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Abstract

By time discretization of a second-order primal-dual dynamical system with damping α/t where an inertial construction in
the sense of Nesterov is needed only for the primal variable, we propose a fast primal-dual algorithm for a linear equality
constrained convex optimization problem. Under a suitable scaling condition, we show that the proposed algorithm enjoys
a fast convergence rate for the objective residual and the feasibility violation, and the decay rate can reach O(1/kα−1) at
the most. We also study convergence properties of the corresponding primal-dual dynamical system to better understand the
acceleration scheme. Finally, we report numerical experiments to demonstrate the effectiveness of the proposed algorithm.

Key words: Linearly constrained convex optimization problem; primal-dual algorithm; inertial primal-dual dynamical
system; convergence rate; Nesterov’s acceleration.

1 Introduction

Let Rn be an n-dimensional Euclidean space with the
scalar product 〈·, ·〉 and the corresponding induced norm
‖·‖. Let f : Rn → R∪{+∞} be a proper, lower semicon-
tinuous and convex function, A ∈ Rm×n, and b ∈ Rm.
Consider the linearly constrained convex optimization
problem

min
x∈Rn

f(x), s.t. Ax = b. (1)

The problem (1) is a basic model for many important
applications arising in various areas, such as compres-
sive sensing, image processing, global consensus and
machine learning problems. See e.g. Boyd et al. (2011);
Candès & Wakin (2008); Feijer & Paganini (2010);
Lin, Li, & Fang (2020); Wang et al. (2021); Zhang et al.
(2010); Zhu et al. (2020).

Denote the KKT point set of the problem (1) by Ω.
For any (x∗, λ∗) ∈ Ω, we have

{

−ATλ∗ ∈ ∂f(x∗),
Ax∗ = b,

(2)

where

∂f(x) = {v ∈ R
n | f(y) ≥ f(x)+ 〈v, y−x〉, ∀y ∈ R

n}.

Recall the Lagrangian function of the problem (1),

L(x, λ) = f(x) + 〈λ,Ax − b〉,

where λ ∈ Rm is the Lagrange multiplier. From (2) we
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have

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗), ∀(x, λ) ∈ R
n × R

m.

Throughout this paper, we always assume Ω 6= ∅.

1.1 Literature review

A benchmark algorithm for the problem (1) is the
augmented Lagrangian method (ALM)

{

xk+1 ∈ argminx f(x) + 〈λk, Ax− b〉+ σ
2 ‖Ax− b‖2,

λk+1 = λk + σ(Axk+1 − b).

ALM plays a fundamentally theoretical and algorith-
mic role in solving the problem (1). Here, we mention
some of nice works concerning fast convergence prop-
erties of ALM and its variants. By applying Nesterov’s
acceleration technique Nesterov (1983, 2003) to ALM,
He & Yuan (2010) developed an accelerated augmented
Lagrangian method (AALM) for the problem (1) and
proved that AALM enjoys the O(1/k2) convergence rate
when f is differentiable. When f is nondifferentiable,
the O(1/k2) convergence rate of AALM was established
in Kang et al. (2013). Kang, Kang, & Jung (2015) fur-
ther proposed an inexact version of AALM and demon-
strated the O(1/k2) convergence rate under the strong
convexity assumption of f . Huang, Ma, & Goldfarb
(2013) considered an accelerated linearized Bregman
method for solving the basis pursuit and related sparse
optimization problems, and proved that it owns the
O(1/k2) convergence rate. It is worth noting that the
convergence rate analysis of the accelerated algorithms
mentioned above was done for the Lagrangian residual
L(x∗, λ∗) − L(xk, λk). Recently, Xu (2017) presented
an accelerated ALM for solving the problem (1). By
adapting parameters during the iterations, they proved
that the objective residual and the feasibility violation
both enjoy the O(1/k2) convergence rate. By applying
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Nesterov’s technique, He, Hu, & Fang (2022) proposed
two accelerated primal-dual algorithms, which enjoy the
O(1/k2) convergence rate of the objective residual and
the feasibility violation. In terms of scaling coefficients,
He, Hu, & Fang (2021b); Luo (2022); Yan & He (2020)
proposed accelerated ALM algorithms in different
ways, and obtained the fast convergence rates related
to the scaling coefficients. By time discretization of a
second-order dynamical system, Luo (2021b) proposed
new accelerated primal-dual methods, and derived the
O(1/k2) convergence rate for the primal-dual gap, the
feasibility violation and the objective residual under
the assumption that the objective function is strongly
convex. In the case that f has a Lipschitz continuous
gradient, Boţ, Csetnek, & Nguyen (2021) proposed fast
ALM algorithms by time discretization of the dynam-
ical system in Boţ & Nguyen (2021). They proved the
O(1/k2) convergence rate of the primal-dual gap, the
feasibility measure and the objective residual, and also
showed the convergence of the sequence of iterations.
From the variational perspective, Fazlyab et al. (2017)
proposed accelerated higher-order gradient methods by
discretization of a second-order dual dynamical system
and exhibited the O(1/kp) converges rate of the dual
residual and the O(1/kp/2) rate of the feasibility viola-
tion under the assumption that the objective function is
strong convex and has a (p− 1)–th Lipschitz gradient.

1.2 Fast primal-dual algorithm via dynamical system

Dynamical system methods have been recognized
as efficient tools for solving optimization problems in
the literature. Dynamical systems can not only give
more insights into the existing numerical methods for
optimization problems but also lead to other possi-
ble numerical algorithms by time discretization, see
e.g. Attouch et al. (2018); Chen & Luo (2021); Jordan
(2018); Kia, Cortés, & Mart́ınez (2015); Liang & Yin
(2019); Luo (2021a); Su, Boyd, & Candès (2016);
Wilson, Recht, & Jordan (2021). In this paper, we will
propose a fast primal-dual algorithm via time discretiza-
tion of the following primal-dual dynamical system

{

ẍ(t) + α
t ẋ(t) = −β(t)(∇f(x(t)) +ATλ(t)) + ǫ(t),

λ̇(t) = tβ(t)(A(x(t) + t
α−1 ẋ(t))− b),

(3)
where t ≥ t0 > 0, α/t with α > 1 is a damping coef-
ficient, β : [t0,+∞) → (0,+∞) is a scaling coefficient,
and ǫ : [t0,+∞) → Rn is a perturbation coefficient.

Su, Boyd, & Candès (2016) showed that the damp-
ing α/t with α = 3 in inertial dynamical sys-
tems for unconstrained convex optimization prob-
lems can be understood as the continuous limit of
Nesterov’s accelerated technique Nesterov (1983).
By considering the damping α/t with α ≥ 3 and
the scaling β(t), Attouch, Chbani, & Riahi (2019);
Wibisono, Wilson, & Jordan (2016) obtained the
O(1/t2β(t)) convergence rate of dynamical systems for
solving unconstrained convex optimization problems
and also obtained the rate-matching inertial algorithms
by different time discretization schemes. Recently,
some researchers extended the dynamical systems in
Attouch, Chbani, & Riahi (2019); Su, Boyd, & Candès
(2016); Wibisono, Wilson, & Jordan (2016) to inertial
primal-dual dynamical systems for solving the prob-
lem (1). See e.g. Attouch et al. (2022); Boţ & Nguyen
(2021); He, Hu, & Fang (2021a); Zeng, Lei, & Chen
(2022). Very recently, by time discretization of the iner-
tial dynamical system, Boţ, Csetnek, & Nguyen (2021)

proposed new ALM algorithms with O(1/k2) conver-
gence rate. It is worth mentioning that for the dynami-
cal systems mentioned above, inertial constructions are
needed for both the primal variable and the dual vari-
able. As a comparison, the inertial term is considered in
the dynamical system (3) only for the primal variable.

In the next, by time discretization of (3), we will pro-
pose an accelerated primal-dual algorithm. Rewrite (3)
as






y(t) = x(t) + t
α−1 ẋ(t),

α−1
t ẏ(t) = −β(t)(∇f(x(t)) +ATλ(t)) + ǫ(t),

λ̇(t) = tβ(t)(Ay(t) − b).

(4)

Set tk = k, xk = x(tk), yk = y(tk), λk = λ(tk), βk =
β(tk), ǫk = ǫ(tk). Take the following discretization
scheme of (4) with a nondifferentiable function f































yk = xk +
k − θ

α− 1
(xk − xk−1), (5a)

α− 1

k
(yk+1 − yk)

∈ −βk(∂f(xk+1) +ATλk+1) + ǫk, (5b)

λk+1 − λk = kβk(Ayk+1 − b), (5c)

where θ ∈ R. Substitute (5a) and (5c) into (5b) to obtain

k + α− θ

k

(

xk+1 −

(

xk +
k − θ

k + α− θ
(xk − xk−1)

))

∈ −βk(∂f(xk+1) +ATλk) + ǫk (6)

−kβ2
kA

T

(

A

(

xk+1 +
k + 1− θ

α− 1
(xk+1 − xk)

)

− b

)

.

Then, we can write (5) as Algorithm 1 for solving prob-
lem (1). The perturbation ǫ(t) in (3) can be interpreted
as a kind of disturbance, and here we adopt the ter-
minology “perturbation” used by Attouch et al. (2018);
He, Hu, & Fang (2021a). In Step 2 of Algorithm 1, the
perturbation ǫk means

xk+1 ≈ argmin
x∈Rn

{f(x) +
k + α− θ

2kβk
‖x− x̄k‖

2

+
ϑk

2
‖Ax− ηk‖

2 + 〈ATλk, x〉}.

The x-subproblem in Step 2 of Algorithm 1 has a special
splitting structure and it can be efficiently solved by
some classical splitting methods such as the proximal
gradient method and its accelerated version FISTA (see
e.g. Beck & Teboulle (2009); Lin, Li, & Fang (2020)).

In this paper, by constructing a discrete energy se-
quence and a continuous energy function, we show fast
convergence properties of Algorithm 1 and the dynami-
cal system (3). Our main contributions are summarized
as follows:
(a): The discrete level: By time discretization of

the dynamical system (3) with damping α/t and scaling
β(t), we obtain Algorithm 1. Under a suitable scaling
condition, we obtain the O(1/k2βk) convergence rate of
the objective residual and the feasibility violation, which
can reach O(1/kα−1) decay rate at the most. We extend
(Attouch, Chbani, & Riahi, 2019, Theorem 3.1 andThe-
orem 7.1) from the unconstrained optimization problem
to the linearly constrained convex optimization problem
(1). Compared with the accelerated gradient methods in
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Algorithm 1 Fast primal-dual algorithm

Initialization: Choose x0 ∈ R
n, λ0 ∈ R

m, α > 1,
θ ∈ R. Set x1 = x0, λ1 = λ0.
For k = 1, 2, · · ·do
Step 1: Compute x̄k = xk + k−θ

k+α−θ (xk − xk−1).
Step 2: Choose βk > 0. Set

ϑk =
k(k + α− θ)βk

α− 1
,

ηk =
k + 1− θ

k + α− θ
Axk +

α− 1

k + α− θ
b.

Update the primal variable

xk+1 = argmin
x∈Rn

{f(x) +
k + α− θ

2kβk
‖x− x̄k‖

2

+
ϑk

2
‖Ax− ηk‖

2 + 〈ATλk −
ǫk
βk

, x〉}.

Step 3: Compute

yk+1 = xk+1 +
k + 1− θ

α− 1
(xk+1 − xk).

Update the dual variable

λk+1 = λk + kβk(Ayk+1 − b).

If A stopping condition is satisfied then
Return (xk+1, λk+1)

end
end

Boţ, Csetnek, & Nguyen (2021) where f is convex and
has a Lipschitz gradient, and Fazlyab et al. (2017) where
f is strongly convex, Algorithm 1 requires neither strong
convexity nor Lipschitz gradient assumption on f . In the
case α > 3, we show that Algorithm 1 can achieve a rate
faster than O(1/k2) under a suitable scaling condition.

(b) The continuous level: For a better under-
standing of the acceleration scheme of Algorithm 1,
we consider the primal-dual dynamical system (3) and
show that it enjoys convergence properties matching
to that of Algorithm 1. To the best of our knowledge,
the dynamical system (3) is the first Nesterov’s inertial
one involving inertial term only for the primal variable
for the linearly constrained optimization problem. Our
dynamical system (3) extends the dynamical system
in He, Hu, & Fang (2021b), which is linked to Polyak’
heavy ball scheme, from the constant viscous damping
to the vanishing damping α/t. Compared with a recent
work by Attouch et al. (2022), where a general ADMM
dynamical system involving inertial terms both for the
primal and dual variables was considered for a separa-
ble linearly constrained optimization problem, by a new
result (Lemma 6), we will prove that the convergence
results of the dynamical system (3) are better than the
one in (Attouch et al., 2022, Theorem 1). By Lemma 6,
we also can improve the convergence of the objective
residual and the feasibility violation in (Attouch et al.,
2022, Theorem 1) from O(1/t1/2α0) to O(1/t1/α0). In
the case β(t) ≡ β > 0, the dynamical system (3) enjoys
the same convergence rate as the dynamical systems in
Boţ & Nguyen (2021); Zeng, Lei, & Chen (2022), which
involve inertial terms both for the primal and dual
variables.

1.3 Organization

The paper is organized as follows: In Section 2, we
show the fast convergence properties of Algorithm 1 un-

der a suitable scaling condition. Section 3 is devoted
to the study of convergence properties of the inertial
primal-dual dynamical system (3). The numerical exper-
iments are given in Section 4. Finally, we end the paper
with a conclusion.

2 Fast convergence analysis of Algorithm 1

Before presenting the convergence analysis, we first
show that Algorithm 1 is equivalent to the time dis-
cretization scheme (5).

Proposition 1 Algorithm 1 is equivalent to the time dis-
cretization scheme (5).

Proof. By using the optimality criterion, from Step 2
of Algorithm 1, we get

0∈ ∂f(xk+1) +
k + α− θ

kβk
(xk+1 − x̄k)

+AT (ϑk(Axk+1 − ηk) + λk)−
ǫk
βk

,

which can be rewritten as

k + α− θ

k
(xk+1 − x̄k) ∈ −βk(∂f(xk+1)

+AT (ϑk(Axk+1 − ηk) + λk)) + ǫk. (7)

It follows from Step 2 and Step 3 of Algorithm 1 that

ϑk(Axk+1 − ηk) =
k(k + α− θ)βk

α− 1
Axk+1

−
k(k + 1− θ)βk

α− 1
Axk − kβkb (8)

= kβk(A(xk+1 +
k + 1− θ

α− 1
(xk+1 − xk))− b).

As a consequence of (7), (8) and Step 1, the equation (6)
holds. By comparing Algorithm 1 and (5), the sequence
{(xk, yk, λk)}k≥1 generated by Algorithm 1 satisfies (5).
Since the calculation process from above is reversible,
from (5), we also can obtain Algorithm 1.

2.1 Convergence analysis for fast primal-dual algo-
rithm

Before discussing the convergence properties of Algo-
rithm 1, we first recall the equality

1

2
‖x‖2 −

1

2
‖y‖2 = 〈x, x− y〉 −

1

2
‖x− y‖2 (9)

for any x, y, z ∈ R
n, which will be used repeatedly.

Lemma 1 Let {(xk, yk, λk)}k≥1 be the sequence gener-
ated by Algorithm 1 and (x∗, λ∗) ∈ Ω. Define the energy
sequence

Eǫ
k = Ek −

k
∑

j=1

〈(α− 1)(yj − x∗), (j − 1)ǫj−1〉 (10)

with

Ek = k(k + 1− θ)βk(L(xk, λ
∗)− L(x∗, λ∗))

+
1

2
‖(α− 1)(yk − x∗)‖2 +

α− 1

2
‖λk − λ∗‖2. (11)

3



Then, for any k ≥ max{1, θ − 1}:

Eǫ
k+1 − Eǫ

k

≤ ((k + 1)(k + 2− θ)βk+1 − k (k + α− θ)βk)

·(L(xk+1, λ
∗)− L(x∗, λ∗)). (12)

Proof. By the definition of L, we have

∂xL(x, λ) = ∂f(x) +ATλ.

This together with (5b) implies

(α− 1)(yk+1 − yk)

∈ k(−βk(∂f(xk+1) +ATλk+1) + ǫk)

= k(−βk(∂f(xk+1) +ATλ∗)− βkA
T (λk+1 − λ∗) + ǫk)

= −kβk∂xL(xk+1, λ
∗)− kβkA

T (λk+1 − λ∗) + kǫk.

Denote

ξk :=−
α− 1

kβk
(yk+1 − yk)−AT (λk+1 − λ∗) +

ǫk
βk

∈ ∂xL(xk+1, λ
∗). (13)

Combining (9), (13) and α > 1, we have

1

2
‖(α− 1)(yk+1 − x∗)‖2 −

1

2
‖(α− 1)(yk − x∗)‖2

= 〈(α− 1)(yk+1 − x∗), (α− 1)(yk+1 − yk)〉

−
(α− 1)2

2
‖yk+1 − yk‖

2 (14)

≤ −kβk〈(α− 1)(yk+1 − x∗), ξk〉

−kβk〈(α − 1)(yk+1 − x∗), AT (λk+1 − λ∗)〉

+〈(α− 1)(yk+1 − x∗), kǫk〉.

From assumption we have k + 1− θ ≥ 0 and α > 1. By
(13) and Step 3, we get

〈(α− 1)(yk+1 − x∗), ξk〉

= (α− 1)〈xk+1 − x∗, ξk〉+ (k + 1− θ)〈xk+1 − xk, ξk〉

≥ (α− 1)(L(xk+1, λ
∗)− L(x∗, λ∗)) (15)

+(k + 1− θ)(L(xk+1 , λ
∗)− L(xk, λ

∗)),

where the inequality follows from the convexity of
L(·, λ∗). By Step 3, Ax∗ = b, and (9), we get

1

2
‖λk+1 − λ∗‖2 −

1

2
‖λk − λ∗‖2

= 〈λk+1 − λ∗, λk+1 − λk〉 −
1

2
‖λk+1 − λk‖

2 (16)

≤ 〈λk+1 − λ∗, kβkA(yk+1 − x∗)〉.

It follows from (10) and (11) that

Eǫ
k+1 − Eǫ

k = Ek+1 − Ek − 〈(α− 1)(yk+1 − x∗), kǫk〉

≤ ((k + 1)(k + 2− θ)βk+1 − k(k + α− θ)βk)

·(L(xk+1, λ
∗)− L(x∗, λ∗))

−kβk〈(α − 1)(yk+1 − x∗), AT (λk+1 − λ∗)〉

+
α− 1

2
(‖λk+1 − λ∗‖2 − ‖λk − λ∗‖2)

≤ ((k + 1)(k + 2− θ)βk+1 − k(k + α− θ)βk)

·(L(xk+1, λ
∗)− L(x∗, λ∗)),

where the first inequality follows from (14) and (15),

and the last inequality follows from (16). This yields the
desired result.

To derive the fast convergence rates, we need the fol-
lowing scaling condition: there exist k1 ≥ max{2, θ} such
that

βk+1 ≤
k(k + α− θ)

(k + 1)(k + 2− θ)
βk, ∀k ≥ k1 − 1. (17)

Now, we start to discuss the fast convergence properties
of Algorithm 1 by the Lyapunov analysis approach.

Theorem 1 Let {(xk, yk, λk)}k≥1 be the sequence gen-
erated by Algorithm 1 and (x∗, λ∗) ∈ Ω. Assume that the
condition (17) holds and

+∞
∑

k=1

k‖ǫk‖ < +∞, lim
k→+∞

k2βk = +∞.

Then, the sequence {(yk, λk)}k≥k1
is bounded,

‖Axk − b‖ = O

(

1

k2βk

)

,

and

|f(xk)− f(x∗)| = O

(

1

k2βk

)

.

Proof. From assumptions, we can get L(xk+1, λ
∗) −

L(x∗, λ∗) ≥ 0 and (k+1)(k+2−θ)βk+1−k(k+α−θ)βk ≤
0 for any k ≥ k1. Then, for any k ≥ k1, Ek ≥ 0, and from
Lemma 1 we have

Eǫ
k ≤ Eǫ

k1
, ∀k ≥ k1.

By (10) and (11), we have

1

2
‖(α− 1)(yk − x∗)‖2 ≤ Ek

= Eǫ
k +

k
∑

j=1

〈(α− 1)(yj − x∗), (j − 1)ǫj−1〉

≤ Eǫ
k1

+

k
∑

j=1

〈(α− 1)(yj − x∗), (j − 1)ǫj−1〉 (18)

= Ek1
+

k
∑

j=k1+1

〈(α − 1)(yj − x∗), (j − 1)ǫj−1〉

≤ Ek1
+

k
∑

j=k1

(j − 1)‖(α− 1)(yj − x∗)‖ · ‖ǫj−1‖

for any k ≥ k1. Note that
∑+∞

k=1 k‖ǫk‖ < +∞. Applying
Lemma 2 with ak = ‖(α− 1)(yk+k1−1 − x∗)‖, we get

sup
k≥k1

‖(α− 1)(yk − x∗)‖ = sup
k≥1

ak < +∞.

This together with (18) yields

sup
k≥k1

Ek ≤ Ek1
+ sup

k≥k1

‖(α−1)(yk−x∗)‖·
+∞
∑

j=1

j‖ǫj‖ < +∞.

Thus, the energy sequence {Ek}k≥k1
is bounded. By (11),
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{‖yk − x∗‖}k≥k1
and {‖λk − λ∗‖}k≥k1

are bounded and

sup
k≥k1

k(k+1−θ)βk(L(xk, λ
∗)−L(x∗, λ∗)) < +∞. (19)

As a result, the sequence {(yk, λk)}k≥k1
is bounded.

From (19) we obtain

L(xk, λ
∗)− L(x∗, λ∗) = O

(

1/k2βk

)

. (20)

For notation simplicity, denote

gk :=
(k + α− θ − 1)(k − 1)βk−1

α− 1
(Axk − b). (21)

It follows from Step 3 that

λk+1 − λk1
=

k
∑

j=k1

(λj+1 − λj)

=

k
∑

j=k1

jβj(Ayj+1 − b) (22)

=

k
∑

j=k1

jβj

(

(Axj+1 − b) +
j + 1− θ

α− 1
A(xj+1 − xj)

)

=
k

∑

j=k1

(

gj+1 −
(j + 1− θ)jβj

(j + α− θ − 1)(j − 1)βj−1
gj

)

for any k ≥ k1. Let

ak = 1−
(k + 1− θ)kβk

(k + α− θ − 1)(k − 1)βk−1
, ∀k ≥ k1.

From (22), we have

λk+1 − λk1
=

k
∑

j=k1

(gj+1 − gj) +

k
∑

j=k1

ajgj

= gk+1 − gk1
+

k
∑

j=k1

ajgj.

This together with the boundedness of {λk}k≥k1
yields

∥

∥

∥

∥

∥

∥

gk+1 +

k
∑

j=k1

ajgj

∥

∥

∥

∥

∥

∥

≤ C, ∀k ≥ k1,

where

C = sup
k≥k1

‖λk+1 − λk1
‖+ ‖gk1

‖ < +∞.

From (17), we can get

0 ≤ ak < 1, ∀k ≥ k1.

Applying Lemma 4, we have

sup
k≥k1

‖gk‖ < +∞,

which together with (17) and (21) implies

‖Axk − b‖ = O

(

1

k2βk

)

.

It follows from (20) that

|f(xk)− f(x∗)|

≤ L(xk, λ
∗)− L(x∗, λ∗) + ‖λ∗‖‖Axk − b‖

= O

(

1

k2βk

)

.

Remark 1 The assumption (17) is just the assump-
tion (Hβ,θ) appears in Attouch, Chbani, & Riahi (2019)
for convergence rate analysis of inertial proximal al-
gorithms for the unconstrained optimization problems,
and Theorem 1 can be viewed as an extension of
(Attouch, Chbani, & Riahi, 2019, Theorem 3.1 and The-
orem 7.1) from the unconstrained case to the problem
(1).

From Theorem 1, we can obtain the best decay rate
when the condition (17) holds with equality, such that

βk+1 =
k(k + α− θ)

(k + 1)(k + 2− θ)
βk, ∀k ≥ k1 − 1 (23)

with k1 ≥ max{2, θ}.

Corollary 1 Suppose the assumptions of Theorem 1
hold and that {βk}k≥1 satisfies (23). Let {(xk, yk, λk)}k≥1

be the sequence generated by Algorithm 1 and (x∗, λ∗) ∈
Ω. Then,

‖Axk − b‖ = O

(

1

kα−1

)

,

|f(xk)− f(x∗)| = O

(

1

kα−1

)

.

Proof. From (23), we have

(k+1)(k+ 2− θ)βk+1 = (1 +
α− 1

k + 1− θ
)k(k +1− θ)βk

for all k ≥ k1. Let

γk = (k + k1 − 1)(k + k1 − θ)βk+k1−1, ∀k ≥ 1. (24)

Then,

γk+1 = (1 +
α− 1

k + k1 − θ
)γk, ∀k ≥ 1.

By Lemma 5, there exists µ1 > 0 and µ2 > 0 such that

µ1k
α−1 ≤ γk ≤ µ2k

α−1.

This together with (24) and Theorem 1 yields the desired
result.

Remark 2 Under the assumption that f is strongly
convex and has an (α − 2)–th Lipschitz gradient,
Fazlyab et al. (2017) proposed an O(1/kα−1) conver-
gence rate algorithm for the problem (1). As a compar-
ison, Algorithm 1 can enjoy the O(1/kα−1) decay rate
under the merely convexity assumption.

Let Id be the identity matrix and S+(n) be the set
of all positive semidefinite matrixes in Rn×n. Denote
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‖x‖2M = xTMx for any x ∈ Rn and M ∈ S+(n). For any
M1,M2 ∈ S+(n), denote

M1 < M2 ⇐⇒ ‖x‖M1
≥ ‖x‖M2

, ∀x ∈ R
n.

It is easy to verify that for any x, y ∈ Rn, M ∈ S+(n),

1

2
‖x‖2M −

1

2
‖y‖2M = 〈x,M(x − y)〉 −

1

2
‖x− y‖2M .

Then, we can replace the subproblem of step 2 with

xk+1 = argmin
x∈Rn

{f(x) +
k + α− θ

2kβk
‖x− x̄k‖

2
M

+
ϑk

2
‖Ax− ηk‖

2 + 〈ATλk −
ǫk
βk

, x〉}, (25)

where M < κId for some κ > 0. Redefine (11) as

Ek = k(k + 1− θ)βk(L(xk, λ
∗)− L(x∗, λ∗))

+
1

2
‖(α− 1)(yk − x∗)‖2M +

α− 1

2
‖λk − λ∗‖2.

Through the arguments similar to the ones in Theorem
1, we can get the same convergence results. In particular,
when the perturbation ǫk ≡ 0, which means that the
subproblems are solved with exact or high precision, we
can take κ = 0.

3 Convergence properties of inertial primal-
dual dynamical system

In this section, for a better understanding of the ac-
celeration scheme of Algorithm 1, we will investigate
the convergence properties of the dynamical system
(3). When ∇f is globally Lipschitz continuous, β(t)
is a continuous differentiable function, through the
Cauchy–Lipschitz theorem (Haraux, 1991, Proposition
6.2.1) and the similar discussions in (Attouch et al.,
2022, Theorem 5), we can prove that (3) has a unique
strong global C2 solution. In what follows, we always
assume that f is a proper, convex and differentiable
function and that (3) admits a global solution.

Theorem 2 Assume that α > 1, β : [t0,+∞) →
(0,+∞) is a continuous differentiable function satisfying

tβ̇(t) ≤ (α− 3)β(t), lim
t→+∞

t2β(t) = +∞, (26)

and ǫ : [t0,+∞) → Rn is an integrable function satisfy-
ing

∫ +∞

t0

t‖ǫ(t)‖dt < +∞.

Let (x(t), λ(t)) be a global solution of the dynamical sys-
tem (3) and (x∗, λ∗) ∈ Ω. Then,

‖Ax(t) − b‖ = O

(

1

t2β(t)

)

,

|f(x(t))− f(x∗)| = O

(

1

t2β(t)

)

.

Proof. Define the energy function Eǫ : [t0,+∞) → R as

Eǫ(t) = E(t)−

∫ t

t0

〈(α− 1)(y(s)− x∗), sǫ(s)〉ds,

where E(t) = E0(t) + E1(t) with

{

E0(t) = t2β(t)(L(x(t), λ∗)− L(x∗, λ∗)),
E1(t) = 1

2‖(α− 1)(y(t)− x∗)‖2 + α−1
2 ‖λ(t)− λ∗‖2,

(27)
and y(t) is defined by (4). By the classical differential
calculations, (2) and (4), we have

Ė0(t) = t2β(t)〈∇f(x(t)) +ATλ∗, ẋ(t)〉

+(2tβ(t) + t2β̇(t))(L(x(t), λ∗)− L(x∗, λ∗))

and

Ė1(t) = 〈(α− 1)(y(t)− x∗), (α− 1)ẏ(t)〉

+(α− 1)〈λ(t)− λ∗, λ̇(t)〉

=−(α− 1)tβ(t)〈y(t)− x∗,∇f(x(t)) +ATλ(t)〉

+〈(α− 1)(y(t)− x∗), tǫ(t)〉

+(α− 1)tβ(t)〈λ(t) − λ∗, A(y(t)− x∗)〉

=−(α− 1)tβ(t)〈x(t) − x∗,∇f(x(t)) +ATλ∗〉

−t2β(t)〈ẋ(t),∇f(x(t)) +ATλ∗〉

+〈(α− 1)(y(t)− x∗), tǫ(t)〉.

By computation, we get

Ėǫ(t) = Ė0(t) + Ė1(t)− 〈(α − 1)(y(t)− x∗), tǫ(t)〉

= (α − 1)tβ(t)(f(x(t)) − f(x∗)− 〈x(t) − x∗,∇f(x(t))〉)

+t(tβ̇(t)− (α− 3)β(t))(L(x(t), λ∗)− L(x∗, λ∗)) (28)

≤ t(tβ̇(t)− (α− 3)β(t))(L(x(t), λ∗)− L(x∗, λ∗)),

where the inequality follows from the convexity of f .
Since (x∗, λ∗) ∈ Ω, it is easy to verify that L(x(t), λ∗)−
L(x∗, λ∗) ≥ 0 and E(t) ≥ 0. By assumptions and (28),

we get that Ėǫ(t) ≤ 0. As a result,

Eǫ(t) ≤ Eǫ(t0) = E(t0), ∀t ∈ [t0,+∞).

By the definitions of E(t) and Eǫ(t), and using the
Cauchy-Schwarz inequality, for any t ∈ [t0,+∞) we have

1

2
‖(α− 1)(y(t)− x∗)‖2 ≤ E(t)

= Eǫ(t) +

∫ t

t0

〈(α− 1)(y(s)− x∗), sǫ(s)〉ds, (29)

≤ E(t0) +

∫ t

t0

‖(α− 1)(y(s)− x∗)‖ · s‖ǫ(s)‖ds.

Apply Lemma 3 with µ(t) = ‖(α− 1)(y(t)− x∗)‖ to get

sup
t∈[t0,+∞)

‖(α− 1)(y(t)− x∗)‖

≤
√

2E(t0) +

∫ +∞

t0

s‖ǫ(s)‖ds < +∞.

This together with (29) implies

sup
t∈[t0,+∞)

E(t) ≤ E(t0)

+ sup
t∈[t0,+∞)

‖(α− 1)(y(t)− x∗)‖ ·

∫ +∞

t0

s‖ǫ(s)‖ds

< +∞.
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So, E(t) is bounded, and then from (27) we get

L(x(t), λ∗)− L(x∗, λ∗) = O

(

1

t2β(t)

)

, (30)

and λ(t) is bounded on [t0,+∞).

By the partial integration, we can compute

∫ t

t0

s2β(s)Aẋ(s)ds =

∫ t

t0

s2β(s)d(Ax(s) − b)

= t2β(t)(Ax(t) − b)− t20β(t0)(Ax(t0)− b)

−

∫ t

t0

(2sβ(s) + s2β̇(s))(Ax(s) − b)ds.

Then, from the second equation of (3) we have

(α− 1)(λ(t) − λ(t0)) =

∫ t

t0

(α− 1)λ̇(s)ds

= (α− 1)

∫ t

t0

sβ(s)A(x(s) − b)ds+

∫ t

t0

s2β(s)Aẋ(s)ds

= t2β(t)(Ax(t) − b)− t20β(t0)(Ax(t0)− b) (31)

+

∫ t

t0

a(s)s2β(s)(Ax(s) − b)ds,

where

a(s) =
α− 3

s
−

β̇(s)

β(s)
.

From (26) and the boundedness of λ(t), we get a(t) ≥ 0
and
∥

∥

∥

∥

t2β(t)(Ax(t) − b) +

∫ t

t0

a(s)s2β(s)(Ax(s) − b)ds

∥

∥

∥

∥

≤ C

(32)
for all t ≥ t0, where

C = (α− 1) sup
t≥t0

‖λ(t)− λ(t0)‖+ ‖t20β(t0)(Ax(t0)− b)‖

<+∞.

Now, applying Lemma 6 with g(t) = t2β(t)(Ax(t) − b),
we obtain

sup
t≥t0

‖t2β(t)(Ax(t) − b)‖ = sup
t≥t0

‖g(t)‖ < +∞,

which is

‖Ax(t) − b‖ = O

(

1

t2β(t)

)

.

This together with (30) implies

|f(x(t)) − f(x∗)|

≤ L(x(t), λ∗)− L(x∗, λ∗) + ‖λ∗‖‖Ax(t)− b‖

= O

(

1

t2β(t)

)

.

Remark 3 Theorem 2 generalizes (Attouch, Chbani, & Riahi,
2019, TheoremA.1) from the unconstrained optimization

problem to the problem (1). Taking tβ̇(t) = (α− 3)β(t),

then β(t) = β(t0)

tα−3

0

tα−3. From Theorem 2 we obtain the

best O(1/tα−1) decay rate of the objective residual and
the feasibility violation. By contrast, under the strong
convexity assumption of f , Fazlyab et al. (2017) only

obtained the O(1/tα−1) convergence rate of the dual

residual and the O(1/t
α−1

2 ) convergence rate of the fea-
sibility violation for their dual dynamical system with
α/t damping.

Remark 4 As a comparison with the results on dy-
namical systems in Attouch et al. (2022); Boţ & Nguyen
(2021), we use a different method (Lemma 6) to prove
the fast convergence results of (3). By our method, we
can simplify the proof process of (Boţ & Nguyen, 2021,
Theorem 3.4), and also can improve the convergence
rate results of the objective residual and the feasibil-
ity violation in (Attouch et al., 2022, Theorem 1) from
O(1/t1/2α0) to O(1/t1/α0).

Remark 5 The growth condition (17) can be rewritten
as

βk+1 − βk ≤
(α− 3)k + θ − 2

(k + 1)(k + 2− θ)
βk.

This can be viewed as a discretized version of β̇(t) ≤
α−3
t β(t), which is (26). From Corollary 1, we know that

the scaling βk with (23) has the same order as kα−3, so it
is the same order as the continuous function µtα−3 with
µ > 0. In this sense, Theorem 2 provides a dynamical
interpretation of the fast convergence properties of Algo-
rithm 1.

4 Numerical experiments

In this section, we test Algorithm 1 on solving the
linearly constrained ℓ1 − ℓ2 minimization problem. The
numerical results demonstrate the validity and superior
performance of our algorithm over some existing accel-
erated algorithms.

Consider the ℓ1 − ℓ2 minimization problem

min
x

‖x‖1 +
δ

2
‖x‖22 s.t. Ax = b,

where A ∈ Rm×n and b ∈ Rm. Set m = 1500, n = 3000
and δ = 0.1. Generate A by the standard Gaussian dis-
tribution and the original solution (signal) x∗ ∈ Rn by
the Gaussian distribution N (0, 4) in [−2, 2] with 10%
nonzero elements. The noise ω is generated by the stan-
dard Gaussian distribution and normalized to the norm
‖ω‖ = 10−6,

b = Ax∗ + ω.
In the numerical examples, we solve the subproblems
by the fast iterative shrinkage-thresholding algorithm
(FISTA) Beck & Teboulle (2009) with the stopping con-
dition

‖zk − zk−1‖2

max{‖zk−1‖, 1}
≤ subtol

or the number of iterations exceeds 100, where zk is the
iterative sequence of FISTA to solve the subproblem and
subtol is the precision. Denote the relative error Rel =
‖x−x∗‖
‖x∗‖ and the residual error Res = ‖Ax− b‖.

We compare Algorithm 1 (FPD) (update the primal
variable by (25)) with IAALM (Kang, Kang, & Jung,
2015, Algorithm 1) (O(1/k2) convergence rate of the
Lagrange residual), and AALM (Xu, 2017, Algorithm
1) with adaptive parameters (O(1/k2) convergence rate
of the objective residual and the feasibility violation).
Set the parameters as follows: FPD: α = 50, M = 1

nId,

β0 = 0.2
θ , ǫk = 0 and

βk+1 =

{

βk, k < θ − 1;
k

k+2−θβk, k ≥ θ − 1,
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Fig. 1. Numerical results of FPD, IAALM and AALM under
different tolerance of subproblems

where θ = {2, 3, 4} (In this case, from Lemma 5, the
decay rate is O(1/kθ)); IAALM: τ = {0.1, 1}; AALM:
γ = 0.1, αk = 2

k+1 , βk = γk = kγ, Pk = 1
k Id.

In Fig. 1, we present the numerical results for various
subtol for first 100 iterations, which demonstrate the
superior performance of Algorithm 1 over IAALM and
AALM under different subtol. We can also observe that
the larger θ is, the better Algorithm 1 performs.

5 Conclusion

By time discretization of the primal-dual dynamical
system (3), we propose an accelerated primal-dual al-
gorithm for the linear equality constrained optimiza-
tion problem, and prove that the algorithm enjoys the
fast convergence rate |f(xk)− f(x∗)| = O(1/k2βk) and
‖Axk−b‖ = O(1/k2βk). Further, we prove that the pro-
posed dynamical system owns a fast convergence prop-
erties matching to that of the algorithm.We exhibit that
the known rates from the literature can be obtained for
the second-order dynamical system and the accelerated
primal-dual algorithm where only inertial constructions
in the sense of Nesterov are needed only for the primal
variable. The numerical experiments demonstrate the
validity of acceleration and superior performance of the
proposed algorithm over some existing ones.

A Some auxiliary results

The following lemmas have been used in the conver-
gence analysis of the numerical algorithm and the dy-
namical system.

Lemma 2 (Attouch et al., 2018, Lemma 5.14) Let
{ak}k≥1 and {bk}k≥1 be two nonnegative sequences.

Assume
∑+∞

k=1 bk < +∞ and

a2k ≤ c2 +

k
∑

j=1

bjaj, ∀k ∈ N,

where c ≥ 0. Then,

sup
k≥1

ak ≤ c+

+∞
∑

j=1

bj < +∞.

Lemma 3 (Brezis, 1973, Lemma A.5) Let ν : [t0, T ] →
[0,+∞) be integrable and M ≥ 0. Suppose that µ :
[t0, T ] → R is continuous and

1

2
µ(t)2 ≤

1

2
M2 +

∫ t

t0

ν(s)µ(s)ds

for all t ∈ [t0, T ]. Then, |µ(t)| ≤ M +
∫ t

t0
ν(s)ds for all

t ∈ [t0, T ].

Lemma 4 Let {gk}k≥k0
be a sequence of vectors in Rn

and {ak}k≥k0
be a sequence in [0, 1), where k0 ≥ 1. As-

sume
∥

∥

∥

∥

∥

∥

gk+1 +
k
∑

j=k0

ajgj

∥

∥

∥

∥

∥

∥

≤ C, ∀k ≥ k0.

Then,
sup
k≥k0

‖gk‖ < +∞.

Proof. Define {Gk}k≥k0
be a sequence of vectors in Rn

as

Gk = ρk

k
∑

j=k0

ajgj (A.1)

with ρk0
= 1 and

ρk+1 =
ρk

1− ak+1
, ∀k ≥ k0.

Since ak ∈ [0, 1), ρk+1 − ρk = ak+1ρk

1−ak+1
= ρk+1ak+1 ≥ 0.

A direct computation leads to

Gk+1 −Gk = ρk+1

k+1
∑

j=k0

ajgj − ρk

k
∑

j=k0

ajgj

= ρk+1ak+1gk+1 + (ρk+1 − ρk)

k
∑

j=k0

ajgj

= (ρk+1 − ρk)(gk+1 +

k
∑

j=k0

ajgj),

which together with assumption yields

‖Gk+1 −Gk‖ ≤ C(ρk+1 − ρk), ∀k ≥ k0.

Using triangle inequality, we get

‖Gk‖= ‖Gk0
+

k−1
∑

j=k0

(Gj+1 −Gj)‖
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≤ ‖Gk0
‖+

k−1
∑

j=k0

‖Gj+1 −Gj‖

≤ ‖Gk0
‖+ C

k−1
∑

j=k0

(ρj+1 − ρj)

= ‖Gk0
‖+ C(ρk − 1)

for all k ≥ k0. Combining (A.1) and ρk ≥ 1 we have

∥

∥

∥

∥

∥

∥

k
∑

j=k0

ajgj

∥

∥

∥

∥

∥

∥

≤ ‖Gk0
‖+ C, ∀k ≥ k0.

This together with assumption and triangle inequality
implies

sup
k≥k0

‖gk‖ ≤ max{gk0
, ‖Gk0

‖+2C} ≤ ‖gk0
‖+2C < +∞.

Lemma 5 Let {γk}k≥1 ⊂ (0,+∞) be a positive se-
quence such that γk+1 = (1 + a

k+b )γk for any k ≥ 1,
where a > 0 and b ≥ 0. Then, there exist µ1 > 0 and
µ2 > 0 such that

µ1k
a ≤ γk ≤ µ2k

a.

Proof. Define ϕ : [1,+∞) → (0,+∞) as

ϕ(t) = (k+1− t)γk +(t− k)γk+1 =
k + b+ a(t− k)

k + b
γk

for any k ≤ t < k + 1. It is easy to verify that ϕ(t) is
a positive, piecewise linear and nondecreasing function.
By the definition of γk, we can compute

ϕ̇(t) = γk+1 − γk =
a

k + b
γk =

a

k + b+ a(t− k)
ϕ(t)

for any t ∈ (k, k + 1). It yields

ϕ̇(t)

ϕ(t)
=

a

(1− a)k + b+ at
, ∀t ∈ (k, k + 1).

Then for any t ≥ 1, we have

{

a
t+b ≤ ϕ̇(t)

ϕ(t) ≤
a

t+a+b−1 , 0 ≤ a ≤ 1,
a

t+a+b−1 ≤ ϕ̇(t)
ϕ(t) ≤

a
t+b , a > 1.

Since ϕ(t) is a piecewise linear function, integrating the
above inequalities over [0, t], we have

a ln(t+ b) + C1 ≤ lnϕ(t) ≤ a ln(t+ a+ b− 1) + C2

as 0 ≤ a ≤ 1, and

a ln(t+ a+ b− 1) + C1 ≤ lnϕ(t) ≤ a ln(t+ b) + C2

as a > 1, where C1 and C2 are two constant. It follows
that
{

eC1(t+ b)a ≤ ϕ(t) ≤ eC2(t+ a+ b − 1)a, 0 ≤ a ≤ 1,
eC1(t+ a+ b− 1)a ≤ ϕ(t) ≤ eC2(t+ b)a, a > 1.

As a result, for any a > 0 there exists µ1 > 0 and µ2 > 0
such that µ1t

a ≤ ϕ(t) ≤ µ2t
a. Letting t = k leads to the

result.

Lemma 6 Assume that g : [t0,+∞) → Rn is a contin-
uous function, a : [t0,+∞) → [0,+∞) is a continuous
function, t0 > 0, and C ≥ 0. If

∥

∥

∥

∥

g(t) +

∫ t

t0

a(s)g(s)ds

∥

∥

∥

∥

≤ C, ∀t ≥ t0, (A.2)

then
sup
t≥t0

‖g(t)‖ < +∞.

Proof. Define G : [t0,+∞) → Rn by

G(t) = e

∫

t

t0

a(s)ds
·

∫ t

t0

a(s)g(s)ds. (A.3)

From (A.2) and (A.3), we have

∥

∥

∥
Ġ(t)

∥

∥

∥
≤ Ca(t)e

∫

t

t0

a(s)ds
.

Note that G(t0) = 0. It follows that

‖G(t)‖=

∥

∥

∥

∥

∫ t

t0

Ġ(s)ds

∥

∥

∥

∥

≤

∫ t

t0

∥

∥

∥
Ġ(s)

∥

∥

∥
ds

≤

∫ t

t0

Ca(s)e

∫

s

t0

a(h)dh
ds = Ce

∫

t

t0

a(s)ds
− C.

This together with (A.3) yields

∥

∥

∥

∥

∫ t

t0

a(s)g(s)ds

∥

∥

∥

∥

≤ C, ∀t ≥ t0.

From (A.2) and triangle inequality, we get

sup
t≥t0

‖g(t)‖ ≤ 2C < +∞.
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