖ e−Lk′+i−1△tk′+i−1ηk′+i−1 ‖≤‖ ηk′+i−1 ‖,

and

‖ η ‖ =‖ ηk′′ ‖≤‖ ηk′′−1 ‖≤ . . . ≤‖ ηk′ ‖=‖ η ‖ .

Hence,

‖ e−Lk′+i−1△tk′+i−1ηk′+i−1 ‖=‖ ηk′+i−1 ‖ .

Then

η⊤
k′+i−1e

−Lk′+i−1△tk′+i−1e−Lk′+i−1△tk′+i−1ηk′+i−1

=η⊤
k′+i−1ηk′+i−1.

By Lemma 5,

e−2Lk′+i−1△tk′+i−1ηk′+i−1 = ηk′+i−1,

and thus,
Lk′+i−1ηk′+i−1 = 0,

implying that ηk′+i−1 ∈ null(Lk′+i−1). Using the fact

‖ ηk′+i − ηk′+i−1 ‖

=‖ e−Lk′+i−1△tk′+i−1ηk′+i−1 − ηk′+i−1 ‖

=‖
∞∑

t=1

1

t!
(−Lk′+i−1△tk′+i−1)

tηk′+i−1 ‖

= 0,

one can conclude that ηk′+i−1 = ηk′+i for all i ∈ k′′ − k′,

which implies that η ∈ ∩
i∈k′′−k′

null(Lk′+i−1), i.e., η ∈

null(L̃[tk′ ,tk′′ )), leading to a contradiction.

Based on the above established Lemmas, we shall show
the main result of this part using null space analysis of
matrix-valued Laplacian related of integral network asso-
ciated with the switching networks.

Theorem 2. Let G(t) be a matrix-weighted switching net-
work satisfying Assumption 1. If there exists a subse-
quence of {tk|k ∈ N}, denoted by

{tkl
|tk0

= t0,△tkl
= tkl+1

− tkl
< ∞, l ∈ N},

and a scalar q ∈ (0, 1), such that for all l ∈ N,

null(L̃[tkl ,tkl+1
)) = null(L̃[tkl+1

,tkl+2
)),

and
µm+1(Φ(tkl+1

, tkl
)⊤Φ(tkl+1

, tkl
)) ≤ q,
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where m = dim(null(L̃[tkl ,tkl+1
))). Then the multi-agent

network (2) admits the cluster consensus. Moreover, de-

note null(L̃[tkl ,tkl+1
)) = span{ξ1, · · · , ξm} for all l ∈ N,

where ξi ∈ R
dn satisfies

ξ⊤i ξj =

{
1, i = j

0 i 6= j
, ∀i, j ∈ m,

then the cluster consensus value is

x∗ =

m∑

i=1

(ξ⊤i x(0))ξi.

Proof. Construct the error vector ω(t) = x(t) − x∗

which satisfies that ω̇(t) = −L(t)ω(t). Choose ω(0) /∈

null(L̃[tkl ,tkl+1
)) for any l ∈ N, then ω(0)⊤ξi = 0 for all

i ∈ m. Thus, ω(0)⊥null(L̃[tkl ,tkl+1
)) for any l ∈ N. Ap-

plying Lemma 5 yields

µm+1(Φ(tk1
, tk0

)⊤Φ(tk1
, tk0

)) ≥
ω(tk1

)⊤ω(tk1
)

ω(0)⊤ω(0)
,

implying that,

‖ ω(tk1
) ‖≤ µm+1(Φ(tk1

, tk0
)⊤Φ(tk1

, tk0
))

1
2 ‖ ω(0) ‖ .

Therefore, for any l ∈ Z+

‖ ω(tkl+1
) ‖

≤

(
l∏

s=0

µm+1(Φ(tks+1
, tks

)⊤Φ(tks+1
, tks

))
1
2

)
‖ ω(0) ‖

≤q
1
2
(l+1) ‖ ω(0) ‖ .

Let
V (t) = ω(t)⊤ω(t) =‖ ω(t) ‖2;

then computing the derivative of V (t) along the trajecto-
ries of system ω̇(t) = −L(t)ω(t) yields,

V̇ (t) = 2ω(t)⊤(−L(t))ω(t) ≤ 0.

Thus
‖ ω(t) ‖≤‖ ω(tkl

) ‖≤ q
1
2
l ‖ ω(0) ‖,

for any t ∈ [tkl
, tkl+1

) and l ∈ N. Note that 0 < q < 1, and
hence,

lim
t→∞

‖ ω(t) ‖= 0.

As such, the multi-agent system (2) achieves cluster
consensus and the cluster consensus value is x∗ =∑m

i=1(ξ
⊤
i x(0))ξi.

Remark 4. In the Theorem 2, for a matrix-weighted
switching network G(t), if there exists a subsequence
{thl

|th0
= t0,△thl

= thl+1
− thl

< ∞, l ∈ N} of {tk|k ∈ N}

such that null(L̃[thl
,thl+1

)) = null(L̃[thl+1
,thl+2

)) for any

l ∈ N, then there does not exist another subsequence

{tql |tq0 = t0,△tql = tql+1
− tql < ∞, l ∈ N} of {tk|k ∈ N}

such that null(L̃[tql ,tql+1
)) = null(L̃[tql+1

,tql+2
)) for any

l ∈ N and null(L̃[thl
,thl+1

)) 6= null(L̃[tql ,tql+1
)) for any

l ∈ N. We shall illustrate this point by contradiction.
Choose one time interval [tm, tn) where m < n ∈ N,
such that there exist l0 ∈ N and h0 ∈ N satisfying
[tkl0

, tkl0+1
) ⊆ [tm, tn) and [tkh0

, tkh0+1
) ⊆ [tm, tn), then

one has null(L̃[tm,tn)) = null(L̃[tkl ,tkl+1
)) for any l ∈ N

and null(L̃[tm,tn)) = null(L̃[tkh ,tkh+1
)) for any h ∈ N; how-

ever, null(L̃[tkl ,tkl+1
)) 6= null(L̃[tkh ,tkh+1

)) for any l ∈ N

and h ∈ N, which is a contradiction.

Remark 5. Consider a special class of switching networks,
where G(t) is periodic, i.e., there exists a T > 0 such that
G(t + T ) = G(t) for any t ≥ 0. One can see that it satis-
fies the condition of Theorem 2, therefore, one can apply
Theorem 3 in Trinh et al. [24] on the integral network
of G(t) over one period to derive the cluster situation for
switching networks G(t).

Bipartite consensus is a special case of cluster consensus
in the scalar-weighted time-invariant signed networks. Dif-
ferent from the scalar-weighted time-invariant signed net-
works where the connectivity and the structurally balance
of the network can completely guarantee the bipartite con-
sensus, for the matrix-weighted time-invariant signed net-
works, even if the network is unbalanced, there may be a
bipartite consensus solution. Recently, authors in Su et al.
[20] provide a necessary and sufficient condition for achiev-
ing bipartite consensus from an algebraic perspective, that
is, the null space of the matrix-valued Laplacian matrix
corresponding to the matrix-weighted signed networks is
in the form of C(1n⊗Ψ), where Ψ = [ϕ1,ϕ2, . . . ,ϕm], m ∈
Z+ and ϕi ∈ R

d, i ∈ m, are mutually perpendicular unit
basis vectors, C = diag {σ1, σ2, . . . , σn} ∈ R

dn×dn and
σi = Id or σi = −Id. Based on these results, next we shall
examine conditions for the bipartite consensus under the
matrix-weighted switching networks.

Corollary 1. Let G(t) be a matrix-weighted switching
network satisfying Assumption 1; furthermore, suppose
there exists a subsequence of {tk|k ∈ N}, denoted by
{tkl

|tk0
= t0,△tkl

= tkl+1
− tkl

< ∞, l ∈ N}, and a scalar

q ∈ (0, 1), such that null(L̃[tkl ,tkl+1
)) = C(1n ⊗ Ψ) and

µm+1(Φ(tkl+1
, tkl

)⊤Φ(tkl+1
, tkl

)) ≤ q for all l ∈ N, where
Ψ = [ϕ1,ϕ2, . . . ,ϕm], m ∈ Z+ and ϕi ∈ R

d is the unit
basis vector and vertical to each other for all i ∈ m. Then
the multi-agent network (2) admits the bipartite consen-
sus, and the bipartite consensus value is

x∗ = C

(
1n ⊗

(
1

n
Ψ
(
1
⊤
n ⊗Ψ⊤

)
Cx(t0)

))
.

Proof. The process is similar to the proof of Theorem 2,
thus we omit here.
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Figure 1: Three matrix-weighted networks G1, G2 and G3. Those
edges weighted by positive definite matrices are illustrated by solid
lines and edges weighted by positive semi-definite matrices are illus-
trated by dotted lines.

Remark 6. Notably, the number of candidate net-
works for switching and dwell times in the aforemen-
tioned discussions can be infinite, which implies that{
Φ(tkl+1

, tkl
)⊤Φ(tkl+1

, tkl
) | l ∈ N

}
cannot be generated

from a finite set. Therefore, in Corollary 1, condition
µm+1(Φ(tkl+1

, tkl
)⊤Φ(tkl+1

, tkl
)) ≤ q is used to ensure bi-

partite consensus. Subsequently, in order to remove this
condition and obtain the analogous graph-theoretic condi-
tion for reaching bipartite consensus, we proceed to discuss
the case where both the switching networks and the dwell
times come from a finite set Cao et al. [5], Ren et al. [18].

Assumption 3. In addition to Assumption 1 and
Assumption 2, the dwell time △tk = tk+1 − tk (k ∈ N)
is chosen from a finite set of arbitrary positive numbers.

Definition 3 (Simultaneously Structurally Balanced). A
matrix-weighted switching network G(t) is simultaneously
structurally balanced if there exists a time-invariant bi-
partition of the node set V , say V1 and V2, such that the
matrix weights on the edges within each subset is posi-
tive definite or positive semi-definite, but negative definite
or negative semi-definite for the edges between the two
subsets. A matrix-weighted switching network is simulta-
neously structurally imbalanced if it is not simultaneously
structurally balanced.

On the basis of the above discussions, an analogous
graph-theoretic condition by use of simultaneously struc-
turally balance is as follows.

Corollary 2. Let G(t) be a matrix-weighted simultane-
ously structurally balanced switching network satisfying
Assumption 3 with a time-invariant node set bipartition
V1 and V2; if there exists a subsequence of {tk|k ∈ N},
denoted by {tkl

|tk0
= t0, ∀l ∈ N}, and h > 0 such that

△tkl
= tkl+1

− tkl
≤ h and the integral graph of G(t) over

time span [tkl
, tkl+1

) has a positive-negative spanning tree
for all l ∈ N, then the multi-agent network (2) admits the
bipartite consensus, and the bipartite consensus value is

x∗ = C

(
1n ⊗

(
1

n

(
1
⊤
n ⊗ Id

)
Cx(0)

))
,

where C = diag {σ1, σ2, . . . , σn} ∈ R
dn×dn satisfies σi =

Id if i ∈ V1 and σi = −Id if i ∈ V2.

Proof. Since G(t) is simultaneously structurally balanced,
then the integral graph of G(t) over time span [tkl

, tkl+1
)

for any l ∈ N is structurally balanced. In addition, the
integral graph of G(t) over time span [tkl

, tkl+1
) has a

positive-negative spanning tree for all l ∈ N. There-
fore, according to the Theorem 2 in Pan et al. [16],

null(L̃[tkl ,tkl+1
)) = C(1n ⊗ Id), one can conclude that

µd+1(Φ(tkl+1
, tkl

)⊤Φ(tkl+1
, tkl

)) < 1 for all l ∈ N by
Lemma 4. Note that Assumption 3 ensures that{
Φ(tkl+1

, tkl
)⊤Φ(tkl+1

, tkl
) | l ∈ N

}
can be generated from

a finite set. Now choose

q = max
l∈N

{
µd+1(Φ(tkl+1

, tkl
)⊤Φ(tkl+1

, tkl
))
}
;

hence according to the proof of Theorem 2, the multi-
agent system (2) admits bipartite consensus.

5. Simulation Results

Consider a sequence of matrix-weighted networks, con-
sisting of (the same) seven agents, where their interaction
networks are G1,G2 and G3, respectively, as shown in Fig-
ure 1. Note that n = 7 and d = 3 in this example. The
matrix-valued edge weights for each network are,

A12(G1) =




2 −1 −1
−1 3 −1
−1 −1 2


 , A13(G1) =




1 1 0
1 2 0
0 0 3


 ,

A23(G1) =




3 1 −1
1 2 −1
−1 −1 2


 , A46(G2) =




1 1 0
1 2 0
0 0 3


 ,

A57(G2) =




2 −1 −1
−1 3 −1
−1 −1 2


 , A34(G3) =




4 0 −2
0 1 1
−2 1 2


 ,

8



1

2

3 4

5

6

7

G̃

Figure 2: The integral graph of G(t) over time span [t6l, t6(l+1))
where l ∈ N.

A25(G3) =




4 2 0
2 2 1
0 1 1


 , A45(G3) =




4 2 0
2 4 3
0 3 3


 .

Consider a time sequence {tk | k ∈ N} such that tk =
k∆t where ∆t > 0. The coordination process is initiated
from network G1 (i.e., G(0) = G1) with

x1(0) = [0.3922, 0.6555, 0.1712]⊤,

x2(0) = [0.7060, 0.0318, 0.5762]⊤,

x3(0) = [0.2688, 0.1592, 0.3266]⊤,

x4(0) = [0.6787, 0.7577, 0.7431]⊤,

x5(0) = [0.3830, 0.6112, 0.1212]⊤,

x6(0) = [0.3555, 0.9712, 0.8060]⊤,

and

x7(0) = [0.1318, 0.7762, 0.3688]⊤.

The switching among networks G1,G2 and G3 satisfies,

G(t) =





G1,

G2,

G3,

t ∈ [t6l, t6l+2),

t ∈ [t6l+2, t6l+5),

t ∈ [t6l+5, t6(l+1)),

(3)

where l ∈ N. The integral graph of G1, G2 and G3 over
time span [t6l, t6(l+1)), where l ∈ N, denoted by G̃, is shown
in Figure 2. One can see that it satisfies the conditions
in Theorem 2, and the multi-agent system (2) on the
switching networks admits cluster consensus as shown in
Figure 3, which is the same as the system on the integral
network; see Figure 4. The cluster conditions associated
with the integral network of G(t) over one period can there-
fore be employed to construct that applicable to switching
networks G(t) over [0,∞).

Consider a variant of the above Example by only chang-
ing the matrix weights on edges (3, 4), (2, 5) and (4, 5) into

A34(G3) = −




4 0 −2
0 2 1
−2 1 2


 ,
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Figure 3: State evolution of the multi-agent system (2) on a sequence
of networks in Figure 1 with switching sequences as (3).

A25(G3) = −




4 2 0
2 2 1
0 1 1



 ,

and

A45(G3) =




4 2 0
2 5 3
0 3 3


 ,

respectively. One can see that G(t) is simultaneously
structurally balanced and the integral graph of G(t) over

time span [t6l, t6(l+1)), where l ∈ N, denoted by G̃, has a

positive-negative spanning tree T (G̃). Therefore, accord-
ing to Corollary 2, the multi-agent system (2) admits
bipartite consensus; see Figure 6.

6. Conclusion

This paper examines cluster consensus problems on
matrix-weighted switching networks. For such networks,
necessary and/or sufficient conditions for reaching clus-
ter consensus that can be quantitatively characterized are
provided. It is shown that if the matrix-weighted switch-
ing networks achieve the cluster consensus, then the clus-
ter consensus value belongs to the intersection of the null
space of all matrix-valued Laplacians. Furthermore, suf-
ficient conditions for cluster consensus are obtained us-
ing the matrix-valued Laplacian of the associated integral
network. In particular, conditions for bipartite consen-
sus is further provided under the condition the matrix-
weighted switching networks is simultaneously structurally
balanced, as well as the explicit expression of convergence
state.
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Figure 4: State evolution of the multi-agent system (2) on the inte-
gral network in Figure 2.
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T (G̃)

Figure 5: The positive-negative spanning tree T (G̃) of the integral
graph G(t) over time span [t6l, t6(l+1)) where l ∈ N. Those edges
weighted by positive definite matrices are illustrated by solid lines
and edges weighted by negative definite matrices are illustrated by
dotted lines.
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Figure 6: State evolution of the multi-agent system (2) on a sequence
of networks in Figure 1 with switching sequences as (3).

7. Appendix

Lemma 5. Horn and Johnson [11, p.235] (Rayleigh The-
orem) Let M ∈ R

n×n be symmetric with eigenvalues
λ1 ≤ · · · ≤ λn. Let x1, · · · ,xn be corresponding mutu-
ally orthonormal vectors such that Mxp = λpxp, where
p ∈ n. Then,

λ1 ≤ x⊤Mx ≤ λn

for any unit vector x ∈ R
n, with equality in the right-hand

(respectively, left-hand) inequality if and only if Mx=λnx

(respectively, Mx=λ1x); moreover,

λn = max
x6=0

x⊤Mx

x⊤x
,

and

λ1 = min
x6=0

x⊤Mx

x⊤x
.

We also make the observation that when M ∈ R
n×n

is positive semi-definite matrix, x⊤Mx = 0 if and only if
Mx = 0.

Lemma 6. Su and Huang [21] Let {tk|k ∈ N} be a se-
quence such that tk+1 − tk ≥ α > 0 for all k ∈ N and
t0 = 0. Suppose F (t): [0,∞) → R satisfies

1) lim
t→∞

F (t) exists;

2) F (t) is twice differentiable on each interval [tk, tk+1);
3) F̈ (t) is bounded for t ≥ 0.

Then lim
t→∞

Ḟ (t) = 0.
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