
Automatica 144 (2022) 110496

J
A
a

F
b

c

d

—
H
p
n
m
s
v
c
s
P

u

a
(
a

h
0

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Minimizing the epidemic final sizewhile containing the infected peak
prevalence in SIR systems✩

uan Sereno a, Alejandro Anderson a, Antonio Ferramosca b, Esteban
. Hernandez-Vargas c,d,∗, Alejandro Hernán González a,∗

Institute of Technological Development for the Chemical Industry (INTEC), CONICET-Universidad Nacional del Litoral (UNL), Guemes 3450, Santa
e, 3000, Argentina
Department of Management, Information and Production Engineering, University of Bergamo, Via Marconi 5, Dalmine (BG), 24044, Italy
Instituto de Matemáticas, UNAM, Boulevard Juriquilla 3001, Querétaro, 76230, Mexico
Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, 60438, Frankfurt am Main, 76230, Germany

a r t i c l e i n f o

Article history:
Received 3 November 2021
Received in revised form 31 January 2022
Accepted 24 May 2022
Available online xxxx

Keywords:
Optimal control
SIR model
Infected peak prevalence
Epidemic final size
Herd immunity

a b s t r a c t

Mathematical models are critical to understand the spread of pathogens in a population and evaluate
the effectiveness of non-pharmaceutical interventions (NPIs). A plethora of optimal strategies has
been recently developed to minimize either the infected peak prevalence (IPP) or the epidemic final
size (EFS). While most of them optimize a simple cost function along a fixed finite-time horizon, no
consensus has been reached about how to simultaneously handle the IPP and the EFS, while minimizing
the intervention’s side effects. In this work, based on a new characterization of the dynamical behaviour
of SIR-type models under control actions (including the stability of equilibrium sets in terms of herd
immunity), we study how to minimize the EFS while keeping the IPP controlled at any time. A
procedure is proposed to tailor NPIs by separating transient from stationary control objectives: the
potential benefits of the strategy are illustrated by a detailed analysis and simulation results related
to the COVID-19 pandemic.

© 2022 Elsevier Ltd. All rights reserved.
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1. Introduction

Infectious disease outbreaks are latent threats to humankind
killing annually millions worldwide (Abumalloh et al., 2021;

ernandez-Vargas, Alanis, & Tetteh, 2019). During an outbreak,
ublic health agencies aim to limit the spread of pathogen by
on-pharmaceutical interventions (NPIs), including the imple-
entation of lockdowns of varying intensity and geographic
cope (Ferguson et al., 2020). While an effective vaccine is de-
eloped to counter the pathogens and the new variants that
ould emerge during the pandemic, new waves of infections may
till take place, saturating public health capacities (Contreras &
riesemann, 2021).
A crucial aspect for policymakers during pandemics is to set

p and remove intervention measures while avoiding the collapse
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of public health capacities and the economy. From a theoretical
control perspective, this problem falls into the classic framework
of optimal control (Lewis, Vrabie, & Syrmos, 2012). The major
aim of this control strategy is to obtain the best possible perfor-
mance by using the least control actions, in a kind of cause–effect
balance. However, in the case of SIR-type systems based on the
seminal work (Kermack & McKendrick, 1927), such a cause–effect
separation is not so clear, and evidence can be collected showing
that the use of direct and simple control objectives – i.e., to
minimize the number of infected individuals at every time or to
minimize the final total number of infected – largely produces
sub-optimal solutions (Abbasi, 2020; Alamo, Millán, Reina, Pre-
ciado, & Giordano, 2021; Hale et al., 2021; Punzo, 2022; Rypdal,
Bianchi, & Rypdal, 2020).

Several approaches have been proposed to find an optimal-
control-based intervention for SIR models. The two main metrics
to measure the disease impact are Di Lauro, Kiss, and Miller
(2021): the infected peak prevalence, IPP (maximal fraction of
infected individuals along time), which is closely related to the
health systems capacity, and the epidemic final size, EFS (total
final fraction infected). A first result – when minimizing either
EFS or IPP – is that optimal solutions can be obtained for the ubiq-
itous single-interval intervention (Sadeghi, Greene, & Sontag,
021), i.e., a fixed reduction of the reproduction number R (by
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educing the infection rate) for a given period of time [τs, τf ], with
≤ τs < τf < ∞. In Morris, Rossine, Plotkin, and Levin (2021)
nd Sadeghi et al. (2021) rigorous analyses are made to show how
o find the optimal single-interval control action that minimizes
PP . The focus is put on the optimal intervention starting and
inishing times and, as stated in Morris et al. (2021), even when
heoretical optimal (and near-optimal) interventions are found,
hey are not resilient to errors in timing. The main problem of
his strategy is, however, that it does not account for the other
everity index, the EFS. Thus, the total number of infected (and
he total number of deceases) is far to be minimized.

Similar approaches (and results) are presented in Bliman and
uprez (2021), Di Lauro et al. (2021) and Ketcheson (2021), but
inimizing the EFS. In these studies, it is found that an optimal

ntervention also exists, but in a rather unimplementable context.
ccording to Bliman and Duprez (2021), the best policy consists
n leaving the system in open-loop until the susceptible/non-
nfected fraction of individuals approaches the herd immunity
hreshold and then, at a particular time, implementing the hard-
st possible intervention. As it can be inferred, this strategy has
wo main drawbacks: any small error in the timing produces a
erformance drastically different from the optimal one and, more
mportantly, the IPP is unacceptably large (since the system is
eft in open-loop for a long time before acting). The latter point
s mentioned in Di Lauro et al. (2021), where it is said that ‘to
inimize the total number of infected, the intervention should
tart close to the peak’. The former point, on the other hand, is
emonstrated through simulations in Ketcheson (2021), where a
lightly different intervention from the optimal produces severe
ub-optimal results. Another (practical) optimal control approach
hat led to a more realistic scheduling can be found in Köhler et al.
2021), where a model predictive control (MPC) is proposed based
n the SIDARTHE (Giordano et al., 2020), and the control objective
onsists in minimizing the current number of infected individuals
and fatalities) and the time of isolation.

In any case, the common factor in all the recent literature – at
he best of the author’s knowledge – is that no conclusive results
re shown concerning which is the best policy to simultaneously
inimize the IPP , the EFS, and intervention’s severity. In this
rticle, we show that the key point to achieve – or, at least, to
rbitrarily approximate – such a goal is the way the optimization
roblem is posed, by properly separating transient and stationary
egimes. Based on a new set-based dynamic analysis of the SIR-
ype models, a different perspective to formulate the optimal
ontrol problem is presented. Instead of considering the control
bjective of minimizing the IPP or the EFS, the susceptible are
irectly steered to the (open-loop) herd immunity, since this
hreshold represents the minimal EFS at steady-state, for any
inite-time intervention. Furthermore, since it is independent of
he EFS, the IPP is maintained under an upper bound (computed
o cope with the health system capacity), while the only quantity
o be minimized is the strength and time of the NPI. As demon-
trated by several simulation results (related to the spread of
OVID-19 in France, during 2020, Bliman and Duprez (2021)),
his strategy seems to be general enough to provide a confidence
aseline to policymakers in the critical task of decision-making in
pandemic context.

. Review of control SIR model

The SIR epidemic model (Kermack & McKendrick, 1927) de-
cribes the fractions of susceptible S(t) and infectious I(t) individ-
als in a population, at time t . New infections occur proportional
o S(t)I(t) at a transmission rate β , and infectious individuals
ecover or die at a rate γ . NPIs reduce the effective transmission
ate, β(t), below its value in the absence of intervention (which is
2

considered fixed). By rescaling the time by τ := tγ , the SIR model
can be written in non-dimensional form as (Bertozzi, Franco,
Mohler, Short, & Sledge, 2020):

Ṡ(τ ) = −R(τ )S(τ )I(τ ), (1a)

İ(τ ) = R(τ )S(τ )I(τ ) − I(τ ), (1b)

here R(·) := β(·)/γ denotes the time-varying reproduction
umber fulfilling R(·) ∈ ΩR, with ΩR := {R(·) : R≥0 →

≥0 : R(τ ) ∈ [R,R], for τ ∈ [τs, τf ], and R(τ ) = R, for τ ∈

[0, τs) ∪ (τf , ∞)}, being 0 < τs < τf < ∞ the starting and
ending intervention time (τf is assumed to be finite since social
intervention has always an end), and 0 < R < R the minimal
and maximal values for the reproduction number, respectively (R
and R correspond to non-intervention and maximal intervention,
respectively; the case R = 0 is not considered, since a perfect full
lockdown is not possible).

Susceptible S(τ ) and infectious I(τ ) are positive and con-
trained to be in the set X := {(S, I) ∈ R2

: S ∈ [0, 1], I ∈

[0, 1], S + I ≤ 1}, for all τ ≥ 0. Particularly, denoting τ = 0
the epidemic outbreak time, it is assumed that (S(0), I(0)) :=

(1 − ϵ, ϵ), with 0 < ϵ ≪ 1; i.e., the fraction of susceptible
individuals is smaller than, but close to 1, and the fraction of
infectious is close to zero at τ = 0.

2.1. No-intervention dynamical analysis

Assume first that R(τ ) ≡ R, for τ ∈ [0, ∞], which represents
the no-intervention (or open-loop) scenario. The solution of (1)
for τ ≥ τ0 > 0 – which was analytically determined in Harko,
obo, and Mak (2014) – depends on R and the initial conditions
S(τ0), I(τ0)) ∈ X . S(τ ) is a decreasing function for all τ ≥ τ0,
hile I(τ ) is decreasing for all τ ≥ τ0 if S(τ0)R ≤ 1 and,

f S(τ0)R > 1, I(τ ) initially increases, then reaches a global
aximum, and finally decreases to zero. In this latter case, the
eak of I , IPP , is reached at τ̂ , when İ = RSI− I = 0, and depends

on initial conditions S(τ0), I(τ0) and R:

IPP := I(τ0) + S(τ0) − (1/R)(1 + ln(S(τ0)R)). (2)

Condition İ = RSI − I = 0 implies that S = S∗, where S∗
:=

min{1, 1/R} is the ‘herd immunity’ (i.e., the value of S under
which I cannot longer increase).

Define now S∞ := limτ→∞ S(τ ) and I∞ := limτ→∞ I(τ ), which
epend on S(τ0), I(τ0), and R. By taking τ → ∞ for the solutions

proposed in Harko et al. (2014), we obtain I∞ = 0. Furthermore,
following a similar procedure to Abuin, Anderson, Ferramosca,
Hernandez-Vargas, and Gonzalez (2020) for in-host models, S∞

is given by

S∞ := −W (−RS(τ0)e−R(S(τ0)+I(τ0)))/R. (3)

where W (·) is the Lambert function (Pakes, 2015). The EFS :=

1 − S∞, which as the IPP , is a function of S(τ0), I(τ0) and R, is
then given by

EFS := 1 + (1/R)W (−RS(τ0)e−R(S(τ0)+I(τ0))). (4)

The following lemma states the maximum of S∞ over X .

Lemma 2.1. Consider system (1) with initial conditions
(S(τ0), I(τ0)) ∈ X , for some τ0 ≥ 0, and R > 0 fixed. Then, for
I(τ0) ∈ [δ, 1], with δ ∈ [0, 1], the maximum of S∞(R, S(τ0), I(τ0))
ccurs at (S∗, δ) and is given by −W (−RS∗e−R(S∗

+δ))/R (particu-
arly, by S∗, if δ = 0).

Proof. See the Appendix.

Next, some properties of S∞(R, S(τ0), I(τ0)), for different val-
ues of its arguments, are given.
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Fig. 1. Function S∞(R, S(τ0), I(τ0)) is bounded from above by S∗
= 1/R (S∞ =

∗ , light red plane). Furthermore, S∞ reaches its maximum, given by S∗ , at
S(τ0) = S∗ , I(τ0) = 0. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Property 2.1. Consider system (1) with arbitrary initial conditions
(S(τ0), I(τ0)) ∈ X , for some τ0 ≥ 0 and R > 0. Then: (i)
imR→∞ S∞ = 0 and limR→0 S∞ ≈ S(τ0). (ii) For S(τ0) > S∗ and
ixed I(τ0) > 0, R > 1, S∞ decreases with S(τ0), and S∞ < S∗. This
eans that the closer S(τ0) is to S∗ from above, the closer will be S∞

o S∗ from below. (iii) For S(τ0) < S∗ and fixed I(τ0) > 0, R > 1, S∞

increases with S(τ0), and S∞ < S∗. This means that the closer S(τ0)
is to S∗ from below, the closer will be S∞ to S∗, from below. (iv) For
any fixed S(τ0) and R, S∞ decreases with I(τ0) and S∞ ≤ S∗. (v)
im(S(τ0),I(τ0))→(S∗,0) S∞ = S∗. If S(τ0) = S∗ and I(τ0) ≈ 0, S∞ ≈ S∗,
or any value of R (note that S∗

= 1 for R < 1).

The proof of Property 2.1 is omitted for brevity. Fig. 1 shows
ow S∞ behaves for different initial conditions.

2.2. Equilibrium characterization and stability

The equilibrium set of system (1), with R(τ ) ≡ R and initial
onditions (S(τ0), I(τ0)) ∈ X , is given by Xs := {(S̄, Ī) ∈ X : S̄ ∈

0, S(τ0)], Ī = 0}. Next, a key theorem concerning the asymptotic
tability of a subset of Xs is introduced.

heorem 1 (Asymptotic Stability of X st
s ). Consider system (1) with

(τ ) ≡ R and constrained by X . Then, the set
st
s := {(S̄, Ī) ∈ X : S̄ ∈ [0, S∗

], Ī = 0},

ith S∗ the herd immunity, is the unique asymptotically stable (AS)
et of system (1), with a domain of attraction given by X .

roof. See the Appendix.

A corollary of Theorem 1, concerning the properties of X st
s , is

resented next.

orollary 2.1. Consider system (1) with arbitrary initial conditions
S(τ0), I(τ0)) ∈ X , for some τ0 ≥ 0. Then: (i) Set X st

s is a subset
f Xs (for R < 1, X st

s ≡ Xs), and its size depends on R, but not
n the initial conditions. (ii) Subsets of X st

s are ϵ − δ stable but not
ttractive (i.e., X st

s is AS as a whole, but no subset of it is AS). This
s particularly true for the state (S∗, 0). (iii) If R < 1, S∗

= 1. Then,
st

≡ X and the so called healthy equilibrium x := (S̄, 0) with
s s h S

3

¯ = 1, lies in X st
s , and so it is ϵ − δ stable, but not attractive (any

mall I makes the system to converge to (S̄, 0)) with S̄ < 1. (iv) If
R > 1, set Xs can be divided into two sets, Xs = X st

s ∪ X un
s , where

un
s := {(S̄, Ī) ∈ X : S̄ ∈ (S∗, 1], Ī = 0} is an unstable equilibrium
et. (v) Given that any compact set including an AS set is AS, Xs is
S, for any value of R. However, if R > 1, it contains an unstable

set, X un
s .

Remark 2.1. It is noteworthy that the key dynamic behaviours
described in this section also hold for complex and realistic SIR-
type models, as stated in Sadeghi et al. (2021).

3. Epidemic control

NPIs (such as social distancing, isolation measures, mask wear-
ing, etc.) are the typical measures that policymakers implement
to control epidemics when vaccination (effectiveness and distri-
bution) is not enough, to lessens the disease transmission rate
β(τ ) or, directly, parameter R(τ ) in system (1). Assuming now
that R(·) ∈ ΩR, IPP is no longer given by Eq. (2). However, as the
final intervention time τf is finite, Eq. (4) still describes EFS. The
following lemma gives an upper bound for S∞, for anyR(·) ∈ ΩR.

Lemma 3.1. Consider system (1) with initial conditions (S(0), I(0))
= (1 − ϵ, ϵ), 0 < ϵ ≪ 1, R(0) = R such that S(0) > S∗,
and R(·) ∈ ΩR. Then, (i) the system converges to (S∞, 0) with
∞ = S∞(R, S(τf ), I(τf )) ≤ S∗, being S∗ < 1 the herd immunity
corresponding to no intervention and, (ii), the only way to achieve
S∞ ≈ S∗ is with an R(·) ∈ ΩR producing S(τf ) ≈ S∗ and I(τf ) ≈ 0,
i.e., the system achieving a quasi steady-state (QSS), at τf . The cases
in which S∞ does not approach S∗ are: (a) if S(τf ) > S∗ and
(τf ) ≈ 0, then a second outbreak wave will take place at some
ime τ > τf and, finally, the system will converge to S∞ < S∗ (the
reater is S(τf ) with respect to S∗, the smaller will be S∞), (b) if
(τf ) < S∗ and I(τf ) ≈ 0, then S∞ will be close to S(τf ) (the smaller
s S(τf ) with respect to S∗, the smaller will be S∞), and (c) if I(τf )
oes not approach zero (i.e., no QSS conditions is reached at τf ), then
o matter which value S(τf ) takes, S∞ will be smaller than S∗ (the
arther is S(τf ) from S∗ from above or from below, the smaller will
e S∞).

roof. See the Appendix.

Lemma 3.1 is a simple but strong result concerning any kind
f NPIs, interrupted at a finite time. On one hand, it establishes
hat the minimal EFS is completely determined by the epidemic
tself (the value of R) and, provided that no immunization (by
vaccination and/or development of the individual’s immune sys-
tem) is considered, it cannot be modified by NPIs. On the other
hand, Lemma 3.1 establishes that S∗ must be reached as a QSS
condition (i.e., with I(τf ) ≈ 0), since otherwise S(τ ) will decrease
after the NPI is interrupted at τf , thus producing S∞ < S∗.

Example. To show the latter properties, consider system (1) with
R = 2.9 (β = 0.29 days−1 and γ = 0.1 days−1), I(0) =

.49×10−5, S(0) = 1−I(0) andR = 0.66 (COVID-19 circulation in
France, March–May, 2020 Bliman & Duprez, 2021). Fig. 2 shows
the phase portraits of four different controls R(·) ∈ ΩR. First,
ong term strategies (solid lines) are implemented (one strong
nd the other soft) at some time τs, being S(τs) = 0.9 and
(τs) = 0.06, up to a large time τf , such that the system reaches
QSS. In the first case (blue line) I(τf ) ≈ 0 and S(τf ) = 0.7 and
iven that S(τf ) is significantly greater than S∗

= 0.35 and I(τf )
s still positive, a second wave occurs that steers S∞ to a small
alue (S∞ = 0.15). In the second case (red line), I(τf ) ≈ 0 and
(τ ) = 0.15 and since S(τ ) is already under S∗ (it cannot grow
f f
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Fig. 2. Long term (solid line) and short term (dashed line) controls. Initial state:
empty circle, (S∞, I∞): filled circles, Lyapunov function V := S−S∗

−S∗ ln( S
S∗ )+I

level curves (Appendix): green lines. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)

for τ > τf ), so S∞ is again significantly small (S∞ = 0.15). In a
second stage, short terms strategies (dashed lines) are considered
(one strong and the other soft). In the first case (blue dashed
line), S(τf ) = 0.81 and I(τf ) = 0.04, which leads to (S∞, I∞) ≈

0.09, 0), with S∞ significantly small. In the second case (red
dashed line), S(τf ) = 0.49 and I(τf ) = 0.2, which leads, again, to
(S∞, I∞) ≈ (0.09, 0), showing that any control interrupted before
the QSS produces a small S∞.

3.1. Redefining the control objective

Now, the idea is to find an R(·) ∈ ΩR that arbitrarily reduces
the IPP while maintaining S∞ ≈ S∗. To have a first insight
into the answer, consider the integral of equation ((1).b), I(τ ) =

τ

0 R(t)S(t)I(t)dt−
∫ τ

0 I(t)dt+cI , where cI is a constant determined
y the initial values cI = I(0) = ϵ. Then, given that S(τ ) =∫ τ

0 R(t)S(t)I(t)dt + cS , with cS = S(0) = 1 − ϵ, it follows that
τ

0 I(t)dt = −S(τ ) − I(τ ) + ϵ + 1 − ϵ = −S(τ ) − I(τ ) + 1. Now,
aking the limits for τ → ∞, and recalling that R(τ ) ≡ R for
τ ∈ (τf , ∞), it follows that

∫
∞

0 I(t)dt = 1 − S∞ − I∞ = 1 − S∞.
his equality means that, even when R varies over time, S∞ only
etermines the area under the curve of I(τ ), AUCI :=

∫
∞

0 I(t)dt ,
ut not its peak IPP . In other words, it is possible to minimize the

EFS and also keep the IPP under a maximal value imposed by the
health system capacity, as long as the condition

∫
∞

0 I(t)dt = 1 −

S∗ is respected. This separation of steady-state (minimize the EFS)
and transient (keep the IPP low) objectives can be then exploited
to avoid unnecessary competitions between them, which would
produces suboptimal solutions, as done in Bliman and Duprez
(2021), Di Lauro et al. (2021), Ketcheson (2021) and Köhler et al.
(2021), Morris et al. (2021). Given that the side effects of the NPIs
should be minimized as well, we propose two different control
objectives, a primary and a secondary one.

Definition 3.1 (Epidemiological and Social/Economic Control Objec-
tives). Consider system (1) with initial conditions (S(0), I(0)) =

(1 − ϵ, ϵ), 0 < ϵ ≪ 1, R(0) = R such that S(0) > S∗, and
(·) ∈ ΩR. Consider also that a maximal value for I , Imax >
, is established according to the health system capacity. Then,
he epidemiological control objective (ECO) consists in steering
4

(τ ) to S∗, as τ → ∞, while maintaining I(τ ) ≤ Imax, for all
∈ R≥0. Furthermore, the social/economic control objective

SECO) consists in minimizing the Social Distancing Index SDI :=
∞

0 R − R(t)dt , provided that the ECO is achieved.

3.2. Single-interval intervention

We want to find first the simplest R(·) ∈ ΩR that fulfils
the ECO of Definition 3.1. A single-interval intervention, Rsi(τ ) ∈

ΩR, is defined as Rsi(τ ) := R, for τ ∈ [0, τs) ∪ (τf , ∞), and
Rsi(τ ) := Rsi, for τ ∈ [τs, τf ], where Rsi ∈ [R,R] is a fixed
value of intervention. Denote by R∗

si the value of Rsi producing
S∞ ≈ S∗, when applied at time τs, for a large enough τf . By
making S∞(R∗

si, S(τs), I(τs)) = S∗, we obtain R∗

si(S
∗, τs), which

s a decreasing function of τs. Now, denote by R̂si the value of
si guaranteeing that I(τ ) ≤ Imax, for all τ ∈ R≥0. By making

PP(R̂si, S(τs), I(τs)) = Imax, we (implicitly) obtain R̂si(Imax, τs),
hich is also a decreasing function of τs. Finally, by merging the

atter conditions, it is possible to define a (so-called) goldilocks
ntervention:

efinition 3.2 (Goldilocks Single-interval Intervention). The
oldilocks single-interval intervention is defined by a starting
ime, τ

g
s , fulfilling condition R∗

si(S
∗, τ

g
s ) = R̂si(Imax, τ

g
s ), and

he fixed reproduction number value, Rg
si := R∗

si(S
∗, τ

g
s ) =

ˆ si(Imax, τ
g
s ).

The goldilocks single-interval intervention allows us to estab-
ish the following theorem:

heorem 2. Consider system (1) with initial conditions (S(0), I(0))
(1 − ϵ, ϵ), 0 < ϵ ≪ 1, R(0) = R such that S(0) > S∗, and

R(·) ∈ ΩR. Consider a given Imax. Then, if for S∗ and Imax there
exists a goldilocks single-interval intervention, it is the only one that
arbitrarily approaches the ECO, as τf → ∞.

Proof. See the Appendix.

Example. We now resume the example of the previous section to
evaluate the goldilocks single-interval intervention. Considering
Imax = 0.1 and S∗

= 0.35, we obtain τ
g
s = 43.7 days and Rg

si =

1.57. Fig. 3 (left), shows S(τ ) (upper plot, blue solid line), I(τ )
(upper plot, red solid line) and R(τ ) (lower plot, solid line) for a
period of time of 300 days. Fig. 3 (right) shows the corresponding
phase portrait (blue solid line), and the level curves of Lyapunov
functions, V ∗ (green curves) and V g (red curves), corresponding
to R and Rg

si, respectively. The goldilocks strategy picks the red
urve ‘guiding’ the system exactly to (S∗, 0), while I(τ ) ≤ Imax for
≥ 0. The performance indexes of the strategy are: EFS = 0.66,

PP = 0.10, SDI = 302.

The existence of the goldilocks single-interval intervention
depends on S∗ and Imax, and is not analysed here, for the sake
of brevity. In any case, goldilocks interventions should be un-
derstood just as a first-step approach, since they can hardly be
applied in realistic cases.

3.3. ‘Wait, maintain, suspend’ strategy

Another strategy that accounts for the ECO of Definition 3.1
and avoids the problem of the existence of a solution for any Imax
is the ‘wait, maintain, suspend’ (the intervention) strategy (Morris
et al., 2021): R(τ ) := R, for τ ∈ [0, τ )∪ (τ , ∞), R(τ ) :=

1 , for
s f S(τ )
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∈ [τs, τ1), and R(τ ) := R∗

si for τ ∈ [τ1, τf ], where 0 ≤ τs < τ1 <

f ≤ ∞, τ1 is the time at which a threshold condition (specified
ater on) is reached, and R∗

si = R∗

si(S
∗, τ1) is the fixed intervention

hat, if started at τ1 (and applied for a τf large enough), produces
∞ ≈ S∗.
Time τs is considered now as the time at which the open-

oop system reaches I(τs) = Imax. At this time, the control action
(τ ) =

1
S(τ ) is applied to system (1), making I(τ ) constant for

the period [τs, τ1). As a result, S(τ ) decreases linearly for [τs, τ1)
(since Ṡ(τ ) = I(τ ) = Imax). Now, if time τ1 is not large enough,
I(τ ) may increase for τ ≥ τ1, reaching a peak that overpasses Imax,
iolating this way the control objective I(τ ) ≤ Imax. On the other
and, if τ1 is too large, S(τ ) may decrease under S∗, violating the
ontrol objective S∞ ≈ S∗. The next theorem establishes that τ ∗

1
oes exists, such that the ‘wait, maintain, suspend’ strategy fulfils
he ECO.

heorem 3. Consider system (1) with initial conditions (S(0), I(0))
(1 − ϵ, ϵ), 0 < ϵ ≪ 1, R(0) = R such that S(0) > S∗,

and R(·) ∈ ΩR. Consider also a given Imax. Then, there exist some
0 ≤ τs < τ ∗

1 < τf such that the ‘wait, maintain, suspend’ strategy
produces (S(τ ), I(τ )), for τ ≥ 0, that arbitrarily approach the ECO,
as τf → ∞.

Proof. See the Appendix.

Example. Fig. 3 (left), shows S(τ ) (upper plot, blue dashed line),
I(τ ) (upper plot, red dashed line) and R(τ ) (lower plot, dashed
line) for a period of time of 300 days, of the ‘wait, maintain, sus-
pend’ intervention. Fig. 3 (right) shows the corresponding phase
portrait (blue dashed line). The times are given by τs = 47.8,
τ ∗

1 = 68.7 days, and R∗

si(S
∗, τ ∗

1 ) = 1.57 and the ECO is reached,
since S∞ ≈ S∗ and I(τ ) ≤ Imax for τ ≥ 0. The performance indexes
of this strategy are: EFS = 0.66, IPP = 0.10, SDI = 299.

As before, this intervention strategy is rather unrealistic, since
the control action varies continuously in the interval [τs, τ

∗

1 ] and
he severity of the intervention is extremely high.

.4. Optimal control strategy

Now, by taking advantage of the analysis of the previous
trategies the following optimal control problem, Popt
S(0), I(0), S∗, I ;R(·)), is proposed, which accounts also for the
max c

5

SECO:

min
R(·)

J(R(·)) =
∫ T
0 R − R(t)dt

subject to:
Ṡ(τ ) = −R(τ )S(τ )I(τ ), τ ∈ [0, T ],

İ(τ ) = R(τ )S(τ )I(τ ) − I(τ ), τ ∈ [0, T ],

(S(τ ), I(τ )) ∈ X , I(τ ) ≤ Imax, τ ∈ [0, T ],

S(T ) = S∗, I(T ) ≤ Idet, R(·) ∈ ΩR,

(5)

here T > τf is a large enough (possibly infinite) time that covers
he whole dynamic of the epidemic and ΩR is the set defined in
ection 2. Conditions I(τ ) ≤ Imax forces I(τ ) to be smaller than
he externally imposed maximum Imax at every time τ ∈ [0, T ],
hile S(T ) = S∗ and I(T ) ≤ Idet, with Idet being an arbitrary
mall detectable value, forces the system to reach a QSS at T ,
ith S(τ ) = S∗. The key point of Problem Popt is that the ECO is

mposed by constraints while the SECO is achieved by optimality,
o the competition between them is avoided. The next theorem
stablishes that Problem Popt is well-posed and achieves the ECO
nd the SECO.

heorem 4. Consider system (1) with initial conditions (S(0), I(0))
(1 − ϵ, ϵ), 0 < ϵ ≪ 1, R(0) = R such that S(0) > S∗, and

R(·) ∈ ΩR. Consider also a given Imax. Then, the solution of Problem
Popt , denoted as Ropt , produces (S(τ ), I(τ )) for τ ≥ 0 that arbitrarily
pproaches the ECO, as τf → ∞, and minimizes the SDI (SECO).

roof. See the Appendix.

xample. Fig. 4 (left) shows S(τ ) (upper plot, blue line), I(τ ) (up-
er plot, red line) and R(τ ) (lower plot, blue line), of the optimal
ntervention Ropt , with T = 270 days. A significant improvement
s obtained in terms of the SECO: the SDI drop from ≈ 300 in the
previous strategies to 193, while the ECO is (practically) reached.
As a particularity, Ropt (·) separates the epidemiological objectives
ver time: first, it handles the IPP (from τ ≈ 48 to τ ≈ 67 days)
nd, once I cannot further increase, it tries to reach S(τf ) ≈ S∗,
t steady-state, to minimize EFS. The performance indexes are:
FS = 0.67, IPP = 0.10, SDI = 193.

Although not simulated here, it can be shown that any other
ptimal control problem (i.e., the one minimizing a cost J(R(·)) =
T
0 αI I(t) + αR(R − R(t))dt or J(R(·)) =

∫ T
0 αSS(t) + αR(R −

(t))dt) will necessarily produce results far from the optimal one
for any combination of the weights αI , αs and αR), since in these
ases the SECO and the ECO compete between them.
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emark 3.1. It is noteworthy that the optimal solution Ropt is
n important theoretical result to settle down the need of more
omplex control strategies to account for real epidemics. The
ain practical limitations are: (i) Problem Popt is in open loop (no
tate update is considered, as it is done in an MPC); (ii) the model
s still a simplistic one; (iii) Ropt varies continuously over time
hile real NPIs are prescribed by taking a few possible values,
ach one applied for bounded periods; (iv) control actions affect
in rather simplistic (linear) forms. Overall, Popt is intended

o elucidate some fundamental aspects of the optimization of
IR-type models, and not to formalize an applicable strategy.

. Conclusions and future work

In this work, a new set-based equilibrium and stability char-
cterization of SIR-type models was made. Based on this char-
cterization, the IPP and the EFS were analysed, and concrete
pidemiological objectives involving both indexes were proposed.
t is shown that simple non-pharmaceutical intervention strate-
ies exist that (theoretically) accomplish such objectives. If so-
ial/economic side effects of the NPIs are also considered – which
eads to a non-trivial optimal control problem – a solution can
e found that, in addition to achieving the epidemiological ob-
ective, minimizes the side effects. Future work will include the
onsideration of more complex and realistic models and the
esign of a proper feedback controller able to account for un-
ertainties/disturbances over short, updated, time horizons. MPC
ppears to be the right framework to account for such a challenge.
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ppendix. Technical proofs

roof of Lemma 2.1. Denote S(τ0) = S0, I(τ0) = I0 and R = R,
nd define Sop∞(δ) := maxS0,I0{S∞(R, S0, I0) : (S0, I0) ∈ E(δ)},
here E(δ) := {(S0, I0) ∈ R2

: S0 ∈ [0, 1], I0 ∈ [δ, 1]}, with
∈ [0, 1], is a set of initial conditions. Define also the maximizer

nitial conditions as (Sop0 (δ), Iop0 (δ)) := arg maxS0,I0{S∞(R, S0, I0) :

(S0, I0) ∈ E}.
According to (3), S∞(R, S0, I0) := −W (−f (R, S0, I0))/R, with

f (R, S0, I0) := RS0e−R(S0+I0). Given that −W (−x) is an increas-
ing (injective) function of x ∈ [0, 1/e] and R is fixed, then
 i

6

S∞(R, S0, I0) achieves its maximum over E(δ) at the same values
of S0 and I0 as f (R, S0, I0) (next it is shown that f (R, S0, I0) ∈

0, 1/e] for all (S0, I0) ∈ E(δ)) and δ ∈ [0, 1]. Denote the maximum
f f as f op(δ) := maxS0,I0{f (S0, I0) : (S0, I0) ∈ E(δ)}, while the max-
mizing variables are Sop0 (δ) and Iop0 (δ). Given that the maximum of
occurs at the minimal values of I0, let us consider, for simplicity,
hat g(S0, I0) = I0 − δ, in such a way that (Sop0 (δ), Iop0 (δ)) =

rg maxS0,I0{f (R, S0, I0) : g(S0, I0) ≤ 0} (we ignore the conditions
≤ S0 ≤ 1 and I0 ≤ 1, but it is easy to see that no

aximum is achieved at the boundaries of these constraints).
hen, ▽f = [

∂ f
∂S0

,
∂ f
∂I0

] = [Re−R(S0+I0)(1 − RS0),R2S0e−R(S0+I0)]

nd ▽g = [
∂g
∂S0

,
∂g
∂ I0

] = [0, 1]. Optimality conditions can be
written as ▽f = λ ▽ g , where λ ∈ R≥0 is a Lagrange multiplier.
Then, [Re−R(Sop0 (δ)+Iop0 (δ))(1 − RSop0 (δ)), R2Sop0 (δ)e−R(Sop0 (δ)+Iop0 (δ))

] =

0, λ], which implies that Re−R(Sop0 (δ)+Iop0 (δ))(1 − RSop0 (δ)) = 0 and
2Sop0 (δ)e−R(Sop0 (δ)+Iop0 (δ))

= λ. Since R > 0, the first equality
mplies that 1 − RSop0 (δ) = 0, or Sop0 (δ) = min{1/R} = S∗

0 (since
op
0 (δ) must be in [0, 1]). This way, the second equality reads
2S∗

0e
−R(S∗

0+Iop0 (δ))
= λ, which is true for any value of Iop0 (δ) ∈

δ, 1] and λ > 0. Since f decrease with I0, I
op
0 (δ) = δ.

The maximum value of S∞ is then given by Sop∞(δ) =

∞(Sop0 (δ), Iop0 (δ)), which reads Sop∞(δ) = −W (−RSop0 (δ)
−R(Sop0 (δ)+Iop0 (δ)))/R = −W (−RS∗

0e
−R(S∗

0+δ))/R. If R ≥ 1, then
S∗

0 = 1, and so Sop∞(δ) = −W (−e−R(S∗
0+δ))/R. On the other hand,

f R < 1, then RS∗

0 = R and Sop∞(δ) = −W (−Re−R(S∗
0+δ))/R.

articularly, Sop∞(0) = −W (−e−1)/R = 1/R = S∗

0 , if R ≥ 1, and
op
∞(0) = −W (−Re−R)/R = R/R = 1 = S∗

0 , if R < 1, which
oncludes the proof. □

roof of Theorem 1. It will be shown that X st
s is the smallest

ttractive equilibrium set and the largest locally ϵ − δ stable
quilibrium set in X , which implies it is the unique symptotically
table (AS) of system (1), with a domain of attraction given by X .
ttractivity: Consider Eq. (3). W (z) is an increasing function (it
oes from −1 at z = −1/e to 0 at z = 0), so it reaches its
inimum at z = −1/e. z(S(τ0), I(τ0)) = −RS(τ0)e−R(S(τ0)+I(τ0))

eaches its maximum when S(τ0) = S∗, independently of the
alues of R and I(τ0) (see Lemmas 2.1), in which case it is
(S(τ0), I(τ0)) = 1/e. Then, W (z) is bounded from above by −1,
hich means that S∗ is an upper bound for S∞. Therefore, S∞ ∈

0, S∗
], which shows the attractivity of X st

s . To show that X st
s is

he smallest attractive set in X , consider a state (S̄, Ī) := x̄ ∈ X st
s

nd an arbitrary small ball of radius ϵ > 0, w.r.t. X , around
¯
t, Bϵ(x) ∈ X . Pick two arbitrary initial states x0,1 = (S0,1, I0,1)
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nd x0,2 = (S0,2, I0,2) in Bϵ(x̄), such that S0,1 ̸= S0,2. These two
states converge, according to Eq. (3), to x∞,1 = (S∞,1, 0) and
∞,2 = (S∞,2, 0), respectively, with S∞,1, S∞,2 ∈ [0, S∗

]. Given
hat function z(S(τ0), I(τ0)) is monotone (injective) in S(τ0) and
(τ0), and W (z) is monotone (injective) in z, then S∞,1 ̸= S∞,2.
herefore, neither single states x̄ ∈ X st

s nor subsets of X st
s are

ttractive in X , which shows that X st
s is the smallest attractive

et in X .
ocal ϵ − δ stability: Let us consider a particular equilibrium
oint x̄ := (S̄, 0), with S̄ ∈ [0, S∗

] (i.e., x̄ ∈ X st
s ). Then,

Lyapunov function candidate is given by V (x) := S − S̄ −

¯ ln( S
S̄
) + I , which is continuous in X , is positive definite for all

on-negative x ̸= x̄ and, furthermore, V (x̄) = 0. Function V
evaluated at the solutions of system (1) reads ∂V (x(τ ))

∂τ
=

∂V
∂x ẋ(τ ) =

dV
dS

dV
dI

] [
−RS(τ )I(τ )

RS(τ )I(τ ) − I(t)

]
= I(τ )(RS̄ − 1) for x(0) ∈ X and

τ ≥ 0, which means that, independently of S̄, V̇ (x(τ )) = 0 for
I(τ ) ≡ 0. Then, for any single x(0) ∈ Xs, I(0) = 0 and I(τ ) = 0,
for all τ ≥ 0. So V̇ (x(τ )) is null for any x(0) ∈ Xs (note that
it is not only null for x(0) = x̄ but for any x ∈ Xs, so AS of
single states and subsets of X st

s cannot be followed). On the other
hand, for x(0) /∈ Xs, function V̇ (x(t)) is negative, zero or positive,
depending on if the parameter S̄ is smaller, equal or greater than
S∗

= min{1, 1/R}, respectively, and this holds for all x(0) ∈ X
and τ ≥ 0. So, every x̄ ∈ X st

s is locally ϵ − δ stable, which means
hat the whole set X st

s is locally ϵ − δ stable. Finally, by following
imilar steps, it can be shown that X un

s is not ϵ − δ stable, which
implies that X st

s is also the largest locally ϵ − δ stable set in X ,
which completes the proof. □

Proof of Lemma 3.1. The proof of (i) follows from Lemma 2.1,
by replacing (S(τ0), I(τ0)) by (S(τf ), I(τf )), and the fact that the
final intervention time, τf , is finite. The proof of (ii) follows from
Lemma 2.1, the stability analysis made in the proof of Theorem 1,
applied at (S∗, 0) (Corollary 2.1,(ii)), and Property 2.1, by replacing
(S(τ0), I(τ0)) by (S(τf ), I(τf )). □

Proof of Theorem 2. Consider that, for S∗ and Imax coming from
he ECO, there exists some τs for which Rsi = R̂si(Imax, τs) =
∗

si(S
∗, τs). Then, by definition of R̂si(Imax, τs), it follows that

PP(R̂si, S(τs), I(τs)) = Imax, meaning that I(τ ) ≤ Imax for all τ > 0.
urthermore, by definition of R∗

si(S
∗, τs) it follows that, for a large

nough τf , S(τf ) arbitrarily approaches S∗ while I(τf ) approaches
. Then, by the stability results at (S∗, 0) (Corollary 2.1,(ii)), it
ollows that states (S(τf ), I(τf )) arbitrarily close to (S∗, 0) (from
bove), produce states (S(τ ), I(τ )) arbitrarily close to (S∗, 0) (from
elow), for τ > τf . Particularly, S∞ ≈ S∗. □

roof of Theorem 3. By hypothesis I(τ ) starts growing from the
mall value ϵ, at time τ = 0, reaching I(τs) = Imax for some
s > 0. The control action R(τ ) =

1
S(τ ) (which is in [R,R] because

(τs) < 1) applied to system (1) for the period [τs, τ1) produces
˙(τ ) = 0, which means that I(τ ) remains constant. Furthermore,
(τ ) decreases linearly for [τs, τ1) (since Ṡ(τ ) = I(τ ) = Imax). Now,

time τ1 can be selected large enough for I(τ ) not to increases for
τ ≥ τ1, and small enough for S(τ ) not to decreases below S∗, for
τ ≥ τ1. That is, the value of S(τ1) must be smaller than the herd
immunity value corresponding to system (1) with R(τ ) = R∗

si,
but larger than the herd immunity value corresponding to R. This
ondition can be fulfilled if 1

R∗
si(S

∗,τ1)
≥ S(τ1) ≥ S∗, or, the same

∗

si(S
∗, τ1) ≤

1
S(τ1)

≤ R, recalling that S(τ ) = (S(τs) − Imaxτs) +

maxτ , for τ ∈ [τs, τ1) and R∗

si(S
∗, τ1) = R∗

si(S
∗, S(τ1), I(τ1)) =

∗

si(S
∗, S(τ1), Imax). Any τ1 such that R∗

si(S
∗, τ1) ≤ R, produces

≈ S∗ and I(τ ) ≤ I , which completes the proof. □
∞ max

7

Proof of Theorem 4. Problem Popt (S(0), I(0), S∗, Imax;R(·)) is
feasible, since the ‘wait, maintain, suspend’ strategy of Section 3.3
is a particular (non optimal) solution. Then, the optimal solution,
Ropt (·), will produce, in general, a smaller cost V (R(·)) (and so, a
smaller SDI) than any feasible one, by taking advantages of the
degrees of freedom of the problem. □
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