
1

Distributed computation of fast consensus weights
using ADMM

Kiran Rokade and Rachel Kalpana Kalaimani

Abstract—We consider the problem of achieving average
consensus among multiple agents, where the inter-agent com-
munication network is depicted by a graph. We consider the
discrete-time consensus protocol where each agent updates its
value as a weighted average of its own value and those of its
neighbours. Given a graph, it is known that there exists a set of
‘optimal weights’ such that the agents reach average consensus
asymptotically with an optimal rate of convergence. However,
existing methods require the knowledge of the entire graph to
compute these optimal weights. We propose a method for each
agent to compute its set of optimal weights locally, i.e., each agent
only has to know who are its neighbours. The method is derived
by solving a matrix norm minimization problem subject to
linear constraints in a distributed manner using the Alternating
Direction Method of Multipliers (ADMM). We illustrate our
results using numerical examples and compare our method with
an existing method called the Metropolis weights, which are also
computed locally.

Index Terms—Consensus algorithm, distributed optimization,
ADMM.

I. INTRODUCTION

In a consensus problem, a group of agents seeks to agree
upon a certain quantity of interest. In many applications,
this quantity of interest is the average of the initial states
of the agents [1], [2]. Consensus problems arise in various
settings such as multi-agent formation control [3], estimating a
parameter using a network of sensors [1], workload balancing
for distributed computation [2], etc. These problems have been
widely studied in control theory [4]–[7].

In all consensus protocols, an important parameter is the
time required to reach average consensus. One line of literature
focuses on algorithms which achieve consensus in finite time
[8]–[10]. The other line of literature looks at algorithms which
achieve consensus asymptotically, while trying to improve the
rate of this asymptotic convergence [6], [11]. For continuous-
time consensus protocols, it is known that the rate of conver-
gence depends on the second-smallest eigenvalue of the graph
Laplacian [5], while for weighted discrete-time protocols, it
depends on the second-largest absolute value of all eigenvalues
of the weight matrix [6]. It is then natural to optimize this rate
of convergence by appropriately choosing the edge and node
weights used by the agents in their update laws for reaching
consensus.

This work has been partially supported by DST-INSPIRE Faculty Grant,
Department of Science and Technology (DST), Govt. of India (ELE/16-
17/333/DSTX/RACH).

Kiran Rokade is with the Department of Electrical and Computer Engineer-
ing, Cornell University and Rachel Kalpana Kalaimani is with the Department
of Electrical Engineering, Indian Institute of Technology Madras (e-mail:
kvr36@cornell.edu, rachel@ee.iitm.ac.in)

The problem of optimizing the rate of convergence of
distributed linear discrete-time consensus protocols has been
widely studied in literature and is sometimes referred to as
the fastest distributed linear averaging (FDLA) problem [6].
In [6], the authors consider the general weighted discrete-time
consensus protocol, with possibly asymmetric edge weights.
They propose two metrics for quantifying the rate of con-
vergence: the asymptotic convergence factor and the per-step
convergence factor. It is shown that the problem of optimizing
the per-step convergence factor is a convex optimization prob-
lem and hence can be solved efficiently. In [11], the authors
consider consensus protocols with symmetric edge weights.
Considering the edge and node weights as variables, they try
to minimize the distance between the largest and the second-
smallest eigenvalue of the weighted graph Laplacian. This
in-turn optimizes the rate of convergence of the consensus
protocol. In [12], the authors consider the problem of maxi-
mizing the second-smallest eigenvalue of the graph Laplacian
where the edge weights are functions of the agent values. They
propose an iterative method which gives optimal trajectories
of agent values by solving an optimization problem at each
iteration. Another class of problems which falls under the
FDLA framework is that of fastest mixing Markov chains [13].
Here, the equation governing the evolution of the probability
distribution is similar to the discrete-time consensus proto-
col. The objective is to find a transition probability matrix,
analogous to the weight matrix in a consensus protocol, such
that an initial probability distribution converges to a uniform
distribution as fast as possible.

While the above methods give weights that achieve the
optimal rate of convergence in a consensus protocol, finding
these weights require the knowledge of the entire network
topology. In other words, there has to be a central entity which
has the knowledge of the entire network, can calculate the
optimal weights and then broadcast them to the agents. Firstly,
there may not exist such a central entity due to constraints on
the communication resources or for security reasons. Secondly,
even if it does exist, this process of computing and broadcast-
ing the weights has to be repeated every time the network
topology changes due to say node failure, edge failure or if
new agents enter the network. This can be very inefficient if
the network is large. In the spirit of distributed computation,
we would want the agents to locally compute these weights
which they use in their update laws. An example of locally
computed weights is the Metropolis weights [1]. To compute
them, an agent has to know only the degree of itself and its
neighbours. While these weights do achieve consensus, the rate
of convergence of the consensus protocol with these weights is

ar
X

iv
:2

00
2.

08
10

6v
3

 [
ee

ss
.S

Y
]

 2
8

N
ov

 2
02

1

2

not optimal. We seek to have the best of both worlds: locally
computed weights whose rate of convergence is optimal.

A solution to the problem of locally computing the optimal
consensus weights has been attempted in [14]. There, the
authors use a distributed gradient-descent approach on the
Schatten p-norm of the weight matrix, which is an approx-
imation of the second-largest eigenvalue of the weight matrix.
Computing the gradient requires the agents to communicate
with its neighbours which are up to p/2 hops away. There is
a trade-off between locality and optimality: smaller values of
p give sub-optimal solutions. We propose an algorithm where
the agents need to communicate only with their immediate
neighbours to compute the consensus weights. Moreover,
the rate of convergence of the consensus protocol using the
weights obtained by our algorithm can be arbitrarily close
to the optimal value. The algorithm is derived using the
Alternating Direction Method of Multipliers (ADMM) [15],
[16]. We summarize our contributions below.

A. Contributions

1) We consider agents which communicate with each other
over a network depicted by an undirected graph. We
propose an iterative algorithm for the agents to locally
compute the weights required for the weighted-average
discrete-time consensus protocol. We show that the rate
of convergence of the consensus protocol using these
weights converges to the optimal value. The algorithm is
derived by solving a matrix norm minimization problem
in a distributed manner using ADMM. The result is given
in Section III.

2) For some applications, we propose a variation of our
algorithm, where, at every iteration, the agents compute
the weights and update their values using these weights.
Using a numerical example, we show that this variation
of our algorithm performs better in terms of the rate of
convergence of the consensus protocol than the locally
computed Metropolis weights. This is done in Section
IV-B.

The rest of the paper is organized as follows. We next
summarize some basic notations which will be used through-
out the paper. In Section II, we mathematically formulate
the problem of computing the optimal consensus weights.
In Section III, we propose our algorithm to locally compute
these optimal weights. We also state our main result which
proves the convergence of this algorithm. The proof of the
result is deferred to the appendix. In Section IV, we present
some numerical examples to illustrate the convergence of our
algorithm and to compare its performance with the Metropolis
weights. Finally, we give some concluding remarks in Section
V.

B. Notation

All vectors are of length n and all matrices are of size n×n.
1 is the vector

[
1 . . . 1

]T
of all ones. ei is the ith standard

basis vector with 1 as the ith entry and zeros elsewhere. For
a vector x: xi or (x)i denotes its ith element, ||x|| denotes its
2-norm. For a matrix A: ρ(A) denotes its spectral radius or

the maximum absolute eigenvalue, ||A|| denotes its induced
2-norm or the maximum singular value, ||A||F denotes its
Frobenius norm, Aij or (A)ij denotes its (i, j)th element,
Tr(A) denotes its trace, A > 0 denotes Aij > 0 for all
(i, j). For a set B, |B| denotes its cardinality. For a function
f : Rn → R, (∂/∂x)f =

[
(∂/∂x1)f . . . (∂/∂xn)f

]T
denotes the gradient of f with respect to the vector x ∈ Rn.
For a function f : Rn×n → R,

(∂/∂X)f =

(∂/∂X11)f . . . (∂/∂X1n)f
...

. . .
...

(∂/∂Xn1)f . . . (∂/∂Xnn)f

denotes the gradient of f with respect to the matrix X ∈
Rn×n.

II. PROBLEM FORMULATION

A. The average consensus problem

Consider a set V = {1, . . . , n} of n agents, each having
a scalar initial value xi(0) ∈ R, i ∈ {1, . . . , n}. Assume that
the inter-agent communication is governed by an undirected,
connected graph G = (V,E), where E is the set of all
undirected edges of G. In other words, agents i and j can
exchange values with each other if and only if (i, j) ∈ E. Note
that an agent always knows its own value, hence, for the ease
of notation, we assume that (i, i) ∈ E for all i ∈ {1, . . . , n}.
Let Ni = {j ∈ V : (i, j) ∈ E} be the set of all neighbours of
agent i.

We want the agents to reach average consensus, i.e., each
agent must compute the average xavg(0) = (1/n)

∑n
i=1 xi(0)

of the initial values in a distributed manner by communicating
only with its neighbours. We consider the distributed linear
iterative protocol where each agent i updates its value as

xi(t+ 1) = Wiixi(t) +
∑
j∈Ni

Wijxj(t), i ∈ {1, . . . , n}, (1)

where t ∈ {0, 1, 2, . . . } is the time and Wij is the weight
assigned by agent i to agent j’s value. Due to the commu-
nication constraint imposed by the graph, we fix Wij = 0 if
(i, j) /∈ E.

Remark 1. Note that since the graph G is undirected, (i, j) ∈
E implies Wij and Wji can both be nonzero. However, they
can take different values in general.

Now, the protocol (1) can be written as

x(t+ 1) = Wx(t), (2)

where W ∈ Rn×n is called the weight matrix and x(t) =[
x1(t) . . . xn(t)

]T ∈ Rn is the vector of agent values at
time t. We refer to (2) as the consensus protocol. Let x̄ =
xavg(0)1 be the vector with xavg(0) as all its entries. From
(2), we have x(t) = W tx(0). Thus, the agents reach average
consensus, i.e., limt→∞ x(t) = x̄ if and only if

lim
t→∞

W t = 11T /n. (3)

Following result from [6] gives a necessary and sufficient
condition for (3) to be true.

3

Proposition 1. [6] The consensus protocol (2) reaches
average consensus, i.e., limt→∞ x(t) = x̄ if and only if

W1 = 1, WT1 = 1, ρ(W − 11T /n) < 1. (4)

Note that the weights Wij are allowed to be negative in
general. Condition (4) ensures that in the consensus protocol
given by (2):
• the average 1Tx(t)/n of the agent values is invariant

across time t,
• any vector in the ‘agreement space’, i.e., in the span of

1, is invariant with respect to W ,
• all eigenvalues of W other than the eigenvalue 1 are

strictly inside the unit circle.
Given that W satisfies (4), Proposition 1 guarantees
limt→∞ x(t) = x̄. We are interested in maximizing the rate at
which this convergence occurs.

B. Optimal weights

Define e(t) = x(t)− x̄ as the consensus error. Then, from
the consensus protocol (2), we can write the dynamics of the
consensus error as

e(t+ 1) = (W − 11T /n)e(t). (5)

Now, one way to characterize the rate of convergence of the
consensus protocol is by the spectral radius ρ(W − 11T /n).
This quantity is the largest absolute eigenvalue of W other than
the eigenvalue 1. It is called the asymptotic convergence factor
[6]. The weight matrix W which gives the best asymptotic
convergence factor can be found by solving the optimization
problem

minimize ρ(W − 11T /n) (P1)

subject to W1 = 1, WT1 = 1,

Wij = 0, (i, j) /∈ E,

where the constraint

Wij = 0, (i, j) /∈ E (6)

is the topological constraint imposed by the graph G. It is
known that ρ(W−11T /n) is in general a non-convex function
of W and hence (P1) is a hard problem to solve [17].

We replace the objective function ρ(W − 11T /n) in (P1)
by the convex function ||W − 11T /n||. By definition of the
induced matrix norm, we have

||W − 11T /n|| = sup
e(t) 6=0,t≥0

||e(t+ 1)||
||e(t)||

, (7)

i.e., ||W − 11T /n|| captures the worst case one-step increase
in the consensus error. Hence, ||W − 11T /n|| is known as
the per-step convergence factor [6]. Now, consider the convex
problem

minimize ||W − 11T /n|| (P2)

subject to W1 = 1, WT1 = 1,

Wij = 0, (i, j) /∈ E.

We denote a solution of (P2) by W ∗. Note that since W 6= WT

in general (refer Remark 1), we have ρ(W−11T /n) ≤ ||W−

11T /n||. We show that if the graph G is connected, then W ∗

satisfies ρ(W ∗ − 11T /n) < 1.

Lemma 1. The weight matrix W ∗ obtained by solving the
convex problem (P2) satisfies the average consensus condition
given in (4).

The proof of Lemma 1 is given in Appendix C. Henceforth,
we refer to ||W−11T /n|| as simply the convergence factor of
W . Thus, W ∗ is a weight matrix which achieves consensus
and gives an optimal convergence factor for the consensus
protocol. Due to the topological constraint Wij = 0, (i, j) /∈
E, solving (P2) requires the knowledge of the entire graph
G. Thus, (P2), in its original form, can only be solved in a
‘centralized manner’. We later propose to solve the problem
in a distributed manner using ADMM.

C. Locally calculated weights

Distributed algorithms require that each agent computes
the average xavg(0) using only local information from its
neighbours. In the same spirit, we would want each agent i
to calculate its optimal weights {W ∗ij , j = 1, . . . , n} locally,
without the knowledge of the entire graph. Before looking
at the problem of locally computing the optimal weights, we
look at a set of weights, which, although not optimal, can be
computed locally.

Consider the set of weights called the local degree weights
or the Metropolis weights. We denote the matrix of these
weights by WM. For each agent i ∈ {1, . . . , n}, let

(WM)ij =

0, (i, j) /∈ E,
min

{
1

1+|Ni| ,
1

1+|Nj |
}
, (i, j) ∈ E, i 6= j,

1−
∑
j∈Ni

(WM)ij , i = j.

(8)

Intuitively, with these weights used in the consensus protocol,
the information of an agent carries more weight if it has
few neighbours. This should speed up the propagation of
the information of the not-so-well-connected agents in the
network, which will improve the overall rate of convergence
of the entire network. These weights are widely used since
they are simple to calculate and can be shown to achieve
average consensus [1]. However, as we shall see later through
a numerical example, the convergence factor of WM can be
significantly poor than W ∗. Our aim is to give a method
for computing weights locally, whose convergence factor is
optimal.

Problem 1. Given an undirected graph G = (V,E), derive a
method such that each agent i ∈ {1, . . . , n} can determine its
set of weights {Wij , j = 1, . . . , n} knowing only its neighbour
set Ni such that the weight matrix W

1) satisfies the average consensus condition given in (4) and
2) has an optimal convergence factor, i.e.,

||W − 11T /n|| = ||W ∗ − 11T /n||,

where W ∗ is a solution of (P2).

We propose a solution to Problem 1 by solving (P2)
in a distributed manner. We do this using the well-known

4

Alternating Direction Method of Multipliers (ADMM) [16].
It gives fairly accurate results in relatively fewer number of
iterations than other methods [15]. Due to this, it has been
widely used in solving practical optimization problems, e.g.
[18], [19]. Our result is presented in the next section.

III. MAIN RESULT

In this section, we propose our result which shows how
(P2) can be solved in a distributed manner over an undirected,
connected graph. First, consider the problem

minimize

n∑
i=1

||Wi − 11T /n||
n

(P3)

subject to Wi = Wj , (i, j) ∈ E,
Wi1 = 1, WT

i 1 = 1, i ∈ {1, . . . , n},
(Wi)ij = 0, (i, j) /∈ E, i ∈ {1, . . . , n}.

Here, we have replaced the W in (P2) by n matrices
W1, . . . ,Wn, one for each agent in the network. The matrix
Wi can be seen as agent i’s estimate of the centralized
optimal solution W ∗. Since G is connected, the constraint
Wi = Wj , (i, j) ∈ E implies all Wi’s are equal. This
implies (P3) is equivalent to (P2). Introducing these new
matrices will enable solving (P3) in a distributed manner. A
key step towards this is to impose the topological constraint
(Wi)ij = 0, (i, j) /∈ E only on the ith row of the matrix Wi,
for each i ∈ {1, . . . , n}. This means each agent can impose
this constraint on its estimate Wi knowing only its neighbour
set Ni. We show that (P3) can be solved in a distributed
manner. The steps are given in Algorithm 1. The result is
formally stated below, its proof can be found in Appendix A.

Theorem 1. Consider the n sequences of matrices
{Wi(k)}k≥0, i ∈ {1, . . . , n}, where each sequence is gen-
erated by running Algorithm 1 in parallel on each agent
i ∈ {1, . . . , n}. Then, in the limit as k goes to infinity, all
n matrices Wi(k), i ∈ {1, . . . , n}

1) are equal, i.e.,

lim
k→∞

||Wi(k)−Wj(k)|| = 0

for all i, j ∈ {1, . . . , n},
2) satisfy the constraints of problem (P2) and
3) give an optimal convergence factor for the consensus

protocol (2), i.e.,

lim
k→∞

||Wi(k)− 11T /n|| = ||W ∗ − 11T /n||

for all i ∈ {1, . . . , n}, where W ∗ is a solution of the
centralized problem (P2).

It is known that for a convex optimization problem having
only equality constraints, the ADMM iterates converge to
the optimal objective value and satisfy the constraints of the
optimization problem in the limit as the number of iterations
goes to infinity [15, Section 3.2.1]. Hence, to prove Theorem
1, all we need to show is that Algorithm 1 is an ADMM
implementation of problem (P3). This is done in Appendix A.
We now make some remarks on the algorithm.

Algorithm 1 Calculating locally an estimate of the optimal
weight matrix W ∗ at agent i of the network G

Initialize: ρ > 0,Wi(0) = 0n×n, ai(0) = 0n×1, bi(0) =
0n×1,Mi(0) = 0n×n
Send Wi(0) to all neighbours j ∈ Ni.
Receive Wj(0) from all neighbours j ∈ Ni.
Iterate:
for k ≥ 0 do

Primal update:
Evaluate Wi(k + 1) as per (13).
Exchange values:
Send Wi(k + 1) to all neighbours j ∈ Ni.
Receive Wj(k + 1) from all neighbours j ∈ Ni.
Dual update:

ai(k + 1) = ai(k) + ρ(Wi(k + 1)1− 1)

bi(k + 1) = bi(k) + ρ(Wi(k + 1)T1− 1)

Mi(k + 1) = Mi(k) +
ρ

2

∑
j∈Ni

(Wi(k + 1)−Wj(k + 1))

end for

Remark 2. (Convergence of the primal variable sequences)
ADMM does not guarantee convergence of the primal vari-
ables [15, Section 3.2.1]. In the context of Theorem 1, this im-
plies that, in general, limk→∞Wi(k) may not exist. However,
this does not affect the practical application of our result since
we are only interested in a weight matrix W which satisfies the
constraints of (P2) and gives an optimal convergence factor.
Remark 3. (Stopping criterion for Algorithm 1) A stopping
criterion for Algorithm 1 is derived in Appendix B. The
criterion can be verified locally as follows. Each agent fixes an
arbitrary, small number ε > 0. At each iteration k, the agent
computes its ‘residual’ Ri(k), which captures how far is the
agent’s estimate Wi(k) from the optimal objective function
value (see (26) further ahead for the definition of Ri(k)).
The agent is trying to minimize this residual. For a given
iteration k, we say the stopping criterion of agent i is satisfied
if Ri(k) ≤ ε. Note that for the smallest k for which the
stopping criterion of agent i is satisfied, the agent can stop
updating its variables and send the fixed value Wi = Wi(k)
to its neighbours as long as Ri(k) ≤ ε holds. We say that the
stopping criterion for Algorithm 1 is satisfied if Ri(k) ≤ ε for
all i ∈ {1, . . . , n}.
Remark 4. (Running Algorithm 1 in a distributed, parallel
manner) We can verify that Algorithm 1 can indeed be
executed in a distributed manner. Each agent i maintains a
primal variable Wi(k) and dual variables ai(k), bi(k) and
Mi(k) at each iteration k. The penalty parameter ρ > 0 can
be arbitrarily fixed by the agent, although a standard choice is
ρ = 1. At each iteration, each agent updates its primal variable,
exchanges the updated primal variables with its neighbours
and updates its dual variables. Thus, Algorithm 1 can run in a
distributed manner, where each agent has to exchange values
only with its immediate neighbours.
From the primal update equation (13) of the algorithm, it is
clear that to calculate Wi(k + 1), agent i requires the Wj(k)

5

values only from the previous iteration of its neighbours.
Hence, it does not have to wait for other agents to finish their
updates before performing its update. Thus, Algorithm 1 can
run in parallel across all agents.

Remark 5. (Information required in running Algorithm 1) To
run Algorithm 1 on all agents, the agents have to initialize
their set of primal and dual variables with the same dimensions
across all agents. This requires that each agent must know the
total number of agents n. Since this may not be possible, the
agents can have a common upper-estimate of n and initialize
their variables as per this estimate.
Each agent i also has to know which agents are its neighbours
to incorporate the constraint (Wi)ij = 0, (i, j) /∈ E in its
primal update step (13). For this, all the agents should be
indexed a priori and each agent must know its index. Then, in
the first iteration of the algorithm, each agent can communicate
with its neighbours to know their indices.

Next, we present some numerical examples to illustrate the
convergence of Algorithm 1 and to compare our method with
the centrally computed W ∗ and the Metropolis weight matrix
WM.

IV. EXAMPLES

A. Fixed network

1

2 5

6

34

Fig. 1. A connected network of n = 6 agents

2 4 6 8 10 12 14

0

50

100

2 4 6 8 10 12 14

0

50

100

2 4 6 8 10 12 14

0

50

100

Fig. 2. Convergence of the agent values to the average of the initial values
with the three weight matrices W ∗, WM and Wadmm used in the consensus
protocol for the network shown in Fig. 1

0 5 10 15
0

10

20

30

40

50

60

70

80

Fig. 3. Convergence to zero of the consensus error with the three weight
matrices W ∗, WM and Wadmm used in the consensus protocol for the network
shown in Fig. 1. It was observed that the error went below 0.1 at t = 9 for
the centralized and ADMM methods, while the Metropolis weights required
t = 14.

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

Fig. 4. Convergence of the objective functions maintained by the agents to
the centralized optimal value ||W ∗−11T /n|| as Algorithm 1 progresses for
the network shown in Fig. 1

We consider an undirected, connected network of n = 6
agents as shown in Fig. 1. For this network, we solve1 the
centralized problem (P2) to get the optimal weight matrix W ∗.
Then, we compute the Metropolis weight matrix WM using (8).

Now, to calculate the weight matrix using our method, we
run Algorithm 1 in parallel on all 6 agents using ρ = 1/16 as
the penalty parameter2, ε = 0.001 for the stopping criteria. It
was observed that the stopping criterion of Algorithm 1 was
satisfied at k = 48 (refer Remark 3 for details on how to check
the stopping criterion). We want to find the convergence factor
of the consensus protocol (2) obtained using our method. For
this, we define

Wadmm =

w
T
1
...
wTn

 ,
where wi ∈ Rn×1 is the ith row of Wi(48). The convergence
factors of Wadmm and other weight matrices are shown in
Table I. It can be seen that the convergence factor of Wadmm
is quite close to that of the centrally computed W ∗ and is
much better than that of WM. Now, we run the consensus
protocol using these different weight matrices. Consider the

1We solve all optimization problems using the MOSEK solver [20] in
YALMIP toolbox [21] on MATLAB [22].

2This value of ρ was observed to give faster convergence of Algorithm 1
for our examples.

6

Centrally
computed Locally computed

W ∗ WM Wadmm
(centralized) (Metropolis) (Algorithm 1)

||W − 11T /n|| 0.4492 0.6724 0.4519
TABLE I

CONVERGENCE FACTORS OF DIFFERENT WEIGHT MATRICES FOR THE NETWORK SHOWN IN FIG. 1

0 5 10 15 20 25 30 35 40 45
0

0.05

0.1

0.15

0.2

Fig. 5. Convergence to zero of the maximum residuals maintained by the
agents as Algorithm 1 progresses for the network shown in Fig. 1. The
residuals become smaller than ε = 0.001 (i.e., the stopping criterion is
satisfied) at k = 48.

randomly generated initial agent values given by x(0) =[
70.6046 3.1833 27.6923 4.6171 9.7132 82.3458

]T
.

Their average is xavg(0) = 33.0260. Fig. 2 shows that the
agents reach consensus to this average value using each of the
three weight matrices. Fig. 3 shows that for the centralized
and ADMM methods, the consensus error e(t) = x(t) − x̄
decays at almost the same rate, while the decay is slower for
the Metropolis weights.

Next, we illustrate the convergence of Algorithm 1 used
in calculating Wadmm. Fig. 4 shows the convergence of the
objective functions maintained by each agent to the centralized
optimal value ||W ∗ − 11T /n|| = 0.4492. This illustrates
Statement 3 of Theorem 1. Fig. 5 shows the convergence to
zero of the maximum residual at each agent as defined in (26).
Intuitively, the maximum residual Ri(k) of agent i captures
how far is the objective function value ||Wi(k) − 11T /n||
maintained by the agent from the optimal objective value
||W ∗−11T /n|| (refer Appendix B for details on the maximum
residual). Comparing Fig. 5 with Fig. 4, we can observe that
the objective functions are close to the optimal value when the
residuals are close to zero. This asserts that our choice of the
stopping criterion as derived in Appendix B is a good one.

B. New agents enter a network: ADMM live — a variation of
Algorithm 1

In the previous example, we compared the convergence
factor of Wadmm with the centralized W ∗ and the Metropolis
WM and observed that the performance of Wadmm is better
than WM. However, Algorithm 1 requires some iterations
of communication and computation in finding Wadmm in a
distributed manner. While certain applications do have some
initial buffer time to compute the weights, few applications
might not have this. For such cases we propose the following
variation where at each iteration of Algorithm 1, we employ

1

2 5

6

34

7
9

8

Fig. 6. At t = 0, agents 1 to 6 are connected by a network. At t = 30,
agents 7, 8 and 9 enter the network.

0 10 20 30 40 50 60 70 80

0

20

40

60

80

0 10 20 30 40 50 60 70 80

0

20

40

60

80

Fig. 7. Evolution of the agent values with WM and ADMM live for the
network shown in Fig. 6. In both methods, the agents reach consensus to the
new average value after new agents enter the network at t = 30.

the consensus protocol (2) using the latest available weights.
More specifically, for each iteration k ≥ 0, define

Ŵadmm(k) =

w1(k)T

...
wn(k)T

 ,
where wi(k) ∈ Rn×1 is the ith row of Wi(k). Note that for
small values of k, the matrix Ŵadmm(k) may not satisfy the
constraint

Ŵadmm(k)1 = 1, Ŵadmm(k)T1 = 1. (9)

However, it is necessary that a weight matrix satisfies this con-
straint at each instant of time for the agents to achieve average
consensus using the consensus protocol (refer Proposition 1).

7

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

Fig. 8. Evolution of the consensus error with WM and ADMM live for the
network shown in Fig. 6. It was observed that, after the new agents entered
the network at t = 30, the error went below 0.1 at t = 67 for ADMM live,
while the Metropolis weights required t = 80.

0 10 20 30 40 50 60 70 80
0.4

0.5

0.6

0.7

0.8

0.9

Fig. 9. Convergence factor of the consensus protocol with WM and ADMM
live for the network shown in Fig. 6

Hence, we modify Ŵadmm(k) as follows. Define a new weight
matrix W̄admm(k) as

W̄admm(k)ij =

{
min{Ŵadmm(k)ij , Ŵadmm(k)ji}, i 6= j,

1−
∑n
l 6=i,l=1 W̄admm(k)il, i = j,

i.e., at each iteration k, we convert Ŵadmm(k) into a symmetric
matrix by replacing its (i, j)th and (j, i)th elements with the
smaller one among the two. In context of Algorithm 1, this can
be done by exchanging weights among the neighbours. Then,
each agent i adjusts its self-weight such that the row (and
hence the column) sums of W̄admm(k) are 1. This technique
is same as the one used in calculating the Metropolis weight
matrix WM in (8). Now, W̄admm(k) satisfies the constraint (9).
Further, to reduce the overall time required to reach consensus,
we initialize Wi(k) using the Metropolis weights, i.e., for each
i ∈ {1, . . . , n}, set the ith row of Wi(0) to be the same as that
of WM, with the rest of the rows being zero. This way, the
agent values in the consensus protocol will not remain ‘idle’
for t = 0 due to all weights being initialized at zero. Now,
we update the agent values using W̄admm(k) in the consensus
protocol, i.e., for all t ≥ 0,

x(t+ 1) = W̄admm(t)x(t). (10)

We call the above method of implementing Algorithm 1
and consensus protocol (10) simultaneously as ADMM live.
Now, we compare the performance of ADMM live with the
Metropolis weights using the following example.

At time t = 0, suppose there are 6 agents connected by the
same network as shown in Fig. 1. Now, at t = 30, three new
agents enter the network as shown in Fig. 6. Suppose these
new agents have ‘initial values’ x7(30) = 80.0559, x8(30) =
74.5847, x9(30) = 52.1186. Now, the new average value of
the 9 agents is xavg(0) = 44.9906. Then, all the agents must
compute a set of weights which involve these new agents and
reach consensus to the new average value. The evolution of
the agent values using the Metropolis WM and ADMM live
is shown in Fig. 7. Note that the centralized method is not
capable of dynamically computing new weights after a change
in the network topology. Hence, we compare ADMM live with
the Metropolis weights, both of which can handle a change
in network topology since they compute weights locally. In
Fig. 7, the agents try to reach consensus initially, until new
agents enter the network at t = 30. At this point, all agents
compute a new set of weights and reach the new average value
asymptotically. Fig. 8 shows the consensus error for the two
methods. It is observed that since the convergence factor of
the weights obtained by ADMM live converges to the optimal
value, the error goes to zero faster than with the Metropolis
WM. In Fig. 9, we compare this changing convergence factor
with the that of the fixed Metropolis weights. We can see that
the convergence factor given by ADMM live is smaller than
the Metropolis weights for most of the time. In fact, it can be
observed from the figure that just after a few steps (at k = 6),
the convergence factor of ADMM live starts outperforming
that of the Metropolis weights. Also, this value approaches
the optimal value given by the centralized optimal solution
W ∗. Hence we observe that the performance of ADMM live
is better than that of Metropolis.

C. Average computation time of Algorithm 1

0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

Fig. 10. Number of iterations required for Algorithm 1, averaged over 10
Erdos-Renyi random graphs. Each graph has n = 10 nodes and an edge
probability of p.

We analyze what is the average number of iterations re-
quired for Algorithm 1 to satisfy its stopping criterion. For
this, we construct a set of Erdos-Renyi (ER) random graphs
as follows. Consider a network of n = 10 agents. For any pair
of nodes, we place an edge between them with a probability
p. For each fixed p ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, we generate
10 ER random graphs. Then, we run Algorithm 1 on each of
them with ε = 0.01 for the stopping criterion. For each p, we
take the average of the number of iterations required for the

8

algorithm to stop, averaged over all 10 random graphs. The
result is shown in Fig. 10. It can be seen that for denser graphs
(larger p), the algorithm converges faster.

Next, we give some concluding remarks.

V. CONCLUSION

We proposed a method for agents in a network to locally
compute a set of weights for the discrete-time distributed av-
erage consensus protocol. The weights are computed through
an iterative algorithm derived from ADMM. The algorithm
requires each agent to maintain and update a set of variables
by solving an optimization problem and by exchanging these
variables with its neighbours. We showed that the convergence
factor of the consensus protocol with these locally computed
weights converges to the optimal value given by the centralized
solution. Through a numerical example, we showed that these
weights perform better than the locally computed Metropolis
weights in terms of the convergence factor.

APPENDIX A
PROOF OF THEOREM 1

We have to show that Algorithm 1 is an ADMM implemen-
tation of problem (P3).
Remark 6. Note that if we try to solve problem (P3) directly
using ADMM, although the ADMM algorithm can run in a
distributed manner, the Wi(k + 1) updates will have to be
performed ‘serially’ across different agents, i.e., agent i would
have to wait for agents 1, . . . , i − 1 to update their values
before it can perform its update. This is because the Wi’s
corresponding to different agents appear in the same constraint
Wi = Wj , (i, j) ∈ E in problem (P3).

To overcome the issue stated in Remark 6 and to enable
‘parallel’ implementation of ADMM, we introduce dummy
variables3 Xij , Xji for each (i, j) ∈ E in (P3). Now, we get

minimize

n∑
i=1

||Wi − 11T /n||
n

(P4)

subject to Wi1 = 1, WT
i 1 = 1, i ∈ {1, . . . , n},

(Wi)ij = 0, (i, j) /∈ E, i ∈ {1, . . . , n},
Wi = Xij , Wj = Xji, Xij = Xji, (i, j) ∈ E.

Thus, the Wi’s corresponding to different agents have now
been ‘decoupled’. Above problem is equivalent to (P3). To
solve this problem using ADMM, we define the augmented
Lagrangian for the problem as given in (11). Here, ρ > 0
is the penalty parameter and ai, bi, Cij , Dij are the dual
variables for the respective constraints. Algorithm 2 is the
standard ADMM algorithm for (P4). Note that the constraints
Xij = Xji, (i, j) ∈ E and (Wi)ij = 0, (i, j) /∈ E have not
been dualized but are incorporated in the primal update steps
of the algorithm.

Algorithm 2 in its original form cannot be run in parallel.
One of the reasons for this is that for any agent i, the Wi(k+
1) update is the argmin of Lρ evaluated at W1 = W1(k +
1), . . . ,Wi−1 = Wi−1(k + 1). Thus, agent i has to wait for

3This trick is taken from [23, Section 3.4].

Algorithm 2 ADMM implementation of problem (P3)
Initialize: ρ > 0,Wi(0) = 0n×n, Xij(0) =
0n×n, Xji(0) = 0n×n, ai(0) = 0n×1, bi(0) =
0n×1, Cij(0) = 0n×n, Dij(0) = 0n×n
Iterate:
for k ≥ 0 do

Primal update:

Wi(k + 1) = argmin
Wi:(Wi)ij=0,(i,j)/∈E

Lρ, i ∈ {1, . . . , n}

Xij(k + 1) = argmin
Xij :Xij=Xji

Lρ, (i, j) ∈ E

Xji(k + 1) = argmin
Xji:Xij=Xji

Lρ, (i, j) ∈ E

Dual update:

ai(k + 1) = ai(k) + ρ(Wi(k + 1)1− 1), i ∈ {1, . . . , n}
bi(k + 1) = bi(k) + ρ(Wi(k + 1)T1− 1), i ∈ {1, . . . , n}

Cij(k + 1) = Cij(k)

+ ρ(Wi(k + 1)−Xij(k + 1)), (i, j) ∈ E
(14)

Dij(k + 1) = Dij(k)

+ ρ(Wj(k + 1)−Xji(k + 1)), (i, j) ∈ E
(15)

end for

the ‘previous agents’ to perform their updates and hence the
issue mentioned in Remark 6 still exists. However, due to our
introduction of Xij , Xji’s, with some algebraic manipulations,
we can show that Algorithm 1 and Algorithm 2 are equivalent.
The former can be executed in a parallel manner as argued in
Remark 4.

Lemma 2. Algorithm 1 is equivalent to Algorithm 2.

Proof. We will simplify the primal and dual update steps in
Algorithm 2 to arrive at Algorithm 1.

Consider an arbitrary (i, j) ∈ E. The primal update Xij(k+
1) can be evaluated by equating the gradient of Lρ with respect
to Xij to zero. We enforce the constraint Xij = Xji when
evaluating the gradient. This gives the following equation.

− Cij(k)−Dij(k) + ρ[Xij(k + 1)−Wi(k + 1)

+Xij(k + 1)−Wj(k + 1)] = 0 (16)

This implies

Xij(k + 1) = Xji(k + 1)

=
Cij(k) +Dij(k)

2ρ
+
Wi(k + 1) +Wj(k + 1)

2
. (17)

9

Augmented Lagrangian:

Lρ =
1

n

n∑
i=1

||Wi − 11T /n||+
n∑
i=1

aTi (Wi1− 1) +

n∑
i=1

bTi (WT
i 1− 1) +

∑
(i,j)∈E

[
Tr((Wi −Xij)

TCij)

+ Tr((Wj −Xji)
TDij)

]
+
ρ

2

[n∑
i=1

(
||Wi1− 1||2 + ||WT

i 1− 1||2
)

+
∑

(i,j)∈E

(
||Wi −Xij ||2F + ||Wj −Xji||2F

)]
(11)

Update rule in Algorithm 2:

Wi(k + 1) = argmin
Wi:(Wi)ij=0,(i,j)/∈E

{
1

n
||Wi − 11T /n||+ ai(k)T (Wi1− 1) + bi(k)T (WT

i 1− 1) +
∑
j∈Ni

Tr(WT
i Cij(k))

+
ρ

2

[
||Wi1− 1||2 + ||WT

i 1− 1||2 +
∑
j∈Ni

||Wi −Xij(k)||2F
]}

(12)

Update rule in Algorithm 1:

Wi(k + 1) = argmin
Wi:(Wi)ij=0,(i,j)/∈E

{
1

n
||Wi − 11T /n||+ ai(k)T (Wi1− 1) + bi(k)T (WT

i 1− 1) + Tr(WT
i Mi(k))

+
ρ

2

[
||Wi1− 1||2 + ||WT

i 1− 1||2 +
∑
j∈Ni

∣∣∣∣∣∣∣∣Wi −
Wi(k) +Wj(k)

2

∣∣∣∣∣∣∣∣2
F

]}
, (13)

where Mi(k) =
∑
j∈Ni

Cij(k).

Substituting these in the dual updates (14), (15), we have

Cij(k + 1) = Cij(k)

+ ρ

(
Wi(k + 1)−Wj(k + 1)

2
− Cij(k) +Dij(k)

2ρ

)
,

(18)
Dij(k + 1) = Dij(k)

+ ρ

(
Wj(k + 1)−Wi(k + 1)

2
− Cij(k) +Dij(k)

2ρ

)
.

(19)

Adding the above two equations, we get

Cij(k + 1) +Dij(k + 1) = 0.

Initializing Cij(0) = Dij(0) = 0 implies

Cij(k) +Dij(k) = 0 (20)

for all k ≥ 0. Substituting this back in (18), (19) gives

Cij(k + 1) = Cij(k) + ρ

(
Wi(k + 1)−Wj(k + 1)

2

)
, (21)

Dij(k + 1) = Dij(k) + ρ

(
Wj(k + 1)−Wi(k + 1)

2

)
. (22)

Further, substituting Cij(k) +Dij(k) = 0 in (17) gives

Xij(k + 1) = Xji(k + 1) =
Wi(k + 1) +Wj(k + 1)

2
. (23)

Next, consider an arbitrary i ∈ {1, . . . , n}. Then, the update
Wi(k + 1) in Algorithm 2 can be evaluated as given in (12).

Here, in finding the argmin of Lρ, we have ignored those
terms in Lρ which are independent of Wi.

Now, in (12), we can substitute Xij(k) from (23). Further,
we can simplify the term

∑
j∈Ni

Tr(WT
i Cij(k)) as follows.

Define Mi(k) =
∑
j∈Ni

Cij(k). Then,

Mi(k + 1) =
∑
j∈Ni

Cij(k + 1)

=
∑
j∈Ni

[
Cij(k) + ρ

(
Wi(k + 1)−Wj(k + 1)

2

)]
= Mi(k) + ρ

∑
j∈Ni

(
Wi(k + 1)−Wj(k + 1)

2

)
and

∑
j∈Ni

Tr(WT
i Cij(k)) = Tr(WT

i Mi(k)). Thus, Wi(k +
1) can be computed as given in (13).

In conclusion, going from Algorithm 2 to Algorithm
1, the primal variables Xij(k), Xji(k) are no longer re-
quired to be maintained explicitly. Further, the dual variables
Cij(k), Dij(k) have been combined into Mi(k). The other
dual variables ai(k), bi(k) remain unchanged.

APPENDIX B
STOPPING CRITERION FOR ALGORITHM 1

We derive a stopping criterion for Algorithm 1. A good stop-
ping criterion for the ADMM of a constrained optimization
problem is when the optimality conditions of the problem are
satisfied with some tolerance [15]. The optimality conditions

10

for problem (P4) are that the gradient of the unaugmented
Lagrangian L0 (ρ = 0 in (11)) with respect to the primal
variables Wi and Xij must be zero and the constraints must
be satisfied, i.e., for all i ∈ {1, . . . , n},

∂

∂Wi
L0 = 0,

∂

∂Xij
L0 = 0, j ∈ Ni,

Wi1 = 1, WT
i 1 = 1,

(Wi)ij = 0, j /∈ Ni, Wi = Wj , j ∈ Ni. (24)

We check under what conditions do the primal and dual
variables in Algorithm 2 satisfy these conditions.

First, we show that the conditions (∂/∂Wi)L0 = 0 and
(∂/∂Xij)L0 = 0 are always satisfied by the primal and
dual variable iterates Wi(k+ 1), ai(k+ 1), bi(k+ 1), Cij(k+
1), Dij(k + 1) for all k ≥ 0.

By definition of Wi(k + 1) as given in Algorithm 2, we
know that Wi(k + 1) minimizes Lρ given in (11). Hence,
(∂/∂Wi)Lρ evaluated at Wi = Wi(k+ 1) must be zero. This
means

∂

∂Wi

(
1

n
||Wi − 11T /n||

)∣∣∣∣
Wi=Wi(k+1)

+ ai(k)1T

+ 1bi(k)T +
∑
j∈Ni

Cij(k) + ρ

[
(Wi(k + 1)1− 1)1T

+ 1(Wi(k + 1)T1− 1) +
∑
j∈Ni

(Wi(k + 1)−Xij(k))

]
= 0.

From the dual update equations ai(k+1), bi(k+1), Cij(k+1)
as given in Algorithm 2, we can combine some terms in the
above equation to get

∂

∂Wi

(
1

n
||Wi − 11T /n||

)∣∣∣∣
Wi=Wi(k+1)

+ ai(k + 1)1T

+ 1bi(k + 1)T +
∑
j∈Ni

Cij(k + 1) = 0.

Above is precisely the condition (∂/∂Wi)L0 = 0 evaluated at
Wi(k+1), ai(k+1), bi(k+1), Cij(k+1). Thus, (∂/∂Wi)L0 =
0 is always satisfied by the primal and dual variable iterates.

Now, consider the second condition (∂/∂Xij)L0 = 0. Eval-
uating the gradient of L0, with the constraint that Xij = Xji,
this condition can be written as Cij +Dij = 0. From (20), we
know that this is true for Cij(k), Dij(k) for all k ≥ 0. Thus,
(∂/∂Xij)L0 = 0 is always satisfied by the primal and dual
iterates of the algorithm.

Thus, from the optimality conditions (24), only the con-
straint conditions are not satisfied by the iterates of the
variables in Algorithm 2. Define the residuals of the constraints
as

r1i (k) = ||Wi(k)1− 1||/
√
n,

r2i (k) = ||Wi(k)T1− 1||/
√
n,

r3ij(k) = ||Wi(k)−Wj(k)||F /n, j ∈ Ni,
r4ij(k) = |(Wi(k))ij |, j /∈ Ni, (25)

for all i ∈ {1, . . . , n}. Here, we have divided by n or
√
n to

compensate for the dimension of the quantity inside the norm.
Now, we define the maximum residual at agent i as

Ri(k) = max{r1i (k), r2i (k), r3ij(k), r4ij(k) : j ∈ Ni}. (26)

Then, the optimality conditions (24) are satisfied with an ε
tolerance for some k if

Ri(k) ≤ ε for all i ∈ {1, . . . , n}. (27)

This is the stopping criterion for Algorithm 1. Remark 3
explains how this stopping criterion is used in the algorithm.

APPENDIX C
PROOF OF LEMMA 1

First, we recall the definition of a primitive matrix.

Definition 1. A non-negative matrix W is said to be primitive
with index m ≥ 1 if Wm > 0.

Primitive matrices are a special class of matrices which have
all but one eigenvalue strictly within the circle described by
the spectral radius of the matrix. We make use of this fact
whose proof can be found in [24, (8.3.16)].

Proposition 2. [24] Suppose W is a non-negative matrix
which satisfies W1 = 1,WT1 = 1. Then, W is primitive if
and only if ρ(W − 11T /n) < 1.

Given that the graph G is connected, using the above result,
we now construct a weight matrix W which satisfies the
consensus condition (4). We will use this result to prove
Lemma 1.

Lemma 3. Given G is a connected graph, consider a non-
negative weight matrix W which satisfies

W1 = 1, WT1 = 1, Wij > 0, (i, j) ∈ E. (28)

Then, ρ(W − 11T /n) < 1.

Proof. We prove this result by showing that W is a primitive
matrix, i.e., we show that ∃m ≥ 1 such that Wm > 0.

For a given pair of nodes (i, j), consider any mij ≥ 2.
Then,

(Wmij)ij =

n∑
l1=1

n∑
l2=1

· · ·
n∑

lmij−1=1

Wil1Wl1l2 . . .Wlmij−1j .

Note that for mij = 1, (Wmij)ij = Wij . Thus, (Wmij)ij
is the sum of the product of weights of all edges which are
part of all paths of length at most mij between nodes (i, j)
of the graph. Since the graph G is connected, there is a path
(of length at most n − 1) between every pair of nodes (i, j),
i.e., for all (i, j) ∈ {1, . . . , n}2,∃mij ∈ {1, . . . , n − 1} such
that (Wmij)ij > 0. Hence, we can conclude that Wn−1 > 0,
i.e., W is primitive with an index of (at most) n− 1.

Now, by Proposition 2, we have ρ(W − 11T /n) < 1.

We are now ready to prove Lemma 1. We have to show
that any solution W ∗ of (P2) satisfies ρ(W ∗ − 11T /n) < 1.
Since ρ(A) ≤ ||A|| for any matrix A ∈ Rn×n, it is sufficient

11

to show that ||W ∗−11T /n|| < 1. Moreover, since W ∗ is the
optimal value of (P2), it is sufficient to show that, given G is
connected, ∃W ∈ Rn×n which satisfies the constraints

W1 = 1, WT1 = 1, Wij = 0, (i, j) /∈ E

of (P2) such that ||W −11T /n|| < 1. We construct such a W
as follows. Consider a W which satisfies the condition (28).
Then, we have

||W − 11T /n||2 = ρ
(
(W − 11T /n)(W − 11T /n)T

)
= ρ(WWT − 11T /n).

It is easy to verify that WWT also satisfies the condition
(28). This implies, ρ(WWT − 11T /n) < 1, which implies
||W − 11T /n|| < 1.

REFERENCES

[1] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor
fusion based on average consensus,” in IPSN 2005. Fourth International
Symposium on Information Processing in Sensor Networks, 2005., April
2005, pp. 63–70.

[2] G. Cybenko, “Dynamic load balancing for distributed memory multipro-
cessors,” Journal of Parallel and Distributed Computing, vol. 7, no. 2,
pp. 279 – 301, 1989.

[3] J. A. Fax and R. M. Murray, “Information flow and cooperative
control of vehicle formations,” IEEE Transactions on Automatic Control,
vol. 49, no. 9, pp. 1465–1476, Sep. 2004.

[4] R. O. Saber and R. M. Murray, “Consensus protocols for networks
of dynamic agents,” in Proceedings of the 2003 American Control
Conference, 2003., vol. 2, June 2003, pp. 951–956.

[5] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks
of agents with switching topology and time-delays,” IEEE Transactions
on Automatic Control, vol. 49, no. 9, pp. 1520–1533, Sep. 2004.

[6] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems & Control Letters, vol. 53, no. 1, pp. 65 – 78, 2004.

[7] Wei Ren and R. W. Beard, “Consensus seeking in multiagent systems
under dynamically changing interaction topologies,” IEEE Transactions
on Automatic Control, vol. 50, no. 5, pp. 655–661, May 2005.

[8] S. Sundaram and C. N. Hadjicostis, “Finite-time distributed consensus
in graphs with time-invariant topologies,” in 2007 American Control
Conference, July 2007, pp. 711–716.

[9] L. Wang and F. Xiao, “Finite-time consensus problems for networks
of dynamic agents,” IEEE Transactions on Automatic Control, vol. 55,
no. 4, pp. 950–955, April 2010.

[10] C. Ko and L. Shi, “Scheduling for finite time consensus,” in 2009
American Control Conference, June 2009, pp. 1982–1986.

[11] S. Y. Shafi, M. Arcak, and L. El Ghaoui, “Designing node and edge
weights of a graph to meet laplacian eigenvalue constraints,” in 2010
48th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), Sep. 2010, pp. 1016–1023.

[12] Yoonsoo Kim and M. Mesbahi, “On maximizing the second smallest
eigenvalue of a state-dependent graph laplacian,” IEEE Transactions on
Automatic Control, vol. 51, no. 1, pp. 116–120, Jan 2006.

[13] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing markov chain on a
graph,” SIAM Review, vol. 46, no. 4, pp. 667–689, 2004.

[14] M. El Chamie, G. Neglia, and K. Avrachenkov, “Distributed weight
selection in consensus protocols by schatten norm minimization,” IEEE
Transactions on Automatic Control, vol. 60, no. 5, pp. 1350–1355, May
2015.

[15] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, p. 1–122,
Jan. 2011.

[16] J. Eckstein, “Augmented Lagrangian and alternating direction methods
for convex optimization: A tutorial and some illustrative computational
results,” RUTCOR Research Reports, pp. 1–35, 2012.

[17] M. L. Overton and R. S. Womersley, “On minimizing the special radius
of a nonsymmetric matrix function: Optimality conditions and duality
theory,” SIAM Journal on Matrix Analysis and Applications, vol. 9, no. 4,
pp. 473–498, 1988.

[18] M. Mardani, G. Mateos, and G. B. Giannakis, “Decentralized sparsity-
regularized rank minimization: Algorithms and applications,” IEEE
Transactions on Signal Processing, vol. 61, no. 21, pp. 5374–5388, Nov
2013.

[19] A. Zare, M. R. Jovanović, and T. T. Georgiou, “Alternating direction
optimization algorithms for covariance completion problems,” in 2015
American Control Conference (ACC), July 2015, pp. 515–520.

[20] M. ApS, The MOSEK optimization toolbox for MATLAB manual.
Version 9.0., 2019.

[21] J. Löfberg, “Yalmip : A toolbox for modeling and optimization in
matlab,” in In Proceedings of the CACSD Conference, Taipei, Taiwan,
2004.

[22] MATLAB, “version 9.2.0.556344 (r2017a),” in The MathWorks Inc.,
Natick, Massachusetts, USA, 2017.

[23] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-
tion: Numerical Methods. USA: Prentice-Hall, Inc., 1989.

[24] C. D. Meyer, Matrix analysis and applied linear algebra. SIAM, 2000,
vol. 71.

Kiran Rokade received the B.Tech. degree in electrical engineering from
V.J.T.I., Mumbai, India, in 2016. and the an M.S. degree in electrical
engineering from Indian Institute of Technology Madras, Chennai, India in
2020. Currently, he is pursuing his PhD at Cornell University. His research
interests include multi-agent systems, optimization theory and game theory.

Rachel Kalpana Kalaimani received the B.E. degree in electrical and
electronics engineering from P.S.G. College of Technology, Coimbatore, India,
in 2009 and the Ph.D. degree in control from the Department of Electrical
Engineering, Indian Institute of Technology Bombay, Mumbai, India, in 2014.
After that she was a Post Doctoral Research Fellow at the Department
of Electrical and Computer Engineering, University of Waterloo, Waterloo,
ON, Canada. She is currently an Assistant Professor at Indian Institute of
Technology Madras, Chennai, India. Her current research interests include
distributed optimization, networked control systems and complex systems.
Other interests include optimization of energy consumption in buildings,
model predictive control, graph theoretic techniques, and numerical linear
algebra.

	I Introduction
	I-A Contributions
	I-B Notation

	II Problem Formulation
	II-A The average consensus problem
	II-B Optimal weights
	II-C Locally calculated weights

	III Main Result
	IV Examples
	IV-A Fixed network
	IV-B New agents enter a network: ADMM live — a variation of Algorithm 1
	IV-C Average computation time of Algorithm 1

	V Conclusion
	Appendix A: Proof of Theorem 1
	Appendix B: Stopping criterion for Algorithm 1
	Appendix C: Proof of Lemma 1
	References
	Biographies
	Kiran Rokade
	Rachel Kalpana Kalaimani

