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Abstract

In this paper, we consider solving discounted Markov Decision Processes (MDPs) under the constraint that the resulting
policy is stabilizing. In practice MDPs are solved based on some form of policy approximation. We will leverage recent results
proposing to use Model Predictive Control (MPC) as a structured policy in the context of Reinforcement Learning to make it
possible to introduce stability requirements directly inside the MPC-based policy. This will restrict the solution of the MDP
to stabilizing policies by construction. The stability theory for MPC is most mature for the undiscounted MPC case. Hence,
we will first show in this paper that stable discounted MDPs can be reformulated as undiscounted ones. This observation will
entail that the MPC-based policy with stability requirements will produce the optimal policy for the discounted MDP if it is
stable, and the best stabilizing policy otherwise.
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1 Introduction

Markov Decision Processes (MDPs) include a wide class
of problems in which a controlled stochastic system
needs to minimize a prescribed cost function. A special
case is obtained for deterministic systems, in which case
the problem is often labelled optimal control. MDPs
have been extensively studied [6,7,23,26]. Most of the
existing literature focuses on studying the theoreti-
cal properties of MDPs from an optimization point of
view, and on deriving algorithms to solve them, i.e., to
compute optimal control policies.

Solving MDPs exactly is notoriously difficult, and prac-
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tical approaches often rely on approximate Dynamic
Programming or Reinforcement Learning (RL), using
some form of function approximation [7,26]. The latter
approximation approach has recently demonstrated the
ability to solve problems that were previously consid-
ered intractable, see, e.g., [1,28]. A recently proposed
function approximator for RL is Model Predictive Con-
trol (MPC) [13–15,29,30,32]. One of the benefits of using
MPC as a function approximator is the existence of a
strong theory proving desirable properties such as safety,
stability and some form of explainability [16,24]. This
fact has motivated recent interest in combining MPC
with learning techniques, see, e.g., [3,4,10,17,21,27].

To the best of our knowledge, limited attention has been
devoted to the enforcement of stability conditions in
MDPs. The study of the stability properties of Markov
Chains has been extensively studied in [20], while the
stability properties of undiscounted optimal control for
both deterministic systems and stochastic systems with
bounded noise have been studied, e.g., in [16,24]. The
derivation of conditions for the stability of discounted
problems is harder and some results have been obtained
in, e.g., [12,22].

Unfortunately, deriving conditions for stability is in gen-
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eral difficult; moreover, such conditions are often difficult
to verify in practice. In this paper we aim at imposing
stability conditions by explicitly constraining the candi-
date policies to be stabilizing. We will do so by leverag-
ing the existing stability theory for undiscounted MPC.
As proven in [13], under mild conditions, the MDP op-
timal policy can be captured via an MPC scheme with
an approximate model provided that it is discounted by
the same factor as the MDP.

Because we want to capture the solution of a discounted
MDP using an undiscounted MPC, the theoretical gap
between the discounted and undiscounted case must be
closed first. To that end we will prove that, under a
weak stability condition, a given discounted MDP can be
formulated as an undiscounted MDP delivering the same
optimal policy. Using this result, the MPC-based policy
restricted to stability will deliver the optimal policy for
the discounted MDP if it is stable, and the optimal policy
among the stable policies if it is not.

This paper is structured as follows. In Section 2 we will
provide the mathematical background and the required
definitions. In Section 3 we will derive an undiscounted
MDP whose optimal policy is also optimal for a given
discounted MDP; we will relate the optimality criterion
for this undiscounted MDP to commonly used optimal-
ity criteria; and we will illustrate the theory in the con-
text of the linear quadratic regulator. We will then for-
mulate the stability constraints in Section 4, where we
will exploit the properties of MPC as a function approx-
imator to solve MDPs. We will provide numerical exam-
ples in Section 5 and conclude with Section 6.

2 Preliminaries

We will consider that the system is described by a
Markov Decision Process (MDP) having the (possibly)
stochastic state transition dynamics

P [s+ | s,a] , (1)

where s,a is the current state-action pair and s+ is
the subsequent state. We will generally assume that the
state-action space is continuous but the theory proposed
here is valid in general. Note that notation (1) is stan-
dard in the literature on MDPs, while the control litera-
ture typically uses the notation s+ = f(s,a, ζ), where ζ
is a stochastic variable and f a possibly nonlinear func-
tion. For discrete state spaces, (1) is a probability, while
for continuous state spaces it is a probability density.

We will label L(s,a) the stage cost associated to the
MDP, which we will assume can take the form

L (s,a) = l (s,a) + I∞ (h (s,a)) + I∞ (g (a)) , (2)

where we use the indicator function

I∞(x) =

{
∞ if xi > 0 for some i

0 otherwise
. (3)

In (2), function l captures the cost given to different
state-input pairs, while the constraints

g(a) ≤ 0, h(s,a) ≤ 0, (4)

capture undesirable state and inputs, and infinite values
are given to L when (4) is violated.

Assumption 1 The cost l(s,a) is finite for all finite
states and inputs s,a. Additionally, for continuous state
spaces, (1) satisfies

lim
α→∞

P [αs+ | s,a] = 0, ∀ s+, s,a finite. (5)

The mild assumption (5) entails that the stage cost l
remains bounded over finite horizons with probability 1.
This allows us to avoid cumbersome technicalities in the
proofs.

In this paper, we aim at solving the stability-constrained
discounted MDP

min
π∈Πs

Eπ

[ ∞∑
k=0

γkL(sk,π(sk))

]
, (6)

where Πs denotes the set of all policies π which stabilize
system (1). At this stage, we leave the stability concept
in use here intentionally vague, and we will discuss it
more in detail in Section 4.

Since in this paper we will compare discounted MDPs
with undiscounted MDPs, we summarize next the cor-
responding optimality concepts. All definitions we will
provide are given without stability constraints, but we
remark that the same definitions hold also if the addi-
tional constraint π ∈ Πs is introduced. For more details
on MDPs and optimality notions we refer to, e.g., [23]
and references therein.

2.1 Optimality of Discounted MDPs

With the introduction of a discount factor 0 < γ ≤ 1,
given (1) and (2), the optimal discounted policy πγ? is
the policy minimizing the expected total discounted cost

πγ? = arg min
π

Eπ

[ ∞∑
k=0

γkL(sk,π(sk))

]
. (7)

where the expected value Eπ [·] is taken over the state
transition dynamics (1) in closed loop with policy π. For
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any policy we define the associated action-value function
Qγπ and value function V γπ as

V γπ (s) := Eπ

[ ∞∑
k=0

γkL(sk,π(sk))

∣∣∣∣∣ s0 = s

]
, (8a)

Qγπ(s,a) := L(s,a) + γE [V γπ (s+) | s,a] . (8b)

The optimal action-value function Qγ? = Qγ
πγ?

and value

function V γ? = V γ
πγ?

associated with the discounted MDP

are defined by the Bellman equations [5]:

Qγ? (s,a) = L (s,a) + γE [V γ? (s+) | s,a] , (9a)

V γ? (s) = Qγ? (s,πγ? (s)) = min
a

Qγ? (s,a) . (9b)

Throughout the paper we will assume that the MDP
underlying the system, the associated stage cost L and
the discount factor γ yields a well-posed problem, i.e.,
the value functions defined by (9) are well-posed, and
finite over some non-empty sets. This well-posedness is
formulated in the following assumption.

Assumption 2 There exists a nonempty set S such that
for all s ∈ S it holds that

|V γ? (s)| <∞. (10)

We state next an immediate consequence of this assump-
tion, which will be useful afterwards.

Lemma 1 Suppose that Assumptions 1-2 hold. Then,

−∞ < Eπ? [V γ? (sk) | s0 = s] <∞, ∀ k = 0, . . . , N,
(11)

holds for all s ∈ S, and N finite.

PROOF. We observe that

Eπ? [V γ? (sk) | s0] = (12)

γ−kV γ? (s0)− γ−k Eπ?

[
k−1∑
i=0

γiL (si,π? (si))

∣∣∣∣∣ s0

]
.

Since γ−kV γ? (s0) is bounded for any k <∞ and s0 ∈ S,
due to Assumption 1 and Equation (5), the second term
of the right-hand side of (12) must be lower bounded
for all k finite. Additionally, in order for V γ? (s0) to be
finite, it must also be upper bounded. Consequently,
Eπ? [V γ? (sk) | s0] must be bounded. 2

2.2 Optimality of Undiscounted MDPs

For undiscounted MDPs, a discount factor γ = 1 is se-
lected, such that the cost in (7) can be unbounded. Op-
timal policies are then typically defined according to a

hierarchy of criteria. The first criterion is based on the
expected average total cost

π̄? = arg min
π

lim
N→∞

1

N
Eπ

[
N−1∑
k=0

L(sk,π(sk))

]
, (13)

with gain, or average cost

L̄∞ (s0) = lim
N→∞

1

N
Eπ̄?

[
N−1∑
k=0

L(sk, π̄?(sk))

∣∣∣∣∣ s0

]
. (14)

Any policy satisfying (13) is called gain optimal. The
average cost L̄∞ is often assumed to be independent of
the initial state s0 and we will also make this assumption
for the sake of simplicity. For more information on the
general case, we refer the interested reader to [23]. We
ought to stress here that gain optimal policies are in
general not unique.

The gain optimality criterion only ensures that the opti-
mal steady-state distribution of the closed-loop Markov
chain is asymptotically reached, but it disregards tran-
sients. The concept of bias optimality has been intro-
duced to account for the optimality of transients. A bias
optimal policy π̃? minimizes the total undiscounted cost

π̃? = arg min
π

Eπ

[ ∞∑
k=0

(
L(sk,π(sk))− L̄∞

)]
. (15)

Optimality notions which are more stringent than bias
optimality are beyond the scope of this paper. We simply
recall that bias optimal policies are gain optimal and that
the most stringent optimality criterion for undiscounted
MDPs is Blackwell optimality [8,23].

3 Equivalent Undiscounted MDP Formulation

In this section, we discuss the equivalence between dis-
counted MDPs and suitably formulated undiscounted
MDPs. To that end, let us define the modified stage cost

L̃γ(s,a) := L(s,a) + (γ − 1)E [V γ? (s+)|s,a] , (16)

where we explicitly state the dependence on the discount
factor γ to stress the fact that its definition is based on
a discounted MDP formulation.

In the following, we construct the theory allowing one to
support the discounted MDP solution by using undis-
counted, finite-horizon stochastic MPC schemes. The
latter are themselves undiscounted finite-horizon MDPs.
Hence, it will be useful to first connect infinite-horizon
discounted MDPs to finite-horizon undiscounted ones.
We establish the equivalence between infinite-horizon
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discounted and infinite-horizon undiscounted MDPs
later in the text.

In order to build these equivalences, let us define the N -
steps undiscounted value and action-value functions as

Ṽ γ,Nπ (s) :=Eπ

[
V γ? (sN ) +

N−1∑
k=0

L̃γ(sk,π(sk))

∣∣∣∣∣ s0 = s

]
,

(17a)

Q̃γ,Nπ (s,a) := L̃γ(s,a) + E
[
Ṽ γ,N−1
π (s+)

∣∣∣ s,a]. (17b)

We define the corresponding optimal policy as

π̃γ,N? := arg min
π

Ṽ γ,Nπ (s), (18)

with associated optimal value and action-value function

Ṽ γ,N? := Ṽ γ,N
π̃γ,N?

, and Q̃γ,N? := Q̃γ,N
π̃γ,N?

. We will justify in

Section 3.1 the use of the ·̃ notation, which we also used
to define bias-optimal quantities. We deliver next our
first result, which proves the equivalence between the
optimal undiscounted N -steps value functions and the
optimal discounted value functions.

Theorem 1 Suppose that Assumption 2 holds for all s ∈
S. Then ∀ s ∈ S, ∀a, N <∞ it holds that

Ṽ γ,N? (s) = V γ? (s), Q̃γ,N? (s,a) = Qγ?(s,a).

PROOF. We use the Bellman Equation (9) to obtain

L(s,πγ?(s)) = V γ? (s)− γE [V γ? (s+)|s,πγ?(s)] , (19)

which we use together with (16) to obtain

L̃γ(s,πγ?(s)) = V γ? (s)− E [V γ? (s+)|s,a] . (20)

Equation (17a) then becomes the telescopic sum:

Ṽ γ,N
πγ?

(s0) = Eπγ?

[
V γ? (sN ) +

N−1∑
k=0

V γ? (sk)− V γ? (sk+1)

]
.

Using Assumption 2, we simplify the terms in the tele-
scopic sum to obtain

Ṽ γ,N̄
πγ?

(s) = V γ? (s), ∀ N̄ ≤ N. (21)

Consequently, by (17b) we have

Q̃γ,N
πγ?

(s,a) = L̃γ(s,a) + E
[
Ṽ γ,N−1
πγ?

(s+)|s,a
]

= L(s,a) + γE [V γ? (s+)|s,a] = Qγ?(s,a),

where we exploited (16) and (21). Since

πγ? = arg min
a

Qγ? (s,a) = arg min
a

Q̃γ,N
πγ?

(s,a) = π̃γ,N? ,

we immediately obtain

Ṽ γ,N? (s) = Ṽ γ,N
π̃γ,N?

(s) = Ṽ γ,N
πγ?

(s) = V γ? (s),

Q̃γ,N? (s,a) = Q̃γ,N
π̃γ,N?

(s,a) = Q̃γ,N
πγ?

(s,a) = Qγ?(s,a).

2

If the value function Ṽ γ,N? remains bounded for all s ∈ S
as N → ∞, then the result above holds also as N →
∞, but the terminal cost V γ? is still required in forming
Ṽ γ,Nπ , Q̃γ,Nπ . In order to dismiss that terminal cost for
N →∞ we need an additional stronger assumption.

Assumption 3 Assumption 2 holds. Moreover,

−∞ < lim
k→∞

Eπγ? [V γ? (sk) | s0] := vγ∞ <∞, (22)

holds ∀ s0 ∈ S for some constant vγ∞.

Assumption 3 entails a weak form of stability for the
discounted MDP, as we discuss next. It is stronger than
requiring the existence of a bounded value function, i.e.,∣∣∣∣∣ lim

N→∞
Eπγ?

[
N−1∑
k=0

γkL(sk,π
γ
?(sk))

∣∣∣∣∣ s0

]∣∣∣∣∣ ≤ ∞, (23)

holds on a non-empty set of initial conditions s0. Indeed,
(23) is finite provided that the stage cost L(sk,π

γ
?(sk))

diverges in expectation at a rate no larger than γ−kD for
some γD > γ. It follows that (23) allows the cost to grow
unbounded over time. Hence, the existence of a bounded
value function (Assumption 2) does not entail that the
value function remains bounded over time. Moreover, as-
suming (22), i.e., that the limit exists and converges to
the constant vγ∞, introduces further restrictions, which
rule out, e.g., periodic oscillations of the cost. We cast
Assumption 3 as a weak form of stability: if the MDP
converges to a unique steady-state distribution, then As-
sumption 3 automatically holds. However, converging
to a steady-state distribution is a stronger requirement,
since Assumption 3 might hold also for non-steady-state,
and even diverging distributions, see, e.g., Section 3.2.

In order to formulate the next theorem, let us use (16)
to first define the undiscounted value and action-value
functions without terminal cost as

Ṽ γπ (s) := lim
N→∞

Eπ

[
N−1∑
k=0

L̃γ(sk,π(sk))

∣∣∣∣∣ s0 = s

]
, (24a)

Q̃γπ(s,a) := L̃γ(s,a) + E
[
Ṽ γπ (s+)

∣∣∣ s,a] , (24b)
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which do not necessarily match the limit for N →∞ of
the value functions defined in (17). Furthermore, we de-
fine the optimal undiscounted policy and the associated
value functions as:

π̃γ? := arg min
π

lim
N→∞

Eπ

[
N−1∑
k=0

L̃γ(sk,π(sk))

]
, (25a)

Ṽ γ? (s) := Ṽ γ
π̃γ?

(s), Q̃γ?(s,a) := Q̃γ
π̃γ?

(s,a). (25b)

Theorem 2 Suppose that Assumption 3 holds. Then
∀ s ∈ S, ∀a it holds that

Ṽ γ? (s) = V γ? (s)−vγ∞, Q̃γ?(s,a) =Qγ?(s,a)−vγ∞, (26a)

π̃γ? (s) = πγ? (s) . (26b)

PROOF. Similar to the proof of Theorem 1, we use
the Bellman Equation (9) together with (19)-(20) to
write (24a) as a telescopic sum in which all terms are
bounded due to Lemma 1. By simplifying the terms in
the sum we obtain

Ṽ γ
πγ?

(s) = V γ? (s)− lim
k→∞

Eπγ? [V γ? (sk)] = V γ? (s)−vγ∞. (27)

Consequently,

Q̃γ
πγ?

(s,a) = L̃γ(s,a) + E
[
Ṽ γ
πγ?

(s+)|s,a
]

= L(s,a) + γE [V γ? (s+)|s,a]− vγ∞
= Qγ?(s,a)− vγ∞,

where we used (16) and (27). Then,

π̃γ? = arg min
a

Q̃γ
πγ?

(s,a) = arg min
a

Qγ?(s,a) =πγ? , (28)

which immediately entails (26b) and, in turn,

Ṽ γ? (s) = Ṽ γ
π̃γ?

(s) = Ṽ γ
πγ?

(s) = V γ? (s)− vγ∞,

Q̃γ?(s,a) = Q̃γ
π̃γ?

(s,a) = Q̃γ
πγ?

(s,a) = Qγ?(s,a)− vγ∞.

2

This theorem establishes that any discounted MDP sat-
isfying Assumption 3 can be reformulated as an undis-
counted MDP which delivers the same policy and the
same value functions up to a constant term.

We ought to stress here that in the following we are
interested in forming policies which are stabilizing by
construction, i.e., we aim at solving the discounted
MDP under the constraint of preserving stability. The
equivalence proposed in Theorem 2 will be instrumen-
tal in allowing us to formulate such constraints in the

undiscounted setting, while optimizing the cost in a
discounted sense. This is of particular interest, since
the stability analysis is much simpler and more devel-
oped for the undiscounted setting. We will discuss the
introduction of stability constraints in Section 4. Before
detailing how one can introduce stability constraints,
we first prove that the obtained undiscounted MDP
(24)-(25) yields bias optimal policies; and we then illus-
trate the theoretical developments in the simple case of
a Linear Quadratic Regulator (LQR).

3.1 Equivalence of Optimality Notions

The undiscounted MDP used in Theorem 2 minimizes
the cost in (25a), which is not directly related to standard
optimality concepts such as gain or bias optimality. We
therefore prove next that the policy π̃γ? = πγ? obtained
from (25a) is in fact bias optimal. To that end, we will
first prove gain optimality. We will then prove that the
optimal gain is 0, which we will relate to bias optimality.

Theorem 3 Suppose that Assumption 3 holds. Then,
policy πγ? is gain optimal for stage cost L̃γ .

PROOF. By Theorem 2 policy πγ? solves (25a) with a
finite optimal cost, such that ∀π we have

Eπγ?

[ ∞∑
k=0

L̃γ(sk,π(sk))

]
≤Eπ

[ ∞∑
k=0

L̃γ(sk,π(sk))

]
. (29)

Therefore, the policy is gain optimal, i.e., ∀π we have

lim
N→∞

1

N
Eπγ?

[
N−1∑
k=0

L̃γ(sk,π(sk))

]

≤ lim
N→∞

1

N
Eπ

[
N−1∑
k=0

L̃γ(sk,π(sk))

]
.

2

Theorem 4 Suppose that Assumption 3 holds. Then,
policy πγ? is bias optimal for stage cost L̃γ .

PROOF. Because Ṽ γ? (s0) is finite for all s0 ∈ S, we
have that the average cost is

¯̃Lγ∞ = lim
N→∞

1

N
E

[
N−1∑
k=0

L̃γ(sk, π̃
γ
?(sk))

]
= lim
N→∞

1

N
Ṽ γ? (s0) = 0. (30)

5



By Theorem 3 policy π̃γ? = πγ? is gain optimal, such that

by (30) the gain-optimal average cost is ¯̃Lγ∞ = 0. There-

fore, bias optimality for L̃γ is obtained by minimizing

Eπ

[ ∞∑
k=0

L̃γ(sk,π(sk))− ¯̃Lγ∞

]
= Eπ

[ ∞∑
k=0

L̃γ(sk,π(sk))

]
,

(31)
which is the total undiscounted reward. Since by The-
orem 2 the policy π̃γ? = πγ? solves (25a), i.e., mini-
mizes (31), it is bias optimal by construction. 2

3.2 The LQR Case

In order to clarify the previous developments, let us con-
sider the case of a stochastic linear system

s+ = As+Ba+w, (32)

with w ∼ N (0,W ) i.i.d., E
[
ws>

]
= 0, E

[
wa>

]
= 0,

L(s,a) =

[
s

a

]>
H

[
s

a

]
, H =

[
T U>

U R

]
� 0.

The value and action-value function are given by

V γ? (s) = s>Ps+ V0, V0 =
γ

1− γ
Tr (PW ) ,

Qγ?(s,a) =

[
s

a

]>[
T +γA>PA U>+γA>PB

U+γB>PA R+γB>PB

][
s

a

]
+V0,

with

P = T + γA>PA− (U> + γA>PB)K, (33a)

K = (R+ γB>PB)−1(U + γB>PA), (33b)

0 ≺ R+ γB>PB. (33c)

Note that P can be finite even in case ρ(A− BK) ≥ 1,
where ρ(·) denotes the spectral radius, in which case
the value function is defined and bounded for bounded
states, but Assumption 3 does not hold.

Checking Assumption 3 We observe that, under
feedback a = −Ks we have

S+ = AKSA
>
K +W,

where we usedAK := A−BK, S := E
[
ss>

]
. If ρ(AK) <

1, then there exists a unique matrix S∞ solving the Lya-
punov equation AKS∞A

>
K −S∞+W = 0. Assume that

P is full rank (which is typically the case), then we have

lim
k→∞

Eπ?[V γ? (sk)]=

{
∞ if ρ(AK)≥ 1

Tr (PS∞)+V0 <∞ otherwise
.

The condition ρ(AK) < 1 distinguishes the case
limk→∞ E [sk] = 0, limk→∞ E

[
sks
>
k

]
= S∞ from the

case limk→∞ E [sk] = ±∞: in the former, convergence
in expectation of the value function is guaranteed; in the
latter we immediately have limk→∞ Eπ? [V γ? (sk)] =∞.

Undiscounted Equivalent MDP We observe that

E [V γ? (s+)|s,a]

=

[
s

a

]>[
A>PA A>PB

B>PA B>PB

][
s

a

]
+

1

1− γ
Tr (PW ) .

In case Assumption 3 holds, the stage cost for the cor-
responding undiscounted MDP is then given by

L̃γ(s,a) =

[
s

a

]>
H̃

[
s

a

]
− Tr (PW ) , (34)

H̃ =

[
T + (γ − 1)A>PA U> + (γ − 1)A>PB

U + (γ − 1)B>PA R+ (γ − 1)B>PB

]
.

Consequently, we have

Ṽ γ? (s) = V γ? (s)−Tr (PS∞)−V0 = s>Ps−Tr (PS∞),

Q̃γ?(s,a) =Qγ?(s,a)− Tr (PS∞)− V0.

Then, if P is full rank, the following holds:

lim
k→∞

Eπ?
[
Ṽ γ? (sk)

]
=

{
∞ if ρ(A−BK) ≥ 1

0 otherwise
.

In case P = 0, Assumption 3 is automatically satisfied,
even though the Markov chain might diverge. A simple
example is given by A = 2, B = 1, T = 0, U = 0, R = 1,
for any γ ∈]0, 1]. The system is unstable since K = 0
but V γ? (s) = 0, such that limk→∞ V γ? (s) = 0 holds. In

this case we have L̃γ(s,a) = L(s,a).

A Simple Example Consider a linear system of the
form (32) with A = 2, B = 1, T = 1, U = 0, R = 1,
and set W = 0 in order to have a deterministic system.
One can verify that this system is stabilized only for
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feedback matrices K ∈ K := ]1, 3[, since this implies
A−BK ∈ ]− 1, 1[. The discounted LQR solution is

P =
5γ − 1 +

√
(1− 5γ)2 + 4γ

2γ
, (35a)

K =
4γ

1− 3γ +
√

(1− 5γ)2 + 4γ
, (35b)

such that γ ∈ ]1/3, 1] =⇒ K ∈ K.

We can write the stability-constrained MDP problem as

Kstab := arg min
K

PK(K) s.t. K ∈ K, (36)

where V γ−Ks(s) = PK(K)s2 and

PK(K) :=
K2 + 1

1− γ(2−K)2
.

We ought to stress that (36) is not well-posed, since its
constraint set is open and a solution might not exist. In
practice, one usually defines a closed subset of the open
set K in order to (a) make the problem well-posed; and
(b) avoid being too close to the stability margin and have
some robustness to numerical errors. Since the closure
cl (K) := [1, 3] of K guarantees marginal stability of the
closed-loop system, we discuss the solution of

Kmstab := arg min
K

PK(K) s.t. K ∈ cl (K) ,

One can verify that, using K given by (35b),

Kmstab =

{
1 γ ≤ 1/3

K γ > 1/3
.

The solution is shown in Figure 1. The undiscounted
equivalent problem is obtained by computing stage cost
L̃γ as per (34). Note that, even though L̃γ is defined for
all γ provided that V γ? is bounded, Theorem 2 applies
only if Assumption 3 holds, which is not the case for
γ < 1/3. Indeed, if γ < 1/3 the closed-loop system be-
comes unstable and limk→∞ V γ? (sk) = ∞. In turn, this
entails that in such cases the stability-constrained dis-
counted MDP with stage cost L does not have the same
solution as the stability-constrained undiscounted MDP
with stage cost L̃γ . This fact can be observed in Fig-
ure 1. We stress that if we formulate the undiscounted
MDP with stage cost L̃γ and terminal cost V γ? (s), then
Theorem 1 applies and the equivalence between the two
MDPs holds for all γ. This situation is captured by the
discrete algebraic Riccati equation, which has two solu-
tions in this case, corresponding to the two MDP solu-
tions: with and without the terminal cost V γ? .

Finally, we ought to stress that, as well-known, if we
consider the same system with nonzero covariance W 6=

0 0.2 0.4 0.6 0.8 1
-10

0

10

0 0.2 0.4 0.6 0.8 1

0

2

4

Fig. 1. Analytic solution of the LQR problem: unconstrained
solution (blue continuous line), stability constrained solution

(yellow dashed line), solution with L̃ and no terminal cost
(dotted red line), and stability bounds (black dotted lines).

0, the optimal feedback coincides with the one of its
deterministic counterpart, i.e., when W = 0.

4 Stability Constraints based on MPC

In the previous section, we proved that a discounted
MDP can be reformulated as an undiscounted MDP and
we mentioned that this fact can be useful to introduce
stability constraints in the MDP formulation. However,
we did not discuss how this can be done in the general
case. In this section, we exploit the theoretical results
of this paper in order to propose a solution method for
stability-constrained MDPs which can be implemented
in practice.

In order to solve an MDP, one must compute either the
value function V γ? , the policy πγ? , the action-value func-
tion Qγ? or a combination of these. Since their functional
form is not known a priori and can be rather compli-
cated, solving MDPs exactly is a notoriously difficult
task. Therefore, practical approaches typically rely on
some parametric function approximation Vθ, πθ, and
Qθ, where θ denotes a set of parameter adjusting the
function approximations, in order to make the prob-
lem tractable [6,7]. The stability-constrained discounted
MDP (6) can then be formulated using function approx-
imation as

min
θ∈Θs

Eπθ

[ ∞∑
k=0

γkL(sk,πθ(sk))

]
, (37)

where Θs := { θ | πθ ∈ Πs } is the set of parameters
which yield a stabilizing policy. We propose to introduce
the stability constraint θ ∈ Θs by selecting an ad-hoc
parametrization of these functions defining the MDP so-
lution, which yields stabilizing policies by construction.

7



These parametrizations will be based on MPC and will
rely on tools from control theory.

4.1 MPC: a Structured Function Approximator

In order to enforce closed-loop stability, we propose to
rely on Model Predictive Control (MPC) to support the
necessary function approximations. This approach has
been proposed in [13] in the context of Reinforcement
Learning. We recall next how MPC provides a very con-
venient way to support a parametric approximation of
Vθ, πθ, and Qθ, as it solves the optimal control problem

Qθ(s,a) = min
z

λθ(s) + V f
θ (xN ) +

N−1∑
k=0

`θ(xk,uk) (38a)

s.t. x0 = s, u0 = a, (38b)

xk+1 = fθ (xk,uk) , (38c)

g (uk) ≤ 0, (38d)

hθ (xk,uk) ≤ 0, hf
θ(xN ) ≤ 0, (38e)

where z = (x0,u0, . . . ,xN ). The stage and terminal cost

`θ, V
f
θ , the system dynamics and constraints fθ,hθ,h

f
θ

and the initial cost λθ are all parametric functions of
θ, while actuator limitations g are known. Note that
in MPC the initial constraint (38b) typically only in-
volves the state, i.e., u0 = a is not present, since the
goal is to compute an optimal policy. The policy πθ(s)
and value function Vθ(s) are obtained by solving Prob-
lem (38) with constraint u0 = a removed. This is fully
equivalent to

πθ(s) = arg min
a

Qθ(s,a), Vθ(s) = min
a

Qθ(s,a).

(39)

We briefly comment on this particular MPC formula-
tion. Function λθ has been introduced in [13] to make
it possible to use a positive-definite stage cost `θ even
when the true stage cost l is not. This choice is related to
the stability theory of economic MPC, where λ is called
a storage function. In [13] it is discussed in detail how
the use of a parametrized stage cost `θ makes it possible
to recover the optimal policy and value functions using
(36)-(37) even if the MPC model (38c) does not accu-
rately capture the system dynamics (1).

We ought to stress that, though we formulated (38) us-
ing a notation which is easily interpreted as a determin-
istic formulation, any MPC formulation can be used,
including stochastic and robust formulations. Note also
that in some cases, the scheme is reformulated using
time-varying constraints, e.g., in case of tube-based ro-
bust MPC (used in the safety-constrained MDP context
in [29]), where the constraints are tightened in order to
guarantee that the original constraints are satisfied for
all possible perturbations acting on a nominal model of

the system. We stress that this is purely a matter of no-
tation and implementation, and (38) covers this case,
provided that fθ yields a set-valued state propagation.

After having recalled that MPC can be used as a func-
tion approximator when solving MDPs, we now discuss
how stability can be enforced directly in MPC, such that
the obtained MDP solution must also be stabilizing by
construction. There exists a plethora of MPC formula-
tions relying on different assumptions and providing dif-
ferent stability and safety guarantees and we refer to,
e.g., [24,16,18,19] and references therein for an overview.
In this paper, for brevity we focus on two special cases:
nominal and tube-based robust MPC.

Nominal MPC. Nominal asymptotic stability builds
on the assumption that the deterministic model used in
MPC is exact. This is clearly a simplified setting and we
will consider a more general approach with robust MPC.

Assumption 4 The system dynamics and stage cost
are continuous at (ss,as) and satisfy fθ(ss,as) = ss,
`θ(ss,as) = 0. Moreover, `θ(s,a) ≥ α1(‖s − ss‖), for
some K∞ function α1.

Assumption 5 There exists a terminal control law
κθ(s) such that ∀ s s.t. hf

θ(s) ≤ 0, it holds that

hf
θ(fθ(s,κ(s))) ≤ 0,

g (κθ(s)) ≤ 0, hθ (s,κθ(s)) ≤ 0,

and the terminal cost satisfies

V f
θ (s) ≥ V f

θ (fθ(s,κ(s))) + `θ(s,κθ(s))).

Moreover, hf
θ(ss) < 0, and V f

θ (s) ≤ α2(‖s − ss‖), for
some K∞ function α2.

Proposition 1 Suppose that the system (1) matches the
MPC model fθ, and Assumptions 4 and 5 hold. Then, if
MPC is feasible at the initial time instant, it will remain
feasible at all future times and the closed-loop system is
asymptotically stable.

PROOF. This standard result is given in, e.g., [24,16].

The introduction of stability constraints can then be
done based on the result given in Proposition 1: in order
for Assumptions 4-5 to hold, we select a parametrization
which is smooth enough, define functions α1, α2 and
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constant ε to define the set of feasible parameters as

Θ := { θ | `θ(s,a) ≥ α1(‖s− ss‖),
V f
θ (s) ≤ α2(‖s− ss‖),
hf
θ(ss) ≤ ε, ss = fθ(ss,as),

hf
θ(fθ(s,κθ(s))) ≤ 0,

g (κθ(s)) ≤ 0, hθ (s,κθ(s)) ≤ 0

V f
θ (x) ≥ V f

θ (fθ(s,κθ(s))) + `θ(s,κθ(s))),

∀ s s.t. hf
θ(s) ≤ 0 }. (40)

While this formulation might seem rather abstract and
difficult to implement, in practice it is common to select
`θ and V f

θ as convex functions, for which it is simpler to
impose upper and lower bounds. The steady-state con-
straint ss = fθ(ss,as) might be necessary if either the
model or the steady state depend on θ, unless one re-
lies on the results of [25] for infeasible setpoint tracking.

Constraint hf
θ(ss) ≤ ε might not be necessary, provided

that some weak controllability assumption holds [24].
Finally, MPC formulations with a terminal point con-
straint only require the lower bound on the stage cost,
provided that a weak controllability assumption holds.

Since this formulation only provides formal stability
guarantees under the strong assumption that the deter-
ministic MPC model is exact, we discuss next the case
of robust MPC, which formally guarantees that the real
system will be asymptotically stabilized to a set.

Robust MPC. In tube-based robust MPC, model
mismatch is handled as additive bounded process noise.
Since the nonlinear case can be computationally de-
manding, we focus on the linear case. For a detailed
discussion on the use of Linear tube-based Robust MPC
(LRMPC) in the context of safety-constrained MDPs
see [29]. In the following, we briefly recall the prob-
lem formulation and the related stability and safety
constraints. LRMPC is based on repeatedly solving

Qθ(s,a) :=

min
z

N−1∑
k=0

∥∥∥∥∥xk − xr

uk − ur

∥∥∥∥∥
2

H

+
∥∥∥xN − xr

∥∥∥2

P

+
∥∥∥x0

∥∥∥2

Λ
+ λ>x0 + l (41a)

s.t. x0 = s, u0 = a, (41b)

xk+1 = Axk +Buk + b, k ∈ IN−1
0 , (41c)

Cxk +Duk + ck ≤ 0, k ∈ IN−1
0 , (41d)

TxN + t ≤ 0, (41e)

where one must enforce that the system dynamics (41c)
and a parametrized compact uncertainty set Wω satisfy

s+ − (As+Ba+ b) ∈Wω.

The set is typically parametrized as the polyhedron
Wω := { w |Mw ≤m } and the following set member-
ship constraint is imposed on M,m for all past samples
si+1, si,ai, i ∈ I:

M(si+1 − (Asi +Bai + b)) ≤m, ∀ i ∈ I.

Then, ck is given by tightening the original constraints

Cs+Da+ ĉ ≤ 0,

so as to guarantee that, for any process noise w ∈ Wω,
the original constraints are satisfied. Parameters xr,ur

must be a steady-state for the system dynamics (41c):

(A− I)xr +Bur = 0.

Finally, T and tmust be selected such that they define a
robust positively invariant terminal set for the feedback
law u = −K(x − xr) + ur, with K the solution to the
LQR formulated with A,B,H, P . The vector of MPC
parameters is then defined as

θ = {Λ, λ, l,H,xr,ur,M}, (42)

and we consider K, P , ck, T , t as functions of these
parameters. Vector m can also be included in θ, but,
as discussed in [29] this is not necessary. Matrices C, D
and vector c̄ are assumed to be known. Finally, while A,
B, b can in principle also be included in the parameter
vector θ. However, as discussed in [29] modifying A and
B makes the MDP much harder to formulate and solve.

Proposition 2 Assume that the terminal cost is selected
as the solution of the Riccati equation and the correspond-
ing feedback law is used both to predict the uncertainty
evolution when performing constraint tightening and to
define the terminal positive invariant set. Assume more-
over that, if the nominal prediction satisfies the tight-
ened path and terminal constraints, then the real system
satisfies the original path constraints and remains in the
positive invariant terminal set. Then, the true system is
asymptotically stabilized to the minimum robust positive
invariant set associated with the Riccati feedback.

PROOF. This result can be found in, e.g., [9,31].

For some small ε > 0, the set of parameters guaranteeing
safety and stability then becomes

Θ := { θ | H � εI,
M(si+1 − (Asi +Bai + b)) ≤m, ∀ i ∈ I,
(A− I)xr +Bur = 0,

∃ x s.t. Tx ≤ t },
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i.e., the noise set must include all observed noise samples,
the reference must be a steady-state of the system and
the terminal set must be nonempty. This last condition
also entails that the MPC domain is nonempty.

4.2 MPC Approximator and MDP Optimality

We will prove next that undiscounted MPC can yield a
function approximator delivering the exact solution of
the discounted MDP, even if the MPC model is not ex-
act, e.g., if MPC relies on a deterministic model while
the true system (1) is stochastic. To that end, we will
first recall a result from [13] which establishes the equiv-
alence in case MPC has the same discount factor as the
MDP. We will exploit the equivalence with γ = 1 to
prove that MPC can support the exact solution of the
undiscounted MDP. The desired result is then obtained
by exploiting the equivalence between the undiscounted
and the discounted MDP, stated in Theorem 2.

We recall next the main result of [13], adapted to the con-
text of interest in this paper. Consider an undiscounted
MDP with a given stage cost 1 L̃, zero optimal gain, op-
timal action-value and value function Q̃?, Ṽ? and bias-
optimal policy π̃?. Define the stage cost

L̂(s,a) :=

 Q̃?(s,a)− Ṽ+(s,a) if
∣∣∣Ṽ+(s,a)

∣∣∣ <∞
∞ otherwise

,

Ṽ+(s,a) := E
[
Ṽ? (fθ(s,a))

]
.

Note that L̂ = L̃ only in case fθ(s,a) yields the exact

system dynamics (1). Further denote as V̂? the value
function associated with solving

min
π

lim
N→∞

Eπ

[
N−1∑
k=0

L̂(sk,π(sk))

]
.

Theorem 5 ([13]) Consider an undiscounted MDP

with stage cost L̃, optimal value function Ṽ? and bias-
optimal policy π̃?, such that under policy π̃?

lim
N→∞

Ṽ?(sN ) = 0,
∣∣∣Ṽ?(sk)

∣∣∣ <∞, ∀ k ≥ 0. (43)

Assume that the parametrization of the MPC scheme (38)
is descriptive enough, i.e., ∃θo ∈ Θ such that

`θo
(s,a) = L̂(s,a), ∀ s,a s.t.hθo

(s,a) ≤ 0, (44a)

V f
θo

(s) = V̂?(s), ∀ s s.t.hf
θo

(s) ≤ 0, (44b)∣∣∣V̂?(s)∣∣∣ <∞⇐⇒ |Vθ(s)| <∞. (44c)

1 This stage cost need not be related to L̃γ for the results
of [13].

Then, using MPC (38) as function approximator, the
exact optimal value function and policy are recovered.

PROOF. The proof follows from [13, Theorem 1,
Corollary 2]. 2

We now apply this result to the undiscounted MDP built
with stage cost L̃γ defined in (16), in order to also obtain
the equivalence for the original discounted MDP, thanks
to Theorem 2.

Theorem 6 Suppose that Assumption 3 holds and the
parametrization of MPC (38) satisfies the approxima-

tion conditions (44) for L̂ defined using L̃γ and the cor-
responding value functions. Then, the solution of the
stability-constrained MDP (37) which supports the pol-
icy using MPC scheme (38) delivers the exact solution
to MDP (6).

PROOF. By Theorem 5, the exact solution of the
undiscounted MDP with stage cost L̃γ can be recovered,
provided that (43) holds, which is a direct consequence
of Assumption 3 and Theorem 2. Moreover, by Theo-
rem 2 the solution of the undiscounted MDP with stage
cost L̃γ matches the solution of the discounted MDP
with stage cost L and discount factor γ. 2

The result of Theorem 6 guarantees that the optimal
policy for (6) is recovered. In turn, this entails that, if
the original unconstrained MDP is already stabilizing,
then the optimal policy is obtained. Otherwise, the sta-
bility constrained MDP will return, among all stabiliz-
ing policies, the one which minimizes the expected total
discounted cost, since the unconstrained optimal one is
not stabilizing.

Guaranteeing that the parametrization of MPC is rich
enough to solve the MDP exactly is in general very dif-
ficult and the solution is approximate. This is due to
the fact that L̂, V̂?, and the constraint functions can
take rather convoluted forms. Additionally, in order to
keep the MPC problem tractable, a simple parametriza-
tion is usually favored. Furthermore, the stability condi-
tions for MPC are sufficient but typically not necessary,
such that some stabilizing policies might be unnecessar-
ily ruled out. A thorough analysis of the approximation
properties of parametrizations which do not satisfy (44)
is beyond the scope of this paper, but we observe that, by
selecting a given parametrization, one selects the class
of policies that can be supported and, consequently, the
degree of suboptimality which can be achieved.
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5 Simulation Examples

In this section we provide three examples. The first two
consider nominal asymptotic stability for: (a) a linear
system with quadratic cost which diverges for small γ;
and (b) for a nonlinear system for which steady-state op-
eration is not optimal. Finally, we consider a stochastic
system for which we provide safety and stability guar-
antees by robust MPC.

5.1 Simple LQR

We consider first the very simple example of Section 3.2.
In order to simplify the interpretation of the results, we
consider the case of no process noise. We parametrize
the problem by the initial, stage and terminal cost ma-
trices Λ, H, P , where all costs are purely quadratic. We
deploy Q-learning in 2000 batches of 10 samples; we use
as terminal controller a = −Kfs = −1.2s and satisfy
Assumption 4 by formulating (40) with ε = 10−8 as

H � εI, P ≥ (A−BKf)
2P +

[
I

−Kf

]>
H

[
I

−Kf

]
.

We initialize the parameters as Λ = 0, H = I, P = 1.
We display the simulation results in Figure 2. One can
see that for γ = 0.1 the RL feedback tends to 1 as the
prediction horizon increases. The fact that the feedback
does not go to 1 is due to the fact that in the terminal
conditions we use Kf = 1.2. One possible remedy is to
update the terminal feedback with the learned one. In
that case, the feedback learned by RL is independent
of the prediction horizon, but depends on the value of
ε and on the numerical accuracy of the SDP solver. By
fixing N = 40 and solving the problem for γ ∈]0, 1], we
observe that RL learns the correct feedback for all γ, i.e.,
it matches the discounted LQR feedback for all γ > 1/3
and returns a feedback close to 1 otherwise. This result
coincides with the analytical derivations of Section 3.2.

5.2 Nominal Nonlinear Economic MPC

Consider the following Continuously Stirred Tank Reac-
tor (CSTR) from [11,2], where a single irreversible chem-
ical reaction A→ B takes place with reaction rate krcA,
where kr = 0.4 l/(mol min) is the rate constant and cA,
cB are the concentrations of A and B respectively. The
process dynamics are

ċA =
q

VR
(cAf−cA)−krcA, ċB =

q

VR
(cBf−cB)+krcA,

where cAf = 1 mol/l, cBf = 0 mol/l are the feed concen-
trations of A and B, VR is the volume of the reactor. The
flow q through the reactor is the control variable, which
is constrained in the interval [0, 20] l/min. The system
is discretized using a sampling time ts = 1 min.

0 50 100 150 200
1

1.05

1.1

0 0.2 0.4 0.6 0.8 1
0

1

2

Fig. 2. Batch Q-learning applied to the simple LQR exam-
ple. Top plot: learned feedback for γ = 0.1 and varying pre-
diction horizon. Bottom plot: feedback learned with N = 40
and safety constraints (continuous line) and unconstrained
discounted LQR feedback (dotted line).

The discount factor is γ = 0.9 and the stage cost is

`(s,a) = 2qcA − 1.5q. (45)

As observed in [2], even though ss = (0.5, 0.5), as = 4
is an economically optimal steady-state, this cost does
not yield asymptotic stability to that steady state for
γ = 1, as periodic operation yields a lower cost. Also
with γ = 0.9 periodic operation does yield a lower cost
than operating the system at the optimal steady-state.
We observe that, to the best of our knowledge, a formal
method to solve this problem with formal steady-state
stability guarantees is currently not available.

We formulate a nominal MPC scheme using the simple
quadratic stage and initial cost

`θ(x,u) =

∥∥∥∥∥x− ss

u− as

∥∥∥∥∥
2

H

,

λθ(x) =
∥∥∥x− ss

∥∥∥2

Λ
+ λ>(x− ss) + l,

with parameter vector θ = (H,Λ,λ, l).

In order to obtain simple conditions for asymptotic sta-
bility, we enforce a terminal point constraint xN = ss,
with a prediction horizon N = 100. Since we enforce a
terminal point constraint, a sufficient condition for nom-
inal asymptotic stability isH � εI, with ε > 0. We select
ε = 10−4 and run batch Q-learning with learning factor
α = 0.1 and 8 batches of 40 samples starting from initial
conditions (1, 0), (0, 1), (1, 1), (0, 0), (0.8, 0.3), (0.3, 0.8),
(0.4, 0.6), (0.6, 0.4). We run 1000 epochs and obtain the
parameter evolution and TD-error displayed in Figure 3
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Fig. 3. Evolution of the parameter θ and the TD error δ over
the RL epochs.

respectively. We observe that the obtained stage cost
matrix has eigenvalues 31.5, 10−4, 10−4, such that, as
expected, the stability constraint is active.

5.3 Robust MPC

Consider the linear system with dynamics and stage cost

s+ =

[
1 0.1

0 1.1

]
s+

[
0.05

0.1

]
a+w,

`(s,a) =

[
s− sr

a− ar

]>
diag

 1
0.01
0.01

[ s− sr

a− ar

]
,

where s = (p, v) and sr = (−3, 0), ar = 0, with discount
factor γ = 0.5. Note that the discounted unconstrained
problem without stability constraints is not stabilizing.

We formulate tube based MPC as per (41) with pre-
diction horizon N = 50 and introduce the state and
control constraints −1 ≤ s ≤ 1, −10 ≤ a ≤ 10. The
real noise set is selected as a regular octagon, and we
parametrize Wω as a polytope with 4 facets. We update
θ = {Λ, λ, l,H,xr,ur,M} using Q learning with learn-
ing factor α = 0.1.

The closed-loop trajectory starting from s0 = (0.8, 0) is
displayed in Figure 4, together with the reference, Max-
imum Robust Positive Invariant (MRPI) and terminal
sets at the beginning and end of the simulation, as well
as the minimum Robust Positive Invariant (mRPI) sets
throughout the simulation. We display the noise set ap-
proximation at the end of the simulation in Figure 5, and
the evolution throughout the RL epochs of the parame-
ter θ and the average TD error in each batch in Figure 6.

Fig. 4. MRPI (red), terminal (cyan) sets and reference xr

(black and grey circle) at the beginning and end of the learn-
ing process; state trajectory (black line) and mRPI sets (yel-
low) at each time instant.

Fig. 5. True process noise set (transparent octagon), noise
samples (black dots), their convex hull (red dots) and noise
set parametrized by matrix M (cyan).

6 Conclusions

In this paper, we have provided a way to enforce stabil-
ity constraints in discounted MDPs. In order to achieve
that, we have proven that, under a weak assumption,
any discounted MDP can be reformulated as an undis-
counted MDP, and we have proven that the obtained
undiscounted MDP yields bias-optimal policies. In order
to introduce the stability constraints, we exploited the
results of [13] in order to deploy stabilizing MPC formu-
lations to support the value functions and policy approx-
imations required to solve the MDP. Future work will
further investigate the stability properties of discounted
MDPs and the possibility of using the equivalence in or-
der to derive new algorithms for solving undiscounted
MDPs.
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Fig. 6. Top plot: parameter evolution through the epochs.
Bottom plot: TD error through the epochs.
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