
Minimum Structural Sensor Placement for Switched Linear

Time-Invariant Systems and Unknown Inputs

Emily A. Reed∗, Guilherme Ramos∗, Paul Bogdan, Sérgio Pequito

July 29, 2021

Abstract

In this paper, we study the structural state and input observability of continuous-time switched linear time-
invariant systems and unknown inputs. First, we provide necessary and sufficient conditions for their structural
state and input observability that can be efficiently verified in O((m(n + p))2), where n is the number of state
variables, p is the number of unknown inputs, and m is the number of modes. Moreover, we address the minimum
sensor placement problem for these systems by adopting a feed-forward analysis and by providing an algorithm
with a computational complexity of O((m(n + p) + α)2.373), where α is the number of target strongly connected
components of the system’s digraph representation. Lastly, we explore different assumptions on both the system and
unknown inputs (latent space) dynamics that add more structure to the problem, and thereby, enable us to render
algorithms with lower computational complexity, which are suitable for implementation in large-scale systems.

1 Introduction

Scientists and engineers model systems by describing the nature of their dynamics and the environment in which
they interact. One powerful tool to model complex switching dynamics is to adopt a switched linear time-invariant
framework. This model assumes that the system under scrutiny transitions between different (yet known) linear
time-invariant dynamics, where such transitions are discrete in nature and are captured by a switching signal for
which the sequence of the switches may not be known a priori. Examples of such systems include the power electric
grid [9], where the change in dynamics may be dictated by a faulty transmission line [24, 23], or a multi-agent system
[27, 26], where the dynamics may change due to a loss in communication among agents.

However, modeling scenarios often neglect the fact that the interaction of a dynamical system with its environment
introduces errors. We can describe these external environmental errors by unknown inputs entering into the dynamical
system. For instance, in the power grid, the generated power and/or the customer demand behave as unknown inputs.
Similarly, in multi-agent robotic systems, particularly in surface vehicles, friction behaves as an unknown input,
whereas in the context of unmanned aerial vehicles, airflow or ocean currents act as unknown inputs. An alternate
scenario is in networked systems where the unknown input is due to the interconnections with the remaining hidden
network [12, 2, 8, 30, 10, 11]. As is evident in the previously mentioned examples, in control engineering, a recurrent
practice is that of modeling the unknown inputs in a latent space that can capture the main features of the incoming
signal but does not model the system from which the unknown input originates.

To monitor such switched linear time-invariant systems under unknown inputs requires us to assess both the state and
the inputs by guaranteeing that the system is state and input observable [29]. Often, however, we cannot accurately
know the parameters of the system. Moreover, if the parameters are known, the study of controllability and/or
observability properties leads to NP-hard problems [25]. Hence, we assume that only the structure of the system is
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known meaning that a system parameter is either zero or could take on any real scalar value [22]. In this context, we
can rely on the notion of structural state and input observability that yields state and input observability for almost
all system parameterizations.

Previous work has provided the necessary and sufficient conditions to ensure structural state and input observability
for discrete-time systems under unknown inputs [28]. Nonetheless, the counterpart for continuous-time switched linear-
time invariant systems under unknown inputs were only studied in [4] and [5, 3]. In particular, [4, 3] considers the
graph-theoretic necessary and sufficient conditions for generic discrete mode observability of a continuous-time switched
linear system with unknown inputs and proposed a computational method to verify such conditions with a complexity
of O(n6), where n is the number of states. The works of [5, 3] present sufficient conditions for the generic observability
of the discrete mode of continuous-time switched linear systems with unknown inputs and find an exhaustive location
set to place sensors when these conditions are not satisfied with a computational complexity of O(n4). However, none
of these works considered the minimum number of required sensors and their placement to guarantee structural state
and input observability as we consider in this work. This problem is important in designing control schemes for large
scale systems and is often referred to as the minimum sensor placement. While this problem has been studied for a
variety of systems [19], to the best of the authors’ knowledge, it has not been studied in the context of continuous-time
switched linear time-invariant systems under unknown inputs.

The main contributions of this manuscript are as follows. We first provide necessary and sufficient conditions for
structural state and input observability of continuous-time switched linear-time invariant systems under unknown
inputs. Moreover, we can verify these conditions in O((m(n+ p))2), where n is the number of state variables, p is the
number of unknown inputs, and m is the number of modes. Furthermore, we address the minimum sensor placement for
these systems using a feed-forward analysis and an algorithm with a computational complexity of O((m(n+p)+α)2.373),
where the n×n matrix multiplication algorithm with best asymptotic complexity runs in O(nς), with ς ≈ 2.3728596 [1],
and where α is the number of target strongly connected components of the system’s digraph representation. We explore
different assumptions on both the system and unknown input (latent space) dynamics to obtain more structure that
enables us to provide new algorithms with lower computational complexity suitable to deal with large-scale systems.
Finally, we present a real-world example from power systems to illustrate our results.

We structure the remainder of our paper as follows. Section 2 provides the addressed problem formulation. Section 3
presents the main results including two graph-theoretic conditions for structural state and input observability for
switched linear time-invariant systems with unknown inputs as well as an algorithm that determines the minimum set
of state and input variables for ensuring structural state and input observability. Section 4 discusses several classes
of switched linear time-invariant systems for which we can find a solution with a better computational complexity.
Section 5 provides a real-world example from power systems to illustrate our results. Finally, Section 6 concludes the
paper and points out new directions for future research.

2 Problem statement

In this paper, we consider a continuous-time switched linear time-invariant (LTI) system with (unknown) inputs that
can be described as follows:

ẋ(t) =Aσ(t)x(t) + Fσ(t)d(t), (1a)

ḋ(t) =Qσ(t)d(t), (1b)

y(t) =Cσ(t)x(t) +Dσ(t)d(t), (1c)

where x(t) ∈ Rn is the state, d(t) ∈ Rp represents the unknown inputs, y(t) ∈ Rn is the output, and σ(t) : [0,∞) →
M ≡ {1, . . . ,m} is the unknown switching signal. System (1) contains m possible known subsystems also known as
modes, which we denote by the tuple (Ak, Fk, Qk, Ck, Dk), where σ(t) = k ∈M. Lastly, we implicitly assume that the
dwell time of each mode is greater than 0.

In what follows, we seek to assess and determine the minimum sensor placement that ensures state and input
observability for the continuous-time switched LTI system with unknown inputs in (1).

Definition 1 (State and Input Observability
[18]). The switched LTI system described by (Aσ(t), Fσ(t), Qσ(t), Cσ(t), Dσ(t), σ(t); Tf ) is said to be state and input
observable for a time horizon Tf if and only if the initial state x(t0) and the unknown inputs d(t) where t ∈ [t0, Tf ]
can be uniquely determined, given (Aσ(t), Fσ(t), Qσ(t), Cσ(t), Dσ(t), σ(t);Tf ) and measurements y(t) (t0 ≤ t ≤ Tf ). ◦
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In this paper, we focus on the sensor placement problem. For the sake of simplicity, we assume that the measurements
take the following form

y(t) = Cx(t) +Dd(t). (1c’)

Simply speaking, we assume that the output and feed-forward matrices are the same across all modes. Notice that
this assumption can be waived as we discuss in the following Remark 2.

Remark 2. We can consider a fixed set of measurements represented by C and D without loss of generality since

taking the union of the measurements made in different modes, represented by Cσ(t) and Dσ(t), will result in the total

set represented by C and D. �

We assume that each sensor is dedicated, meaning that each sensor can measure only one state or only one input.
Considering an arbitrary set of sensors would lead to an NP-hard problem as this is the case for the linear time-invariant
systems [19]. We state this formally in the following assumption.

A1 The output matrix and feed-forward matrix are written as C = IJxn and D = IJdp , where IJxn is a matrix where its
rows are composed of canonical identity matrix rows that are each multiplied with any arbitrary value. These canonical
rows are indexed by Jx = {1, . . . , n}. Similarly, IJdp is a matrix where its rows are composed of canonical identity
matrix rows that are each multiplied with any arbitrary value. These canonical vectors are indexed by Jd = {1, . . . , p}.

Due to uncertainty in the system’s parameters, we consider a structural systems framework [22]. We introduce the
following definition for a structural matrix.

Definition 3. (Structural Matrix) A matrix M̄ ∈ {0, ?}m1×m2 is referred to as a structural matrix if M̄ij = 0, then
Mij = 0, and if M̄ij = ?, then Mij ∈ R, so Mij is any arbitrary real number and Mij is assumed to be independent of
Mi′j′ for all i, j, i′, j′ such that i 6= i′ and j 6= j′.

With this notion in mind, we next define structural state and input observability for the switched LTI system with
unknown inputs in (1).

Definition 4. (Structural State and Input Observability) The switched LTI system with unknown inputs described by
the structural matrices
(Āσ(t), F̄σ(t), Q̄σ(t), C̄σ(t), D̄σ(t), σ(t);Tf ) is said to be structurally state and input observable for a time horizon Tf if
and only if there exists a system described by (Aσ(t), Fσ(t), Qσ(t), Cσ(t), Dσ(t), σ(t);Tf ) that is state and input observable
and satisfies the structural pattern imposed by the structural matrices (Āσ(t), F̄σ(t), Q̄σ(t), C̄σ(t), D̄σ(t)). ◦

Subsequently, the problem statement we seek to address in this paper is as follows: given Āσ(t), F̄σ(t), Q̄σ(t), which
are the known structural matrices of system in (1a) and (1b), and time horizon Tf , we aim to find the minimum set
of states Jx and inputs Jd that need to be measured to ensure structural state and input observability. We present
this formally as

min
Jx⊆{1,...,n}
Jd⊆{1,...,p}

|Jx|+ |Jd|

s.t. (Āσ(t), F̄σ(t), Q̄σ(t), ĪJxn , ĪJdp , σ(t);Tf )

is struct. state and input observable.

(P1)

For the sake of clarity, we assume that the matrix F̄σ(t) does not have zero columns as this would correspond to
having disturbances that do not affect the dynamics of the system.

3 Minimum Structural Sensor Placement for Switched LTI Systems with
Unknown Inputs

In this section, we proceed as follows. First, we provide necessary and sufficient conditions for the feasibility of the
optimization problem P1. Second, we characterize the minimal solution of problem P1. Next, we develop an algorithm
to obtain a solution to P1, and we assess its computational complexity. Lastly, we provide a discussion about the
trade-offs between the assumptions on the dynamics and the algorithms used to solve the proposed problem.

We start by introducing the notion of generic rank, which allows us to provide conditions for structural state and
input observability of continuous-time switched LTI systems with unknown inputs.
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Definition 5. (Generic rank): The generic rank (g-rank) of an n1 × n2 structural matrix M̄ is

g − rank(M̄) = max
M∈[M̄ ]

rank(M),

where [M̄ ] = {M ∈ Rn1×n2 : Mi,j = 0 if M̄ij = 0}. ◦

Next, we introduce several graph-theoretical and algebraic definitions required for defining the conditions for state
and input observability of switched LTI systems with unknown inputs.

A directed graph associated with any structural system matrix M̄ is constructed in the following manner. A directed
graph is written as G(M̄) = (V, E), where V denotes the set of vertices (or nodes) such that V =Mx, and E denotes the
(directed) edges between the vertices in the graph such that E = EMx,Mx

= {(mj ,mi) : M̄(i, j) 6= 0}. For a specific
time t′ such that σ(t′) = k, we associate the system in (1a) and (1b) with a system digraph G ≡ G(Āk, F̄k, Q̄k, IJxn , IJdp ) =

(V, Ek), where V = X ∪ D ∪ Y, X = {x1, . . . , xn}, D = {d1, . . . , dp}, and Y = {y1, . . . , yn} are the state, unknown
input, and output vertices, respectively. Furthermore, we have that Ek = EkX ,X ∪ EkD,X ∪ EkD,D ∪ EX ,Y ∪ ED,Y , where

EkX ,X = {(xj , xi) : Āk(i, j) 6= 0}, EkD,X = {(dj , xi) : F̄k 6= 0}, EkD,D = {(dj , di) : Q̄k 6= 0}, EX ,Y = {(xj , yi) : IJxn (i, j) 6=
0}, and ED,Y = {(dj , yi) : IJdp (i, j) 6= 0} are the state, input, and output edges, respectively.

Next, we introduce a mathematical operator, which plays a key role in presenting the conditions for structural state
and input observability of switched LTI systems with unknown inputs.

Definition 6. (Union of structural matrices) The mathematical operator ∨ is an entry-wise operation such that a
structural matrix Ā =

∨m
k=1 Āk = Ā1 ∨ Ā2 ∨ · · · ∨ Ām has a non-zero entry at (i, j) if at least one of the matrices Āk

has a non-zero entry in that same location (i, j), and Ā(i, j) = 0, otherwise. ◦

With this definition, we introduce the directed graphs G
(∨m

k=1 Ā
′
k

)
and G

(∨m
k=1 Ā

′
k, C̄

′). More specifically, G
(∨m

k=1 Ā
′
k

)
=

(X ′, EX ′,X ′) where EX ′ = {(x′j , x′i) :
∨m
k=1 Ā

′
ki,j
6= 0}. In addition, G

(∨m
k=1 Ā

′
k, C̄

′) = (V, E) where V = X ′ ∪ Y ′ and

E = EX ′,X ′ ∪EX ′,Y′ such that EX ′,X ′ = {(x′j , x′i) :
∨m
k=1 Ā

′
ki,j
6= 0} and EX ′,Y′ = {(x′j , y′i) : C ′i,j 6= 0}. We next introduce

the necessary and sufficient conditions for structural state and input observability for continuous-time switched LTI
systems with unknown inputs.

Theorem 7 (Necessary and sufficient conditions for structural state and input observability). A continuous-time
switched LTI system with unknown inputs in (1a), (1b), and (1c’) is structurally state and input observable if and only if
the next two conditions hold:

(i) G
(

m∨

k=1

Ā′k, C̄
′
)

has all state vertices that access at least one output vertex;

(ii) g-rank
(
[Ā′1; . . . ; Ā′m; C̄ ′]

)
= n+ p,

where, for k ∈M and the matrices Ā′k and C̄ ′ are defined as Ā′k =
[
Q̄k 0
F̄k Āk

]
and C̄ ′ = [ D̄ C̄ ] . ◦

Remark 8. Consider a switching signal that ensures the structural observability of the switched linear continuous-time
systems. The order of transitions of system modes does not influence its structural observability. This property comes
from the fact that:

• the “ ∨” operation, in condition (i) Theorem 7, is commutative;
• a permutation of the matrices, in condition (ii) Theorem 7, yields the same g-rank. �

Next, we define a few other important graph-theoretic concepts. A bipartite graph denoted as B associates a matrix
M of dimension n1 × n2 to two vertex sets Vr = {1, . . . , n1} and Vc = {1, . . . , n2}, which are the set of row and
column vertices, respectively. The connections in the matrix M relate to the connections between vertex sets Vr and
Vc by an edge set EVc,Vr = {(vcj , vri) : Mij 6= 0} thereby allowing the bipartite graph of matrix M to be written as
B(Vc,Vr, EVc,Vr ). A matching is a collection of edges where the beginning vertex is different from the ending vertex
for all edges in the set and there are no two edges in the set that have any of the same vertices. A maximum matching
is the matching that has the maximum number of edges among all possible matchings. A weighted bipartite graph of
a matrix M , denoted as B((Vc,Vr, EVc,Vr ), w), has weights w : EVc,Vr → R associated with the edges in the bipartite
graph. Finding the maximum matching such that the sum of the weights is minimized in the weighted bipartite graph
is called the minimum weight maximum matching (MWMM).
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Now, we must introduce the notions of a strongly connected component and non-accessible states. Let Z≥0 denote
the set of non-negative integers. First, we define a path of size l ∈ Z≥0 as a sequence of vertices, ps = (v1, v2, . . . , vl),
where the vertices do not repeat, vi 6= vj for i 6= j, and (vi, vi+1) is an edge of the directed graph for i = 1, . . . l − 1.
A subgraph denoted by G(V ′, E ′) is a subset of vertices V ′ ⊂ V and its corresponding edges E ′ ⊂ E of a particular
graph G(V, E). A connected component is any subgraph with paths that connect any two vertices in the subgraph. A
connected component is said to be a strongly connected component (SCC) if the subgraph is maximal meaning there
is no other subgraph that contains the maximal subgraph. A sink SCC is a strongly connected component that is
connected to an output vertex. A source SCC is a strongly connected component that is connected to an input vertex.
A target-SCC is a strongly connected component that does not have any outgoing edges. We note that every digraph
can be represented as a directed acyclic graph (DAG), where each node in the DAG represents an SCC in the digraph.
Finally, a non-accessible state is one that does not have a path to an output vertex (either measuring a state or input).

We present graph-theoretic conditions for structural state and input observability of continuous-time switched LTI
systems with unknown inputs.

Corollary 9. A switched LTI continuous-time system (1) is structurally observable if and only if the next two condi-
tions hold:

(i) there exists an edge from one state variable of each target-SCC of G
(∨m

k=1 Ā
′
k

)
to an output variable of G

(∨m
k=1 Ā

′
k, C̄

′);

(ii) B
(
[Ā′1; . . . ; Ā′m; C̄ ′]

)
has a maximum matching of size n+ p;

where, for k ∈M, the matrices Ā′k and C̄ ′ are defined as Ā′k =
[
Q̄k 0

F̄k Āk

]
and C̄ ′ = [ D̄ C̄ ]. ◦

In the following remark, we outline the computational complexity in which we can verify the conditions of Corollary 9.

Remark 10. We can verify the two conditions in Corollary 9 in O((m(n + p))2), where n is the number of state

variables, p is the number of unknown inputs, and m is the number of modes (Section 3.3, [16]). We notice that the

number of variables required to be measured is always less than or equal to n+ p. �

With the graph-theoretic conditions for structural state and input observability enumerated, we introduce Algorithm
1. Briefly, the algorithm finds the minimum set of state and input variables to ensure that the conditions of Corollary 9
are satisfied. First, the algorithm finds the maximum collection of variables that satisfy the condition of Corollary 9 by
constructing the MWMM of B([Ā′1; . . . ; Ā′m; T̄ ]), where T̄ has as many rows as target-SCCs, and the non-zero column
entries of T̄ specify the indices of the augmented states that make up each target-SCC. Furthermore, weights are
considered on the edges of the bipartite graph such that all edge weights are zero unless the edges connect to a vertex
established by T̄ at which the weight is set to one. If there is an edge in the MWMM that has a weight of one, then
the index of the column vertex connecting the edge is the same index of the augmented state variable that satisfies
both conditions in Corollary 9. The algorithm then proceeds to find the minimum set of variables from the maximum
collection that still ensure the conditions of Corollary 9.

Algorithm 1 Dedicated solution to P1

1: Input: A structural switched LTI system with M = {1, . . . ,m} modes described by {Ā1, . . . , Ām, F̄1, . . . , F̄m, Q̄1, . . . , Q̄m},
where Āk ∈ {0, ?}n×n, F̄k ∈ {0, ?}n×p, Q̄k ∈ {0, ?}p×p,∀k ∈ {1, . . . ,m}

2: Output: Output C̄ = ĪJxn and D̄ = ĪJdp , where J = Jx ∪ Jd, Jd = {i ∈ J : i ≤ p}, and Jx = {i ∈ J : i > p}
3: Set Ā′k =

[
Q̄k 0

F̄k Āk

]

4: Compute the α target-SCCs of G
(∨m

k=1 Ā
′
k

)
= (X ′, E ′X ′,X ), denoted by {S1, . . . ,Sα}

5: Build the bipartite graph B([Ā′1; . . . ; Ā′m; T̄ ]) = (Vc,Vr, EVc,Vr ), where T̄ ∈ {0, ?}(n+p)×α and T̄i,j = ? if x′j ∈ Si and
T̄i,j = 0, otherwise. We denote the rows of matrix Ā′k by {rk1 , . . . , rkn+p}, and the rows of T̄ by {t1, . . . , tα}.

6: Set the weight of the edges e ∈ EVc,Vr to

{
1, if e ∈ ({t1, . . . , tα} × Vc) ∩ EVc,Vr
0, otherwise

.

7: Find a MWMM M′ of the bipartite graph computed in Step 5, with edges’ costs of Step. 6.
8: Set the column vertices associated with T̄ belonging to M′, i.e., J ′ = {i : (tj , ci) ∈ M′, j ∈ {1, . . . , α} and ci ∈ Vc} and
T = {j : (tj , ci) ∈M′, j ∈ {1, . . . , α}}

9: Set J ′′ = {1, . . . , n+ p} \ {i ∈ {1, . . . , n+ p} : (rkj , ci) ∈M′, k ∈ {1, . . . ,m}, j ∈ {1, . . . , n+ p}}
10: Set J ′′′ to contain one and only one index of a state variable from each target-SCC in {Ss : s ∈ {t1, . . . , tα} \ T }
11: Set J = J ′ ∪ J ′′ ∪ J ′′′
12: Set Jd = {i ∈ J : i ≤ p}, and Jx = {i ∈ J : i > p}
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In the next result, we show that Algorithm 1 finds the minimum set of states and inputs to ensure structural state
and input observability.

Theorem 11. Algorithm 1 is sound, i.e., it provides a solution to P1, and the computational complexity of Algorithm 1
is O((m(n+ p) + α)ς), where ς < 2.373 is the exponent of the best known computational complexity of performing the
product of two square matrices [1]. ◦

Remark 12. The computational complexity presented in Theorem 11 might not be amenable for ensuring the sensor

placement for very large systems. Nonetheless, there are some particular classes of systems for which algorithms with

lower computational complexity can be devised. In the next section, we present these classes of systems. �

Example 1

Let us consider the following linear continuous-time system with two modes {Āk, F̄k, Q̄k}2k=1, where Āk ∈ {0, 1}5×5,
F̄k ∈ {0, 1}5×1, Q̄k ∈ {0, 1}. In particular, [Ā1]3,1 = 1, [Ā1]2,2 = 1, [Ā1]4,3 = 1, [Ā2]3,2 = 1, [Ā2]5,3 = 1, [F̄1]2,1 = 1,
[F̄2]2,1 = 1, and Q̄k = 0,∀k ∈ {1, 2}.

d1

x1 x2

x3

x4 x5

(a)

d1

x1 x2

x3

x4 x5

(b)

d1

x1 x2

x3

x4 x5

(c)

x′1

x′2 x′3

x′4

x′5 x′6

(d)

x′1

x′2 x′3

x′4

x′5 x′6

y1 y2

(e)

x′1

x′2 x′3

x′4

x′5 x′6

y1 y2

(f)

r1
1 r1

2 r1
3 r1

4 r1
5 r1

6 r2
1 r2

2 r2
3 r2

4 r2
5 r2

6 t1 t2

c1 c2 c3 c4 c5 c6

(g)

Figure 1: (a) shows A′1, (b) shows A′2 (c) shows the union of the two modes of the continuous-time system with
unknown inputs. (d) shows the augmented continuous-time system. Finally, (e) and (f) show the SCCs in dotted
black rectangles, the target-SCC in a dotted blue rectangle, and the minimal output sensors and their placement for
modes 1 and 2 respectively. (g) shows the bipartite graph B([Ā′1; Ā′2; T̄ ]) with unitary weight on the dotted edge and
zero weight on the solid edges. The collection of red edges is the minimum weight maximum matching.

The individual modes of the system are shown in Figure 1 (a)-(b). We apply Algorithm 1 to this system to find
the minimum set of dedicated sensors to achieve structural observability. We start by finding the union of the modes.∨m
k=1 Ā

′
k is given as follows

Ā′1 ∨ Ā′2 =




0 0 0 0 0 0

0 0 0 0 0 0
1 0 1 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0




and is shown in Figure 1 (c) and (d), where (c) shows the union of the modes before the system has been augmented
and (d) shows the union of the modes after the system has been augmented and relabeled with state x′ = [dᵀ xᵀ]ᵀ.
With the system properly combined and augmented, we continue by finding the target-SCCs of G(

∨m
k=1 Ā

′
k). We find

that there are 6 SCCs, which are outlined in dashed rectangle boxes in Figures 1 (c) and (d). There are 2 target-SCCs,
which are outlined in a dashed blue box in Figure 1 (c) and (d), so α = 2.
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Next, we construct the bipartite graph B([Ā′1; Ā′2; T̄ ]). Since there are two target-SCCs each composed of one state
(x′5, x′6), then T̄ is as T̄ = [ 0 0 0 0 0 1

0 0 0 0 1 0 ] . In the bipartite graph, depicted in Figure 1 (g), there are two edges that each
connect to one of the two target-SCCs and thus have unitary weight (shown as a dotted line) while the rest of the
edges have zero weight (shown as solid lines). In step 7, we find the MWMM M′, which is shown by the collection of
red edges in Figure 1 (g). From the MWMM, we see that there are two edges in the MWMM that are connected to a
target-SCC, so J ′ = {5, 6}. In step 9, we find J ′′, which is the set of indices associated with the column vertices of
Ā′k,∀k that are not in the MWMM (i.e., all of the indices i = {1, . . . , n + p} such that ci are not connected to a red
edge in Figure 1 (g)). We notice that there are several different possible minimum weight maximum matchings. One
of these possibilities is shown in Figure 1 (g) where, we see that there are no unmatched vertices, so J ′′ = ∅.

In step 10, we find the index of one state variable connected to each target-SCC in which that target-SCC has not
already been accounted for in T . Hence, J ′′′ = ∅.

Finally, we can combine J ′ ∪ J ′′ ∪ J ′′′ = J to obtain the minimum set of indices required to place the sensors for
achieving a structurally observable system. We find that J = {5, 6}, and the sensor placement is shown in Figure 1
(e) and (f). Since p = 1, we note that Jx = {5, 6} and Jd = ∅. Therefore, we have C̄ = IJxn and D̄ = IJdp as the
solution to P1.

We note that there may be circumstances in which it may not be possible to measure the unknown inputs. Therefore,
to reduce the number of unknown inputs that need to be measured, it is necessary to avoid the situation where unknown
inputs become left unmatched vertices. Hence, we can include a step in the algorithm to place higher weights on the
edges in the bipartite graph that connect two vertices without an unknown input as the left vertex as noted in
Remark 13.

Remark 13. By placing higher weights on the edges in the bipartite graph that do not contain unknown inputs as left

vertices, we can ensure that the algorithm avoids measuring unknown inputs where possible. �

4 Special Classes of Systems with Linear-time Computational Complex-
ity

In this section, we will outline two classes of switched LTI systems for which a lower computational complexity can
be achieved for the minimum sensor placement problem and provide algorithms and examples for these systems. We
start by describing two classes of switched LTI systems that allow for a linear-time computational complexity with
respect to the edges. The two classes of switched LTI systems are as follows:

1. switched LTI systems with unknown inputs that do not have memory and remain constant over time, and the
system has nodal dynamics in the states;

2. switched LTI systems with nodal dynamics in both inputs and states.

4.1 Switched LTI Systems with memoryless unknown inputs that remain constant over
time, and state nodal dynamics

First, we present an example in which the system has nodal dynamics (i.e., self-loops) in the states, and the unknown
inputs do not have memory and remain constant over time. We provide the solution obtained from Algorithm 1 for
this example. Next, we define an algorithm for this class of systems outlined in Algorithm 2.
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Algorithm 2 Dedicated solution for System Class 1

1: input: A structural switched LTI system with M = {1, . . . ,m} modes described by {Ā1, . . . , Ām, F̄1, . . . , F̄m, Q̄1, . . . , Q̄m},
where Āk ∈ {0, ?}n×n, F̄k ∈ {0, ?}n×p, Q̄k ∈ {0}p×p, ∀k ∈ {1, . . . ,m}, and d(t) = c,∀t

2: output: Output C̄ = ĪJxn and D̄ = ĪJdp , where J = Jx ∪ Jd, Jd = {i ∈ J : i ≤ p}, and Jx = {i ∈ J : i > p}
3: set Ā′k =

[
0 0
F̄k Āk

]

4: find the α target-SCCs of G
(∨m

k=1 Ā
′
k

)
= (X ′, E ′X ′,X ), denoted by {S1, . . . ,Sα}

5: Construct the digraph G ≡ G(
∨m
k=1 Ā

′
k)

6: Extend G adding the following nodes:

B a virtual source node s;
B a virtual target node t;
B an ancillary node for each target-SCC denoted by a1, . . . , aα.

In addition, add the following edges:

B an edge from node s to each unknown input;
B an edge from each node in the Si to ai, for i = 1, . . . , α;
B an edge from ai to t, for i = 1, . . . , α;
B an edge from each unknown input to t.

7: set the edge capacities to



1, if the edge connects the unknown inputs

to the virtual target node

2, otherwise

8: find the vertex-disjoint paths denoted by {T1, . . . , Tz} of the digraph constructed in the previous steps starting in the virtual
source node s and ending in the virtual target node t using the Ford Fulkerson algorithm to find the maximum flow

9: Set J ′ to contain the indices of each node that is connected to the ancillary variables a1, . . . , aα in a disjoint path and the
indices of unknown input nodes if they connect to the target node in a disjoint path

10: Set J ′′ to contain a single index of a state variable from each target-SCC not accounted for in J ′
11: Set J = J ′ ∪ J ′′
12: Set Jd = {i ∈ J : i ≤ p}, and Jx = {i ∈ J : i > p}

Next, we prove the soundness and derive the computational complexity of Algorithm 2.

Theorem 14. Algorithm 2 is sound, i.e., it provides a solution to P1 for systems in which the unknown inputs do not
have memory and remain constant over time, and the system has nodal dynamics in the states. The computational
complexity of Algorithm 2 is O((n+ p)2), where n is the number of states x(t) ∈ Rn and p is the number of unknown
inputs d(t) ∈ Rp. ◦

We give a brief overview of how the algorithm presented in Algorithm 2 differs from Algorithm 1. The main difference
is in Algorithm 1 where we must find a MWMM of the bipartite graph B([Ā′1; . . . ; Ā′m; T̄ ]) whereas in Algorithm 2, we
only need to find the vertex-disjoint paths, which is why we can reduce the computational complexity.

In the next example, we illustrate the results after applying both Algorithm 1 and Algorithm 2.

Example 2

Let us consider the following linear continuous-time system with three modes {Āk, F̄k, Q̄k}3k=1, where Āk ∈ {0, 1}4×4,
F̄k ∈ {0, 1}4×1, Q̄k ∈ {0, 1}. In particular,

A1 =

[
1 0 0 0
0 0 0 0
1 0 1 0
0 0 0 0

]
, A2 =

[
0 0 0 0
0 1 0 0
0 1 1 0
0 0 0 0

]
, A3 =

[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1

]
,

[F̄1]1,1 = 1, [F̄2]2,1 = 1, [F̄3]1,1 = 1, [F̄3]2,1 = 1, and Q̄k = 0,∀k ∈ {1, 2, 3}.

8



d1

x1 x2

x3

x4

(a)

d1

x1 x2

x3

x4

(b)

d1

x1 x2

x3

x4

(c)

d1

x1 x2

x3

x4

(d)

x′1

x′2 x′3

x′4

x′5

(e)

r1
1 r1

2 r1
3 r1

4 r1
5 r2

1 r2
2 r2

3 r2
4 r2

5 r3
1 r3

2 r3
3 r3

4 r3
5 t1

c1 c2 c3 c4 c5

(f)

x′1

x′2 x′3

x′4

x′5

y1

(g)

x′1

x′2 x′3

x′4

x′5

y1

(h)

x′1

x′2 x′3

x′4

x′5

y1

(i)

s

x′1

x′2 x′3

x′4

x′5

a1

t

(j)

x′1

x′2 x′3

x′4

x′5

y1

(k)

Figure 2: (a) shows A′1, (b) shows A′2 (c) shows A′3 and (d) shows the union of the three modes of the continuous-
time system with unknown inputs (e) shows the augmented continuous-time system. (f) shows the bipartite graph
B([Ā′1; Ā′2; Ā′3; T̄ ]) with unitary weight on the dotted edge and zero weight on the solid edges. The collection of red
edges is the minimum weight maximum matching. (g)-(i) show the SCCs in dotted black rectangles, the target-SCC
in a dotted blue rectangle, and the minimal output sensors and their placement for all three modes after applying
Algorithm 1 (j) shows the digraph with the extra nodes and edges (shown in purple) added in steps 6 and 7. The
dashed purple line signifies that the edge has a weight of 2. (k) shows the vertex disjoint path in orange and the
solution for the minimal output sensors placement after applying Algorithm 2.

The individual modes of the system are shown in Figure 2 (a)-(c). We apply Algorithm 1 to this system to find
the minimum set of dedicated sensors to achieve structural observability. We start by finding the union of the modes.∨m
k=1 Ā

′
k is given as follows

Ā′1 ∨ Ā′2 ∨ Ā′3 =




0 0 0 0 0

1 1 0 0 0
1 0 1 0 0
0 1 1 1 0
0 0 0 1 1




and is shown in Figure 2 (d) and (e), where (d) shows the union of the modes before the system has been augmented
and (e) shows the union of the modes after the system has been augmented and relabeled with state x′ = [dᵀ xᵀ]ᵀ.
With the system properly combined and augmented, we continue by finding the target-SCCs of G(

∨m
k=1 Ā

′
k). We find

that there are 5 SCCs, which are outlined in dashed rectangle boxes in Figure 2 (d)-(e). We also find that there is 1
target-SCC, which is outlined in a dashed blue box in Figure 2 (d)-(e), so α = 1.

We construct the bipartite graph B([Ā′1; Ā′2; Ā′3; T̄ ]). First, we note that since there is only one target-SCC composed
of one state (x′5), then T̄ =

[
0 0 0 0 1

]
. In the bipartite graph depicted in Figure 2 (f), there is one edge that

connects to the target-SCC and thus has unitary weight (shown as a dotted line) while the rest of the edges have zero
weight (shown as solid lines). In step 7, we find the MWMM M′. There are different possible MWMM, one of which
is shown by the collection of red edges in Figures 2 (f). From the MWMM, we see that there aren’t any edges in the
MWMM that are connected to the target-SCC, so J ′ = ∅. In step 9, for the MWMM in Figure 2 (f), we find J ′′ = ∅,
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which is the set of indices associated with the column vertices of Ā′k,∀k that are not in the MWMM (i.e., all of the
indices j = {1, . . . , n+ p} such that cj are not connected to a red edge in Figure 2 (f)).

In step 10, we find the index of one state variable connected to each target-SCC for each not already accounted
target-SCC. Hence, J ′′′ = {5}.

Finally, we can combine J ′∪J ′′∪J ′′′ = J = {5} to obtain the minimum set of indices required to place the sensors
for achieving a structurally observable system. Since p = 1, we find that Jx = {5} and Jd = ∅. Therefore, we have
C̄ = IJxn and D̄ = IJdp .

Next, we apply Algorithm 2 to this system. We again start by finding the target-SCCs of G(
∨m
k=1 Ā

′
k), which are

outlined in blue dashed boxes in Figure 2 (d)-(e). Then, we construct the system digraph G(
∨m
k=1 Ā

′
k) along with the

additional virtual nodes, ancillary nodes, edges, and appropriate edge capacities described in step 7, which is shown in
Figure 2 (j). Next, we find the vertex-disjoint paths of the digraph pictured in Figure 2 (j), which are shown as orange
paths in Figures 2 (k). We find one vertex disjoint path with ending in node 5, so J ′ = {5} (see Figure 2 (k)). Since
there is only one target-SCC, which has already been accounted for in J ′, then we find that J ′′ = ∅. Combining both
sets, we find the same solution as calculated in Algorithm 1, namely J = J ′ ∪ J ′′ = {5}. Finally, this results in the
same Jd and Jx sets as well.

Remark 15. In [14], the authors present a quadratic (in the number of vertices) time-complexity algorithm to compute

a set of independent paths in a digraph between pairs of given vertices. The computational complexity for finding the

induced disjoint paths problem can be reduced to linear-time (in the number of vertices) if the graph is planar as seen in

[13]. A digraph is planar if it can be drawn in the plane without any edge intersections. As such, finding the minimum

sensors in Examples 2 and 3 can be reduced to a linear-time computational complexity with respect to the number of

vertices plus edges. �

4.2 Systems with Nodal Dynamics

For digraphs that are spanned by cycles, finding the minimum sensor placement only requires finding the target-SCCs
[19]. Next, we present an example where the digraph is not only spanned by cycles but has nodal dynamics meaning
every state has a self-loop. We will show through this example that the conditions for finding the minimum number
of dedicated sensors to ensure structural state and input observability for digraphs spanned by cycles boils down to
finding the target-SCCs. We present Algorithm 3, which finds the dedicated solution for the System Class 2 (i.e.,
nodal dynamics).

Algorithm 3 Dedicated solution for System Class 2

1: input: A structural switched LTI system with M = {1, . . . ,m} modes described by {Ā1, . . . , Ām, F̄1, . . . , F̄m, Q̄1, . . . , Q̄m},
where Āk ∈ {0, ?}n×n, F̄k ∈ {0, ?}n×p, Q̄k ∈ {0, ?}p×p,, and the diagonal entries of Ak and Qk are nonzero for all
k ∈ {1, . . . ,m}

2: output: Output C̄ = ĪJxn and D̄ = ĪJdp , where J = Jx ∪ Jd, Jd = {i ∈ J : i ≤ p}, and Jx = {i ∈ J : i > p}
3: set Ā′k =

[
Q̄k 0

F̄k Āk

]

4: find the α target-SCCs of G
(∨m

k=1 Ā
′
k

)
= (X ′, EX ′,X ′), denoted by {S1, . . . ,Sα}

5: Set J to contain one and only one index of a state variable from each target-SCC in {Ss : s ∈ {1, . . . , α}}
6: Set Jd = {i ∈ J : i ≤ p}, and Jx = {i ∈ J : i > p}

Theorem 16. Algorithm 3 is sound, i.e., it provides a solution to P1 for systems with nodal dynamics. The compu-
tational complexity of Algorithm 3 is O((n+ p)2), where n is the number of states x(t) ∈ Rn, and p is the number of
unknown inputs. ◦

We note in Remark 17 that the solution for this example can be found in a distributed fashion.

Remark 17. We remark that a distributed solution can be used to find the minimum solution for nodal systems (i.e.,

a system with self-loops) [21]. �

We give a brief overview of how the algorithm presented in Algorithm 3 differs from Algorithm 1. The main difference
is in Algorithm 3 we only need to find the target-SCCs, which is why we can reduce the computational complexity.
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In the next example, we illustrate the results after applying both Algorithm 1 and Algorithm 3 to a system with
nodal dynamics.

Let us consider the following linear continuous-time system with two modes {Āk, F̄k, Q̄k}2k=1, where Āk ∈ {0, 1}2×2,
F̄k ∈ {0, 1}2×1, Q̄k ∈ {0, 1}. In particular, [Ā1]1,1 = 1, [Ā2]2,2 = 1, [F̄1]1,1 = 1, [F̄2]2,1 = 1, and Q̄k = 1,∀i ∈ {1, 2}.

d1

x1 x2

(a)

d1

x1 x2

(b)

d1

x1 x2

(c)

x′1

x′2 x′3

(d)

x′1

x′2 x′3

y1 y2

(e)

r1
1 r1

2 r1
3 r2

1 r2
2 r2

3 t1 t2

c1 c2 c3

(f)

Figure 3: (a) shows A′1 (b) shows A′2 (c) shows the union of the two modes of the continuous-time system with unknown
inputs, and (d) shows the augmented continuous-time system. (e) shows the SCCs in dotted black rectangles, the
target-SCCs in a dotted blue rectangle, and the minimal output sensors and their placement. (f) shows the bipartite
graph B([Ā′1; Ā′2; T̄ ]) with unitary weight on the dotted edge and zero weight on the solid edges. The collection of red
edges is the minimum weight maximum matching.

The individual modes of the system are shown in Figure 3 (a)-(b). We apply Algorithm 1 to this system to find
the minimum set of dedicated sensors to achieve structural observability. We start by finding the union of the modes.
m∨

k=1

Ā′k is given as Ā′1 ∨ Ā′2 =




1 0 0

1 1 0
1 0 1


 and is shown in Figure 3 (c) and (d), where (c) shows the union of the modes

before the system has been augmented and (d) shows the union of the modes after the system has been augmented
and relabeled with state x′ = [dᵀ xᵀ]

ᵀ
. With the system properly combined and augmented, we continue by finding

the target-SCCs of G(
∨
k = 1mĀ′k). We find that there are 3 SCCs, which are outlined in dashed rectangle boxes in

Figure 3 (e). We also find that there are 2 target-SCCs, which are outlined in a dashed blue box in Figure 3 (e), so
α = 2.

We construct the bipartite graph B([Ā′1; Ā′2; T̄ ]). Since there are two target-SCCs each composed of one state (x′2,
x′3), then T̄ is as T̄ = [ 0 0 1

0 1 0 ] . In the bipartite graph depicted in Figure 3 (f), there are two edges that each connect
to one of the two target-SCCs and thus have unitary weight (shown as a dotted line) while the rest of the edges have
zero weight (shown as solid lines). In step 7, we find the MWMMM′, which is shown by the collection of red edges in
Figure 3 (f). From the MWMM, we see that there aren’t any edges in the MWMM that are connected to a target-SCC,
so J ′ = ∅. In step 9, we find J ′′, which is the set of indices associated with the column vertices Ā′ that are not in
the MWMM (i.e., all of the indices j = {1, . . . , n + p} such that cj are not connected to a red edge in Figure 3 (f)).
We find that J ′′ = ∅. In step 10, we find the index of one state variable connected to each target-SCC for each not
already accounted target-SCC. Hence, J ′′′ = {2, 3}.

Finally, we can combine J ′ ∪ J ′′ ∪ J ′′′ = J = {2, 3} to obtain the minimum set of indices required to place the
sensors for achieving a structurally observable system. The sensor placement is shown in Figure 3 (e). Since p = 1,
we note that Jx = {2, 3} and Jd = ∅. Therefore, we have C̄ = IJxn and D̄ = IJdp .

Next, we apply Algorithm 3 to this system. After augmenting the system, we again start by finding the target-SCCs
of G(

∨m
k=1 Ā

′
k), which are outlined in the dashed blue boxes in Figure 3 (f). Next, we find a single state in each of

the two target-SCCs and add their indices to J . Hence, J = {2, 3}, which we note is the same result achieved by
Algorithm 1.
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5 Real-World Example

In this section, we find the minimum sensor placement for a real-world example from power systems by considering
the IEEE 5-bus system [24], which has three generators and two loads. Through linearization, we can model this
system as a continuous-time switched LTI system with unknown inputs by considering two modes. One mode is the
working system, and the second mode contains a fault that disconnects generator 1 to load 1, which corresponds to
the connection between x14 and x10 being eliminated. The unknown inputs d1 and d2 capture the unknown amount
of load consumed by loads 1 and 2, respectively. Table 1 describes the states and unknown inputs of the network.
The shaded rows in the table correspond to the unknown inputs. The variables/nodes that are not listed in the table
but appear in the system digraph correspond to the internal variables that connect the different bus, generators, and
loads. The blue nodes correspond to load 1. The orange nodes correspond to load 2. The green nodes correspond to
generator 1. The red nodes correspond to generator 2. The gray nodes correspond to generator 3.

Description Node
frequency of G1 x1

turbine output mechanical power of G1 x2

steam valve opening position of G1 x3

frequency of G2 x4

turbine output mechanical power of G2 x5

steam valve opening position of G2 x6

frequency of G3 x7

turbine output mechanical power of G3 x8

steam valve opening position of G3 x9

unknown uncertainty L1 d1

load consumed by L1 x10

unknown uncertainty of L2 d2

load consumed by L2 x12

Table 1: States and Unknown Inputs for IEEE 5-bus system

The union of the two modes are shown in Figure 4. Since the system possesses nodal dynamics on all both the inputs
and states, we apply Algorithm 3 to this system to find the minimum set of dedicated sensors to achieve structural
observability. We start by finding the union of the modes, which is shown in Figure 4. Next, we augmented the system
and relabeled it with state x′ = [dᵀ xᵀ]

ᵀ
. With the system properly combined and augmented, we continue by finding

the target-SCCs of G(
∨
k = 1mĀ′k). We find that there are 3 SCCs, which are outlined in dashed polygons in Figure 4.

We also find that there is 1 target-SCCs, which is outlined in a dashed blue polygon in Figure 4, so α = 1. Next, we
find a single state in the target-SCCs and add its indices to J . In this real-world example, it makes most sense to
measure the load consumed from either load. Hence, J = {12} or J = {10}.
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of dedicated sensors to achieve structural observability.
We start by finding the union of the modes, which is
shown in Figure 1. Next, we augmented the system and
relabeled it with state x0 = [d| x|]|. With the system
properly combined and augmented, we continue by find-
ing the target-SCCs of G(

W
k = 1mĀ0

k). We find that
there are 3 SCCs, which are outlined in dashed polygons
in Figure 1. We also find that there is 1 target-SCCs,
which is outlined in a dashed blue polygon in Figure 1,
so ↵ = 1. Next, we find a single state in the target-SCCs
and add its indices to J . In this real-world example, it
makes most sense to measure the load consumed from
either load. Hence, J = {12} or J = {10}.

x1

x3

x14

x15

x11

x2

x4

x6

x16

x5

x7

x9
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d1

x12
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Figure 1. This figure shows the union of the two modes of
the continuous-time system with unknowns for the IEEE
5-bus system. The SCCs are outlined by two dotted black
rectangles, and the target-SCCs is outlined by a dotted blue
polygon. The minimum output sensor and its placement is
shown by y1.

5 Conclusions

In this paper, we investigated the structural state and
input observability of continuous-time switched LTI sys-
tems under unknown inputs. To this end, we derived nec-
essary and su�cient conditions for the structural state
and input observability of continuous-time switched LTI
systems. These conditions can be verified in polynomial-
time, more precisely in O((m(n + p))2), where n is the
number of state variables, p is the number of unknown
inputs, and m is the number of modes. Additionally,
adopting a novel feed-forward analysis, we addressed the
minimum sensor placement for these systems design-
ing an algorithm with a computational complexity of
O((m(n+ p)+↵)2.373), where ↵ is the number of target
strongly connected components.

Finally, we examined various assumptions on both the
system and unknown inputs (latent space) dynamics.
These assumptions translated into imposing additional
structure on the problem, which allowed for finding so-
lutions in a more e�cient manner (i.e., with lower com-
putational complexity). These algorithms are suitable to
handle large-scale systems.

Appendix

Proof of Theorem 7: The continuous-time switched
LTI system with unknown inputs described in (1a), (1b),
and (1c’) may be re-written as the following augmented
continuous-time switched LTI system where the new aug-
mented system is x0 = [d| x|]|,

ẋ0(t) =
h

Q�(t) 0

F�(t) A�(t)

i

| {z }
A0

�(t)

x0(t) and y0(t) = [ D C ]| {z }
C0

�(t)

x0(t). (2)

Moreover, let M = {1, . . . , m} be the ordered finite set of
modes where the function �(t) is constant. Then, we have

that A0
k =

h
Qk 0
Fk Ak

i
and C0 = [ D C ] . Therefore, when the

system in (1a), (1b), and (1c’) is structurally state and in-
put observable, it is equivalent to when the system in (2) is
structurally state observable. Interestingly, despite the fact
that observability and controllability are not dual in general
for switched LTI systems, in Theorem 4 in [14], the authors
showed that switched LTI systems are dual in the case of cir-
culatory switching (see Definition 3 in [14]). From Remark 3
in [13], it readily follows that, in the context of structural
switched LTI systems, the order of the switches does not
play a role in attaining structural controllability. Therefore,
in particular, it follows that structural controllability can be
attained in the case of circulatory switching. As such, we
can leverage Theorem 4 in [14] and invoke duality between
structural controllability and structural (state) observabil-
ity. Hence, by Theorem 3 of [17], the system in (2) is struc-
turally observable whenever the conditions (i) and (ii) hold.
Proof of Corollary 9: First, we construct the augmented
system (2) from the original system (1). Second, we need to
ensure that the conditions in Theorem 7 are satisfied. When
the digraph G

�Wm
k=1 Ā0

k, C̄0� has no non-accessible output
vertices, it is equivalent to the existence of an edge from a
state variable in each target-SCC G

�Wm
k=1 Ā0

k

�
to an output

vertex of G
�Wm

k=1 Ā0
k, C̄0�. Thus, condition (i) is equivalent

to condition (i) of Theorem 7. Subsequently, we recall the
result from [6], which states that for M̄ 2 {0, ?}n1⇥n2 , when
the g-rank(M̄) = min{n1, n2}, it is equivalent to when there
exists a maximum matching of B(M̄) of size min{n1, n2}.
Hence, by the previous result, condition (ii) is equivalent to
condition (ii) of Theorem 7.

Proof of Theorem 11: To address the problem P1, we
augment the system in (1a) and (1b) to be written as in
(2) where x0 = [d| x|]. With this augmented system, Algo-
rithm 1 constructs three minimum sets of dedicated outputs
that combine to satisfy the two conditions outlined in The-
orem 7, which guarantee structural state and input observ-
ability. Minimality of the combined sets is ensured as we use
maximum matchings to build the three sets.

Subsequently, we use Algorithm 1 with the structural
switched LTI system with M = {1, . . . , m} modes described
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Figure 4: This figure shows the union of the two modes of the continuous-time system with unknowns for the IEEE
5-bus system. The SCCs are outlined by two dotted black rectangles, and the target-SCCs is outlined by a dotted
blue polygon. The minimum output sensor and its placement is shown by y1.

6 Conclusions

In this paper, we investigated the structural state and input observability of continuous-time switched LTI systems
under unknown inputs when unknown inputs can be modeled as LTI systems. To this end, we derived necessary
and sufficient conditions for the structural state and input observability of continuous-time switched LTI systems.
These conditions can be verified in polynomial-time, more precisely in O((m(n+ p))2), where n is the number of state
variables, p is the number of unknown inputs, and m is the number of modes. Additionally, accounting for feed-forward
scenarios, we addressed the minimum sensor placement for these systems designing an algorithm with a computational
complexity of O((m(n+ p) + α)2.373), where α is the number of target strongly connected components.

Finally, we examined various assumptions on both the system and unknown inputs (latent space) dynamics. These
assumptions translated into imposing additional structure on the problem, which allowed for finding solutions in a
more efficient manner (i.e., with lower computational complexity). These algorithms are suitable to handle large-scale
systems.

Appendix

Proof of Theorem 7: The continuous-time switched LTI system with unknown inputs described in (1a), (1b), and (1c’) may be
re-written as the following augmented continuous-time switched LTI system where the new augmented system is x′ = [dᵀ xᵀ]ᵀ,

ẋ′(t) =
[
Qσ(t) 0

Fσ(t) Aσ(t)

]

︸ ︷︷ ︸
A′
σ(t)

x′(t) and y′(t) = [D C ]︸ ︷︷ ︸
C′
σ(t)

x′(t). (2)

Moreover, let M = {1, . . . ,m} be the ordered finite set of modes where the function σ(t) is constant. Then, we have that

A′k =
[
Qk 0
Fk Ak

]
and C′ = [D C ] . Therefore, when the system in (1a), (1b), and (1c’) is structurally state and input observable,

it is equivalent to when the system in (2) is structurally state observable. Interestingly, despite the fact that observability
and controllability are not dual in general for switched LTI systems, in Theorem 4 in [17], the authors showed that switched
LTI systems are dual in the case of circulatory switching (see Definition 3 in [17]). From Remark 3 in [16], it readily follows
that, in the context of structural switched LTI systems, the order of the switches does not play a role in attaining structural
controllability. Therefore, in particular, it follows that structural controllability can be attained in the case of circulatory
switching. As such, we can leverage Theorem 4 in [17] and invoke duality between structural controllability and structural
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(state) observability. Hence, by Theorem 3 of [20], the system in (2) is structurally observable whenever the conditions (i) and
(ii) hold.

Proof of Corollary 9: First, we construct the augmented system (2) from the original system (1). Second, we need to
ensure that the conditions in Theorem 7 are satisfied. When the digraph G

(∨m
k=1 Ā

′
k, C̄

′) has no non-accessible output vertices,
it is equivalent to the existence of an edge from a state variable in each target-SCC G

(∨m
k=1 Ā

′
k

)
to an output vertex of

G
(∨m

k=1 Ā
′
k, C̄

′). Thus, condition (i) is equivalent to condition (i) of Theorem 7. Subsequently, we recall the result from [6],
which states that for M̄ ∈ {0, ?}n1×n2 , when the g-rank(M̄) = min{n1, n2}, it is equivalent to when there exists a maximum
matching of B(M̄) of size min{n1, n2}. Hence, by the previous result, condition (ii) is equivalent to condition (ii) of Theorem 7.

Proof of Theorem 11: To address the problem P1, we augment the system in (1a) and (1b) to be written as in (2) where
x′ = [dᵀ xᵀ]. With this augmented system, Algorithm 1 constructs three minimum sets of dedicated outputs that combine to
satisfy the two conditions outlined in Theorem 7, which guarantee structural state and input observability. Minimality of the
combined sets is ensured as we use maximum matchings to build the three sets.

Subsequently, we use Algorithm 1 with the structural switched LTI system with M = {1, . . . ,m} modes described by the

matrices {Ā′1, . . . , Ā′m}, where the matrices Ā′k are defined as Ā′k =
[
Q̄k 0

F̄k Āk

]
,∀k ∈ M.

First, we observe that J ′ comprises a minimum set of dedicated outputs, which maximizes the
g-rank([Ā′1; . . . ; Ā′m; IJ

′
(n+p)]), where IJ

′
(n+p) is a diagonal matrix whose entries in J ′ are nonzero. Concatenating [Ā′1; . . . ; Ā′m]

with IJ
′

(n+p) increases the generic rank by |J ′| and produces dedicated outputs assigned to state variables in distinct target-SCCs.

In fact, B([Ā′1; . . . ; Ā′m]) yields a MWMM M with weight 0 and size |M|. Hence, by the result from [6] used in the proof of

Corollary 9, it follows that g-rank([Ā′1; . . . ; Ā′m; IJ
′

(n+p)]) = |M|.

Next, a MWMM M′ of B([Ā′1; . . . ; Ā′m; T̄ ᵀ]) has size |M′|. This corresponds to an increase in

g-rank([Ā′1; . . . ; Ā′m; I(J
′∪J ′′)

(n+p) ]) from

g-rank([Ā′1; . . . ; Ā′m; IJ
′

(n+p)]) of |M′| − |M|. Observe that, by the construction of the matrix T̄ , we have that IJ
′′

(n+p) corresponds

to dedicated outputs assigned to state variables in distinct target-SCCs. This means that |J ′′| target-SCCs will have outgoing
edges to different outputs of the system digraph. This is necessary to satisfy condition (i) of Theorem 7 but may not be sufficient.

Therefore, we have to finally consider a third set, J ′′′, to ensure that condition (i) is fulfilled. In other words, there might
still be target-SCCs that are not accounted for by state variables indexed in J ′ ∪ J ′′, which we account for in J ′′′.

By minimizing the number of additional dedicated outputs IJ
′′

(n+p), in step 8, we satisfy condition (ii) in Theorem 7 since

g-rank([Ā′1; . . . ; Ā′m; I(J
′∪J ′′)

(n+p) ]) = n+ p. Additionally, the set J ′′′ of minimum extra dedicated outputs, found in step 9, ensures

that there are not state vertices that do not access at least one output vertex in G
(∨m

k=1 Ā
′
k, IJ(n+p)

)
, where J = J ′∪J ′′∪J ′′′,

thereby fulfilling condition (i) of Theorem 7. Notice that IJ
′′

(n+p) are not assigned to previously assigned target-SCCs, as they

would have been considered in IJ
′

(n+p).

Consequently, by the construction, setting J = J ′ ∪ J ′′ ∪ J ′′′ in step 10 yields a solution IJ(n+p) that is minimal, ensuring
both conditions of Corollary 9. Notice that the produced solution easily translates to the original problem P1 solution by setting
the originals C̄ = IJxn and D̄ = IJdp , where Jx = {i ∈ J : i > p} and Jd = {i ∈ J : i ≤ p}.

The computational complexity of Algorithm 1 comes from the step with the highest computational cost (step 6) since the
remaining steps of the algorithm have lower complexity. The computational complexity of step 6 can be solved by resorting to
the Hungarian algorithm [15] that finds a MWMM of B([Ā′1; . . . ; Ā′m; T̄ ]) in O(max{|Vr|, |Vc|}ς), where Vr and Vc are defined
in step 4 and ς < 2.373 is the exponent of the best known computational complexity of performing the product of two square
matrices. Since |Vc| ≤ |Vr|, this results in a computational cost of O(|Vr|ς) = O((m(n+ p) + α)ς).

Proof of Theorem 14: To prove the soundness of Algorithm 2, we need to verify the two conditions in Corollary 9. In step 9,
the set J ′ assigns an output to the nodes connected to the virtual target node t that are associated with the obtained disjoint
paths that start from the virtual source node and end in virtual target node. Subsequently, in step 10, J ′′ assigns an output
to a state variable of each target-SCC that is not contemplated in the set J ′. Therefore, J = J ′ ∪ J ′′ ensures condition (i) of
Corollary 9. Next, we set C̄′ = IJ .

Now, we can see that B
(
[Ā′1; . . . ; Ā′m; C̄′]

)
has a maximum matching of size n+ p, so condition (ii) of Corollary 9 is satisfied,

corresponding to a decomposition of the system’s digraph into paths and cycles that span the digraph, whose paths end in
output vertices. This property holds because the system’s digraph G(

∨m
k=1 Ā

′
k) is spanned by the paths obtained in step 8,

together with the edges that connect the end of the paths to the respective outputs and the cycles (self-loops) from the state
variables that do not belong to the paths. Thus, Algorithm 2 is sound.

The computational complexity of Algorithm 2 comes from the step with the highest computational cost (step 7). The
computational complexity of step 7 can be solved by finding the vertex disjoint paths, which is linear in the number of edges
[14], and hence, quadratic in the number of vertices.

Proof of Theorem 16: Since the system is spanned by cycles as a result of the nodal dynamics, then the system is structurally
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state and input observable if and only if all of the states and inputs are accessible [23]. Hence, by guaranteeing that at least
one state in each target-SCCs is measured, we ensure that the system is accessible.

The complexity follows from the fact that each step is linear in time, except for finding the target-SCCs where the computa-

tional complexity is linear in the number of nodes plus edges resulting from Tarjan’s strongly connected components algorithm [7],

which in the worst case is O((n+ p)2).
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