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Abstract

In this paper uncertain continuous-time nonlinear systems affine in the control variable and with saturated actuators are
considered. The finite-time regulation problem of the system output to zero is then solved by proposing a generic Higher-Order
Sliding Mode (HOSM) controller equipped with a novel mechanism to encounter the saturation limits, thus extending previous
results on saturated control inputs valid only in case of specific r-order sliding mode algorithms. The so-called Bounded Integral
Control (BIC) method is reformulated into the framework of continuous HOSM, so as to replace the traditional integrator
used to generate the continuous signal directly fed into the plant. Stability conditions for tuning the proposed algorithm are
provided, and a numerical example finally assesses the effectiveness of the proposed technique.

Key words: Higher-order sliding mode, bounded input, integral control, nonlinear systems.

1 Introduction

Saturation constraints on the actuators are basically en-
countered in all real control problems, and their presence
is a core issue leading to different theoretical and practi-
cal challenges [1,2]. In fact, operational limits are natu-
rally intrinsic or purposely imposed for reducing energy
consumption, minimizing wear and tear of the plants,
or avoiding bulky and expensive devices. Typical exam-
ples of systems with hard input and state constraints are
power systems, transportation or robotic plants [3–5].
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In recent years, constrained dynamical systems have ob-
tained an increasing interest and many approaches have
been proposed in the literature to cope with them. How-
ever, in general, it is not easy to explicitly take into ac-
count constraints on the control input, and the presence
of saturated actuators when an integral action is applied
can imply the so-called integral windup phenomenon,
i.e., undesired large and poorly decaying overshoots in
transients during which the controller output can no
longer affect the controlled variable [6]. Among the pos-
sible solutions to this issue, [7] presents a BIC algorithm
capable of generating an integral control action which
is bounded independently of the plant parameters and
states. An enhanced version of this algorithm is instead
proposed in [8], where a better approximation of the tra-
ditional integral action is provided by relaxing some re-
strictive hypotheses of the original technique.

Encountering actuator saturation can be evenmore chal-
lenging when unavoidable modeling uncertainties and
disturbances affect the controlled systems. In fact, the
saturation represents an additional nonlinearity to cope
with, so that robust saturated control strategies can
be valid solutions. In this context Sliding Mode Con-
trol (SMC) approaches perfectly fit to solve this prob-
lem [5, 9]. In particular, in this work we deal with the
so-called continuous HOSM control algorithms designed
starting from systems with generic relative degree ρ,
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adding an integrator dynamics in order to design a dis-
continuous HOSM control of order r = ρ + 1 (e.g., the
continuous version of Twisting [10], Suboptimal [11], and
Terminal [12] algorithms). These algorithms can provide
beneficial effects in terms of chattering alleviation. Nev-
ertheless, the presence of an additional integral dynam-
ics a priori prevents the possibility to bound the effec-
tive continuous control signal, thus possibly implying a
control amplitude which overcomes the intrinsic satura-
tion of the system.

1.1 Contributions with respect to the state of the art

In this paper, to the best of the authors’ knowledge, we
present a novel design framework for continuous HOSM
controllers embedding actuator saturation. We propose
an alternative solution to the conventional saturated
integrator, which typically requires additional anti-
windup techniques (e.g., back calculation or clamping),
while not providing any stability guarantee. Differently,
one of the key features of our proposal is the intrinsic
anti-windup property, for which we provide a rigorous
stability proof for the controlled system. To pursue
this objective, the HOSM control law is coupled with a
novel mechanism relying on the BIC algorithm, which
is originally recast in the sliding mode framework. The
BIC mechanism plays here the role of the traditional
saturated integrator capable of generating the contin-
uous input to be sent to the plant, while fulfilling the
saturation limits.

Relying on SMC theory, one of the contributions of our
work is the extension of the family of HOSM algorithms
applicable to systems with saturated actuators. This
problem has been indeed previously solved in the lit-
erature in a custom way for each algorithm (see e.g.,
[13–18]), where a modification of the original version
of the control strategies has been correspondingly pro-
posed. For instance, [14] proposes a switching law for
a Suboptimal algorithm based on the sign of the effec-
tive control input fed into the plant compared with its
bounds. In [13,16], Lyapunov based stability conditions
are instead provided to maintain the input within satu-
ration limits in the case of a Super-Twisting approach.
Analogously, the recent work [17] exploits the condition-
ing technique, while in [19] a Lipschitz continuous sat-
urated controller based on a Proportional-Integral (PI)
control and a Twisting algorithm is proposed. In this pa-
per, as an alternative, we introduce a well structured and
rigorous method to account for actuator saturation that
can be applied to any sliding mode controller of generic
order r. The approach encompasses in a seamless way
the use of saturation for continuous higher-order sliding
mode controllers, which in general needs to be addressed
with different and dedicated approaches.

Finally, making reference to the BIC theory in [7, 8], in
this work, the BIC approach is deeply revised. Indeed,

while in [8] the BIC replaces the classical integral con-
troller in the closed loop, in this paper it is embedded
in the HOSM control law giving rise to a novel extended
algorithm fulfilling input constraints. The revised ap-
proach allows to extend the BIC to the case of asymmet-
ric saturation limits, among the contributions. Further,
the new BIC structure enables finite-time convergence of
its state trajectory towards the BIC characteristic curve,
differently from [7, 8] where asymptotic convergence is
shown. This result is here rigorously proved by using an
approach based on a different Lyapunov function candi-
date. Moreover, the stability properties of the resulting
saturated continuous HOSM control with BIC are thor-
oughly proved and assessed on a numerical example. It
is worth to highlight that, without increasing the com-
putational complexity, and with a simple design proce-
dure relying on HOSM controllers in its original version,
we achieve performance comparable with those resulting
from customized, possibly more complex, structures of
HOSM control laws in the case of saturating actuators.

1.2 Structure of the paper

In Section 2 the relevant notation is reported, while the
problem formulation is introduced in Section 3. In Sec-
tion 4 the proposed approach is presented and then an-
alyzed in Section 5. A numerical example is illustrated
in Section 6, and conclusions are drawn in Section 7.

2 Notation

Let R be the set of reals, R+ be the set of positive reals,
N be the set of positive real integers, and |·| be the Eu-
clidean norm. Given a column vector v ∈ R

n, its trans-
pose is given by v⊤. Given the function g(z) and the vec-

tor field f(z) sufficiently smooth, let Lfg(z) :=
∂g
∂z f(z)

be the so-called Lie Derivative of g along f . Finally, de-
note ⌊g⌉q := |g|q sgn(g), with q ∈ R

+ and sgn(g) = 1
if g > 0, sgn(g) ∈ [−1, 1] if g = 0, and sgn(g) = −1 if
g < 0.

3 Problem formulation

Consider a plant (process and actuator) described by the
single-input system affine in the control variable{

ẋ(t) = a(x(t)) + b(x(t))u(t)

y(t) = c(x(t)) ,
(1)

where x ∈ D ⊂ R
n is the state vector, the value of which

at the initial time instant t0 = 0 is x(0) = x0, and u is a
Lipschitz continuous scalar input, subject to

u(t) ∈ U , ∀ t ≥ 0 , (2)

with U := [umin, umax] ⊂ R being a compact connected
set containing zero, with umin, umax ∈ R being the lower
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and upper bounds such that uminumax < 0. Further-
more, a(x) : D → R

n and b(x) : D → R
n are bounded,

uncertain, sufficiently smooth vector fields on D, that is
a(x), b(x) ∈ Cρ, with ρ being the relative degree deter-
mined by the output y ∈ R. Specifically, the output of
the system y is chosen as the function c(x) ∈ Cρ+1 such
that the following assumption holds.

Assumption 1 (Relative degree invariance)
System (1) is complete in a region D0 ⊂ D meaning that
x(t) ∈ D0 and, for each initial state x0 and each control
u, x(t) is defined for almost all t ∈ R

+. It has uni-
form and time-invariant relative degree equal to ρ, with
1 ≤ ρ ≤ n, that is LbL

i−1
a c(x) = 0, i = 1, 2, . . . , ρ − 1

and LbL
ρ−1
a c(x) ̸= 0, for all x ∈ D0. Moreover, it admits

a normal form in the region D0.

The applicability of Assumption 1 is determined by the
choice of the function c(x) made by the designer (see
[18, Section III] for some examples). By virtue of this
assumption, there exists a diffeomorphism of the form
Φ(x) : D0 → Φ(D0), with Φ(D0) ⊂ R

n, such that



ż = f0(z, σ) (3a)

z(0) = z0 (3b)

σ̇i = σi+1, i = 1, . . . , ρ− 1 (3c)

σ̇ρ = f1(z, σ) + f2(z, σ)u (3d)

y = σ1 (3e)

σ(0) = σ0 . (3f)

Equations (3a)–(3f) are said to be in the normal form,
which is defined globally if the mapping Φ(x) is a global
diffeomorphism (see [20, Chapter 13] for detailed def-
initions). In equations (3), z ∈ R

n−ρ is the state of

the internal dynamics, σ := [σ1 σ2 . . . σρ]
⊤ ∈ R

ρ is
the vector of the sliding variable and its derivatives,
while f1(z, σ) = Lρ

ac(x) and f2(z, σ) = LbL
ρ−1
a c(x) are

bounded sufficiently smooth uncertain functions. This
last property is obtained from system (1). In fact, since
a and b are sufficiently smooth bounded functions, and
Φ(D0) is a bounded set, vector fields f1 and f2 are con-
tinuous bounded uncertain functions as well, i.e.,

∃ ϕ > 0 : |f1(z, σ)| ≤ ϕ, ∀ (z, σ) ∈ Φ(D0) (4)

∃ δ > 0 : f2(z, σ) ≤ δ, ∀ (z, σ) ∈ Φ(D0) (5)

∃ γ > 0 : f2(z, σ) ≥ γ, ∀ (z, σ) ∈ Φ(D0) . (6)

Note that, as typically assumed in sliding mode con-
trol frameworks, f2 has known constant sign. However,
possible strategies to address the problem of controlling
systems with unknown control direction are given for in-
stance in [21–23], among others. Furthermore, since the
input saturation, which depends on the nature of the
considered plant, has to permit the suppression of the
uncertain terms, the following feasibility assumption is
required.

Assumption 2 (Bounds feasibility) Given the con-
straint (2) with uminumax < 0 and bounds (4) and (6),
it must hold

min (|umin|, |umax|) >
ϕ

γ
. (7)

Note that Assumption 2 is instrumental to ensure that
the input saturation bounds of the system dominate the
worst realization of the uncertain terms, for any possible
choice of the initial condition x0 ∈ D0. As a consequence,
the designed control input will be capable of attracting
the sliding variable towards the corresponding manifold.

Remark 1 (Symmetry of bounds) Note that As-
sumption 2 is valid for any symmetric and asymmet-
ric bounds with uminumax < 0. However, in the par-
ticular case of systems with input bounds such that
uminumax ≥ 0, the input u can be remapped into a new
control variable, namely ũ, given by

ũ =
u− umax

umax − umin
(ũmax − ũmin) + ũmax , (8)

with ũmin, ũmax arbitrarily chosen scalars such that
ũminũmax < 0. Such remapping guarantees that the new
control variable is bounded as ũ ∈ [ũmin, ũmax]. This
relationship in turn implies a redefinition of the vector
fields f1 and f2 as

f̃1(z, σ) = f1(z, σ) + f2(z, σ)
ũmaxumin − ũminumax

ũmax − ũmin

f̃2(z, σ) = f2(z, σ)
umax − umin

ũmax − ũmin
,

with new bounds ϕ̃ and γ̃, respectively. The new formu-
lation is again consistent with Assumption 2.

As for the symmetric case, instead, it directly follows that

umax >
ϕ

γ
, (9)

with lower bound umin = −umax. □

Regarding the choice of the sliding variable in accordance
with Assumption 1, the internal dynamics is required to
satisfy the following assumption.

Assumption 3 (Zero dynamics) Given the normal
form (3), the zero dynamics ż = f0(z, 0) is asymptoti-
cally stable.

Given the normal form (3a)-(3f), the first control objec-
tive is the regulation of the output y to the origin in fi-
nite time. Moreover, differently from classical SMC for-
mulations, a continuous input (aimed at chattering al-
leviation) with a hard constraint on the actuators is re-
quired. Notice that a common choice in output-feedback
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problems is the selection of the sliding variable σ1 as the
output of the system, namely y, defined as one of the
states or as a linear combination of them. This choice is
generally considered as part of the design procedure. In
this paper we select σ1 such that the relative degree is
equal to ρ, while fulfilling Assumption 1.

4 The Proposed Saturated HOSM Control Law

In this paper, to solve the problem formulated in Sec-
tion 3, we propose a general approach to design HOSM
control strategies combined with an extension of the so-
called BIC, exploited in place of the traditional integra-
tor to take into account the input limits.

plant

σa(x)κ(σa)BIC

controller

yu

Fig. 1. Representation of the proposed control scheme with
HOSM control and BIC mechanism

The considered control scheme in Figure 1 includes three
key blocks: the block computing an augmented vector
of the sliding variable and its derivatives, namely σa de-
fined hereafter, the block containing the discontinuous
SMC, and the one with the BIC mechanism. The slid-
ing variable σ1 is selected equal to the plant output y,
while its derivatives are measured or retrieved for in-
stance by the so-called Levant’s differentiator of the suit-
able order [24]. The vector of the sliding variable and
its derivatives suitably augmented is then used by the
SMC law, which generates a discontinuous signal. The
latter is directly transmitted to the BIC block, which
sends to the plant a continuous signal fulfilling the hard
constraint (2).

Therefore, the SMC law and the BIC mechanism con-
tribute to generate the control variable built as the ap-
proximation of the time integral of a discontinuous sig-
nal, giving rise to a saturated continuous HOSM control.

4.1 Definition of the augmented system

Having in mind to design HOSM control aimed at chat-
tering alleviation, an integrator dynamics is added to
(3c)-(3f) as{

σ̇i = σi+1, i = 1, . . . , r − 1

σ̇r = f3(z, σ, u) + f2(z, σ)v ,
(10)

where v := u̇ is appointed as the discontinuous control
law, such that it holds

|v(t)| ≤ α , (11)

for some α > 0 being a design parameter. The increased
relative degree instead becomes r = ρ+ 1 such that the
overall augmented vector of the sliding variable and its

derivatives is now represented by σa :=
[
σ⊤ σr

]⊤ ∈ Rr.
Moreover, the new drift term is f3(z, σ, u) = Lr

ac(x),
while f2 is determined as in (3). Recalling that condition
(2) is required, vector fields f1, f2 and f3 are continuous
functions, and Φ(D0) is a bounded set, one also has that

∃ β > 0 : |f3(z, σ, u)| ≤ β, ∀ (z, σ) ∈ Φ(D0), ∀u ∈ U .
(12)

Moreover, let the following assumption hold.

Assumption 4 (Control amplitude) Given the con-
ditions (11)-(12), there exists a positive constant λ < γ
such that the control amplitude upper-bound α satisfies

α >
β

λ
. (13)

4.2 Definition of the SMC law

Relying on (3)–(12) and Assumptions 1–4, the control
problem introduced in Section 3 becomes that of design-
ing a feedback control law

u(t) = u(0) +

∫ t

0

v(τ)dτ (14)

subject to (2) and such that ∀x0 ∈ D0, ∃T ≥ 0 :
σa(x(t)) ≡ 0, ∀ t ≥ T .

Starting from (10), where the relative degree r ≥ 2 is
assumed to be uniform and time invariant by virtue of
Assumption 1, let us introduce a discontinuous function
ṽ, given by

ṽ = ακ(σa) , (15)

with κ(σa) being the designed SMC law of order r, and
with α > 0 being the control amplitude such that |ṽ| ≤
α. The expression of κ(σa) depends on the arbitrary or-
der r and some examples are the Twisting [10], Sub-
optimal [11], Terminal [12], Optimal-reaching [25], and
Quasi-continuous SMC [26] algorithms. Note that, the
complexity of themanifold grows very fast with the order
r, and its design can require exact algebraic or numerical
methods, which are beyond the scope of the paper.

Remark 2 (Chattering alleviation) Replacing the
discontinuous input signals with continuous ones is a
successful attempt to alleviate chattering in the case of
HOSM control algorithms which confine the discontinu-
ity of the input into its time derivative. However, the
estimation of chattering features in the case of HOSM
is still an open problem. Indeed, the presence of some
parasitic dynamics (e.g., delays or hysteresis due to
sensors and actuators) can even cause an increase of

4



the chattering magnitude. In this work, the property of
chattering alleviation of conventional continuous HOSM
controllers is preserved. However, the analysis of chat-
tering is beyond the scope of this paper, and we refer
to [27,28] and [29] to deepen this interesting topic. □

4.3 Design of the BIC desaturation mechanism

In this section the enhanced BIC problem in [8] is pre-
sented and recast according to the HOSM formulation.
Themain idea in [8] is to replicate the traditional integral
control with an approximation of an integrator capable
of constraining the controller output to a given range of
the form [−umax, umax], while avoiding the well-known
windup problem. In this work, we present a new version
of the BIC approach in place of the classical integra-
tor applied downstream of the considered discontinuous
law. The proposed BIC add-on to the HOSM controller
is then capable of maintaining the control signal in the
asymmetric range [umin, umax] and performing the inte-
gral action with a smaller approximation with respect
to the results presented in [8].

w1

w2

u umaxumin

E

Fig. 2. BIC working principle

Consider the set U in (2), with bounds umin ̸= umax, and
let w1 and w2 be additional controller state variables.
Consider now the closed curve in Figure 2 represented
by the following set

E :=
{
(w1, w2) ∈ R2 : ε(w1, w2) = 0

}
, (16)

where

ε(w1, w2) :=
(w1 − ū)

2m

¯
u2m

+w2m
2 − 1 (17)

ū :=
umax + umin

2
,

¯
u :=

umax − umin

2
, (18)

with m ∈ N, and m ≥ 1. In the following, the depen-
dence of ε from (w1, w2) will be omitted, for the sake
of simplicity. The integration and desaturation strategy,
which will be combined with HOSM control laws (15),

instead becomes

u =w1 (19a)[
ẇ1

ẇ2

]
=

 −k⌊ε⌉ 1
2 ακ(σa)w

2m−1
2

−ακ(σa)
w2

¯
u2m − k

¯
u2m ⌊ε⌉ 1

2

[(w1 − ū)2m−1

w2

]
(19b)

where

k := ¯
u2m

2m
k̄ , (20)

and k̄ ∈ R
+ is a positive constant gain that regulates

the reaching time of the (w1, w2) trajectories towards
the closed curve ε(w1, w2) = 0. Note that, when the
trajectories of (w1, w2) belong to the closed curve E , the
diagonal terms in (19) are zero and the controller state
dynamics are

ẇ1 = ακ(σa)w
2m
2 (21a)

ẇ2 = −ακ(σa)

¯
u2m

w2(w1 − ū)2m−1 , (21b)

where w2m
2 can be seen as a nonlinear integrator gain.

4.4 HOSM control embedding BIC mechanism

Before introducing the whole HOSM control combined
with the BIC approach, some comments about the gain
of the integrator in (21a) are due. When the trajectories
of (w1, w2) are such that ε(w1, w2) = 0, then

w2m
2 = 1− (w1 − ū)

2m

¯
u2m

. (22)

This represents a substantial difference with respect to
the BIC formulation in [8], where the integrator gain is

w2m
2 = 1− w2

1

u2
max

, (23)

which does not depend on the design parameterm. This
implies that, with the new formulation of the BIC, the
integral gain will approximate the unit gain as better as
the parameter m is increased (see Figure 3, in the case
of symmetric saturation bounds for the sake of compar-
ison).

Therefore, for the new formulation of the BIC, for high
values of m, the closed curve E approximates a rect-
angle, and one has w2m

2 ≈ 1 for almost all values of
w1 ∈ [umin, umax]. Hence, the dynamics (19) approxi-
mates a pure integrator, i.e., ẇ1 ≈ ακ(σa) for almost all
w1 ∈ [umin, umax] (exactly w2m

2 = 1 for w1 = ū). More
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w1

w2m
2 (22)

(23)

ū = 0

1

umaxumin

Fig. 3. BIC gain in the proposed extension (solid line) and
in [8] (dotted line) in case of m = 25, and with symmetric
saturation bounds

precisely, substituting (22) into (19), and taking into ac-
count (19a), the integral argument in (14) is given by

v =

[
1−

(
u− ū

¯
u

)2m
]
ṽ , (24)

which represents the proposed general HOSM control
law embedding the BIC mechanism. Note that, differ-
ently from [7,8], in this work the BIC strategy is defined
for bounds not necessarily symmetric with respect to the
w2-axis. These bounds are given a priori depending on
the application. Therefore, the BIC requires the tuning
of the sole two parameters k̄ andm. The idea underlying
the BIC approach is to make the controller state vari-
ables move towards the closed curve (16) and remain on
it over time. Indeed, if this is enabled for any initial con-
dition (w1(0), w2(0)), when w1 tends to umin or umax,
then w2 tends to zero, slowing down the dynamics of w1,
that is w1(t) ∈ U , ∀ t ≥ 0 (see Figure 2).

Remark 3 (Anti-windup property and tuning)
Note that, differently from the conventional saturated
integrator, the BIC strategy has an intrinsic anti-windup
property since the integration ‘slows down’ when the
input approaches the bound. Analogously, starting from
u ≈ umax (or, specularly u ≈ umin), the integration also
‘slowly increases’ before w2m

2 approaches the value 1.

Regarding the tuning of the parameter m ≥ 1, a trade-off
arises. Lower values of m imply in fact that the integra-
tion ‘slows down’ relatively far from the upper and lower
limit of the controller output, while enabling an ‘antici-
pated’ anti-windup effect. Conversely, higher values ofm
make the integral action very close to the one given by the
classical integrator, while yet enabling the anti-windup
effect to the close neighbourhoods of umin and umax. □

5 Stability Analysis

In this section, the stability properties of the proposed
control strategy are discussed.

5.1 HOSM stability properties

Consider to apply the control law (15) to the normal form
(10) (with ṽ in place of v) with bounds given in (5), (6)
and (12), so that one obtains the following differential
inclusion {

σ̇i = σi+1, i = 1, . . . , r − 1

σ̇r ∈ [−β, β] + α[γ, δ]κ(σa) ,
(25)

or equivalently σ̇a ∈ F (σa), with F being a nonempty,
closed, convex, locally bounded and upper-semi-
continuous vector set. Such a differential inclusion is
proved to be a homogeneous Filippov’s inclusion with
negative homogeneous degree -1, and the class of con-
sidered controllers is defined r-sliding homogeneous
(see [30, 31] for further details on homogeneity and
finite-time stabilization).

Remark 4 (Homogeneity features of HOSM)
Note that, as proved in [30], almost all known r-sliding
controllers, with r ≥ 2, are r-sliding homogeneous. An
exception is instead given by the Terminal algorithms
with a specific setting of the control parameters. □

The following lemma is derived from [30] where homoge-
neous HOSM laws are discussed and finite-time conver-
gence of trajectories using homogeneity of discontinuous
controllers is proved. This significant result is instru-
mental to prove also the convergence properties of the
proposed HOSM control strategy with BIC mechanism.

Lemma 1 (Finite-time convergence [30]) Let the
controllers (15) be r-sliding homogeneous. Then, con-
trollers (15) provide finite-time convergence of each
trajectory to the r-sliding mode σa ≡ 0. Moreover, the
corresponding Filippov’s inclusion (25) is also globally
uniformly finite-time stable.

PROOF. The proof of the lemma directly follows from
[30, Theorem 3] in absence of measurement noises, even
including a robust homogeneous differentiator [24] in the
control structure.

5.2 BIC stability properties

Now, the following lemma proves that the closed curve
(16) is attractive for the BIC state variables (w1, w2),
even when the bounds on the input are asymmetric.

6



Lemma 2 (Stability of the BIC curve) Given the
BIC (19), the curve (16) is almost globally finite-time
stable, that is the control output u belongs to the compact
interval [umin, umax] for any input defined as in (15),
and any initial condition (w1(0), w2(0)) ̸= (ū, 0).

PROOF. Consider the Lyapunov function

V = ε(w1, w2) + 1 =
(w1 − ū)

2m

¯
u2m

+w2m
2 . (26)

Taking the time derivative of V and substituting from
(19), it yields

V̇ =
2m

¯
u2m

(w1 − ū)
2m−1

ẇ1 + 2mw2m−1
2 ẇ2

= − 2m

¯
u2m

k⌊ε⌉ 1
2 (w1 − ū)

2(2m−1)
+

+ ακ(σa)
2m

¯
u2m

w2m
2 (w1 − ū)

2m−1
+

− ακ(σa)
2m

¯
u2m

w2m
2 (w1 − ū)

2m−1 − 2m

¯
u2m

k⌊ε⌉ 1
2w2m

2

= − 2m

¯
u2m

(
(w1 − ū)

2(2m−1)
+ w2m

2

)
k⌊ε⌉ 1

2 , (27)

which shows that V̇ is negative definite outside the closed
curve E , positive inside and zero at the point (ū, 0). In-
vestigating local dynamics of the equilibrium point (ū, 0)
of system (19), it is an unstable equilibrium point, that
is for any (w1(0), w2(0)) ̸= (ū, 0), then (w1(t), w2(t)) ̸=
(ū, 0) for any t ≥ 0. Hence, the term between brackets
in (27) is positive for any t ≥ 0 as well. Then, choosing
the parameter k as in (20) gives

V̇ = −k̄
(
(w1 − ū)

2(2m−1)
+ w2m

2

)
⌊V − 1⌉ 1

2 . (28)

Therefore, the Lyapunov function V monotonically
tends to 1 in finite time [32]. This in turn implies that,
starting from any level set different from V = 0 (that is
the singleton (w1, w2) = (ū, 0)), the Lyapunov function
will never assume the value V = 0. In other words, the
BIC curve E is almost globally finite-time stable [33, Def.
II.1], that is all the trajectories (w1(t), w2(t)) starting
outside or inside the closed curve E , aside from the point
(ū, 0), will converge towards it in finite time with a rate
depending on the gain k̄. The larger the value of k̄, the
faster the trajectories (w1(t), w2(t)) will be attracted to
the closed curve E .

Remark 5 (BIC relationship with HOSM laws)
Note that the proposed version of the BIC algorithm
is fed with the discontinuous input (15). It is worth
noticing that the Lyapunov function (26) is a Common
Lyapunov Function (CLF) [34] for both configurations,

hence such switching input does not affect the stability
properties of the exploited BIC method.

Finally, it is worth discussing also some robustness prop-
erty of the proposed approach in presence of measurement
disturbances. Indeed, albeit such disturbances would af-
fect the sliding variable σ, hence the SMC law κ(σa) ap-
pearing in (19), these terms do not appear in (26) and
(28). Therefore, this means that, for all (w1(0), w2(0))
different from the unstable equilibrium point (ū, 0), one
will have that (w1(t), w2(t)) ̸= (ū, 0) for any t ≥ 0 de-
spite the presence of measurement disturbances. □

We prove now that, depending of the sign of the discon-
tinuous input, the lower or upper-bound points (umin, 0)
and (umax, 0), respectively, are asymptotically stable
equilibrium points of (19).

Lemma 3 Consider the BIC system in (19), and as-
sume that (w1(0), w2(0)) ∈ E. Then, for κ(σa) > 0
(resp., κ(σa) < 0) the BIC system has an asymptotic
equilibrium point in (umax, 0) (resp., (umin, 0)), with
region of attraction equal to B+ := {w1 : w1 > umin}
(resp., B− := {w1 : w1 < umax}).

PROOF. Since (w1(0), w2(0)) ∈ E , for Lemma 2 one
has that ε(w1(t), w2(t)) = 0, ∀ t ≥ 0, which in turn im-
plies (22). Therefore, exploiting (21a) with (22), it re-
sults that (umax, 0) and (umin, 0) are equilibrium points.
The rest of the proof directly follows through graphi-

w1

ẇ1 κ(σa) > 0

κ(σa) < 0

umaxumin

Fig. 4. Representation of relationship (24) when κ(σa) > 0
(solid line) and κ(σa) < 0 (dotted line)

cal analysis. Consider Figure 4 and the case κ(σa) > 0
first. For any w1 ∈ (umin, umax), ẇ1 > 0, hence w1 ap-
proaches umax from the left. Analogously, for any w1 ∈
(umax,+∞), ẇ1 < 0, thus implying again that w1 ap-
proaches umax from the right. This proves that (umax, 0)
is an asymptotically equilibrium point of (24) for any
w1 ∈ B+. The case for κ(σa) < 0 is specular, and this
concludes the proof.
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As a consequence of the previous lemma, the following
corollary holds, which is instrumental to prove that the
proposed law (24) satisfies condition (11).

Corollary 1 Consider the BIC system in (19), and as-
sume that (w1(0), w2(0)) ∈ E. If Assumptions 2 and 4
hold with the HOSM control input given by (15), then,
there exists η ∈ R+, such that

η ≤

[
1−

(
w1 − ū

¯
u

)2m
]
≤ 1 . (29)

PROOF. Consider the HOSM control (15) such that,
depending on the initial conditions σa(0), the sign of
κ(σa) is positive (or negative). This means that during
the so-called reaching phase 0 ≤ t ≤ T , v(t) can be con-
stant equal to α (resp. −α) for a sufficiently large time
interval that makes u(t) tend to the bounds, according
to the BIC action behaving like an integrator. However,
it is important to underline that Lemma 3 states that
u(t) asymptotically tends to umax (alternatively, umin),
so that the system cannot exactly reach the saturation.
Indeed, Assumption 2 guarantees that there instead ex-
ists a constant ϵ ∈ R+ such that the input u = umax − ϵ
(resp., u = umin + ϵ) fulfills (7). This implies σr > 0
(resp., σr < 0) and makes the vector field defined by
σ̇ = f(σ) always point towards the switching manifold
(refer to [14] or [18] for this argument), which means
that the sign of κ(σa) changes in finite time, thus desat-
urating the input. Moreover, the existence of ϵ ∈ R+ de-
termines the existence of η in (29), thus concluding the
proof.

5.3 Main result

We are now in a position to introduce the main result.

Theorem 1 (Stability of the controlled system)
Let system (1), with input constraints (2), be controlled
via (14) with the HOSM control law (24), and the BIC
in (19) having as initial conditions (w1(0), w2(0)) ∈ E.
If Assumptions 1–4 hold, then there exists T ≥ 0 such
that y(t) ≡ 0, ∀ t ≥ T . Moreover, ∀x0 ∈ D0, x = 0 is
an asymptotically stable equilibrium point of (1), with
u(t) ∈ U , ∀ t ≥ 0.

PROOF. The proof of the theorem consists of two
parts. The first part has in turn to be carried out in two
steps. First, it is necessary to prove the finite-time con-
vergence and the feasibility during the reaching phase,
that is, given the initial condition σa(0), the sliding
variable and its derivatives are steered to zero in finite
time T , while fulfilling the input constraint (2).

Step 1 (0 ≤ t ≤ T ): Consider the controlled normal
form (10) when the proposed control law (24) with BIC
approach is applied, i.e., σ̇i=σi+1, i = 1, . . . , r − 1

σ̇r=f3(z, σ, u)+f2(z, σ)

[
1−

(
u−ū

¯
u

)2m
]
ακ(σa) .

(30)
The latter can be rewritten in the following compact
form{

σ̇i = σi+1, i = 1, . . . , r − 1

σ̇r = f3(z, σ, u) + f4(z, σ, u)ακ(σa) ,
(31)

with function f4 defined as

f4(z, σ, u) = f2(z, σ)

[
1−

(
u− ū

¯
u

)2m
]

. (32)

Now, given Assumption 1, which implies (3) with f2
bounded as in (5) and (6), and by virtue of Corollary 1,
in Assumption 4 one can pose λ = γη so that

f4(z, σ, u) ≤ δ, ∀ (z, σ) ∈ Φ(D0),∀u ∈ U (33)

f4(z, σ, u) ≥ λ, ∀ (z, σ) ∈ Φ(D0),∀u ∈ U . (34)

Therefore, the following differential inclusion can be
written: {

σ̇i = σi+1, i = 1, . . . , r − 1

σ̇r ∈ [−β, β] + α[λ, δ]κ(σa) .
(35)

Since the hypotheses of Lemma 1 are verified even in
the case of our HOSM control law embedding the BIC
mechanism, there exists T ≥ 0 such that σa(T ) ≡ 0,
hence y(T ) = σ1(T ) ≡ 0. Moreover, Corollary 1 ensures
that u(t) ∈ U in the interval 0 ≤ t ≤ T .

After having proved the finite-time convergence of σa

(consequently also of y) to zero, while fulfilling the input
constraint, the second step is to prove that the origin
is an uniformly finite-time stable equilibrium point of
(10), and the feasibility condition u(t) ∈ U is valid also
for any t > T .

Step 2 (t > T ): The first result on the uniformly stabil-
ity of y(t) = 0 again directly follows from the thesis of
Lemma 1, while the feasibility condition can be proved
by computing the input when σa(t) ≡ 0, ∀ t > T . Since

this implies that σρ ≡ 0, one has u(t) = − f1(z,0)
f2(z,0)

. Rely-

ing on Assumption 2, it follows that

|u(t)| = |f1(z, 0)|
|f2(z, 0)|

<
ϕ

γ
< min (|umin|, |umax|) , (36)

which in turn ensures that u(t) ∈ U , ∀ t ≥ 0.
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Finally, as for the second part of the Theorem, exploiting
Assumption 3 and inverting the diffeomorphism Φ(x),
according to the reasoning of [20, Chapter 13], then x =
0 is an asymptotically stable equilibrium point of (1),
with bounded input u(t) ∈ U , ∀ t ≥ 0.

Remark 6 (Practices for the controller tuning)
Note that condition (13) in Assumption 4 could be in
practice relaxed. Indeed, Assumption 2 allows to make
the vector field σ̇ = f(σ) point towards the manifold
during the interval when the bounds are approached, in
spite of the uncertainties. Far from the saturation lim-
its, instead, the lower bound η in (29) is approximately
1, thus resulting in a greater value of λ in Assumption
4. As a consequence, practically the amplitude α can be
less conservative than the theoretical control gain. □

Relying on Remarks 5 and 6, while the choice of the
HOSM controller does not affect the stability of the BIC
mechanism, the latter, instead, strictly influences the
selection of the HOSM control parameters required to
guarantee the stability of the controlled system. How-
ever, the general applicability of the proposed BIC add-
on is given by the fact that it does not alter in any way
the structure of the combined r-order sliding mode con-
trollers.

6 Numerical Example

In this section, the theoretical analysis of the proposed
control strategy is assessed in a numerical example.

Consider a controlled Lorenz system, which is a widely
known benchmark for its chaotic behavior [35],


ẋ1 = θ1 (x2 − x1)

ẋ2 = x1 (θ2 − x3)− x2 + u

ẋ3 = x1x2 − θ3x3 ,

(37)

where θ1 is the so-called Prandtl number, θ2 is the
Rayleigh number and θ3 is a geometric factor. The con-
trol objective is to globally stabilize the system using
a bounded control input such that u ∈ [umin, umax].
Choosing the output as y = x2, the system has relative
degree ρ = 1. Hence, a first order sliding mode naturally
applies. However, in order to perform a chattering alle-
viation, a second-order sliding mode control algorithm
is selected to control the system with a smooth input
by artificially increasing the relative degree to r = 2.
Therefore, defining the sliding variable as the output,
i.e., σ1 = y = x2, the considered diffeomorphism be-
comes Φ(x) = (x1 x3 x2)

⊤ = (z1 z2 σ1)
⊤. By deriving

the sliding variable and posing v = u̇ as the new input,
the augmented system (10) starting from (37) can be

written as
σ̇1 = σ2

σ̇2 = −σ2 +
(
θ1 (θ2 − z2)− z21

)
σ1+

+(θ3z2 − θ1 (θ2 − z2)) z1 + v

u̇ = v ,

(38)

that is a relative degree 2 system. The internal dynam-
ics appearing in (3a) is instead ż1 = θ1 (σ1 − z1), ż2 =
σ1z1−θ3z2, with zero dynamics ż1 = −θ1z1, ż2 = −θ3z2
being asymptotically stable, as required by Assumption
3. Moreover, the trajectories of the Lorenz system are
known to be bounded [35], so that, suitably selecting
umin and umax, also Assumptions 1 and 2 are satisfied.
In the following the system parameters are θ1 = 10,
θ2 = 28, θ3 = 8

3 and the initial condition is x0 =

[0.16,−0.1, 10.8]⊤. The asymmetric bounds umin = −4,
umax = 3 satisfy Assumption 2, with uncertainty bounds
(4)–(6) equal to ϕ = 2.85 and δ = γ = 1.

First, the proposed control approach with BIC mecha-
nism is applied relying on the original form of Twisting
algorithm (briefly, TW in the following). The BIC pa-
rameters are selected as k̄ = 10, α = 100, w1(0) = 2.7
and w2(0) such that (w1(0), w2(0)) ∈ E , and m = 100
according to Remark 3. According to the TW control,
two control parameters, referred to as α1 and α2, are
such that the whole control gain dominates β = 45.7.
Specifically, we have selected α1 = 1.2 and α2 = 0.8. In
Figure 5 the sliding variable σ1 and its derivative σ2 are
illustrated along with the continuous input u fed into the
plant. It can be observed that, according to Theorem 1,
the trajectory is steered to zero in finite time, while the
input fulfills the given bounds.

Fig. 5. From the top: time evolution of the sliding variable
σ1 and its derivative σ2; time evolution of the input u when
the TW control with BIC is used with asymmetric bounds

In order to further assess the proposal, the previous TW

9



Fig. 6. From the top: time evolution of the internal dynamics
z; time evolution of the sliding variable σ1 and its derivative
σ2, when TW with BIC (solid line), SSOSM in [14] (dashed
line) and STW in [13] (dotted line) are used

Fig. 7. From the top: time evolution of the input u with
bounds when TW with BIC (solid line), SSOSM in [14]
(dashed line) and STW in [13] (dotted line) are used; BIC
state space {w1, w2} with m ∈ {1, 2, 5, 100}

algorithm combined with BIC is applied in comparison
with the modified version of the Suboptimal algorithm
(briefly, SSOSM) in [14] and the Super-Twisting (briefly,
STW) in [13]. For the sake of a fair comparison, the in-
put bounds are chosen symmetric equal to umin = −3,
umax = 3, always satisfying Assumption 2. Referring to
the works [14] and [13], the control parameters are set
as α∗ = 1 and W = 200 for the SSOSM control, and
k1 = 10 and k2 = 100 for the STW approach, respec-
tively. Several properties of the proposed approach can
be observed. More specifically, Figure 6 illustrates the
time evolution of the internal dynamics which asymptot-
ically converges to zero, according to Assumption 3. In
the same figure also the sliding variable and its deriva-

tive, steered to zero in a finite time of T = 0.21 s in
the proposed case, are illustrated for the three com-
pared controllers. Figure 7 shows instead the evolution
of the input u fed into the plant. One observes that the
proposed strategy is capable of fulfilling the input con-
straints. Although the results in terms of convergence
time appears different due to the unavoidable different
tuning of control gains, we would like to stress that the
strategies in [14] and [13] need a modification of the orig-
inal algorithms, while in our case only the additional
BIC mechanism is required, independently of the used
HOSM control law. In Figure 7, the BIC phase portrait
{w1, w2} for the considered case study is also reported.
Note that the value m ∈ {1, 2, 5, 100} affects the shape
of the closed curve E , thus determining different approx-
imations of the integral action.

7 Conclusions

In this paper we discussed how to recast the so-called
BIC approach into the sliding mode control framework
in order stabilize nonlinear uncertain systems with sat-
urated actuators via generic continuous HOSM control
laws. All the theoretical results have been rigorously
proved and assessed in simulations. Future works will be
devoted to the control of plants with saturated actuators
having unknown bounds of the uncertainties, unknown
control direction, and possibly non-minimum phase dy-
namics.
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