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Abstract

This note presents a new method for set-based joint state and parameter estimation of discrete-time systems using constrained
zonotopes. This is done by extending previous set-based state estimation methods to include parameter identification in a unified
framework. Unlike in interval-based methods, the existing dependencies between states and model parameters are maintained from
one time step to the next, thus providing a more accurate estimation scheme. In addition, the enclosure of states and parameters
is refined using measurements through generalized intersections, which are properly captured by constrained zonotopes. The
advantages of the new approach are highlighted in two numerical examples.
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1. Introduction

Without assuming knowledge of the stochastic properties of
unknown variables, set-based state estimation methods are able
to provide guaranteed enclosures of the system trajectories in
applications affected by bounded uncertainties (Chisci et al.,
1996; Scott et al., 2016). Set-based methods have also been
widely used in the parameter identification field as an alter-
native to stochastic methods, since they are able to provide
guaranteed enclosures of the model parameters when the un-
certain model parameters have unknown stochastic properties.
Zonotopes have been used to approximate the parametric set
for discrete-time systems with additive uncertainties in Bravo
et al. (2006), which was later extended to allow multiplicative
uncertainties in Wang et al. (2017). However, both methods
are applied only to systems described by regression models,
and rely on conservative intersections with strips to refine the
parametric set. Intervals have been used in the context of opti-
mal design of experiments in Denis-Vidal et al. (2019), to mini-
mize the conservatism of the parametric enclosure. Moreover, a
bisection-based interval algorithm has been used in Rumschin-
ski et al. (2010) to deal with non-convex parameter sets using
collections of intervals. Nevertheless, intervals are not able to
capture dependencies between variables, which may result in
conservative enclosures due to wrapping effect.

In the literature, parameter identification is typically ad-
dressed as a separated problem from state estimation, in which
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a model is identified off-line. Few state estimation strategies
in the literature refine online the model parametric uncertain-
ties in order to improve the accuracy of state estimation. Such
methodology is referred to as joint state and parameter estima-
tion, which enables the simultaneous estimation of both states
and model parameters. It allows for a more efficient update
of these variables using available measurement, besides taking
into account state-parameter dependencies, rather than deal-
ing with two separated problems. A Kalman filtering (KF)
strategy, based on multi-innovation recursive extended least
squares algorithm, has been proposed in Cui et al. (2020) to
enhance parameter estimation. However, bias issues introduced
by KF make such approaches unreliable in case the assumptions
on the stochastic properties of the uncertainties are violated.
Deterministic approaches include Luenberger-based observers
(Zhang et al., 2020) and set-based interval estimation (Raissi
et al., 2004). The latter propose a prediction-update state and
parameter estimator suitable for nonlinear continuous-time sys-
tems. However, besides not being able to capture the dependen-
cies between states and parameters, the method can lead to high
computational complexity due to the use of multiple sets.

The work presented in this note proposes a method for set-
based joint state and parameter estimation of discrete-time sys-
tems. The strategy extends the algorithms based on constrained
zonotopes (CZs) proposed in Scott et al. (2016) and Rego et al.
(2021), to include parameter estimation in a unified framework
for the first time. In contrast to interval-based methods', this
framework implemented using CZs allows the estimated en-
closures to propagate existing dependencies between states and
model parameters. Besides, both the state and parameter en-
closures (which are unified in our method) are refined using

IFor comparison purposes, we extend the methods in Jaulin et al. (2001) and
Alamo et al. (2005) to the proposed framework to include parameter estimation.
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generalized intersections, unlike in zonotope-based estimation
methods. These advantages result in a significant improvement
in the accuracy of both state and parameter estimation.

2. Preliminaries

Consider Z,W c R", Y c R™, and a real matrix R € R™*",
Let Z x W be the Cartesian product, and define the linear map-
ping, Minkowski sum, and generalized intersection, as

RZ2£(Rz:z€Z), 60
ZoW2{z+w:zeZ we W), 2)
ZNrY2{zecZ:RzeY), 3)

respectively. In this note, functions with set-valued arguments
will be used to denote the exact image of the set under the func-
tion, i.e. pu(X, W) = {ux,w) : x € X, w € W}. In addition,
let k be a function of class C' (i.e., continuously differentiable)
and z denote its argument. Then, k, denotes the g-th compo-
nent of «, and VZTK denotes the Jacobian of kx with respect to z.
Constrained zonotopes are an extension of zonotopes, defined
as in Scott et al. (2016), capable of describing also asymmetric
convex polytopes, while maintaining many of the well-known
computational benefits of zonotopes (Kithn, 1998).

Definition 1. A set Z c R” is a constrained zonotope if there
exists (G, ¢;, A, b,) € R x R" x R"*": x R such that

Z={c, + sz il < 17AZ§ =b.}. @

We refer to (4) as the constrained generator representa-
tion (CG-rep). Each column of G, is a generator, ¢, is the
center, A, = b, are the constraints, and & are the genera-
tor variables. By defining the constrained unitary hypercube?
Bo(ALb) 2 (£ € R : ||é]lo < 1,A.£ =b.},a CZ Z can be
written as Z = ¢ ® G,B(A;,b;). We use the compact notation
Z = {G;,c;, A, b} for CZs, and Z = {G_,c,} for zonotopes.
The set operations (1)—(3) can be computed exactly with CZs.
Let Z = {G,,¢c;,A,,b;} ¢ R, W = {G,,¢,,A,,b,} C R",
Y = {Gy,cy, Ay, by} € R”, and R € R™". Then, (1)—(3) are
computed trivially in CG-rep as (Scott et al., 2016)

RZ = {RG,,Rc,, A, b}, 5)
_ A, O0f (b,
ZoW=4[G; G,],¢c; + ¢, [ 0 Aw] , [bw]}’ 6)
A, 0 b,
ZNRY =<[G; 0],c.,| O Ay |, b )]
RG; -G,| |¢,—Rc;

Operations (5)—(7) cause a linear increase in the complexity
of the CG-rep. Moreover, unlike other set representations (such
as ellipsoids, intervals, and zonotopes), all operations (5)—(7)

2We use the notation B.f for the ng-dimensional unitary hypercube (i.e.,
without equality constraints). We drop the superscript 1, for Beo(A;, b;) since
this dimension can be inferred from the number of columns of A;.

are exact using CZs, and therefore, can be computed efficiently
and accurately. Efficient methods for complexity reduction of
CZs (to enclose a CZ with another one with a fewer number of
generators and constraints) are available (Scott et al., 2016). In
this note, IR denotes the set of real compact intervals. Let X =
{a e R:x* <a< V) €lR be an interval. Then, mid(X) =
1Y + xY) and rad(X) £ 1(xV — ab). Let N £ (N;; € IR,i €
{1,...,n},j € {1,...,m}} € IR™ be an interval matrix. Then,
mid(N) and rad(N) are defined component-wise. In addition,
for any bounded Z, [1Z denotes the interval hull of Z. If Z is a
CZ, this operation is performed by solving 2 linear programs
(LPs) (Scott et al., 2016). In the following, Theorem 1 defines
the operation <«(J, X) for enclosing the product of an interval
matrix J with a CZ X. When not required, the subscripts of the
variables in (4) will be omitted.

Theorem 1. (Rego et al., 2020) Let X = {G,c,A,b} Cc R” be
a CZ with n, generators and n. constraints, let J € IR™" be
an interval matrix, and consider the set § = JX £ {jx =
J.x € X} c R". Let G € R™ and ¢ € R” satisfy X C {G, ¢},
and let m be an interval vector such that m 2 (J — mid(J))c
and mid(m) = 0. Finally, let P € R™" be a diagonal ma-

trix defined by P; = rad(m;) + Z’;il p rad(J,-k)IijI for all
i = 1,2,...,n. Then, S is contained in the CZ-inclusion S

C «(J,X) £ mid(J)X @ PB".

Remark 1. The zonotope {G, ¢} 2 X in Theorem 1 is obtained
by eliminating all constraints from X according to the algorithm
in Scott et al. (2016), while the interval vector m is obtained
using interval arithmetic.

3. Joint state and parameter estimation

3.1. Linear systems
Consider a linear discrete-time system with unknown-but-
bounded disturbances and model parameters, given by

X, = Axp_1 + Bug_g + Bpp + B, wi_1, (8a)
Y. = Cx; + Duy + D[,p +D,vg. (8b)

where x; € R” is the system state, u; € R™ is the known in-
put, w, € R™ is the process disturbance, y;, € R™ is the mea-
sured output, v, € R™ is the measurement disturbance, and
p € R™ are the unknown parameters. In addition, A € R™",
Bu c Rnxrz,,’ Bp c Rnxr;,,’ Bw c Rnxrtw’ Ce Rn‘vXn’ Du c Rnyxrtu’
D, € R and D, € R™*". The initial state, model parame-
ters, and disturbances are assumed to be unknown-but-bounded,
i.e., (X0, P, W, Vi) € Xo X PX W X V, Vk > 0, where X,, P, W,
and V are polytopes representable as CZs.

For any k > 0, the objective is to approximate the solution
set of (X, p) satisfying (8), as accurately as possible, by a guar-
anteed enclosure Z;, C R satisfying (Xg, p) € Zr. We ac-
complish this here by extending the prediction-update structure
proposed in Scott et al. (2016) to a joint state and parameter
estimation framework, considering the refinement of the para-
metric uncertainty p € P. The proposed generalized scheme is
given by the following recursion:

Zi 2 {(Ax¢—1 + Byw—y +B,p + B,wi_1,p) :



(X1, P) € Zi-1, Wiy € W), ©)
74 2 {(X¢,p) € Z
Cxi +Dyug + D,p +Dyvi =y, v €V}, (10)

where (9) is the joint prediction step, (10) is the joint update
step, and the scheme is initialized with Zy £ X, x P in the joint
update step. If Z;_; is a valid enclosure of (x_;,p) for some
k > 1, then (x;, p) € Z given by (9). By construction, this leads
to (X¢, p) € Z from (10).

Exact enclosures for the joint prediction step (9) and joint
update step (10) can be obtained straightforwardly using CZs.
Since, by assumption, the unknown parameters p are constant,
i.e., pr = Pr-1, then the prediction and update steps can be
computed in CG-rep by defining z; £ (x;,p), and extending
the structure proposed in Scott et al. (2016) to the unified for-
mulation

- A B,|- B, B,
Zk=[0 Ip}Zk—lea[O]uk—l@[o]VV: (11)
Zx = Zx Nic b, (Y — Dyup) & (=D, V). (12)

Note that the enclosure of the parameters p is refined over time
through the proposed joint update step (12). In addition, as in
linear state estimation using CZs, all the operations in (11)—(12)
can be performed easily using (5)—(7), with linear complexity
increase in the number of generators and constraints. Besides,
the coupling between states X; and parameters p is preserved
from each time step to the other using the proposed framework.
Also, the enclosures in (11)—(12) are exact if the complexity
of the set is not limited. In practice, due to finite computational
resources, complexity reduction methods (Scott et al., 2016) are
used to enclose the sets Z; and Z; by CZs with a desired (lower)
number of generators and constraints®.

3.2. Nonlinear systems with linear output equation
Consider a class of nonlinear discrete-time systems with
bounded uncertainties, evolving according to the dynamics

X = F(Xp—1, W1, P, Wi—1), (13)

and with linear output equation (8b), where the nonlinear func-
tion f : R” X R™ x R x R™ — R”" is assumed to be of
class C'. The initial state, model parameters, and disturbances
are assumed to be unknown-but-bounded, i.e., (Xo, p, Wi, Vi) €
Xo X PXWxV,Vk >0, where Xy, P, W, and V are polytopes
representable as CZs. As in the linear case (8), the objective is
to enclose the trajectories of (13) as accurately as possible by a
set Z, € R™" for any k > 0. This is accomplished by extending
the method proposed in Rego et al. (2021) to a joint state and
parameter estimation framework to allow the refinement of the
parameter enclosure P over time, as well as to preserve the cou-
plings between states and parameters. The proposed prediction-
update scheme is given by

Zi 2 {(F (X1, W1, P, W1, P)

N (14)
D (Xk=1,P) € Zi—1, Wi € W),

3The coupling between states and parameters is maintained even in this case,
thus providing benefits with respect to intervals.

as the joint prediction step, and by (10) as the joint update step
(which remains linear). As in the previous case, the scheme is
initialized with Zy £ X, x P in the joint update step.

We first extend the prediction method described by Proposi-
tion 1 in Rego et al. (2021) to consider both states and model
parameters in a more general framework. This result will be
necessary for the nonlinear joint state and parameter estimation
method developed in this section.

The following proposition is based on the Mean Value The-
orem, and provides an enclosure for the state x; in the predic-
tion step (14). A method to compute an enclosure Z; for the
augmented variable (x, p) satisfying the joint prediction step is
given by Corollary 1, which is derived from the result of Propo-
sition 1.

Proposition 1. (State prediction) Let f : R*xXR™ XR" xR™ —
R” be of class C'. Letu € R™, and let X ¢ R*, P ¢ R™, and
W c R™ be CZs. Let Z = XX P, and choose any y. = (¥x,¥p) €
OX x OP. If Z,, is a CZ such that f(y,,u,y,, W) C Z, and J €
IR™" is an interval matrix satisfying VZTf(DX, u, P, W) C J,
then f(X,u,PLW)C Z, ®<(J,Z - y,).

Proof. Choose any (x,p,W) € X X PX W. Letr £ (x,p), 7, =
Y% ¥p) R £ XxP.Lemma I in Rego et al. (2021) (witha £ f,
X 271, 9, 2 5, and X £ R) ensures that there exists a real
matrix J € J such that f(x, u, p,w) =f(y,uwy,,w+ Jz- Y2,
with z = (x, p). By Theorem 1 and the choice of Z,,, it follows
that f(x,u, p,w) € Z,, ® <(J,Z — y,), as desired. [ |

Remark 2. In this note, the interval matrix J is computed by
evaluating the analytical expression of V! (X, u, 0P, W) us-
ing interval arithmetic. Jacobians can also be computed using
factorized formulations of polynomial equations into a quasi-
linear form and slope arithmetic. Algorithmic differentiation-
based solutions may be found in Moore et al. (2009).

Corollary 1. (Joint prediction) Let f : R” X R™ x R"» X R™ —
R” be of class C'. For k > 1, let: (i) we_; € R™, (ii) wy_; €
W = {Gy, ¢y, Ay, by}, (iii) p € P, and (iv) 21 = (X¢-1,P) €
Zk:l = {Gy_1, &1, Ak_l,f)k:l}. Choose any y, = (¥.,7p) €
(Zi_. For all (X¢—1,p) € UZ;_1, Wiy € W, let: (i) Z,, be a CZ
such that f(y,, w1, ¥,, Wi—1) € Z,,, and (ii) J, € IR™" satisfy
VI (Xeo1, W1, P, i) € Joo If {G. ¢} is a zonotope with n,
generators satisfying Z,_; — v, C {Q, ¢}, then (x¢, p) € Z, with

Z = [g} Zi1 @ [I(-)I] =y ® [g] B, & [(I)] Zy, (15

where E = (04, L1, H = mid(J,), P e R™ s diagonal
with Py = rad(m;) + ¥, 377" rad(Jo;0)IG |, and m £ (J, -
mid(J,))¢ € IR". '

Proof. Choose any (Xi_1,P) = Zi—1 € Zi_1, W1 € W. From
(13), Proposition 1 and Theorem 1, there must exist § € B
such that x¢ = f(X-1, We1, P, Wi-1) = £, W1, 7p, Wie1) +
mid(J,)(zi—1 — y,) + P&, with P defined as in the statement of
the corollary. Then, by the definition of z;_; and E, p = Ez;_
holds, and we have that (considering H £ mid(J.))

%, P) = Eo, W1, ¥, Wim1) + H(ziy — 7.) + P8, Ez_y)



A

= (Hzy— — Hy, + P8 + £y, wee1, ¥ p, Wie1), Ezi_1)
P

_|H . H I
“E|" T o 0[°"|o
H| , H Pl ., [I
€ [E] Zk—l @ |:0:| (_‘}/Z) 5] |:0:| Boo 5] |:0:| ZW9
with Z,, defined as in the statement of the corollary (this CZ

can be obtained analogously to Remark 4 in Rego et al. (2021)),
which proves the corollary. |

=y)+| o |0+ o | e W1, ¥ p WD)

An enclosure of the joint prediction step for the dynamics
(13) can be obtained in CG-rep using Corollary 1. As in the lin-
ear case, and differently from interval methods, the CZ Z given
by (15) preserves the existing couplings between state x;_; and
parameter p. Moreover, due to linearity of the output equation
(8b), an exact bound for the update step can be obtained using
(12), which in addition refines the enclosure of the parameters
p, with Z; given by (15). Bounded enclosures can be obtained
only if the condition of full detectability/identifiability of states
and parameters is verified. See Paradowski et al. (2020) for
observability analysis in the presence of uncertainty.

Remark 3. Let the CZs (Zi_1,Z, W, V) have (iig, ig, g, , 1g,)
generators, and (i, i, N, ic,) constraints, respectively. Then,
the enclosure obtained by Corollary 1 has 71, + 2n + ng gener-
ators and 71, + n,,, constraints. On the other side, the enclosure
Zk obtained by (12) has 7, + ng, generators, and 7. + n, + n,
constraints. The computational complexities of all the opera-
tions used in this section can be found in Rego et al. (2020),
while the complexities of the proposed method can be derived
straightforwardly by replacing n with n + n,, in the expressions
obtained in Rego et al. (2020) and Rego et al. (2021).

4. Numerical examples

This section presents numerical results* for the set-based
joint state and parameter estimation method proposed in this
note. We compare the results provided by the new framework
(denoted by CZ-J for the linear case, and CZMV-J for the non-
linear case) with the CZ methods proposed in Scott et al. (2016)
and Rego et al. (2021), denoted by CZ and CZMYV, respec-
tively (i.e., with prediction step given by Proposition 1, in which
MV stands for “Mean Value”), with the interval arithmetic
method proposed in Jaulin et al. (2001), based on forward-
backward propagation (FBP), and the zonotope method pro-
posed in Alamo et al. (2005), with intersection operator by
Property 1 in Bravo et al. (2006) (Z-J and ZMV-J). Intervals
and zonotopes are also applied to the proposed joint estimation
framework.

To demonstrate the advantages of performing joint state and
parameter estimation using CZ-J, we first consider 10 discrete-
time linear systems defined as in (8), with n = n,, = 10,
np = n, = n, = 6. The matrices A and C are generated accord-
ing to a uniform random distribution and satisfy |a(i, j)| < 1/7

4The simulations were performed using MATLAB, CPLEX and INTLAB.

and |c(i, j)| < 1/4,VY(, j). The matrices B, and D, are consti-
tuted by values taken from a uniform distribution within [—-1, 1].
Additionally, B,, = I,,,, D, = I,,,, B, = 0,x,, and D,, = 0, «p,,.
Process and measurement disturbances satisfy [[wi|le < 0.05
and ||vi]lo < 0.05, respectively. The sets X, and P are boxes
whose centers are integers randomly selected from [—6, 6], ac-
cording to a uniform discrete distribution, while their radii are
0.5. Measurement data have been collected simulating each
system and generating process and measurement disturbances
according to a uniform random distribution, as well as random
initial states, using the listed bounds. The maximum number of
generators and constraints of Z; are set to 70 and 20, respec-
tively. Figure 1 shows the average of the radii of the projections
X (top) and P, (bottom) of the enclosures provided by CZ,
CZ-J, FBP, and Z-J. In this work, only one iteration of FBP was
applied, since multiple iterations did not provide a further re-
finement of the resulting interval enclosures. As it is noticed,
the capability to capture the dependence between states and pa-
rameters allows CZs to be tighter than intervals. CZ-J results in
smaller sets w.r.t. CZ and Z-J because the former does not re-
fine the parameter set over time, and the latter relies on conser-
vative intersections with strips. In addition to Z-J, in this exam-
ple, FBP has not even guaranteed a refinement of the parameter
enclosure, which is a result from neglecting the dependencies
between states and parameters due to the wrapping effect.

Lastly, we present a nonlinear numerical example to demon-
strate the effectiveness of the method proposed in Section 3.2.
Consider the nonlinear discrete-time system described by

) AX1 k-1X2 -1
X1k = 3X1 g1 —PXp — 7 + Wik
4 + X1 k-1
31 k-1X24-1 (16)
Xog = —2Xpp-1 + ————— + Wy
4 + X1k-1

Yik = X1k Vi Yok = —Xip + X+ (Tp—1) +vpp,

with [[Willo < 0.2, |[Ville < 0.1, and p € P C R being
an unknown model parameter. The enclosures Xy and P are
boxes given by X, = {diag(1.2,0.6), (10,0.5)} and P = {5,1/7}.
Measurement data have been obtained by simulating (16) with
xo = (10.2,0.65) € Xy, and p = 1/7 € P. The process and
measurement disturbances are generated from uniform random
distributions with the listed bounds. The numbers of generators

and constraints of Z;, were limited to 8 and 3, respectively.

Figure 2 shows the sets Zk obtained using FBP, ZMV-J, and
CZMV-], as well as the evolution of x;, for k € {3, 15, 149}.
As in the linear case, the state enclosures provided by CZMV-J
are significantly smaller than the ones obtained with FBP, due
to capability to capture the dependencies between states and
parameters. Figure 3, which shows the areas of X (top) and
the radii of P, (bottom), as well as the results obtained using
ZMV-] (the CZMV-J to ZM V-] average area ratio of )?k is 71%,
while the average radius ratio of f’k is 34%), corroborates the
advantages of using the proposed joint framework CZMV-J.
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Figure 1: Linear example for k € [0, 200], the average radii of the projections
X (top) and Py (bottom) of the sets provided by CZ (o) and CZ-J (Xx), Z-J (o),
and FBP (+), and the average radii of the original parameter set P (¢).
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Figure 2: The variables (X, p) (X), and the sets obtained using ZMV-J (yellow),
CZMV-J (red), and interval arithmetic (cyan), for the nonlinear system (16) at
k €{3,15,149}.

5. Conclusions

This note developed a new method for set-based joint
state and parameter estimation of discrete-time systems with
unknown-but-bounded model parameters. By extending state
estimation methods using CZs to a unified framework, allow-
ing to maintain the dependencies between states and parame-
ters, the accuracy of both state and parameter estimation was
significantly improved. Future works will include extending
the method developed in Section 3.1 to joint state and parame-
ter estimation of linear descriptor systems.
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