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Abstract

In this work the stability of perturbed linear time-varying systems is studied. The main features of the problem are threefold.
Firstly, the time-varying dynamics is not required to be continuous but allowed to have jumps. Also the system matrix is
not assumed to be always Hurwitz. In addition, there is nonlinear time-varying perturbation which may be persistent. We
first propose several mild regularity assumptions, under which the total variations of the system matrix and its abscissa are
well-defined over arbitrary time interval. We then state our main result of the work, which requires the combined assessment
of the total variation of the system matrix, the measure when the system is not sufficiently “stable” and the estimate of the
perturbation to be upper bounded by a function affine in time. When this condition is met, we prove that the neighborhood of
the origin, whose size depends on the magnitude of the perturbation, is uniformly globally exponentially stable for the system.
We make several remarks, connecting our results with the known stability theory from continuous linear time-varying systems
and switched systems. Finally, a numerical example is included to further illustrate the application of the main result.
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1 Introduction

Due to the long-lasting importance of the design and
analysis of adaptive controllers, the stability analysis for
linear time-varying (LTV) systems has played an impor-
tant role in control theory for decades [13]. The early
study of stability of LTV systems can date back to the
work [5]. Since then it is well-known that even if the in-
stantaneous dynamics of the system is stable and the ab-
scissa of the system matrix is uniformly upper-bounded
by some negative number, an LTV system may still be
unstable. In order to ensure global asymptotic stability,
one needs the system to vary “slowly”, in the sense that
either the time derivative of the system matrix has suffi-
ciently small magnitude [4,1], or the variation of the sys-
tem matrix is upper-bounded on average [12]. When the
instantaneous dynamics is not necessarily always sta-
ble, the work [27,15] propose different sets of conditions
under which the LTV systems are exponentially stable.
However, these results have fairly complex assumptions
and hence can not be easily applied to real problems.
Meanwhile, the works [32,3] based on indefinite Lay-
punov function have nicer results which may be useful
for concluding stability of LTV systems with possible
unstable instantaneous dynamics.

Email address: shl055@ucsd.edu (Shenyu Liu).

Since the end of the 20th century, the study of switched
systems has gradually gain its importance in control
theory because of its wide application in modern engi-
neering problems [19]. Switched systems are essentially
a special class of time-varying systems, whose dynamics
varies in a piece-wise continuous manner. Similar to the
feature of time-varying systems, stability of a switched
system is not guaranteed either even if all its modes
are stable. Researchers hence developed different crite-
ria such as dwell-time condition, average dwell-time con-
dition [25,11] which bound the number of switches over
an arbitrary time interval. Stability of a switched sys-
tem can then be shownwhen its switching signal satisfies
these criteria. When some modes of a switched system
is unstable, criteria on the switching signal which bound
the average activation time of the unstable modes can
be used for proving its stability in [31,26]. A similar ap-
proach of using indefinite Lyapunov function is also used
in [23] to study the stability of switched time-varying
systems.

On the other hand, because of uncertainties, lineariza-
tion, modeling error, external disturbance or other per-
turbation factors, no dynamical system is truly linear
with the exact systemmatrix in the real world [6]. In this
case, the dynamics of the true system can be modeled
as the sum of a nominal LTV system and a perturbation
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term. While the nominal system can be shown stable via
various stability analysis approaches, different hypothe-
sis are then imposed on the perturbation term in order
to guarantee stability of the true system [29,16]. When
the additive disturbance is treated as an external input,
the equivalent characterizations of input-to-state stabil-
ity for switched time-varying systems are studied in [8,9].
However, in those works, no sufficient conditions on the
switching signal as well as the time-varying nature are
given for input-to-state stability. Recently, exponential
stability of switched LTV systems with perturbations in
the form of delays is studied in [18]. In that work since
the aimed stability property is uniform with respect to
arbitrary switching, the concluded conditions for expo-
nentially stable are conservative.

In this work we aim to study exponential stability of
perturbed LTV systems. Compared with the aforemen-
tioned literature, the main features of this work are
threefold. Firstly, the time-varying dynamics is not re-
quired to be continuous but allowed to have jumps. To
the author’s knowledge, such combination of continuous
time-variation and switches are not studied together un-
til the recent work [7], where a unified stability criteria
based on total variation is proposed for such systems.
Nevertheless, the system matrix is assumed to be piece-
wise continuously differentiable in that work, whereas
in this work we have a strictly weaker assumption that
the system matrix is only assumed to be piece-wise ab-
solutely continuous. Moreover, the work [7] does not al-
low the instantaneous dynamics to be unstable. This
brings the second feature of our work that the system
matrix is not assumed to be always Hurwitz. In addi-
tion, we assume the presence of nonlinear time-varying
perturbation which may be persistent. Similar problems
about stability of perturbed switched time-varying sys-
tems is studied in the works [22,24], where in the first
work the perturbations are additive disturbance and de-
lays, while in the second work the perturbations are im-
pulses and errors due to linearization. In these works,
the nominal systems need to be assumed uniformly ex-
ponentially stable, whereas in our work there is no such
an assumption. Instead, in this work we propose a uni-
fied criteria based on the combined assessment of the
total variation of the system matrix, the measure of the
instantaneous dynamics when it is not sufficiently “sta-
ble” and the estimate of the perturbation. The main
contribution of this work is the conclusion that when
this combined assessment is upper bounded by a func-
tion affine in time, then the neighborhood of the ori-
gin, whose size depends on the magnitude of the per-
sistent perturbation, is uniformly globally exponentially
stable. In terms of methodology, a Lyapunov-based ap-
proach is used to conclude the stability property. Simi-
lar Lyapunov-based approach also appears in [30] for the
stability analysis of interconnected switched systems. In
that work, a Lyapunov function consists of an auxiliary
timer is constructed. While we also use a timer in the
construction of the Lyapunov function in order to make

it monotonic along perturbation-free solution trajecto-
ries, because the system is time-varying and the system
matrix is only assumed to be piece-wise absolutely con-
tinuous with respect to time, the regularity of the timer
needs to be carefully discussed.

The rest of the paper is organized as follows. Section 2
gives the necessary notions and backgrounds for this
work. Section 3 discusses the assumptions on the LTV
systems and some technical results we need for proving
our main theorem. Section 4 then states the main the-
orem, followed with its proof. In Section 5 we illustrate
one numerical example on which our theorem can be ap-
plied to conclude its uniform global exponential stabil-
ity. Finally Section 6 concludes the paper.

2 Preliminaries

Let R be the space of real numbers and C be the space
of complex numbers. Let R≥0 := [0,∞) be the non-
negative real line, Z be the space of integers and N :=
{1, 2, · · · } be the set of natural numbers. For A ∈ Rn×n,
let α(A) denote its spectral abscissa; that is,

α(A) = max{Re(λ) : λ ∈ C, det(λI −A) = 0}

where Re(·) denotes the real part. The matrix A is Hur-
witz if and only if α(A) < 0.

The weak derivative of a real-valued function f(t) :

[a, b] 7→ R, denoted by ḟ(t), is defined to be a function
g(t) : [a, b] 7→ R such that

∫ b

a

f(t)ϕ̇(t)dt = −
∫ b

a

g(t)ϕ(t)dt

for all differentiable functions ϕ(t) : [a, b] 7→ R with
ϕ(a) = ϕ(b) = 0. When f(t) is absolutely continu-
ous over [a, b], it follows from fundamental theorem of

Lebesgue integral calculus that f(b)− f(a) =
∫ b

a
ḟ(t)dt.

The weak derivative of a matrix-valued function A(t) :

[a, b] 7→ Rn×n, denoted by Ȧ(t), is the matrix of the
element-wise weak derivatives. For a vector x ∈ Rn, we
use |x| to denote its 2-norm and for a matrix A ∈ R

n×n,
we use ‖A‖ to denote 2-norm induced norm. Given a
matrix trajectory A(t) : R≥0 7→ Rn×n, its total varia-

tion over an interval [a, b] is denoted by
∫ b

a
‖dA‖, and is

defined by

∫ b

a

‖dA‖ := sup
P∈P

k
∑

i=1

‖A(ti)−A(ti−1)‖ (1)

where P = {t0, t1, · · · , tk} with t0 = a, tk = b is a par-
tition of [a, b] and P is the collection of all partitions of
[a, b]. Notice that when the dimension of matrix n = 1,
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the definition of total variation of a matrix trajectory
coincides with the definition of total variation of a real-
valued function. For any real-valued or matrix-valued
function f(t) whose left limit exists everywhere, denote
f(t−) := lims→t− f(s).

Consider a linear time-varying (LTV) system with non-
linear state-dependent, time-varying perturbation

ẋ(t) = A(t)x(t) + g(t, x) (2)

where x(t) ∈ R
n is the state, g(t, x) ∈ R

n is the per-
turbation and A(t) ∈ Rn×n. The regularity assumptions
of the matrix trajectory A(t) and perturbation g(t, x)
will be discussed in the next section. For a given initial
state x0 at time t0, denote the solution of (2) at time
t by x(t; t0, x0) and when the initial pair t0, x0 is clear
from the context, we use the abbreviation x(t) instead.
We say that the system (2) has unstable instantaneous
dynamics at time s if A(s) is non-Hurwitz; i.e., the time-
invariant nominal system ẋ(t) = A(s)x(t) is unstable.

3 On the matrix trajectory A(t) and perturba-
tion g(t, x)

In this work we would like to study the stability of
the aforementioned LTV system with perturbation (2)
when the matrix trajectory A(t) : R≥0 7→ Rn×n “varies
slowly” and the perturbation g(t, x) : R≥0 × Rn 7→ Rn

is “small”.

3.1 Regularity assumptions

We start with introducing two sets of regularity assump-
tions on A(t). The first assumption ensures that A(t) is
in a compact set for all t ∈ R≥0:

Assumption 1 There exists L > 0 such that ‖A(t)‖ ≤
L for all t ∈ R.

Notice that Assumption 1 also implies the existence of
αmax ≤ L such that α(A(t)) ≤ αmax for all t ∈ R.
However, we do not assume αmax < 0; in other words,
the system (2) is allowed to have unstable instantaneous
dynamics.

The second set of assumptions describes how A(t) and
α(A(t)) vary with respect to t:

Assumption 2 Given any b > a ≥ 0, the matrix tra-
jectory A(t) : R≥0 → R

n×n satisfies

1. A(t) is a Càdlàg function on [a, b]; i.e., it is right
continuous and has left limit everywhere on (a, b].

2. A(t) has finitely many discontinuities on (a, b); i.e.,
denote

D := {t ∈ R≥0 : A(t) 6= A(t−)}, (3)

then the set D ∩ (a, b) has finite cardinality.
3. Let t1, t2, · · · tp−1 be the elements of D ∩ (a, b) with

the ordering that a =: t0 < t1 < · · · < tp−1 < tp :=
b. A(t) is absolutely continuous on [ti, ti+1) for all
i = 0, 1, · · · , p− 1.

4. α(A(t)) is absolutely continuous on [ti, ti+1) for all
i = 0, 1, · · · , p−1, where ti’s are the same as defined
earlier.

Note that Assumption 2.1 and Assumption 2.2 allow
A(t) to jump occasionally. In addition, the piece-wise
absolute continuity properties ofA(t) and α(A(t)) in As-
sumption 2.3 and assumption 2.4 allow us to quantita-
tively characterize the “slow variation” nature of A(t),
which will be discussed later in Section 3.2.

Remark 3 Assumption 2.3 does not guarantee Assump-
tion 2.4 in general. To see this, consider the example
where

A(t) =

(

0 1

µ(t) 0

)

, (4)

where

µ(t) =

{

t2 sin2(1
t
) if t 6= 0,

0 if t = 0.

We first observe that ‖Ȧ(t)‖ = |µ̇(t)|, and

µ̇(t) =

{

2s sin2(1
t
)− sin(1

t
) cos(1

t
) if t 6= 0,

0 if t = 0.

Because the derivative exists everywhere on [0, 1] and it
is bounded, A(t) is absolutely continuous on [0, 1). How-
ever, we also observe that the eigenvalues of A(t) are

±
√

µ(t), so

α(A(t)) =

{

|t sin(1
t
)| if t > 0,

0 if t = 0

which is not absolutely continuous on [0, 1).
From the perspective of perturbation theory, This prob-
lem is caused by the arbitrarily huge sensitivity of eigen-
values when A(t) is “ill-posed” (Note in this example,

A(0) =

(

0 1

0 0

)

is not diagonalizable). In other words,

when A(t) is absolutely continuous so that its variation is
bounded, its abscissa can vary drastically and hence not
absolutely continuous. Nevertheless, such problem can be
avoided if the eigenvector matrix of A(t) has uniformly
bounded condition number. This result is stated by the
next Lemma:

Lemma 4 Consider a matrix trajectory A(t) : R≥0 →
Rn×n satisfying Assumption 2.3. IfA(t) is diagonalizable

and there exists k > 0 such that ‖V (t)‖
‖V (t)−1‖ ≤ k for all

3



t ∈ [a, b], where A(t) = V (t)Λ(t)V (t)−1 is the matrix
diagonalization. Then Assumption 2.4 also holds.

PROOF. Let s, t ∈ [a, b] be arbitrary. Without loss
of generality assume α(A(s)) ≥ α(A(t)) and denote a
leading eigenvalue of A(s) to be λs; that is, Re(λs) =
α(A(s)). We have α(A(s))−α(A(t)) ≤ α(A(s))−Re(λ),
where λ can be any eigenvalue of A(t), including the one
coming from Bauer–Fike theorem [2] satisfying

|λs − λ| ≤ ‖V (t)‖
‖V (t)−1‖‖A(s)−A(t)‖.

Therefore

|α(A(s) − α(A(t))| ≤ |α(A(s)) − Re(λ)|
≤ |λs − λ| ≤ k‖A(s)−A(t)‖.

This lemma can then be proven by appealing to
Lemma 13 in Appendix A.

Finally, we have one assumption with respect to the per-
turbation:

Assumption 5 The perturbation g(t, x) : R≥0 7→ Rn

is Lebesgue integrable in t for each fixed x, and locally
Lipschitz in x for each fixed t. Moreover, there are non-
negative continuous functions γ, δ : R≥0 7→ R≥0 such
that

|g(t, x)| ≤ γ(t)|x|+ δ(t) ∀(t, x) ∈ R≥0 × R
n. (5)

The inequality (5) is a standard assumption on the per-
turbation (cf., [16, Equation (9.15)]). When δ(t) ≡ 0,
the perturbation is vanishing since the magnitude of the
perturbation decreases to 0 when x approaches to the
origin. Stable unmodeled dynamics belongs to this type
of perturbation. On the other hand, when δ(t) > 0 but
γ(t) ≡ 0, the perturbation is persistent. External distur-
bance belongs to this type of perturbation.

We also remark here that the assumptions on g(t, x)
as stated in Assumption 5, together with the bound-
edness assumption of A(t) in Assumption 1 and the
piece-wise continuity assumption of A(t) in Assump-
tion 2.2 imply that the right-hand side of (2) satisfies the
Carathéodory’s condition for existence and uniqueness
of local solutions for each initial pair t0, x0 [10, Page 30],
and therefore our system (2) is well-defined under these
assumptions.

3.2 Slowly varying by means of small total variation

Just as in the work [7], we quantify the slow time-varying
nature of the system (2) by imposing bounds on the total

variation of A(t) over an arbitrary interval [a, b]. Recall
the definition of total variation in (1), which involves a
supremum over an uncountable set and is difficult to uti-
lize. Nevertheless, the following Lemma gives a conve-
nient formula for computing the total variation of A(t)
over [a, b] when Assumption 2.1 to Assumption 2.3 hold:

Lemma 6 Consider amatrix valued functionA(t) satis-
fying Assumption 2.1 to Assumption 2.3. The total vari-
ation of A(t) over [a, b] is given by the following expres-
sion:

∫ b

a

‖dA‖ =

p−1
∑

i=0

∫ ti+1

ti

‖Ȧ(t)‖dt+
p
∑

i=1

‖A(ti)−A(t−i )‖.

(6)

The proof of Lemma 6 is given in Appendix B.

Remark 7 As stated by [17, Proposition 3.8], abso-

lute continuity of f(t) means its weak derivative ḟ(t) is
Lebesgue integrable. This result can be easily extended

to matrix-valued functions and therefore
∫ ti+1

ti
‖Ȧ(t)‖dt

in (6) is well-defined. Compared with [7, Lemma 1],
although Lemma 6 provides the same formula for to-
tal variation, because our assumption is strictly weaker
than the one used in [7] (piece-wise absolutely continu-
ous versus piece-wise continuously differentiable and the
derivative is Riemann integrable), the proofs of the two
results are different.

In addition to the consideration of the variation of A(t),
because our system is allowed to have unstable instan-
taneous dynamics, the variation of α(A(t)) when it is
not sufficiently negative also needs to be taken into ac-
count when defining the slow time-varying nature of the
system. To this end, we first define the ramp function
framp(s) : R 7→ R≥0 by framp(s) = max{s, 0}. For any
κ > 0, Define ϕκ(A) : R

n×n → R≥0 by

ϕκ(A) := framp(α(A) + κ). (7)

By this definition, ϕκ(A) = 0 if α(A) ≤ −κ. We
then study the total variation of ϕκ(A) over an ar-

bitrary interval [a, b], denoted by
∫ b

a
|dϕκ(A)|. It

is not difficult to see that for any t, s ∈ [a, b],
|ϕκ(A(t)) − ϕκ(A(s))| ≤ |α(A(t)) − α(A(s))|. Thus by
Assumption 2.4 and Lemma 13 in Appendix A, we con-
clude that ϕκ(A(t)) is also piece-wise absolutely contin-
uous. Thus by a similar proof of Lemma 6, we have

∫ b

a

|dϕκ(A)| =
p−1
∑

i=0

∫ ti+1

ti

|ϕ̇κ(A(t))|dt

+

p
∑

i=1

|ϕκ(A(ti))− ϕκ(A(t
−
i ))|. (8)
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We can also study the slowly time-varying nature of (2)
by considering the combined total variations of A(t) and
ϕκ(A(t)) instead of studying them seperately. To do this,

define the matrix trajectory Ã(t) : R≥0 7→ Rn×n by

Ã(t) := A(t)− ϕκ(A(t))I. (9)

We have the following conclusion:

Proposition 8 Consider a matrix trajectory A(t) :
R≥0 7→ Rn×n. For some κ > 0, let ϕκ be defined by (7)

and Ã(t) be defined by (9). Under Assumption 2, the to-

tal variation of Ã(t) over the interval [a, b] is well-defined
and satisfies

∫ b

a

‖dÃ‖ ≤
∫ b

a

‖dA‖+
∫ b

a

|dϕκ(A)|, (10)

where
∫ b

a
‖dA‖,

∫ b

a
|dϕκ(A)| are given by (6), (8) respec-

tively.

PROOF. By the construction (9), Ã(t) satisfies the
same regularity assumptions on A(t) (Càdlàg, finite
discontinuities and piece-wise absolute continuity) and
hence

∫ b

a

‖dÃ‖ =

p−1
∑

i=0

∫ ti+1

ti

‖ ˙̃
A(s)‖ds+

p
∑

i=1

‖Ã(ti)− Ã(t−i )‖.

(11)
Meanwhile, for almost all t 6∈ D,

‖ ˙̃
A(t)‖ = ‖Ȧ(t)− ϕ̇κ(A(s))I‖ ≤ ‖Ȧ(t)‖ + |ϕ̇κ(A(t))|

and for all t ∈ D,

‖Ã(t)− Ã(t−)‖
= ‖(A(t)−A(t−))− (ϕκ(A(t))− ϕκ(A(t

−)))I‖
≤ ‖(A(t)−A(t−))‖+ |ϕκ(A(t)) − ϕκ(A(t

−))|.

Plug these upper bounds into (11) and appeal to the
expressions (6), (8), the inequality (10) is hence shown.

3.3 Other necessary technical results

Note that so far we have not invoked Assumption 1. In
fact under Assumption 1 we have the following result:

Lemma 9 Consider a matrix trajectory A(t) : R≥0 7→
Rn×n. For some κ > 0, let ϕκ be defined by (7) and

Ã(t) be defined by (9). Under Assumption 1, for any
β ∈ (0, κ), there exists c = c(L, κ, β) > 0 such that

‖esÃ(t)‖ ≤ ce−βs ∀s, t ∈ R≥0. (12)

Meanwhile, the Lyapunov equation

Ã(t)⊤P + PÃ(t) + I = 0 (13)

has a unique solution P (t) for each t ∈ R≥0 and

c1 ≤ ‖P (t)‖ ≤ c2 ∀t ∈ R≥0, (14a)

c1|z|2 ≤ z⊤P (t)z ≤ c2|z|2 ∀z ∈ R
n, t ∈ R≥0 (14b)

with

c1 :=
1

2(L+ framp(L+ κ))
, c2 :=

c2

2β
. (15)

Moreover, if Ã(t) is absolutely continuous over [a, b], then
P (t) is absolutely continuous over [a, b] as well and

‖Ṗ (t)‖ ≤ 2c22‖ ˙̃
A(t)‖ (16)

for almost all t ∈ [a, b].

The proof of Lemma 9 is provided in Appendix C. We
also need the following result which bounds the differ-
ence in P (a), P (b) in terms of Ã(a), Ã(b):

Lemma 10 ([7, Proposition 1]) Consider a matrix
trajectory A(t) : R≥0 7→ Rn×n. For some κ > 0, let ϕκ

be defined by (7) and Ã(t) be defined by (9). Assume
Assumption 1 holds on A(t) and consider the function
V (t, x) := x⊤P (t)x for each (t, x) ∈ R≥0 × Rn, where
P (t) is the solution to (13). Then, for any a, b ≥ 0,

‖P (b)− P (a)‖ ≤ 2c22‖Ã(b)− Ã(a)‖, (17)

V (b, x) ≤ e2c
2
2c

−1
1 ‖Ã(b)−Ã(a)‖V (a, x) ∀x ∈ R

n. (18)

where c1, c2 come from Lemma 9.

4 Stability of slowly time-varying system

We now state our main result:

Theorem 11 Consider an LTV system with perturba-
tion (2) with Assumption 1, Assumption 2 and Assump-
tion 5 satisfied. Let κ > 0. Then if there existλ < c1

2c2
, ̺ >

0, such that for all b > a ≥ 0,

c1

∫ b

a

ϕκ(A(τ))dτ + c2

∫ b

a

γ(τ)dτ + c22

(

∫ b

a

‖dÃ‖
)

≤ λ(b − a) + ̺ (19)

where c1, c2 are defined via (15) in Lemma 9, then there
exists k1, k2, k3 > 0 such that

|x(t; t0, x0)| ≤ k1e
−k2(t−t0)|x0|+ k3 max

τ∈[t0,t]
δ(τ). (20)

5



4.1 Discussion of Theorem 11

We give some insights of Theorem 11 before we proceed
to its proof.

We start with the discussion on the estimate (20) first.
This result actually implies that the system (2) is uni-
formly input-to-state stable (ISS) with respect to the ori-
gin (see the definition of ISS in [28]), where the “input” is
the persistent part of the perturbation δ(t). ISS also im-
plies that the system (2) has the “convergent input con-
vergent state” property, meaning that if limt→∞ δ(t) =
0, then the solutions of (2) will converge to the origin.
When the perturbation is vanishing such that δ(t) ≡ 0,
(20) also shows that the system (2) is uniformly globally
exponentially stable.

We then turn to the condition (19). The three terms in
(19) on the left-hand side are essentially the total effect
of unstable A(t), the total estimate of perturbation-to-

state ratio and the total variation of Ã over the interval
[a, b]. We discuss some special cases here and compare
them with the known results from the literature.

• Assume that A(t) is always Hurwtiz and α(A(t)) ≤
−κ∗ for some κ∗ > 0 and all t ≥ t0. In this case we can
pick κ = κ∗, which implies that ϕκ(A(t)) ≡ 0. If in
addition we assume that the system is unperturbed,
i.e., γ(t) ≡ 0, then (19) reduces to

(

∫ b

a

‖dÃ‖
)

≤ λ

c22
(b− a) +

̺

c22
.

Note that the upper-bound on λ stated in Theorem 11
implies that µ := λ

c22
≤ c1

2c32
. Thus we recover exactly

the same criteria as in [7, Theorem 3] for testing global
exponential stability of LTV systems with bounded
total variation. Furthermore, if A(t) is continuously
differentiable, then this result becomes the same as
[14, Theorem 3.4.11].

• Now we assume A(t) = A is a constant Hurwitz ma-
trix. By picking κ = α(A), we have ϕκ(A(t)) ≡ 0 and

Ã = A so
∫ b

a
‖dÃ‖ = 0. Moreover, the time-invariant

Lyapunov function V (x) := x⊤Px has the property
that

V̇ (x) ≤ −c3|x|2, |∇V (x)| ≤ c4|x|
with the parameters c3 = 1, c4 = 2c2. In the presence
of perturbation, the condition (19) reduces to

∫ b

a

γ(τ)dτ ≤ λ

c2
(b − a) +

̺

c2
.

Moreover, the upper-bound on λ implies ǫ := λ
c2

≤
c1
2c22

= c1c3
c2c4

. This is exactly the same results as [16,

Lemma 9.4 and Corollary 9.1] for showing global ex-
ponential stability with respect to a neighborhood of
the origin for a perturbed system.

• Lastly, consider a switched system with linear subsys-
tems

ẋ(t) = Aσ(t)x(t)

where σ(t) : R≥0 7→ P := {1, · · · , p} is a Càdlàg
piece-wise constant function. We assume that there
exist αs, αu > 0 and a partition P = Ps ∪ Pu such
that α(Ai) ≤ −αs for all i ∈ Ps and α(Ai) ≤ αu

for all i ∈ Pu. In other words, not all subsystems are
assumed to be stable. In this case we pick κ = αs.
We further assume that there exists ∆A > 0 such
that ‖Ãi − Ãj‖ ≤ ∆A for all i, j ∈ P , where Ãi :=
Ai − ϕκ(Ai)I. It can be concluded that

∫ b

a

ϕκ(Aσ(τ))dτ ≤ (αs + αu)

∫ b

a

1(τ)dτ,

where 1(τ) is the indicator function for σ(τ) ∈ Pu,
and

∫ b

a

‖dÃ‖ ≤ ∆A#(D ∩ (a, b)),

where #(·) denotes the cardinality of a set. Now sup-
pose the switching signal σ(t) satisfies some average
dwell-time condition [11] and average activation time
condition [26]; that is, there exist τa, η,N0, T0 > 0
such that

#(D ∩ (a, b)) ≤ 1

τa
(b− a) +N0,

∫ b

a

1(τ)dτ ≤ η(b− a) + T0

for any b > a ≥ 0. If

λ := c1(αs + αu)η +
c22∆A

τa
<

c1

2c2
, (21)

then it is not difficult to verify that (19) will hold with
̺ := c1(αs + αu)T0 + c22∆AN0. On the other hand,
pick the Lyapunov functions Vi(x) = x⊤Pix, where Pi

is the solution to PiÃi+ Ã⊤
i Pi + I = 0 for each i ∈ P .

Then we have

V̇i(x) = −|x|2 ≤ − 1

c2
Vi(x) ∀i ∈ Ps,

V̇i(x) ≤ 2(αs + αu)x
⊤Pix− |x|2

≤
(

2(αs + αu)−
1

c2

)

Vi(x) ∀i ∈ Pu.

Meanwhile, it follows from (17) in Lemma 10 that

‖Pi − Pj‖ ≤ 2c22‖Ãi − Ãj‖ ≤ 2c22∆A so

Pi = Pi−Pj+Pj ≤ ‖Pi−Pj‖I+Pj ≤
(

2c22∆A

c1
+ 1

)

Pj .

As a result, the assumptions in [26, Theorem 2] are
satisfied with λs := 1

c2
, λu := 2(αs + αu) − 1

c2
and
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µ :=
2c22∆A

c1
+1. For an unforced system, that theorem

(see also [21, Page 8]) essentially implies that if

(

1 +
λu

λs

)

η +
lnµ

λsτa
< 1, (22)

then the system is globally asymptotically (in fact
exponentially) stable. By plugging the definitions of
λs, λu, µ into (22) and multiplying both sides by c1

2c2
,

we have

c1(αs + αu)η +
c1 ln

(

2c22∆A

c1
+ 1
)

2τa
<

c1

2c2
,

which is a necessary condition for (21) since
2c22∆A

c1
≥

ln
(

2c22∆A

c1
+ 1
)

. Thus Theorem 11 is related to the

known results for switched system with unstable
modes in the literature, in the sense that under the
same condition (21) on average dwell-time and av-
erage activation time, either Theorem 11 or other
approaches from the literature can be used to show
stability of the system.

As illustrated by the aforementioned comparisons, our
result is a generalization of the known results in the lit-
erature. We also point out that when the matrix Ã is not
directly accessible, thanks to Proposition 8, a sufficient
condition for (19) to hold is the following:

c1

∫ b

a

ϕκ(A(τ))dτ + c2

∫ b

a

γ(τ)dτ

+ c22

(

∫ b

a

‖dA‖+
∫ b

a

|dϕκ(A)|
)

≤ λ(b − a) + ̺,

where one only needs to evaluateA(t),ϕk(A(t)) and γ(t).

4.2 Proof of Theorem 11

The proof essentially contains two steps. In the first step
we will define a function ξ(t) : R≥0 7→ R which traces
the change of the left-hand side of (19) and show that
it is piece-wise absolutely continuous and always in a
bounded set. In the second step we will use ξ(t) to con-
struct a time-varying Lyapunov function which is mono-
tonically decreasing when δ(t) ≡ 0, and hence use it to
show the desired property (20).

We start the first step of the proof by defining

ξ(t) := inf
s∈[0,t]

χ(s)− χ(t) + ̺, (23)

where χ(t) := c1
∫ t

0 ϕκ(A(τ))dτ + c2
∫ t

0 γ(τ)dτ +

c22
∫ t

0 ‖dÃ‖−λt. By its definition, ξ(t) ≤ ̺ for all t ∈ R≥0.

In addition, it follows from (19) that for any s ∈ [0, t],

χ(s)− χ(t) + ̺ = −c1

∫ t

s

ϕκ(A(τ))dτ − c2

∫ t

s

γ(τ)dτ

− c22

∫ t

s

‖dÃ‖+ λ(t− s) + ̺ ≥ 0.

Therefore
0 ≤ ξ(t) ≤ ̺. (24)

Under Assumption 2, Ã(t) is absolutely continuous over
each interval [ti, ti+1) where it is continuous. Thus for
t ∈ [ti, ti+1), χ(t) − χ(ti) is the sum of integration of
Lebesgue integrable functions. Therefore, χ(t) is abso-
lutely continuous over [ti, ti+1). Moreover, since abso-
lute continuity is preserved for infs∈[0,t] χ(s), ξ(t) is also
absolutely continuous over [ti, ti+1). Note that since
infs∈[0,t] χ(s) is non-increasing, it follows from (23) that
for any r ≥ t,

ξ(r) − ξ(t) =
(

inf
s∈[0,r]

χ(s)− inf
s∈[0,t]

χ(s)
)

− (χ(r) − χ(t))

≤ −(χ(r) − χ(t)), (25)

Let both r, t ∈ (ti, ti+1). Divide (25) by r − t and take
the limit as r − t → 0, we conclude that

ξ̇(t) ≤ −χ̇(t)

= −c1ϕκ(A(t))− c2γ(t)− c22‖ ˙̃
A(t)‖+ λ ∀ a.a. t 6∈ D,

(26)

where recallD defined in (3) is the set of discontinuities.
On the other hand, let r = ti and take the limit as t →
t−i , we have χ(t−i ) = limt→t

−

i
χ(t) = χ(ti) − c22‖Ã(ti) −

A(t−i )‖ so

ξ(t)− ξ(t−) ≤ −c22‖Ã(t)− Ã(t−)‖ ∀t ∈ D. (27)

Now we proceed to the second step of the proof. Define

the function U(t) : R≥0 7→ R≥0 with U(t) := e
2ξ(t)
c1 , and

two functions V (t, x),W (t, x) : R≥0 × Rn 7→ R≥0 such
that V (t, x) := x⊤P (t)xwhere P (t) is the solution to the
Lyapunov equation (13), and W (t, x) := U(t)V (t, x).
We will show that W (t, x) is the desired time-varying
Lyapunov function. It follows from (14) and (24) that

c1|x|2 ≤ W (t, x) ≤ c2e
2̺
c1 |x|2 ∀(t, x) ∈ R≥0 × R

n.
(28)

Recall in Lemma 9, P (t) is shown to be piece-wise abso-
lutely continuous. Meanwhile it is already discussed ear-
lier that ξ(t) is also piece-wise absolutely continuous and
bounded. Therefore W (t, x(t)) is piece-wise absolutely
continuous. We investigate the weak time derivative of
W (t, x(t)) for t 6∈ D and the jump of W (t, x) for t ∈ D
separately. To this end, it follows from (26) that
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U̇(t) =
2

c1
U(t)ξ̇(t)

≤
(

− 2ϕκ(A(t)) −
2c2
c1

γ(t)− 2c22
c1

‖ ˙̃
A(t)‖+ 2λ

c1

)

U(t).

Next we estimate the time derivative of V (t, x(t)). For
simplification we omit the argument t when there is
no ambiguity. Note that since λ < c1

2c2
, there exists

ǫ ∈ (0, c1
c2

− 2λ). It then follows from (14), (16) and As-
sumption 5 that

V̇ (t, x(t)) =
(

Ax+ g(t, x)
)

⊤
Px+ x

⊤
P
(

Ax+ g(t, x)
)

+ x
⊤
Ṗ x

= x
⊤

(

A
⊤
P + PA

)

x+ 2x⊤
Pg(t, x) + x

⊤
Ṗx

≤ x
⊤
(

− I + 2ϕκ(A)P
)

x+ 2|x|‖P‖(γ|x| + δ) + 2c22

∥

∥

∥

˙̃
A
∥

∥

∥
|x|2

= 2ϕκ(A)x⊤
Px+ 2|x|‖P‖δ +

(

2c22

∥

∥

∥

˙̃
A
∥

∥

∥
− 1 + 2‖P‖γ

)

|x|2

≤ 2ϕκ(A)x⊤
Px+

c22
ǫ
δ
2 +

(

2c22

∥

∥

∥

˙̃
A
∥

∥

∥− 1 + 2c2γ + ǫ
)

|x|2

≤

(

2ϕκ(A) +
2c22
c1

∥

∥

∥

˙̃
A
∥

∥

∥
−

1

c2
+

2c2
c1

γ +
ǫ

c1

)

V +
c22
ǫ
δ
2
.

where 2|x|‖P‖δ ≤ ǫ|x|2 + ‖P‖2δ2

ǫ
≤ ǫ|x|2 + c22

ǫ
δ2 is used

for the second inequality above. Using product rule and
plug the bounds on U̇ and V̇ in,

Ẇ (t, x(t)) = U̇(t)V (t, x(t)) + U(t)V̇ (t, x(t)

≤
(2λ+ ǫ

c1
− 1

c2

)

W (t, x(t)) +
c22
ǫ
U(t)δ(t)2

≤
(2λ+ ǫ

c1
− 1

c2

)

W (t, x(t)) +
c22
ǫ
e

2̺
c1 δ(t)2.

In other words, we conclude that

Ẇ (t, x(t)) ≤ −a0W (t, x(t))+b0|δ(t)|2 ∀a.a. t 6∈ D (29)

where a0 := 1
c2

− 2λ+ǫ
c1

> 0 and b0 :=
c22
ǫ
e

2̺
c1 .

Now for all t ∈ D, it follows from (27) that

U(t) ≤ e−2c22c
−1
1 ‖Ã(t)−Ã(t−)‖U(t−).

Meanwhile, since the solution is continuous, x(t) =
x(t−) and it follows from (18) in Lemma 10 that

V (t, x(t)) ≤ e2c
2
2c

−1
1 ‖Ã(t)−Ã(t−)‖V (t−, x(t−)).

Therefore

W (t, x(t)) = U(t)V (t, x(t)) ≤ U(t−)V (t−, x(t−))

= W (t−, x(t−)) ∀t ∈ D. (30)

From the estimates (29), (30) and comparison principle,
we conclude that for any t ≥ t0 ≥ 0,

W (t, x(t)) ≤ e−a0(t−t0)W (t0, x0) + b0

∫ t

t0

e−a0(t−τ)δ(τ)2dτ

≤ e−a0(t−t0)W (t0, x0) +
b0

a0
max

τ∈[t0,t]
δ(τ)2.

Finally, it follows from (28) and the inequality√
a1 + a2 ≤ √

a1 +
√
a2 that

|x(t)| ≤
√

W (t, x(t))

c1

≤ e−
a0
2 (t−t0)

√

W (t0, x0)

c1
+

√

b0

a0
max

τ∈[t0,t]
δ(τ)

≤
√

c2

c1
e

̺

c1
−

a0
2 (t−t0)|x0|+

b0

a0
max

τ∈[t0,t]
δ(τ)

We thus achieve (20) with k1 :=
√

c2
c1
e

̺
c1 , k2 := a0

2 and

k3 :=
√

b0
a0
. This concludes the proof of Theorem 11.

Remark 12 Observe that in Lemma 10, Assumption 1
guarantees the existence of c1, c2 such that (14) and (16)
hold. These inequalities are used in the proof of Theo-
rem 11. In other words, we do not necessarily require
‖A(t)‖ to be bounded. Instead, if we replace Assumption 1
with the assumptions that the spectrum of P (t) is uni-

formly bounded in an interval, and ‖Ṗ (t)‖ is relatively

uniformly bounded with respect to ‖ ˙̃
A(t)‖, then we could

conclude the same result as in Theorem 11.

5 A numerical example

Consider a 2-dimensional periodic system with period
2π. For any k ∈ Z and t ∈ [0, 2π), the dynamics is given
by

ẋ(2kπ+ t) =

(

λ(t) 0.1 cos(t) + 1

0.1 cos(t)− 1 λ(t)

)

x(2kπ+ t).

(31)
where λ(t) := 1.1 cos( t

2 )+0.1 sin(t)−1. We can re-write
(31) in the form of (2), with

A(t) :=

(

1.1 cos( t2 )− 1 1

−1 1.1 cos( t2 )− 1

)

,

g(t, x) := 0.1

(

sin(t) cos(t)

cos(t) sin(t)

)

x.
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Note that A(t) is not continuous, since A(2π−) =
(

−2.1 1

−1 −2.1

)

but A(2π) = A(0) =

(

0.1 1

−1 0.1

)

. More-

over, α(A(t)) = 1.1 cos( t2 )− 1. Since α(A(0)) = 0.1, the
system (31) has unstable instantaneous dynamics.

To apply Theorem 11, we take κ = 1. Since the system
is periodic, we will only investigate (19) over one period;
i.e., a = 0 and b = 2π. It can be found that

ϕκ(A(t)) =

{

1.1 cos( t2 ) for t ∈ [0, π),

0 for t ∈ [π, 2π).

Therefore
∫ 2π

0 ϕκ(A(t))dt = 2.2. Meanwhile,

Ã(t) =







(

−1 1

−1 −1

)

if t ∈ [0, π),

A(t) if t ∈ [π, 2π).

In order to find c1, c2 which will be used in Theorem 11,
we recall Remark 12. Thus instead of setting (15) as in
Lemma 12, we solve (13) for P (t):

P (t) =

{

1
2I if t ∈ [0, π),
1
2 (1 − 1.1 cos( t2 ))

−1I if t ∈ [π, 2π).

Therefore,

1

4.2
≤ ‖P (t)‖ ≤ 1

2
,

‖Ṗ (t)‖ =
1

2

(

1− 1.1 cos(
t

2
)

)−2

‖ ˙̃
A(t)‖ ≤ 1

2
‖ ˙̃
A(t)‖

so (14) and (16) hold with c1 = 0.2381, c2 = 0.5. Mean-
while,

∫ 2π

0

‖dÃ‖ = 2

∥

∥

∥

∥

∥

(

−1 1

−1 −1

)

−
(

−2.1 1

−1 −2.1

)
∥

∥

∥

∥

∥

= 2.2.

In addition, |g(t, x)| ≤ 0.1

∥

∥

∥

∥

∥

(

sin(t) cos(t)

cos(t) sin(t)

)∥

∥

∥

∥

∥

|x| =

0.1(| cos(t)|+ | sin(t)|)|x|. Hence the inequality (5) holds
with γ(t) = 0.1(| cos(t)|+ | sin(t)|) and δ(t) ≡ 0. We thus

have
∫ 2π

0 γ(t)dt = 0.8. Consequently, the left-hand side
of (19) gives 1.4738, while by picking λ = 0.238 < c1

2c2
and ̺ = 0, the right-hand side of (19) gives 1.4954. Fi-
nally we remark here that even if [a, b] is not a multiple
of period 2π, the discrepancies in the integration can
always be bounded by ̺ = 1.4738, which is the value
of the left-hand side of (19) over one period. Therefore
(19) always holds. Because δ(t) ≡ 0, we conclude from
Theorem 11 that the system (31) is uniformly globally
exponentially stable.

6 Discussion and conclusion

In this work the stability of perturbed LTV systems is
studied. We considered different challenging features for
the problem in this work, including the assumption that
the system matrix is piece-wise absolutely continuous,
the assumption that the instantaneous dynamics can
be unstable and the assumption that the perturbation
might be persistent. With the help of the characteriza-
tion of bounded total variation of the matrix trajectory
A(t), and the construction of a special Lyapunov func-
tion which does not increase when A(t) jumps, we man-
aged to propose unified criteria based on the total as-
sessment of all the three aspects and show that when the
criteria are met, the neighborhood of the origin, whose
size depends on the magnitude of the persistent pertur-
bation, is uniformly globally exponentially stable for the
system.

Through the numerical example studied in this work, we
realized that while theoretically our result is elegant, it
might have some limitations in application. The condi-
tion (19) proposed in Theorem 11 can be conservative,
because the parameters c1, c2 might be overestimated.
Since c1, c2 depend on the matrix trajectory P (t) as seen
in (14), we can alternatively consider time-varying pa-
rameters instead of constants in order to give tighter
estimates. We can also consider better choices of P (t)
in the future work, in which direction the recent work
[20] may give an idea how to “smartly” choose P (t) by
optimization. On the other hand, it is seen that since
the total variation only increases with respect to time,
when compared with a time-invariant system, the time-
varying nature of the system will only bring negative
effect on the stability criteria. Therefore, our result is
not suitable for the study of time-varying systems where
the variations in fact benefit the stabilization. If instead
of using integration of induced norm (which is always
non-negative) in the characterization of variations, other
measures, such as integration of matrix measure (which
can be negative), are used here, then it might be pos-
sible to conclude stability results where variations are
beneficial. This will be another direction of future work.

Appendix

A A useful lemma for absolute continuity

Lemma 13 Consider two vector-valued functions f(t) :
[a, b] 7→ Rn, g(t) : [a, b] 7→ Rm and suppose f(t) is abso-
lutely continuous on [a, b]. If there exists L > 0 such that

|g(c)− g(d)| ≤ L|f(c)− f(d)| ∀c, d ∈ [a, b], (A.1)

then g(t) is absolutely continuous on [a, b] as well. More-

over, it holds that |ġ(t)| ≤ |ḟ(t)| for almost all t ∈ [a, b].
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PROOF. Let ǫ > 0 be arbitrary. Define ǫ0 := ǫ
L
. Since

f(t) is absolutely continuous on [a, b], there exists δ > 0
such that for any finite sequence of pairwise disjoint sub-
intervals {(tk, rk)}k of [a, b] satisfying

∑

k(rk − tk) ≤ δ,
one has

∑

k |f(rk) − f(tk)| ≤ ǫ0. It follows from (A.1)
that

∑

k

|g(rk)− g(tk)| ≤
∑

k

L|f(rk)− f(tk)| ≤ Lǫ0 = ǫ,

which shows that g(t) is absolutely continuous. denote
t := d, δ := c − d and divide both sides of (A.1) by |δ|,
we have

∣

∣

∣

∣

g(t+ δ)− g(t)

δ

∣

∣

∣

∣

≤ L

∣

∣

∣

∣

f(t+ δ)− f(t)

δ

∣

∣

∣

∣

,

which, by taking the limit as δ → 0, leads to the conclu-
sion that |ġ(t)| ≤ |ḟ(t)| for almost all t ∈ [a, b].

B Proof of Lemma 6

PROOF. We first show that when A(t) is absolutely
continuous over [a, b], its total variation is given by

∫ b

a

‖dA‖ =

∫ b

a

‖Ȧ(t)‖dt. (B.1)

Define Γ(t) :=
∫ t

a
‖dA‖. Clearly Γ(t) is non-decreasing

so that when Γ̇(t) exists,

∫ b

a

Γ̇(t)dt ≤ Γ(b)− Γ(a) = Γ(b) =

∫ b

a

‖dA‖. (B.2)

On the other hand, it follows from the definition of total

variation that ‖A(t) − A(s)‖ ≤
∫ t

s
‖dA‖ = Γ(t) − Γ(s)

for any t, s ∈ [a, b], t ≥ s. Thus divide both sides by
t− s and take the limit as t − s → 0, we conclude that
‖Ȧ(t)‖ ≤ Γ̇(t) almost everywhere. Combined with (B.2),
we conclude that

∫ b

a

‖Ȧ(t)‖dt ≤
∫ b

a

‖dA‖.

To show the other opposite inequality, recall that A(t)
is assumed to be absolutely continuous over [a, b]. From
fundamental theorem of Lebesgue integral calculus, we

have A(ti+1) − A(ti) =
∫ ti+1

ti
Ȧ(t)dt for any ti, ti+1 ∈

[a, b], ti ≤ ti+1. Thus

‖A(ti+1)−A(ti)‖ =

∥

∥

∥

∥

∫ ti+1

ti

Ȧ(t)dt

∥

∥

∥

∥

≤
∫ ti+1

ti

‖Ȧ(t)‖dt.

LetP = {t0, t1, · · · , tk} be a partition of [a, b] and appeal
to the definition of total variation, we conclude that

∫ b

a

‖dA‖ = sup
P∈P

k
∑

i=1

‖A(ti)−A(ti−1)‖ ≤
∫ b

a

‖Ȧ(t)‖dt.

(B.3)
Therefore (B.1) is concluded by combining (B.2) and
(B.3).
We now consider the case when A(t) only has one dis-
continuity at d ∈ [a, b] and show that

∫ b

a

‖dA‖ =

∫ d

a

‖Ȧ(t)‖dt+
∫ b

d

‖Ȧ(t)‖dt+‖A(d)−A(d−)‖.
(B.4)

The proof can be easily adjusted to the case when A(t)
has finitely many discontinuities over [a, b], which proves
Lemma 6. We first show that

sup
p∈P

k
∑

i=1

‖A(ti)−A(ti−1)‖

≤
∫ d

a

‖Ȧ(t)‖dt+
∫ b

d

‖Ȧ(t)‖dt+ ‖A(d)−A(d−)‖.
(B.5)

To this end, Let P = {t0, t1, · · · tk} be an arbitrary
partition of [a, b]. Moreover, assume there exists i∗ ∈
{1, 2 · · · , k} such that ti∗−1 < d ≤ ti∗ . Notice that
except for i = i∗, A(t) is absolutely continuous over
[ti−1, ti] so

‖A(ti)−A(ti−1)‖ = ‖
∫ ti

ti−1

Ȧ(t)dt‖ ≤
∫ ti

ti−1

‖Ȧ(t)‖dt.

(B.6)
Moreover,

‖A(ti∗)−A(ti∗−1)‖
≤ ‖A(ti∗)−A(d)‖+‖A(d)−A(d−)‖+‖A(d−)−A(ti∗−1)‖

≤
∫ ti∗

d

‖Ȧ(t)‖dt+‖A(d)−A(d−)‖+
∫ d

ti∗−1

‖Ȧ(t)‖dt.

(B.7)

Combining (B.6) and (B.7), we conclude that

k
∑

i=1

‖A(ti)−A(ti−1)‖

≤
∫ d

a

‖Ȧ(t)‖dt+
∫ b

d

‖Ȧ(t)‖dt+ ‖A(d)−A(d−)‖.

Since the partition P is arbitrary, the above inequality
still holds when taking the supremum over P and there-
fore (B.5) is shown.
We next show the other inequality
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sup
p∈P

k
∑

i=1

‖A(ti)−A(ti−1)‖

≥
∫ d

a

‖Ȧ(t)‖dt+
∫ b

d

‖Ȧ(t)‖dt+ ‖A(d)−A(d−)‖.
(B.8)

To this end, let ǫ > 0 be arbitrary. because A(t) is ab-

solutely continuous over [a, d)
∫ d

s
‖Ȧ(t)‖dt is continu-

ous with respect to s and there exists δ > 0 such that

‖A(d−)− A(d − δ)‖ ≤
∫ d

d−δ
‖Ȧ(t)‖dt ≤ ǫ

4 . It can there-
fore be inferred by triangle inequality that

‖A(d)−A(d−δ)‖ ≥ ‖A(d)−A(d−)‖−‖A(d−)−A(d−δ)‖
≥ ‖A(d)−A(d−)‖ − ǫ

4
. (B.9)

Moreover, since A(t) is absolutely continuous over

[a, d − δ], [d, b], it follows from (B.1) that
∫ d−δ

a
‖dA‖ =

∫ d−δ

a
‖Ȧ(t)‖dt,

∫ b

d
‖dA‖ =

∫ b

d
‖Ȧ(t)‖dt, which further

means that there exist partitionsPL = {t0, t1, · · · , tj−1},
PR = {tj, tj+1, · · · , tk} of [a, d − δ], [d, b] respectively,
such that

j−1
∑

i=1

‖A(ti)−A(ti−1)‖ ≥
∫ d−δ

a

‖Ȧ(t)‖dt− ǫ

4

=

∫ d

a

‖Ȧ(t)‖dt−
∫ d

d−δ

‖Ȧ(t)‖dt− ǫ

4

≥
∫ d

a

‖Ȧ(t)‖dt− ǫ

2
, (B.10)

k
∑

i=j+1

‖A(ti)−A(ti−1)‖ ≥
∫ b

d

‖Ȧ(t)‖dt− ǫ

4
. (B.11)

Combining (B.9),(B.10) and (B.11) together and notice
that tj−1 = d− δ, tj = d, we have

k
∑

i=1

‖A(ti)−A(ti−1)‖

≥
∫ d

a

‖Ȧ(t)‖dt+
∫ b

d

‖Ȧ(t)‖dt+ ‖A(d)−A(d−)‖− ǫ.

Now because P := PL ∪ PR is a partition of [a, b] and
ǫ > 0 is arbitrary, we conclude (B.8). Finally (B.4) is
concluded by combining (1), (B.5) and (B.8).

C Proof of Lemma 9

PROOF. Firstly, Assumption 1 implies α(A(t)) ≤ L.
We also have the following two bounds on both the norm

of Ã(t) and the abscissa of Ã(t): ‖Ã(t)‖ ≤ ‖A(t)‖ +

ϕκ(A(t)) ≤ L + framp(L + κ), α(Ã(t)) = α(A(t)) −
ϕκ(A(t)) ≤ −κ. The proof of (12), (14) follows from the
proof of [16, Lemma 9.9].
To show absolute continuity of P (t) and (16), we take
any t, r ∈ [a, b], t ≤ r. It follows from (13) that

Ã⊤(t)P (t) + P (t)Ã(t) = I,

Ã⊤(r)P (r) + P (r)Ã(r) = I.

Take the difference between the two equations, we get

Ã⊤(t)(P (t) − P (r)) + (P (t)− P (r))Ã(t)

+ (Ã(t)− Ã(r))⊤P (r) + P (r)(Ã(t)− Ã(r)) = 0.

Define ∆P := P (t)− P (r), Q := (Ã(t)− Ã(r))⊤P (r) +

P (r)(Ã(t)− Ã(r)). The above equation means that ∆P

is the solution to the Lyapunov equation Ã⊤(t)∆P +

∆PÃ(t) +Q = 0. Since Ã(t) is Hurwitz, the Lyapunov
equation has a unique solution given by

∆P =

∫ ∞

0

esÃ
⊤(t)QesÃ(t)ds.

On one hand we conclude that ‖Q‖ ≤ 2‖P (r)‖‖Ã(t) −
Ã(r)‖ ≤ 2c2‖Ã(t) − Ã(r)‖ by (14). On the other hand

(12) directly gives a bound on ‖esÃ(t)‖. Therefore

‖P (r)− P (t)‖ = ‖∆P‖

≤
∫ ∞

0

2‖esÃ(t)‖‖Q‖ds

≤
∫ ∞

0

2cc2e
−2βs‖Ã(t)− Ã(r)‖ds

= 2c22‖Ã(t)− Ã(r)‖.

Appeal to Lemma 13, we conclude thatP (t) is absolutely
continuous and (16).
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