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Abstract

Conventional Bayesian estimation requires an accurate stochastic model of a system. However, this requirement is not always
met in many practical cases where the system is not completely known or may differ from the assumed model. For such a
system, we consider a scenario where the measurements are transmitted to a remote location using a common communication
network and due to which, a delay is introduced while receiving the measurements. The delay that we consider here is random
and one step maximum at a given time instant. For such a scenario, this paper develops a robust estimator for a linear Gaussian
system by minimizing the risk sensitive error criterion that is defined as an expectation of the accumulated exponential
quadratic error. The criteria for the stability of the risk sensitive Kalman filter (RSKF) are derived and the results are used
to study the stability of the developed filter. Further, it is assumed that the latency probability related to delay is not known
and it is estimated by maximizing the likelihood function. Simulation results suggest that the proposed filter shows acceptable
performance under the nominal conditions, and it performs better than the Kalman filter for randomly delayed measurements
and the RSKF in presence of both the model uncertainty and random delays.
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1 Introduction

An optimal solution which is popularly known as the
Kalman filter (KF) is available to estimate the state of
a linear Gaussian system [1]. However, it needs to be
modified if the measurements are received with random
delays [19]. Consequently, a considerable amount of re-
search work is reported in literature for estimating the
states of a linear Gaussian system with randomly de-
layed measurements [24,16,15]. An unbiased minimum
variance filtering solution is discussed in [19] for a linear
Gaussian system with one step random delay in mea-
surements. For the system with bounded measurements
delay and packet drops, a minimum variance filter with
the state augmentation approach is proposed in [22].
The authors of [11] used the linear temporal coding tech-
nique to design an optimal linear estimator for a net-
worked system with packet dropping events. The works
in [28] and [23] dealt with the measurements which are
randomly delayed but time stamped. The authors in [28]
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has adopted a method of measurement reorganization
for designing the optimal estimator, whereas [23] has
used the state augmentation method. Note that none of
the above works entertains the model uncertainty in its
process dynamics.

Many a time in real practice, the system does not adhere
to the assumed model, and the value of its model pa-
rameters deviates from the nominal. For such systems,
several robust estimators based on different cost func-
tions have been reported in literature [9,10,27,7,3,20].
A study on the state estimation of a linear Gaussian
system with exponential performance criteria is carried
out in [13] to tackle a deterministic model uncertainty.
The dynamic programming method with the same per-
formance criterion is proposed in [21] to provide the re-
quired robustness. The authors in [8] and [4] considered
the risk sensitive filtering solutions to handle such un-
certainty in system. However, none of these works has
addressed the simultaneous presence of random delays
in measurements and the uncertainty in system model
while designing a state estimator.

The model uncertainty that we are entertaining in this
work is a part of the plant dynamics and implies that the
values of one or more process parameters deviate from
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the nominal ones and are not known correctly. These
uncertainties in their values are deterministic, arbitrary,
and unknown. This should not be confused with the pro-
cess noise, which is a random sequence with known dis-
tribution. The measurements are randomly delayed with
one step maximum at a given time instant, and it is mod-
eled with help of the Bernoulli random variables. This
work considers the exponential of the squared estimation
errors, both the past and the present, as a cost function
and presents a framework to obtain a general solution.
Subsequently, the cost function is minimized for a linear
Gaussian system with above descriptions and we receive
a closed form recursive solution.

Further, it is assumed that the latency probability of the
random delays is not known, and we propose a method
to estimate it based on the joint density of the received
measurements. This paper also establishes the stability
of the RSKF using the uniformly complete controlla-
bility and observability condition. This result is further
utilized to analyze the stability of the proposed method
and presented in the form a conjecture. The developed
estimator converges to the RSKF in absence of random
delays in measurements and becomes the KF in absence
of both the random delays and the model uncertainty.

The proposed filter is applied to two linear estimation
problems and its performance is compared with that of
the RSKF [4] and the Kalman filter for randomly de-
layed measurements (KF-RD) [19]. The simulation re-
sults suggest that the proposed filter shows acceptable
performance (comparable to the Kalman filter) under
the nominal conditions and performs better than the
KF-RD and the RSKF when the system deviates from
the nominal attributions.

The specific contributions of this paper over the existing
works can be summarized as follows:

(i) It derives a closed form solution for a linear Gaus-
sian system in presence of the model uncertainty in
process dynamics and single step random delays in
the measurements.

(ii) The latency probability in measurement model is
also estimated by maximizing the likelihood of the
received measurements.

(iii) Further, it establishes the stability criteria of the
RSKF and then utilize the result to justify the sta-
bility of the proposed filter.

The rest of the paper is organized as follows. A recursive
Bayesian framework using the information state and the
risk sensitive error criteria for a system with the model
uncertainty and random delays in measurements is pre-
sented in Section 2. Section 3 uses the framework devel-
oped in the previous section and derives the recursive
algorithm of the proposed filter. Section 4 discusses the
stability of both the RSKF and the proposed filter. The
estimation of latency parameter for randomly delayed

measurements is presented in Section 5. In Section 6,
the simulations results are listed. Finally, the paper ends
with a brief conclusion.

2 Risk sensitive filtering with randomly delayed
measurements

Let us consider a discrete time nonlinear system, mod-
eled with the following process and measurement equa-
tion:

xk = fk−1(xk−1) + wk−1, (1)

zk = hk(xk) + vk, (2)

where the state xk ∈ ℜnx , the measurement zk ∈ ℜnz ,
fk : ℜnx → ℜnx , and hk : ℜnx → ℜnz . The process
noise wk−1 and the measurement noise vk are indepen-
dent and identically distributed (i.i.d.) randomprocesses
with arbitrary but known probability density function
(pdf). We consider that the actual system differs from
the assumed model and follows the following process dy-
namics:

xk = fk−1(xk−1) + ∆fk−1(xk−1) + wk−1, (3)

where ∆fk−1(xk−1) represents an arbitrary, determinis-
tic and unknown process modeling error.

The measurements are assumed to be transmitted over
a common communication channel to a remotely located
estimation center and owing to the limited bandwidth of
the channel, a delay is introduced during the transmis-
sion. We assume that the delays are random in nature
and the maximum extent of it is one step. The received
measurement, yk, can be modeled as [19]

yk = (1− βk)zk + βkzk−1, (4)

where βk are the i.i.d. random sequences that follow the
Bernoulli distribution with E[βk] = αk, and E[βiβ

⊤
j ] =

E[βi]E[βj ], ∀i 6= j.

2.1 Approach

Our objective is to find an optimal posterior estimate
x̂∗k|k recursively from the remotely received measure-

ments y1:k for the underlying system described in (1-4).
We consider a risk sensitive cost criterion given by

Jk(x̂k|k|y1:k) =EβEx

[

exp
(

k−1
∑

i=1

µ1,ie
∗⊤
i|i e

∗
i|i

+ µ2,ke
⊤
k|kek|k

)]

,

(5)

where the posterior estimation error is e∗i|i = (xi − x̂∗i|i).

x̂i|i denotes the posterior estimated state at time step i.
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µ1,i ≥ 0 and µ2,i > 0 are two time varying risk parame-
ters used for scaling the past errors and the present error,
respectively. Ex and Eβ denote the expectations over the
posterior density of xk, and the statistics of βk, respec-
tively. Hereafter, for simplicity EβEx[.] will be written as
E[.]. We seek the state estimate at each time step which
minimizes the cost function expressed in (5), that is

x̂∗k|k = arg min
x̂k|k

Jk(x̂k|k|y1:k). (6)

Remark 1.Note that the posterior density of the state is
p(xk|y1:k) ∝ p(yk|xk, xk−1)p(xk|xk−1), where the densi-
ties, p(yk|xk, xk−1) and p(xk|xk−1), are constructed us-
ing the process and measurement equations, and the pdf
of vk and wk−1.

2.2 General framework

In this subsection, we work out a general framework for
the solution of (6) by using the two step Bayesian frame-
work for the risk sensitive error criterion. The joint pos-
terior density with the delayed measurements, y1:k, can
be written as:

p(x0:k|y1:k) =
p(x0:k, y1:k)

p(y1:k)

=
p(yk|x0:k, y1:k−1)p(x0:k, y1:k−1)

p(yk|y1:k−1)p(y1:k−1)

=
p(yk|x0:k, y1:k−1)p(x0:k|y1:k−1)p(y1:k−1)

p(yk|y1:k−1)p(y1:k−1)

= γkp(yk|x0:k, y1:k−1)p(x0:k|y1:k−1),
(7)

where γk = 1/p(yk|y1:k−1), and p(yk|y1:k−1) =
∫

p(yk|x0:k, y1:k−1)p(x0:k|y1:k−1)dx0:k is a normalizing
constant. From (2) and (4), it is clear that the current
measurement yk is correlated with the current state
xk as well as previous state xk−1. Thus, assuming yk,
conditioned on xk and xk−1, is independent of the pre-
vious measurements, y1:k−1, and the states, x0:k−1, we
can write p(yk|x0:k, y1:k−1) = p(yk|xk, xk−1). Assuming
x̂∗0|0, · · · , x̂

∗
k−1|k−1 are already known at the time step k

in (7), we write the marginal density of state as

p(xk|y1:k) = γkp(yk|xk, xk−1)p(xk|y1:k−1). (8)

Again, using the Chapman-Kolmogorov integral for
p(xk|y1:k−1), Eq. (8) can be rewritten as

p(xk|y1:k) =γkp(yk|xk, xk−1)

∫

p(xk|xk−1)

× p(xk−1|y1:k−1)dxk−1.
(9)

Information state: Consider a set of information, Ik =
{y1:k, e1|1, · · · , ek−1|k−1} [2], is available at any time step

k. The information state is defined as

σk , p(xk|Ik) = exp
(

k−1
∑

i=0

µ1,ie
⊤
i|iei|i

)

p(xk|y1:k), (10)

where σ0 = p(x0). Now, substituting (9) into (10) yields

σk = γkp(yk|xk, xk−1)

×

∫

p(xk|xk−1) exp
(

µ1,k−1e
⊤
k−1|k−1ek−1|k−1

)

× exp
(

k−2
∑

i=0

µ1,ie
⊤
i|iei|i

)

p(xk−1|y1:k−1)dxk−1,

= γkp(yk|xk, xk−1)

∫

p(xk|xk−1)

× exp
(

µ1,k−1e
⊤
k−1|k−1ek−1|k−1

)

σk−1dxk−1.

(11)

We define the predicted information state density,
p(xk|Ik−1, ek−1|k−1), as

p(xk|Ik−1, ek−1|k−1) =

∫

p(xk|xk−1)

× exp
(

µ1,k−1e
⊤
k−1|k−1ek−1|k−1

)

σk−1dxk−1.
(12)

From (11), we can write the posterior density for the
information state as

σk , p(xk|Ik) = γkp(yk|xk, xk−1)p(xk|Ik−1, ek−1|k−1).
(13)

Further, the cost function defined in (5) can be written
as

Jk(x̂k|k|y1:k) =

∫

exp

(

k−1
∑

i=1

µ1,ie
⊤
i|iei|i + µ2,ke

⊤
k|kek|k

)

× p(xk|y1:k)dxk,

and by (10), the above equation reduces to

Jk(x̂k|k|y1:k) =

∫

exp
(

µ2,kek|ke
⊤
k|k

)

σkdxk. (14)

When the Eq. (6) is solved recursively with the help of
(12)-(14), we receive risk sensitive estimates for the ran-
domly delayed measurements. Note that the Eq. (14)
is an exponential quadratic cost function that explic-
itly considers only the present error. If the underlying
system is linear and the noises are Gaussian, a closed
form solution can be obtained. However, for a nonlinear
system, the posterior density often becomes numerically
intractable and usually, an approximate solution is ap-
proached.
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Remark 2. Although p(xk|Ik) is an unnormalized den-
sity, it doesn’t change the value of estimate x̂k|k for which
(14) is minimum [4].

Remark 3. It can be observed that for a risk neutral
case, µ1,k−1 = 0, and µ2,k > 0, p(xk|Ik) equals the
p(xk|y1:k), and the cost function Jk(x̂k|k|y1:k) reduces to
a standard exponential quadratic function.

3 Risk sensitive filtering for a linear Gaussian
system with randomly delayed measurements

In this section, we use the general framework presented
in previous section for a linearGaussian systemwith ran-
domly delayed measurements and derive a closed form
solution of the estimate. A discrete time linear system
with model uncertainty is given by:

xk = (Ak−1 +∆Ak−1)xk−1 + wk−1, (15)

zk = Ckxk + vk, (16)

where wk−1 and vk are zero mean, white Gaussian and
mutually independent noise sequences with covariances
Qk−1 and Rk, respectively. The delayed measurement,
yk, is the same as defined in (4). The initial state x0
is also assumed to follow a Gaussian distribution and
mutually independent of wk−1, vk and βk. Ak−1 is the
matrix for transitioning xk−1 to xk and is considered to
be invertible. ∆Ak−1 is an arbitrary, deterministic and
unknown modeling uncertainty. We further assume that
if A−1

k exists, then, (Ak + ∆Ak)
−1 also exists for all

permissible values of ∆Ak. Moreover, the matrices Ak,
Ak + ∆Ak and Ck are assumed to be bounded for all
k ≥ 0, i.e. they hold the following inequalities:

0 ≤(Ak +∆Ak)
⊤(Ak +∆Ak) ≤ κ1I,

and 0 ≤ C⊤
k Ck ≤ κ2I,

(17)

where κ1 and κ2 are real positive constants.

Remark 4. The ∆Ak−1 represents the deviation of the
process model from its nominal one. Note that, since
∆Ak−1 is unknown to the estimator, the estimator works
only with the nominal process dynamics (i.e. Ak−1) for
transitioning the states.

3.1 Risk sensitive estimate with delayed measurements

In order to obtain the state estimate, x̂k|k, for a linear
and Gaussian system, Eqs. (12) and (13) are realized
and the cost function Jk(x̂k|k|y1:k) is minimized. We as-
sume that σk is an unnormalized Gaussian distribution,
provided µ1,k−1 is a sufficiently small non-negative num-
ber [4]. This assumption can be justified as σ0 = p(x0)
follows the Gaussian distribution and at the end of this
subsection, it is established that σk is Gaussian if σk−1

is taken as a Gaussian density. The prior risk sensitive
estimate for the linear system described by (15) and (4)
is derived below.

Theorem 1 The predicted mean and the error covari-
ance for the system described by Eqs. (15) and (4) are
given by

x̂k|k−1 = Ak−1x̂k−1|k−1,

Σk|k−1 = Ak−1(Σ
−1
k−1|k−1 − 2µ1,k−1I)

−1A⊤
k−1 +Qk−1,

(18)

where Σk−1|k−1 is the posterior error covariance at the
time step k − 1.

Proof. To compute the predicted estimate, we use the
framework of the predicted information state density
given in Eq. (12). Considering σk−1 is a Gaussian den-
sity, we have

σk−1 = γk−1|k−1(2π)
−nx/2|Σk−1|k−1|

−1/2 exp
(

−
1

2
×

(xk−1 − x̂k−1|k−1)
⊤Σ−1

k−1|k−1(xk−1 − x̂k−1|k−1)
)

.

(19)

Substituting (19) in (12) yields

p(xk|Ik−1, ek−1|k−1)

= γk−1|k−1(2π)
−nx/2|Σk−1|k−1|

−1/2

∫

p(xk|xk−1)

× exp
[

−
1

2

(

(xk−1 − x̂k−1|k−1)
⊤Σ−1

k−1|k−1

× (xk−1 − x̂k−1|k−1) + (xk−1 − x̂k−1|k−1)
⊤(−2µ1,k−1I)

× (xk−1 − x̂k−1|k−1)
)]

dxk−1.

Using the distributive property of matrices on the terms
inside the exp[·], we can rewrite the above equation as

p(xk|Ik−1, ek−1|k−1)

= γk−1|k−1(2π)
−nx/2|Σk−1|k−1|

−1/2

∫

p(xk|xk−1)

× exp[−
1

2

(

(xk−1 − x̂k−1|k−1)
⊤(Σ−1

k−1|k−1 − 2µ1,k−1I)

× (xk−1 − x̂k−1|k−1)
)

]dxk−1,
(20)

where µ1,k−1 is a non-negative real number with

|Σ−1
k−1|k−1 − 2µ1,k−1I| > 0 or 2µ1,k−1Σk−1|k−1 < I for

every k. Clearly, the exponential part of (20) represents
a Gaussian distribution and any factor required to make
it a normalized distribution can be adjusted into the
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constant outside the integral. Eq. (20) can be rewritten
as

p(xk|Ik−1, ek−1|k−1) = γk|k−1

∫

p(xk|xk−1)

×N (xk−1; x̂k−1|k−1, (Σ
−1
k−1|k−1 − 2µ1,k−1I)

−1)dxk−1.

(21)

Using the assumed process dynamics given in (15), we
have p(xk|xk−1) = N (xk;Ak−1xk−1, Qk−1) [12] . Now,
substituting this in (21) and applying the Gaussian prod-
uct theorem (see Theorem 2.1 of [5]), we can write

p(xk|Ik−1,ek−1|k−1) = γk|k−1

∫

N (xk;M,S)

×N (xk−1;M1,S1)dxk−1,
(22)

where

M = Ak−1x̂k−1|k−1,

S = Ak−1(Σ
−1
k−1|k−1 − 2µ1,k−1I)

−1A⊤
k−1 +Qk−1,

G = (Σ−1
k−1|k−1 − 2µ1,k−1I)

−1A⊤
k−1S

−1,

M1 = x̂k−1|k−1 +G(xk −Ak−1x̂k−1|k−1),

S1 = (Σ−1
k−1|k−1 − 2µ1,k−1I)

−1

−GAk−1(Σ
−1
k−1|k−1 − 2µ1,k−1I)

−1.

The Gaussian distribution N (xk; ·) is a function of xk
and can be kept outside the integral. Using the property
of the normalized distribution,

∫

N (xk−1; ·)dxk−1 = 1,
p(xk|Ik−1, ek−1|k−1) in (22) can be obtained up to a nor-
malizing constant as

p(xk|Ik−1, ek−1|k−1) ∼ N
(

xk; Ak−1x̂k−1|k−1,

Ak−1(Σ
−1
k−1|k−1 − 2µ1,k−1I)

−1A⊤
k−1 +Qk−1

)

.
(23)

The mean and covariance of the above distribution es-
tablish the expressions given in (18). ✷

To compute the posterior information state, we need to
derive the conditional expectation, E[yk|Ik−1, ek−1|k−1],
the covariance, Σyy

k , and the cross covariance, Σxy
k . To

carry out these derivations, some useful relations are as
follows:

(i) E[wk−1w
⊤
k−1|Ik] = E[w⊤

k−1wk−1] = Qk−1,

E[vkv
⊤
k |Ik] = E[vkv

⊤
k ] = Rk and E[wiv

⊤
j |Ik] = 0.

(ii) E[(xk − x̂k|k−1)] = 0.

(iii) Eβ [β
2
k] = var(βk) + (Eβ [βk])

2 = αk,Eβ [(1− βk)
2]

= 1− αk and Eβ [βk(1− βk)] = 0.

(iv) Eβ [(βk − αk)] = 0, Eβ [(βk − αk)
2] = Eβ [((1 − βk)

−(1− αk))
2] = αk(1 − αk).

(v) E[ek|k−1w
⊤
k−1|Ik] = E[(Ak−1xk−1 + wk−1

−x̂k|k−1)w
⊤
k−1|Ik] = Qk−1.

Lemma 2 The conditional expectation of the measure-
ment, yk, is given as

E[yk|Ik−1, ek−1|k−1] = (1− αk)Ckx̂k|k−1

+ αkCk−1x̂k−1|k−1,
(24)

and the conditional covariance of yk, Σ
yy
k , is expressed as

Σyy
k = (1− αk)CkΣk|k−1C

⊤
k + αkθk−1Σk|k−1θ

⊤
k−1

+ αkRk−1 + (1− αk)Rk − αkθk−1Qk−1θ
⊤
k−1 + αk

× (1 − αk)(θk−1 − Ck)x̂k|k−1x̂
⊤
k|k−1(θk−1 − Ck)

⊤,

(25)

where θk−1 = Ck−1A
−1
k−1.

Proof. Themeasurement, yk, is independent of the past
errors e1|1, · · · , ek−1|k−1. By using (4), we can write

E[yk|Ik−1, ek−1|k−1]

= E[((1 − βk)(Ckxk + vk)

+ βk(Ck−1xk−1 + vk−1))|y1:k−1]

= Eβ [(1 − βk)]Ex[Ckxk + vk]

+ Eβ [βk]Ex[Ck−1xk−1 + vk−1]

= (1 − αk)Ckx̂k|k−1 + αkCk−1x̂k−1|k−1.

Next, the covariance, Σyy
k , can be calculated as

Σyy
k = E

[(

yk − E[yk|Ik−1, ek−1|k−1]
)

×
(

yk − E[yk|Ik−1, ek−1|k−1]
)⊤]

= E

[(

(1− βk)(Ckxk + vk) + βk(Ck−1xk−1 + vk−1)

− (1− αk)Ckx̂k|k−1 − αkCk−1x̂k−1|k−1

)(

∗
)⊤]

,

(26)

where (∗) denotes the same terms given in the paren-
thesis left to it. Now, using the backward evolution of
the state, xk−1 = A−1

k−1(xk−wk−1), and rearranging the
terms of (26), we have

Σyy
k

= E

[(

(1− βk)Ck(xk − x̂k|k−1) + (1− βk)Ckx̂k|k−1

+ βkCk−1A
−1
k−1(xk − x̂k|k−1) + βkCk−1A

−1
k−1x̂k|k−1

− βkCk−1A
−1
k−1wk−1 + βkvk−1 + (1 − βk)vk − (1 − αk)

× Ckx̂k|k−1 − αkCk−1A
−1
k−1x̂k|k−1

)(

∗
)⊤]

,

5



or, Σyy
k

= E

[(

(1− βk)Ckek|k−1 + βkCk−1A
−1
k−1ek|k−1 + βkvk−1

+ (1 − βk)vk − βkCk−1A
−1
k−1wk−1 + (βk − αk)

× (Ck−1A
−1
k−1 − Ck)x̂k|k−1

)(

∗
)⊤]

.

(27)

Now, multiplying the terms in the two parenthesis and
applying the expectation operator with help of the re-
lationships (i)-(v) mentioned before Lemma 2, Eq. (27)
reduces to (25). ✷

Lemma 3 The cross covariance, Σxy
k , can be expressed

as

Σxy
k = Σk|k−1[(1− αk)Ck + αkθk−1]

⊤ − αkQk−1θ
⊤
k−1.
(28)

Proof. By definition, we can write

Σxy
k = E

[(

xk − x̂k|k−1

)(

yk − E[yk|Ik−1, ek−1|k−1]
)⊤]

.

Carrying out the operations similar to Lemma 2 on the
second term of the above expectation, we have

Σxy
k = E

[(

ek|k−1

)(

(1− βk)Ckek|k−1 + βkCk−1A
−1
k−1

× ek|k−1 + βkvk−1 + (1 − βk)vk − βkCk−1A
−1
k−1wk−1

+ (βk − αk)(Ck−1A
−1
k−1 − Ck)x̂k|k−1

)⊤]

.

(29)

Again, rearranging the terms and using the relationship,
E[ek|k−1w

⊤
k−1|Ik] = Qk−1, Eq. (29) can be further re-

duced as

Σxy
k = (1− αk)Σk|k−1C

⊤
k + αkΣk|k−1(Ck−1A

−1
k−1)

⊤

− αkQk−1θ
⊤
k−1

= Σk|k−1[(1− αk)Ck + αkθk−1]
⊤ − αkQk−1θ

⊤
k−1.

✷

Theorem 4 The posterior estimate and error covari-
ance for the system described in (15) and (4) can be ob-
tained as

x̂k|k = x̂k|k−1 +Σxy
k (Σyy

k )−1
(

yk − (1− αk)Ckx̂k|k−1

− αkCk−1x̂k−1|k−1

)

,

Σk|k = Σk|k−1 − Σxy
k (Σyy

k )−1Σxy⊤

k .
(30)

Proof. The posterior information state, p(xk|Ik), can
be calculated in terms of the predicted information state,

p(xk|Ik−1, ek−1|k−1), and the current measurement, yk.
From (13), we can write

p(xk|Ik) = γkp(xk, yk|Ik−1, ek−1|k−1, xk−1)

= γkp(xk, yk|Ik−1, ek−1|k−1),
(31)

where xk−1 is the redundant information if ek−1|k−1 is
known. Assuming that p(yk|Ik−1, ek−1|k−1) is Gaussian
and given as p(yk|Ik−1, ek−1|k−1) ∼ N (yk;E[yk|Ik−1

, ek−1|k−1],Σ
yy
k ), where E[yk|Ik−1, ek−1|k−1] is derived

in Lemma 2. Also, by (18) and (23), we can write
p(xkIk−1, ek−1|k−1) ∼ N (xk; x̂k|k−1,Σk|k−1). Hence,
writing for the joint Gaussian density, p(xk, yk|Ik−1

, ek−1|k−1), we have

p(xk|Ik)

= γkN

([

yk

xk

]

;

[

E[yk|Ik−1, ek−1|k−1]

x̂k|k−1

]

,

[

Σyy
k Σyx

k

Σxy
k Σxx

k

])

,

(32)

where the covariance, Σxx
k = Σk|k−1. Rearranging the

terms of (32) and performing the square operation for de-
termination of the p(xk|Ik) as given in the Appendix A,
we obtain

p(xk|Ik) = γk|k exp
[

−
1

2

(

xk − x̂k|k−1 − Σxy
k (Σyy

k )−1

× (yk − E[yk|Ik−1, ek−1|k−1])
)⊤(

Σxx
k − Σxy

k (Σyy
k )−1

× (Σxy
k )⊤

)−1(

xk − x̂k|k−1 − Σxy
k (Σyy

k )−1

× (yk − E[yk|Ik−1, ek−1|k−1])
)]

.

(33)

Eq. (33) is a Gaussian density, provided all the covari-
ance matrices are invertible and µ1,k−1 is a sufficiently
small positive number with 2µ1,k−1Σk−1|k−1 < I. Hence,
the posterior estimate and error covariance are the mean
and covariance of the density, p(xk|Ik). Finally, Eqs. (24)
and (33) establish (30). ✷

Remark 5. If µ2,k > 0 and µ1,k−1 ≥ 0 with
2µ1,k−1Σk−1|k−1 < I, x̂k|k is the optimal estimate with
respect to the cost function Jk(x̂k|k|y1:k).

Remark 6. It is straightforward to prove that if mea-
surements are not delayed (i.e. αk = 0, ∀k), the pro-
posed filter converges to the RSKF given in [4], [8] and
[17].

Remark 7. Note that if µ1,k−1 = 0 and αk = 0, ∀k,
the cost function (14) becomes a standard exponential-
quadratic function with no past error, and the proposed
filter coincides with the Kalman filter.
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Remark 8. If we rewrite the posterior estimate as
x̂k|k = Lkx̂k|k−1 + Kkyk, where Lk = I − Kk

(

(1 −

αk)Ck + αkCk−1A
−1
k−1

)

and Kk = Σxy
k (Σyy

k )−1, then,
using Proposition 1 of [19], the proposed estimator can
be shown unbiased, i.e. E[xk − x̂k|k] = E[ek|k] = 0, pro-
vided µ2,k > 0, and µ1,k−1 is a small non-negative real
number with 2µ1,k−1Σk−1|k−1 < I, ∀k.

3.2 Selection of risk sensitive parameter

In previous works [8], [4], the risk sensitive parameters
are assumed to be time invariant, however, such restric-
tion is unnecessary and we relaxed that assumption. The
risk sensitive parameter, µ2,k, does not affect the op-
timization of the cost function (14) as long as it is a
positive real number. Also, the expressions for the pos-
terior estimate and covariance are independent of µ2,k.
But, the selection of the risk sensitive parameter, µ1,k−1,
is of main concern as it determines the contribution of
past errors in calculating the current estimate. From Eq.
(20), imposing the fact that the predicted covariance,
Σk|k−1, must be positive definite, the parameter µ1,k−1

must satisfy |Σ−1
k−1|k−1 − 2µ1,k−1I| < 0. Further, solving

the inequality, we obtain an upper limit of µ1,k−1 and
then select a value of it by keeping a safe tolerance from
the upper limit to avoid the ill-conditioning of the re-
sultant covariance. Note that calculating µ1,k−1 at each
time step increases the computational cost slightly.

4 Stability of the delayed risk sensitive Kalman
filter

At first, we establish the stability criteria for the RSKF
in the mean square sense and then utilize it to comment
on the stability of the proposed filter.

4.1 Stability of the risk sensitive Kalman filter

The RSKF is an optimal filter [4], however, the optimal-
ity doesn’t imply the stability [14]. We assume that the
state of the nominal system is bounded and define the ob-
servability and controllability matrices for the stochastic
system (15), (16) as [14]

Ok,k−l =
k
∑

i=k−l

(Ai,k +∆Ai,k)
⊤C⊤

i R
−1
i Ci(Ai,k +∆Ai,k)

Ck,k−l =

k−1
∑

i=k−l

(Ak,i+1 +∆Ak,i+1)
⊤Qi

× (Ak,i+1 +∆Ak,i+1); ∀k ≥ l,

(34)

where l is a positive integer. (Ai,k +∆Ai,k) is the back-
ward transitionmatrix for transitioning of the state from
time step k to i, and (Ak,i +∆Ak,i) is the forward tran-
sition matrix for transitioning the state from time step i

to k. The transition matrices for the actual system (15)
are defined as below:

(Ai,k +∆Ai,k) =

k−i
∏

j=1

(Ak−j +∆Ak−j)
−1,

(Ak,i +∆Ak,i) =
k−1
∏

j=i

(Aj +∆Aj); 0 ≤ i < k,

(35)

whereAk−1,k = A−1
k,k−1 = A−1

k−1, ∆Ai,k =
∏k−i

j=1(Ak−j+

∆Ak−j)
−1 −

∏k−i
j=1 A

−1
k−i, ∆Ak,i =

∏k−1
j=i (Aj + ∆Aj) −

∏k−1
j=i Aj , and Ak,k = (Ak,k + ∆Ak,k) = I. Now, the

system described by (15) and (16) is said to be uni-
formly completely observable and uniformly completely
controllable if the observability matrix, Ok,k−l, and
controllability matrix, Ck,k−l, are positive definite and
bounded[14], i.e.

0 < κ3I ≤ Ok,k−l ≤ κ4I,

0 < κ5I ≤ Ck,k−l ≤ κ6I,
(36)

where κ3, κ4, κ5, and κ6 are real positive constants.

Remark 9. Since the nominal system is a special case
of the actual system (when ∆Ak = 0), the observability
matrix and the controllability matrix of the nominal sys-
tem, represented by Ok,k−l and ∪k,k−l, respectively, are
also positive definite and bounded if Ok,k−l and Ck,k−l

are positive definite and bounded.

Now, we represent the posterior error covariance of the
RSKF with Pk|k and it is needless to mention that it
will remain positive definite [14], i.e. Pk|k > 0, k ≥ 0,
provided P0 > 0 and 2µ1,k−1Pk−1|k−1 < I. The results
of stability analysis are presented in following theorem.

Theorem 5 If the system (15), (16) is uniformly
completely observable and uniformly completely con-
trollable, and if P0 > 0, and 2µ1,k−1Pk−1|k−1 < I,
then Pk|k is uniformly bounded for all k ≥ l, provided

−I < O−1
k,k−l∆Ok,k−l < I, where

∆Ok,k−l =
k
∑

i=k−l

A⊤
i,kC

⊤
i R

−1
i Ci∆Ai,k.

Proof. Please see Appendix B. ✷

Remark 10. One of the possible cases wherePk|k tends
to infinity (which means the RSKF becomes unstable)
is when the magnitude of ∆Ok,k−l is greater or equal
to that of Ok,k−l, i.e., the uncertainty in the transition
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matrix, ∆Aj,k ≥ Aj,k for ∆Aj,k > 0 or, ∆Aj,k ≤ −Aj,k

for ∆Aj,k < 0.

Remark 11. If there is no uncertainty in the model,
i.e. if ∆Ok,k−l = 0, the inequality in (B.6) reduces to

Pk|k ≤ O−1
k,k−l + ∪k,k−l as established in [14] for the

Kalman filter.

4.2 Stability of the risk sensitive Kalman filter with ran-
domly delayed measurements

For a system with non-delayed measurements, i.e. αk =
0, the proposed filter reduces to the RSKF and in The-
orem 5 we showed that it is stable under certain condi-
tions if the system is uniformly completely controllable
and observable. It is obvious that the delay in measure-
ments does not alter the controllability of the system,
therefore, the delayed risk sensitive filter will be stable if
the observability of the system is preserved in presence
of random delay in measurements.

Now, we augment the state of the system (15) with pre-
vious step state vector, i.e. Xk = [x⊤k x⊤k−1]

⊤, and the
augmented system becomes

Xk = (φk,k−1 +∆φk,k−1)Xk−1 +Wk−1,

yk = Ck + v′k,
(37)

where

φk,k−1 +∆φk,k−1 =

[

Ak−1 +∆Ak−1 0

0 Ak−2 +∆Ak−2

]

,

Wk−1 = [w⊤
k−1w

⊤
k−2]

⊤, Ck = [(1 − βk)Ck βkCk−1],
and v′k = (1 − βk)vk + βkvk−1. The covariance of the

modified noise can be calculated as R′
k = E[v′kv

′
k
⊤
] =

(1 − αk)Rk + αkRk−1. Clearly, the value of R′
k lies be-

tween Rk−1 and Rk for any αk ∈ [0, 1]. Note that at a
given time step k, there is αk−1(1−αk) probability that
v′k is not white and it becomes so when the filter use the
same measurement data at two consecutive time steps.
In such a scenario, the notion of observability defined
in (34) is violated and a formal proof of the stability
of the proposed filter is far to achieve. Therefore, we
justify the stability in the form of a conjecture where
we assume the noise, v′k, is white.

Conjecture 6 If the system (4), (15) is uniformly com-
pletely observable with no delay in measurements (αk =
0), then, the underlying system is also uniformly com-
pletely observable for αk ∈ [0, 1− ǫ], where 0 < ǫ ≤ 1.

Justification. Assuming the modified noise, v′k, is
white, the observability matrix for the system (4), (15)

is defined as

Ok,k−l =

k
∑

i=k−l

Eβ [(φi,k +∆φi,k)
⊤C⊤

i R
′
i
−1

Ci

× (φi,k +∆φi,k)].

(38)

Now, using (37) and the relationship (iii) given in Sec-

tion 3, we write Ok,k−l =

[

O11 0

0 O22

]

, where

O11 =

k
∑

i=k−l

(1− αi)(Ai,k +∆Ai,k)
⊤C⊤

i R
′
i
−1
Ci

× (Ai,k +∆Ai,k),

O22 =
k
∑

i=k−l

αi(Ai−1,k +∆Ai−1,k)
⊤C⊤

i−1R
′
i−1

−1

× Ci−1(Ai−1,k +∆Ai−1,k).

Since we seek to find the observability of xk in the aug-
mented state, Xk = [x⊤k x⊤k−1]

⊤, only O11 of Ok,k−l

needs to be established as a positive definite and finite
matrix [6]. Given that αj ∈ [0, 1− ǫ], the bounds of O11

can be expressed as

ǫO′
k,k−l ≤ O11 ≤ O′

k,k−l, (39)

whereO′
k,k−l is the observabilitymatrix of (34) with the

covariance,R′
i. Since R

′
i always lies in between Ri−1 and

Ri, the observability matrix, O′
k,k−l, follows the same

bound as given in (36). Hence, O11 is a positive definite
and bounded matrix for 0 < ǫ ≤ 1, and the system (4),
(15) is uniformly completely observable. ✷

Remark 12. If ǫ = 0 (i.e. αk = 1), which means all
the measurements are one step delayed, the observability
matrix, O11, becomes positive semidefinite, and hence,
the system is not uniformly completely observable.

5 Estimation of latency probability

In practice, the latency probability, αk, can be unknown
to the user for a given system. In such a case, it must
be identified before the estimation. In this section, we
present a method to estimate the latency parameter as-
suming it is stationary i.e., αk = α, ∀k, using the maxi-
mum likelihood (ML) criterion on the received measure-
ments. It involves the maximization of the joint density
pα(y1:m) with respect to the latency parameter α, which
can be represented as [29,25]

α̂ = arg max
α∈[0,1]

pα(y1, · · · , ym),
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where m is the total number of measurements used to
estimate the latency parameter. Using the chain rule,
the above joint density can be rewritten as

pα(y1, · · · , ym) = p(y1)

m
∏

k=2

pα(yk|y1:k−1), (40)

where the first receivedmeasurement, y1, is considered to
be non-delayed and independent ofα. For computational
simplicity, we can take the logarithmic of (40) as below:

Lα(y1:m) = log pα(y1:m)

= log p(y1) +

m
∑

k=2

log pα(yk|y1:k−1).
(41)

Considering the fact that the current measurement, yk,
is correlated with both the current state xk and the pre-
vious state xk−1, and using the Bayes’ Theorem for the
likelihood pα(yk|y1:k−1) of (41), we can write

pα(yk|y1:k−1) =

∫ ∫

pα(yk|xk, xk−1)p(xk|xk−1)

× pα(xk−1|y1:k−1)dxkdxk−1.
(42)

Again, rewriting the received measurement as

yk = (1 − βk)hk(xk) + βkhk−1(xk−1)

+ (1− βk)vk + βkvk−1

= ψk(xk, xk−1) + v′k,

(43)

where ψk(.) = (1−βk)hk(xk)+βkhk−1(xk−1), and v
′
k =

(1−βk)vk+βkvk−1. Considering that the modified mea-
surement noise v′k, conditioned on vk and vk−1, is an
independent sequence over time, and by using (43), the
state likelihood, pα(yk|xk, xk−1), can be defined as

pα(yk|xk, xk−1) = pv′
k

(yk − ψk(xk, xk−1)), (44)

where pv′
k
(·) is the pdf for the modified measurement

noise. Using the marginalization of the joint pdf of v′k
and βk, pv′

k

(·) can be constructed as

p(v′k) = p(v′k, βk = 0) + p(v′k, βk = 1)

= p(v′k|βk = 0)p(βk = 0) + p(v′k|βk = 1)p(βk = 1).
(45)

From the eqn. (43), we can write p(v′k|βk = 0) = p(vk)
and p(v′k|βk = 1) = p(vk−1). Hence, the eqn. (45) re-
duces to

p(v′k) = (1− αk)pvk + αkpvk−1
. (46)

Substituting (46) into (44), we can rewrite the Eq. (44)
as

pα(yk|xk, xk−1) = (1 − αk)pvk(yk − hk(xk)) + αkpvk−1

× (yk − hk−1(xk−1)).
(47)

Now, the likelihood function of (42) can be rewritten as

pα(yk|y1:k−1) =

∫ ∫

pα(yk|xk, xk−1)

× pα(xk, xk−1|y1:k−1)dxkdxk−1

= E[pα(yk|xk, xk−1)].

(48)

Substituting (48) into the log likelihood expression in
(41) and using (47) yields

Lα(y1:m) =

m
∑

k=2

log
[

E[(1− αk)pvk(yk − hk(xk))

+ αkpvk−1
(yk − hk−1(xk−1))]

]

,

(49)

where the measurement y1 is ignored as it is not the
function of parameter α. Since in (49), both the latency
parameter and the states are unknown, the analytical
maximization of the log likelihood is certainly compli-
cated, and thus approximation is necessary. Eq. (49) can
be maximized numerically over α ∈ [0, 1] while we use
sequential Monte Carlo (SMC) approximation for the
computation of log likelihood.

5.1 Computation of log likelihood

Considering the SMC approximation to compute the ex-
pectation, we can write the log likelihood function for
the linear system as

Lα(y1:m) =

m
∑

k=2

log
[ 1

N

N
∑

i=1

(1− αk)pvk(yk − Ckx
i
k)

+ αkpvk−1
(yk − Ck−1x

i
k−1)

]

,

(50)

wherexik−1 are sampled from the density, pα(xk−1|y1:k−1)

= N (xk−1; x̂k−1|k−1,Σk−1|k−1), x
i
k are sampled from

the density, p(xk|xk−1) = N (xk;Ak−1x̂k−1|k−1, Ak−1 ×

(Σ−1
k−1|k−1 − 2µ1,k−1I)

−1A⊤
k−1 + Qk−1), and N is the

total number of samples. Algorithm 1 outlines the steps
that can be used to estimate the latency parameter.

6 Simulation Results

In this section, two numerical problems are simulated
to demonstrate the effectiveness of the proposed filter
over the existing RSKF [4] and the KF-RD [19]. Consid-
ering the stationary statistics for the random delays in
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Algorithm 1 Estimation of latency parameter

(1) Select the values for step length (l), and number of
measurements (m).

(2) Calculate the log likelihood, Lα for α = 0, and set
Lmax = L0.

(3) for α = 0 : l : 1
• for k = 2 : m

· Calculate the posterior estimate, x̂k−1|k−1

and covariance, Σk−1|k−1 using eq. (18) and
(30).

· Sample xik−1 ∼N (xk−1; x̂k−1|k−1,Σk−1|k−1)

· Resample xik−1 according to its likelihood

and obtain x̄ik−1|k−1.

· Compute xik = Ak−1x̄k−1|k−1.
· Calculate the state likelihood,
pα(yk|xk, xk−1) using the SMC approxima-
tion and (47).

· Calculate Lα = Lα + log(pα(yk|xk, xk−1))
• end for
• if Lα > LL

· Lmax = Lα, α̂ = α
• end if

(4) end for

measurements, first, the latency probability is estimated
by maximizing the likelihood described in Eq. (50) over
α ∈ [0, 1]. Subsequently, the estimated latency proba-
bility, α, is used in implementing the proposed filter for
given problems.

6.1 Problem: 1

Consider a two dimensional linear stochastic system [27]

xk =

[

0 −0.5

1 1

]

xk−1 +

[

−6

1

]

wk−1,

zk = [−10 1]xk + vk,

(51)

wherewk−1 is a white Gaussian sequence with zero mean
and unity covariance, vk is a white Gaussian sequence
with zero mean and covariance, R = 3.6. wk−1 and vk
are uncorrelated sequences. The uncertainty in system

modeling is represented by ∆A =

[

0 0

0 δ

]

. The truth is

initialized with x0 ∼ N (0,Σ0), where Σ0 =

[

1 0

0 5

]

.

Assuming that the measurement delay statistics is sta-
tionary, i.e. E[βk] = α, ∀k, the estimation of latency
parameter (with the help of Algorithm 1) is carried out
for each ensemble and plotted in Fig. 1. From the fig-
ure it can be seen that at each ensemble the estimated
value is near to its truth. The average of the estimated
values over 50 ensembles is 0.291 when the true latency
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Fig. 1. Estimated latency probability.
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Fig. 2. RMSE of state-1 with δ = 0.35 and α = 0.60.
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Fig. 3. RMSE of state-2 with δ = 0.35 and α = 0.60.

parameter considered is 0.3. The proposed filter is im-
plemented along with the estimated value of the latency
probability and its performance is compared with that
of the RSKF and the KF-RD. The metrics used for eval-
uating the performance of different filters are the root
mean square error (RMSE) and the time averaged mean
square error (Avg-MSE), which are calculated over 500
Monte Carlo runs. The risk sensitive parameter, µ1,k−1,
is selected such that its value is less than the real and
positive roots of the equation |Σ−1

k−1|k−1−2µ1,k−1I| = 0.

Figs. 2 and 3 show the RMSE of states when the uncer-
tainty is taken, δ = 0.35, and the true latency probabil-
ity, α = 0.5. It can be seen that the proposed filter out-
performs the other two filters in presence of the modeling
uncertainty and the random delay in measurements.

A parametric study is carried out by varying the un-
certainty parameter, δ, and the probability, α. Table 1
displays the Avg-MSE of state-1 from the different fil-
ters for various set of the parameters. Similar results are
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Table 1
The Avg-MSE of different filters for various α and δ.

δ
α

0 0.20 0.40 0.60 0.80

0

RSKF 0.072 17.872 34.025 49.263 64.474

KF-RD 0.068 13.217 23.102 31.241 36.889

Proposed
filter

0.072 13.294 23.332 31.636 37.616

0.15

RSKF 0.724 18.282 34.322 50.109 64.203

KF-RD 1.008 13.393 24.201 33.102 40.001

Proposed
filter

0.724 13.171 23.710 32.510 39.141

0.25

RSKF 3.130 20.901 37.007 53.416 67.712

KF-RD 4.880 15.152 26.910 37.713 48.360

Proposed
filter

3.130 14.105 25.001 35.130 43.925

0.35

RSKF 13.802 30.601 48.404 64.205 80.101

KF-RD 23.401 20.681 35.593 52.791 71.702

Proposed
filter

13.802 16.901 29.595 51.893 55.796

obtained for state-2 and not shown here. Some observa-
tions that can be made from this parametric study are
as follows:

i. Without any uncertainty in process dynamics (δ =
0), the proposed filter with a nonzero risk param-
eter performs better than the RSKF and is com-
parable to the KF-RD. This follows the fact that
the risk sensitive parameter, µ1,k−1, which scales
the accumulated past errors, is not set to zero in
the RSKF, despite there being no need to minimize
the exponential of past errors, whereas, the KF-RD
works in a risk neutral way.

ii. With the increase in α, the Avg-MSE increases for
all the filters.

iii. It is also to be observed that in presence of the
random delay in measurements, the KF-RD, which
is designed to handle the random delays, is more
effective than the RSKF.

iv. In the presence of uncertainty in the process model,
the proposed filter always performs better than the
other two filters irrespective of the value of delay
probability, α. Also, the improvement in the per-
formance of the proposed estimator over the other
filters becomes more prominent when the actual
process dynamics deviate more from the nominal
one, and the random delay in measurements is more
likely.

6.2 Problem: 2

Consider a constant turn rate model for an aircraft that
executes a maneuvering turn in a two dimensional plane
with a fixed, but uncertain turn rate Ω. The four dimen-
sional state vector for the kinematics of aircraft is con-
sidered as xk = [ηk νk η̇k ν̇k]

⊤, where ηk and νk repre-
sent positions, and η̇k and ν̇k represent velocities along
theX and Y coordinates, respectively. The discrete time
system model is given as

xk = Ak−1xk−1 +Bwk−1

zk = Ckxk + vk,

where

Ak−1 =

















1 0
sinΩT

Ω

cosΩT − 1

Ω

0 1
1− cosΩT

Ω

sinΩT

Ω
0 0 cosΩT − sinΩT

0 0 sinΩT cosΩT

















,

T is sampling period, and the noise gain, B =
aT 2[ 12I2×2 I2×2]

⊤. The measurement is given as the
noise corrupted X and Y coordinate of the tar-
get, therefore, Ck = [I2×2 02×2]. wk−1 and vk are
uncorrelated zero mean white Gaussian sequences
with covariances Q = diag([0.32 0.32 0.052]) and
R = diag([12 12]), respectively. Initial values are taken
as x0 = [200 200 15 15]⊤, and Σ0 = diag([102 102 42 42]).
The value of parameters are chosen as a = 1, the sam-
pling period, T = 0.2s, and the nominal value of the
turn rate, Ω = 3o/s. In this problem, the uncertainty in
the assumed process model is incorporated in the turn
rate values.

The latency probability is estimated using Algorithm
1 and plotted in Fig. 4 for each ensemble. The av-
erage of the estimated values of latency probabil-
ity is 0.481, whereas the true value of α is taken as
0.50. The performance metrics used for this problem
to compare the different filters are RMSE and Avg-
MSE in position and velocity. The RMSE in position
at any time step k, can be defined as RMSEposk =
√

∑M
m=1 ({(ηk − η̂k)2}m + {(νk − ν̂k)2}m) , where M

denotes the total number of Monte Carlo runs. 500
Monte Carlo runs are used to calculate the RMSE and
Avg-MSE in position and velocity. As mentioned ear-
lier, the risk sensitive parameter, µ1,k is calculated at
each step, which converges at the value of 0.0013.

The RMSE in position and velocity are plotted in Figs.
5 and 6, respectively, and the uncertainty in turn rate
is considered, δΩ = 2Ω/3, when the unknown latency
probability is taken as α = 0.6. From the plots, it can
be observed that the proposed filter is better than the
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Fig. 4. Estimated latency probability.
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Fig. 5. RMSE in position with δΩ = 2Ω/3 and α = 0.60.
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Fig. 6. RMSE in velocity with δΩ = 2Ω/3 and α = 0.60.

other two existing filters, and the KF-RD performs bet-
ter than the RSKF. It should also be noted that the
nature of the plots are similar because all implemented
filters are variants of the Kalman filter and the system
is linear. Once the filters settle at some values, they re-
main almost there as the system parameters considered
in the simulation are time invariant.

From Table 2, where a parametric study is presented, it
can be observed that the proposed filter performs com-
parable to the Kalman filter under no uncertainty in turn
rate and without any random delays in measurements,
whereas it performs better than the KF-RD and RSKF
in presence of the same. It can also be noted that the
Avg-MSE values of the proposed filter and the RSKF
are equal in absence of the random delay (αk = 0) in
measurements.

Table 2
The Avg-MSE of different filters for various α and δΩ.

δΩ
α

0 0.20 0.40 0.60 0.80

0

RSKF 3.60 5.19 7.84 11.48 16.35

KF-RD 3.59 4.50 5.02 5.13 4.92

Proposed
filter

3.60 4.52 5.05 5.15 4.94

Ω

3

RSKF 15.70 18.16 22.04 27.03 32.68

KF-RD 16.22 17.37 18.51 19.35 19.32

Proposed
filter

15.70 16.85 17.97 18.79 18.74

Ω

2

RSKF 30.79 34.48 39.15 44.52 51.61

KF-RD 31.96 34.07 35.68 36.41 37.36

Proposed
filter

30.79 32.86 34.40 35.10 35.99

2Ω

3

RSKF 51.99 56.38 62.05 68.99 76.93

KF-RD 54.12 56.57 58.96 61.04 62.66

Proposed
filter

51.99 54.38 56.69 58.67 60.18

7 Conclusion

This paper has presented a general framework of the
Bayesian estimation for a system with a modeling un-
certainty and random delays in measurements. A closed
form solution for a linear Gaussian system is reached by
following the derived general framework. Since the prob-
ability related to the randomdelaysmay not be known to
the estimator in practice, a method based on maximiz-
ing the likelihood of the received measurement is illus-
trated to estimate the latency probability. Further, using
the uniformly complete observability and controllability
criteria, the impact of random delay in measurements
on the stability of the proposed risk sensitive estimator
is also studied. The simulation results confirm that the
proposed filter performs comparable to the Kalman fil-
ter under the nominal conditions and it is superior to the
RSKF and the KF-RD when the system has model un-
certainty and one step random delay in measurements.
In one sentence, we conclude that the proposed filter
would be an appropriate choice when the underlying sys-
tem is likely to have the simultaneous presence of the
model uncertainty and random delays.
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A Simplification of Eq. (32)

Consider the following matrix equivalence (see Ap-
pendix A of [26]):

[

Σyy
k Σyx

k

Σxy
k Σxx

k

]−1

=

[

V yy
k V yx

k

V xy
k V xx

k

]

, (A.1)

where

V yy
k = (Σyy

k − Σyx
k (Σxx

k )−1Σxy
k )−1,

V yx
k = −(Σyy

k − Σyx
k (Σxx

k )−1Σxy
k )−1Σyx

k (Σxx
k )−1,

V xy
k = −(Σxx

k )−1Σxy
k (Σyy

k − Σyx
k (Σyy

k )−1Σxy
k )−1,

V xx
k = (Σxx

k − Σxy
k (Σyy

k )−1Σyx
k )−1,

and all the matrices are assumed to be invertible. Using
(A.1), we expand (32) into the following:

p(xk, yk|Ik−1, ek−1|k−1)

= exp−
[1

2
(yk − E[yk|Ik−1, ek−1|k−1])

⊤V yy
k (yk−

E[yk|Ik−1, ek−1|k−1]) +
1

2
(yk − E[yk|Ik−1, ek−1|k−1])

⊤

× V yx
k (xk − x̂k|k−1) +

1

2
(xk − x̂k|k−1)

⊤V xy
k ×

(yk − Ckx̂k|k−1) +
1

2
(xk − x̂k|k−1)

⊤V xx
k (xk − x̂k|k−1)

]

.

(A.2)

For an arbitrary symmetric matrix, F , and the vectors,
g, D, and c, consider the following identity [18]:

1

2
g⊤Fg + g⊤D + c =

1

2
(g + F−1D)⊤F (g + F−1D)

+ c−
1

2
D⊤F−1D.

(A.3)

Now, take g = xk − x̂k|k−1, F = V xx
k , D = V xy

k (yk −

E[yk|Ik−1, ek−1|k−1]), c =
1

2
(yk−E[yk|Ik−1, ek−1|k−1])

⊤

× V yy
k (yk − E[yk|Ik−1, ek−1|k−1]), and process (A.2) in

accordance with (A.3). After absorbing the terms which
do not contain xk into the normalizing constant, γk|k,
and using equivalence of matrices from (A.1), we obtain
(33). Note that in the final expressions, Σyx

k is replaced

with Σxy⊤

k .

B Proof of Theorem 5

The least square estimate of xk, based on recent l ob-
servations after ignoring the process noise and consid-
ering the nominal process model, can be given as (see
Lemma 7.1 of [14])

x̄k|k−l:k = O−1
k,k−l

k
∑

i=k−l

A⊤
i,kC

⊤
i R

−1
i zi, k ≥ l. (B.1)

The estimate, x̄k|k−l:k, is suboptimal [14] and, conse-
quently,

Pk|k ≤ E[(xk − x̄k|k−l:k)(xk − x̄k|k−l:k)
⊤]. (B.2)

To compute the covariance in (B.2), from (15) and (35),
we can write

xi =(Ai,k +∆Ai,k)xk − (Ai,k +∆Ai,k)

×
k−1
∑

j=i

(Ak,j+1 +∆Ak,j+1)wj ,
(B.3)

and substituting the expression of zi, obtained from
(B.3) and (16), into (B.1), we can write

(xk − x̄k|k−l:k) = xk −O−1
k,k−l

k
∑

i=k−l

A⊤
i,kC

⊤
i R

−1
i Ci

× (Ai,k +∆Ai,k)xk +O−1
k,k−l

k
∑

i=k−l

A⊤
i,kC

⊤
i R

−1
i Ci

× (Ai,k +∆Ai,k)

k−1
∑

j=i

(Ak,j+1 +∆Ak,j+1)wj

−O−1
k,k−l

k
∑

i=k−l

A⊤
i,kC

⊤
i R

−1
i vi.

Using the definitions of ∆Ok,k−l, the above expression
can be reduced as

(xk − x̄k|k−l:k) = −O−1
k,k−l∆Ok,k−lxk

+O−1
k,k−l

k
∑

i=k−l

A⊤
i,kC

⊤
i R

−1
i Ci(Ai,k +∆Ai,k)×

k−1
∑

j=i

(Ak,j+1 +∆Ak,j+1)wj −O−1
k,k−l

k
∑

i=k−l

A⊤
i,kC

⊤
i R

−1
i vi,
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and

E[(xk − x̄k|k−l:k)(xk − x̄k|k−l:k)
⊤]

= O−1
k,k−l∆Ok,k−lE[xkx

⊤
k ]∆O

⊤
k,k−lO

−1⊤

k,k−l

+ E

[(

O−1
k,k−l

k
∑

i=k−l

A⊤
i,kC

⊤
i R

−1
i Ci(Ai,k +∆Ai,k)

×
k−1
∑

j=i

(Ak,j+1 +∆Ak,j+1)wj

)(

∗
)⊤]

+ E

[(

O−1
k,k−l

k
∑

i=k−l

A⊤
i,kC

⊤
i R

−1
i vi

)(

∗
)⊤]

≤ O−1
k,k−l∆Ok,k−lE[xkx

⊤
k ]∆O

⊤
k,k−lO

−1⊤

k,k−l

+ E

[(

O−1
k,k−l

k
∑

i=k−l

A⊤
i,kC

⊤
i R

−1
i Ci(Ai,k +∆Ai,k)

×
k−1
∑

j=k−l

(Ak,j+1 +∆Ak,j+1)wj

)(

∗
)⊤]

+ E

[(

O−1
k,k−l

k
∑

i=k−l

A⊤
i,kC

⊤
i R

−1
i vi

)(

∗
)⊤]

,

where (∗) represents the same terms that are given in the
parenthesis left to it. Now, using the relation E[xkx

⊤
k ] =

Pk|k + x̂k|kx̂
⊤
k|k and (B.2), and rearranging the terms,

we have

Pk|k −O−1
k,k−l∆Ok,k−lPk|k∆O

⊤
k,k−lO

−1⊤

k,k−l

≤ O−1
k,k−l∆Ok,k−lx̂k|kx̂

⊤
k|k∆O

⊤
k,k−lO

−1⊤

k,k−l

+ (I+O−1
k,k−l∆Ok,k−l)Ck,k−l(I+ O−1

k,k−l∆Ok,k−l)
⊤

+O−1
k,k−l.

(B.4)

Taking the Euclidean norm (||.||) on the both sides of
(B.4) and writing the relation for the left hand side of
it, we have

||Pk|k|| − ||O−1
k,k−l∆Ok,k−lPk|k∆O

⊤
k,k−lO

−1⊤

k,k−l||

≤ ||Pk|k −O−1
k,k−l∆Ok,k−lPk|k∆O

⊤
k,k−lO

−1⊤

k,k−l||.
(B.5)

Again, using the relation

||O−1
k,k−l∆Ok,k−lPk|k∆O

⊤
k,k−lO

−1⊤

k,k−l||

≤ ||O−1
k,k−l∆Ok,k−l|| ||Pk|k|| ||∆O

⊤
k,k−lO

−1⊤

k,k−l||

in (B.5) and substituting it in (B.4) with the norm, we
can write

||Pk|k|| ≤ ||O−1
k,k−l∆Ok,k−lx̂k|kx̂

⊤
k|k∆O

⊤
k,k−lO

−1⊤

k,k−l

+ (I+O−1
k,k−l∆Ok,k−l)Ck,k−l(I+O−1

k,k−l∆Ok,k−l)
⊤

+O−1
k,k−l||/(1− ||O−1

k,k−l∆Ok,k−l||
2).

(B.6)

Recalling the assumption that the states are bounded
and using the Eq. (36), it is evident that if the uncer-
tainty in process model is finite and follows the condi-
tion, −I < O−1

k,k−l∆Ok,k−l < I, Pk|k in (B.6) is bounded
for all k ≥ l.
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