
1

Structural Identifiability of Impedance Spectroscopy
Fractional-Order Equivalent Circuit Models

With Two Constant Phase Elements
Tohid Soleymani Aghdam, Seyed Mohammad Mahdi Alavi, Mehrdad Saif

Abstract—Structural identifiability analysis of fractional-order
equivalent circuit models (FO-ECMs), obtained through elec-
trochemical impedance spectroscopy (EIS) is still a challenging
problem. No peer-reviewed analytical or numerical proof does
exist showing that whether impedance spectroscopy FO-ECMs
are structurally identifiable or not, regardless of practical issues
such as measurement noises and the selection of excitation
signals. By using the coefficient mapping technique, this paper
proposes novel computationally-efficient algebraic equations for
the numerical structural identifiability analysis of a widely used
FO-ECM with Grünwald-Letnikov fractional derivative approx-
imation and two constant phase elements (CPEs) including the
Warburg term. The proposed numerical structural identifiability
analysis method is applied to an example from batteries, and the
results are discussed. Matlab codes are available on github.

Index Terms—Structural identifiability, numerical methods,
fractional order models, electrochemical impedance spectroscopy,
energy storage systems, biomedical systems.

I. INTRODUCTION

Electrochemical impedance spectroscopy (EIS) is an impor-
tant tool for the study of dynamics and properties of biomedi-
cal and electrochemical energy storage systems. EIS is used in
[1]–[6] to study the in vitro and in vivo properties of electrode-
tissue in neural stimulation techniques. In [7] and [8], EIS is
used for differentiating between normal and malignant prostate
tissues. Cancer detection by using EIS is studied in [9]–[17].
EIS has widely been used for monitoring of electrochemical
energy storage systems in renewable energies and electric
transportation. With EIS, electrochemical behaviors of batter-
ies, super-capacitors and fuel-cells are estimated. It is shown
that many specifications such as state of charge, age, internal
temperature and resistance, and in general, state of health
of electrochemical energy storage systems are identifiable by
using EIS [18]–[33].

In EIS, an excitation signal is applied to the system, and its
response is measured. If excitation signal is current, the voltage
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response is collected or vice versa. The current and voltage
signals are then employed for the computation of impedance
spectra. The EIS data is further analyzed by fitting to an
equivalent circuit model (ECM), [34] and references therein.

Figure 1 shows a typical EIS impedance spectra and its
fractional-order ECM (FO-EM) that is the focus of this paper,
and widely used in both biomedical and energy applications
[1]–[3], [12]–[22]. The intersection of the impedance spec-
tra and the real axis represents the high-frequency ohmic
resistance R∞. The mid-frequency semi-circle, modeled by
a parallel R1 and 1/(C1s

α1), and the low-frequency line,
modeled by 1/(C2s

α2), represent charge transfer resistance,
double layer capacitance, and diffusion processes, where s
is the Laplace operator and αi’s, i = 1, 2, are fractional
exponents between 0 and 1, (1 > α > 0). The term 1/Cis

αi is
referred to as the constant phase element (CPE), as its phase
is constant with respect to frequency. The dimension of Ci,
i = 1, 2 is Fcm−2sαi−1 [29]. The low frequency impedance
1/(C2s

α2) is the so-called Warburg term.

Increasing 

Fig. 1: The widely used fractional-order equivalent circuit
model (FO-ECM) with two constant phase elements (CPEs)
including the Warburg term, and corresponding impedance
spectra.

Estimation of the EIS FO-ECMs has been the topic of many
papers. Usually, EIS impedance spectra is firstly computed and
plotted in the Nyquist diagram by using Fourier transforms,
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and ECM parameters are then estimated by fitting to the
impedance spectra in the frequency domain, [18], [19], [28].
An alternative approach estimates ECM parameters directly
from the time-domain current and voltage signals by using sys-
tem identification methods without Fourier transforms, [22],
[29], [34], [35]. Estimation of the FO-ECM’s parameters is
beyond the scope of this paper, and interested readers are
directed to [36]–[39] for a more comprehensive survey of the
proposed parameter estimation techniques.

The first essential stage in parameter estimation or system
identification problems is to show that the model is structurally
identifiable, regardless of practical issues such as measurement
noises and the selection of excitation signals and parameter
estimation method, [40]–[42].

Since the 1970’s, several analytical techniques have been
proposed for structural identifiability analysis by using Taylor
series expansion [45], [46], similarity transformations [47]–
[53], differential algebra [54], [55], and Laplace transforms
(transfer functions) [56], [57]. However, almost all of the
proposed techniques deal with ordinary differential equations
with integer orders.

This paper studies structural identifiability of the FO-ECM
in Fig. 1, with two CPEs under Grünwald-Letnikov derivative
approximation, which is widely employed in the literature, [6],
[21], [22], [30]–[32]. In the arXiv preprint [59], the structural
identifiability of the single-CPE FO-ECM is addressed by
using the coefficient mapping technique. It is graphically
proved that there is a one-to-one map between the coefficients
of the transfer function and the parameters, and thus, the
single-CPE FO-ECM is globally identifiable. It is further
shown in [59] that the structural identifiability of the two-
CPE FO-ECM depends on the solution of the following set of
equations:

g1 + g0(T + 1)

(
1

α1 − T
+

1

α2 − T

)
= 0

g2 − g0(T + 1)(â+ b̂+ ĉ) = 0,

(1)

where gi’s, i = 0, 1, 2 are the lowest orders’ coefficients of
the ECM transfer function, T is the total number of samples
taken from the voltage and current signals, and

â =
T

(α2 − T )(α2 − T + 1)
, b̂ =

(T + 1)

(α1 − T )(α2 − T )

ĉ =
T

(α1 − T )(α1 − T + 1)
.

However, these equations suffer from an ill-conditioned prob-
lem that is: for large T ’s, gi’s tend to zero. Under the ill-
conditioned problem, it is hard to solve (1), and deduce the
structural identifiability.

A. The main contribution of this paper

The main contribution of this paper is to propose alternative
set of equations which do not face with the ill-conditioned
problem. The new equations are computationally more effi-
cient, compared to those in [59], and their numerical solution
determines whether the two-CPE FO-CEM is structurally iden-
tifiable or not. The proposed numerical structural identifiability

analysis method is applied to the battery EIS FO-ECMs and
the results are discussed.

B. Assumptions

The following assumptions are made throughout this paper.
- Due to complexities, this paper only addresses the

two-CPE FO-ECMs with Grünwald-Letnikov fractional
derivative approximation. Structural identifiability anal-
ysis for higher-order FO-ECMs and/or by using other
approximations of fractional derivatives remains an open
problem.

- This paper only focuses on the structural identifiability
analysis, dealing with the model structure under the
noise-free condition. The practical identifiability analysis,
i.e., the selection of the excitation signals and parameter
estimation technique, and the effect of measurement noise
are beyond the scope of this paper. In [58], practical
identifiability of fractional commensurate-order models is
studied, where all differential orders are integer multiples
of a base order. The proposed analysis is in the fre-
quency domain, showing that fractional commensurate-
order models are poorly identifiable for small values of
the base order, [58]. In [22], practical identifiability of the
single-CPE and two-CPE FO-ECMs are studied, and the
results confirm that the input signal plays a key role in
the parameter estimation. The selection of the excitation
signal for the identification of FO-ECMs is still an open
problem. In [34], [35], [43], [44], a number of methods
are proposed for the selection of the excitation signal for
the identification of the ordinary-order ECMs.

C. The structure of the paper

This paper is organized as follow. Section II describes FO-
ECMs using the Grünwald-Letnikov approximation. In section
III, the proposed structural identifiability analysis method is
described. Numerical results are given and studied in section
IV for an example from battery applications.

II. MODEL STRUCTURE

By using the Grünwald-Letnikov approximation, a transfer
function of the FO-ECM in Fig. 1 is given by, [22], [59]:

H(z, θ) = d(θ) +

2∑
i=1

bi(θ)z
T

zT+1 −
∑T
j=0 ai,j(θ)z

T−j
(2)

where, z is the discrete-time operator, i denotes the i−th CPE,
j denotes the j−th sample, T is the total number of samples,
and

θ = {R∞, R1, C1, α1, C2, α2}, d(θ) = R∞,

bi(θ) =
Tαi
s

Ci
, a1,0(θ) = α1 −

Tα1
s

R1C1
,

a2,0(θ) = α2, ai,j(θ) = −(−1)j+1

(
αi
j + 1

)
,

i = 1, 2, j = 1, 2, · · · , T,

(3)
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where,
(
αi

j

)
is the binomial coefficient given by(

αi
j

)
=

Γ(αi + 1)

Γ(j + 1)Γ(αi + 1− j)
,

and, Γ(·) denotes the gamma function.
By the expansion of (2), a monic transfer function, where

the coefficient of the highest order term in the denominator is
1, is given by, [22], [59]:

H(z, θ) =
f2T+2(θ)z2T+2 + f2T+1(θ)z2T+1 + · · ·+ f0(θ)

z2T+2 + g2T+1(θ)z2T+1 + · · ·+ g0(θ)
.

(4)

III. STRUCTURAL IDENTIFIABILITY USING COEFFICIENT
MAPPING

The structural identifiability analysis, by using the coeffi-
cient mapping method, is based on the following lemma.

Lemma 1 ( [50]): Consider a model structureM(θ), where
θ represents the parameter vector. Let assume that a transfer
function of the model structure is given by (4). Then, the
model structure M(θ) is

- globally identifiable if there is a one-to-one map between
the coefficients of the transfer function and the parameter
vector θ,

- identifiable if there is a many-to-one map between the
coefficient of the transfer function and the parameter
vector θ,

- unidentifiable if there is an infinitely many-to-one map
between the coefficient of the transfer function and the
parameter vector θ. �

The one-to-one map between the coefficients of the transfer
function and the parameter vector θ means that the parameters
R∞, R1, C1, α1, C2, and α2 are uniquely computed
given the coefficients of the transfer function. Likewise, the
(infinitely) many-to-one map between the coefficients of the
transfer function and the parameter vector θ means that
coefficients of the transfer function result in (infinitely) many
sets of R∞, R1, C1, α1, C2, and α2.

In order to overcome the computational issue seen in [59],
the coefficients with highest indices, i.e., f2T+2, f2T+1, g2T+1,
f2T , g2T , etc., are processed in this paper. The denominator
coefficients are given by:

g2T+1(θ) = − (a1,0 + a2,0) (5)
g2T (θ) = − (a1,1 + a2,1) + a1,0a2,0 (6)

g2T−1(θ) = − (a1,2 + a2,2) + a1,0a2,1 + a1,1a2,0 (7)

From (3),

a2,0 = α2 (8)

By using (5) and (8), it is deduced that:

a1,0 = − (g2T+1 + α2) (9)

From Lemma 3 in [59], the relationship between ai,j and
ai,j+1 is given by:

ai,j+1 = −αi − j − 1

j + 2
ai,j for j ≥ 1 (10)

By using (8), (9), and (10), the manipulation of g2T and g2T−1
results in:

a1,1 =
B

C
(11)

a2,1 = A− B

C
(12)

where,

B = g2T−1 −
(
α2(g2T+1 + α2) + g2T

)(
g2T+1 +

2α2 + 2

3

)
C = g2T+1 +

α1 + 5α2

3
(13)

A = −
(
α2(g2T+1 + α2) + g2T

)
(14)

Thus, a1,0, a2,0, a1,1, and a2,1 are written in terms of α1 and
α2. From the coefficients of the numerator, it is deduced that:

f2T+1 − dg2T+1 = b1 + b2 (15)
f2T − dg2T = −b1a2,0 − b2a1,0 (16)

The solutions of (15) and (16) are given by:

b1 =
D

E
, and (17)

b2 = (f2T+1 − dg2T+1)− b1 (18)

where,

D = (f2T+1 − dg2T+1)(g2T+1 + α2)− (f2T − dg2T )

E = g2T+1 + 2α2

For the next two coefficients, i.e., f2T−1 and f2T−2, the
following equations hold:

f2T−1 − dg2T−1 = −b1a2,1 − b2a1,1 (19)
f2T−2 − dg2T−2 = −b1a2,2 − b2a1,2 (20)

The replacement of b1, b2, a1,0, a2,0, a1,1 and a2,1 in (19)
and (20) yields:

(f2T+1 − dg2T+1)BE + (f2T−1 − dg2T−1)CE+

ACD − 2BD = 0 (21)
(f2T+1 − dg2T+1)(α1 − 1)BE + (α2 − 2)ADC−
(α1 + α2 − 4)BD − 3(f2T−2 − dg2T−2)CE = 0 (22)

In (21) and (22), all terms of A, B, D and E are only
dependent on α2. Thus, α1 is expressed as a function of α2

by solving and rearranging (21) and (22), which lead to:

α1 =
K4

1 (α2)

K3
2 (α2)

=
K5

3 (α2)

K4
4 (α2)

(23)

where Kj
i represents the ith polynomial with degree of j.

The exponent α2 is found by solving the following equation.

K4
1 (α2)

K3
2 (α2)

− K5
3 (α2)

K4
4 (α2)

= 0 (24)

Since the resulting equation is of order eight, it is only possible
to solve it numerically. If there is at least one set of αi ∈ (0 1),
i = 1, 2, then the model is identifiable. After obtaining αi ∈
(0 1), i = 1, 2, other parameters are found by calculating a1,0,
b1 and b2 and equations in (3).
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TABLE I: transfer function coefficient

Num. Coef. Value Den. Coef. Value
f2T+2 0.01 g2T+1 −1.2962
f2T+1 −0.0121 g2T 0.1931
f2T 0.0015 g2T−1 0.0450
f2T−1 3.505× 10−4 g2T−2 0.0191
f2T−2 1.416× 10−4 g2T−3 0.0103
f2T−3 7.218× 10−5 g2T−4 0.0063

TABLE II: Real Solutions for α1 and α2

Roots α2 α1

pair 1 0.298245954619025 2.397337600606689
pair 2 0.500000000000000 0.800000000000000
pair 3 0.625975537273579 0.677356198694181
pair 4 0.646678864697306 0.655173050215288
pair 5 0.797894050107465 0.499243173767398
pair 6 1.295547992101849 −2.589172586806396

The parameters b1 and b2 are positive. The α2 value
between (f2T−dg2T )/(f2T+1−dg2T+1)−g2T+1 and −(f2T−
dg2T )/(f2T+1 − dg2T+1) leads to negative b1 and b2. Thus,
acceptable α2’s meet the following creterion.

α2 /∈
( f2T − dg2T
f2T+1 − dg2T+1

− g2T+1,−
f2T − dg2T

f2T+1 − dg2T+1

)
(25)

If more coefficients of the transfer function are considered,
equations with higher degrees are achieved. However, their
solutions must meet the equation (24). Thus, (24) is the lowest
order equation that is required for structural identifiability
analysis.

IV. RESULTS

The proposed structural identifiability analysis method is
applied to a battery cell FO-ECM in Fig. 1 with α1 =
0.8, α2 = 0.5, R∞ = 0.01, R1 = 0.2, C1 = 3, and
C2 = 400. These values are within the range commonly
used in litretaure, [22]. By using the equations in (3), the
coefficients of the original transfer function are computed and
given in Table I. The question is that whether it is possible to
compute α1, α2, R∞, R1, C1, and C2, given the coefficients
of the original transfer function? It is recalled that structural
identifiability is a noise-free concept.

In order to increase the accuracy of computations, the Mat-
lab command ‘vpa(x,digits)’ is used, where ‘digits’ denotes
the digit accuracy.

At the first step, solutions of the exponent α2 are computed
by solving the following equation that is obtained from (24):

α8
2 − 5.395708923047713α7

2

+ 12.451808248913298α6
2 − 16.088049799882121α5

2

+ 12.743527275051907α4
2 − 6.338984994985100α3

2

+ 1.932660443044634α2
2 − 0.329710967652997α2

+ 0.024032821066090 = 0

Two complex roots are obtained, which are not acceptable.
The real roots are listed in Table II.

Among the pairs listed in Table II, four pairs are located in
interval (0, 1), which are acceptable. From (25), α2 in range

of (0.52024,0.77595) leads to non-positive value for b1 and
b2, and can thus be removed. Only two pairs, pair2 and pair5
in Table II, are left at this stage. The analysis is continued
by comparing the transfer function built from the remaining
two pairs and the original transfer function. Table III shows
the normalized errors between the coefficients of the estimated
and original transfer functions, ∆gi, for both pair2 and pair5,
where i denotes the index of the coefficient. It is seen that the
solution pair2 is only acceptable, because of negligible error
achieved. Only one answer was then found for both α1 and
α2, thus the model is globally structurally identifiable. Other
system parameters are easily calculated after that α1 and α2

are found.
Structural identifiability of the FO-ECM in Fig. 1 is then

tested for various parameter sets chosen in the range of R∞ ∈
(0.01, 0.2), R1 ∈ (0.05, 5), C1 ∈ (1, 20), C2 ∈ (100, 500),
α1 ∈ (0.1, 0.9), α2 ∈ (0.1, 0.9). These ranges are commonly
used in battery literature, [22]. It is observed that in all cases,
there is a one-to-one map, which demonstrates the global
identifiability of the EIS models in these ranges. Fig. 2 shows
the impedance spectra of undertaken models.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, an efficient method was proposed for nu-
merical structural identifiability analysis of fractional-order
equivalent circuit models (FO-ECMs) with two constant phase
elements (CPEs) under the Grünwald-Letnikov differentia-
tion, obtained through impedance spectroscopy. The proposed
method confirms that the two-CPE FO-ECM in Fig. 1 is
globally identifiable for a wide range of parameter values that
is common in battery applications. Structural identifiability
analysis for higher-order FO-ECMs and/or by using other
approximations of fractional derivatives, as well as practical
identifiability analysis, i.e., selection of the excitation signal,
the effect of measurement noise, etc., are suggested for future
research.
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