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Abstract

The design of a globally convergent position observer for feature points from visual information is a challenging problem, especially for the
case with only inertial measurements and without assumptions of uniform observability, which remained open for a long time. We give a
solution to the problem in this paper assuming that only the bearing of a feature point, and biased linear acceleration and rotational velocity
of a robot — all in the body-fixed frame — are available. Further, in contrast to existing related results, we do not need the value of the
gravitational constant either. The proposed approach builds upon the parameter estimation-based observer recently developed in (Ortega et
al., Syst. Control Lett., vol. 85, 2015) and its extension to matrix Lie groups in our previous work. Conditions on the robot trajectory under
which the observer converges are given, and these are strictly weaker than the standard persistency of excitation and uniform complete
observability conditions. Finally, as an illustration, we apply the proposed design to the visual inertial navigation problem.
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1 Introduction

Determination of the position of feature points from visual
measurements is a classical problem in several fields, in-
cluding machine vision, robotics and control [2,4,7,8,17,32].
However, its mathematical model does not fall into the
canonical forms that have been comprehensively studied in
the nonlinear observer community [5], thus being of theo-
retical interest. With a single monocular camera, estimating
the position of a feature point is equivalent to estimating its
range or depth. There are two general classes of method-
ologies: batch methods [11] and observer design [8,12,14].
In this paper, we focus on the latter for its simpler on-line
computations.

In [13], the authors adopt a change of coordinate to the in-
verse of depth, which has since become a popular formula-
tion, and propose an identifier based observer. Its main draw-
back is high-gain injection thus yielding sensitivity to mea-
surement noise. Thereafter, many nonlinear observers were
proposed using different constructive tools. A less compli-
cated observer design based on Lyapunov analysis is pro-
posed in [9], which guarantees global asymptotic stability
(GAS) under an instantaneous observability assumption on
the robot trajectory. An extension to paracatadioptric cam-
era can be found in [12], where a sliding-mode observer
is proposed for both affine and non-affine systems. In [14],
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a reduced-order observer is proposed based on the widely
used immersion and invariance (I&I) technique [3], achiev-
ing semi-global convergence under the same condition in [9].
To address visual servoing, a simple feature depth observer
is introduced in [8], which builds upon a well-known lemma
from adaptive control. This design requires a persistency of
excitation (PE) condition — weaker than the condition in
[9,14] — however, with only local convergence guaranteed.
More recently it is shown that by selecting alternative outputs
we may obtain a linear time-varying (LTV) model [10,17],
for which Kalman-Bucy or Riccati observer is applicable to
achieve global stability under some PE conditions. In the
last decade, practical considerations related to this problem
have also received significant attention [23,26,27].

In all the above works, it is assumed a measurement of linear
velocity available in observer design. However, a practically
important scenario is that the robot is equipped with inertial
measurement unit (IMU), which provides measurements of
linear acceleration rather than velocity. In spite of intensive
research efforts, we are unaware of any observer for the
extension to this case. The main challenge relies on that the
unknown attitude — living in the special orthogonal group
— appears in the dynamics of the body-fixed velocity.

In this paper, we give the first constructive solution to the
problem, presenting a novel globally exponentially conver-
gent position observer for a single feature point. The con-
structive tool we adopt is the recently-introduced parame-
ter estimation-based observer (PEBO) in [21] and its exten-
sion to matrix Lie groups in our previous work [31] on the
simultaneous localization and mapping (SLAM) problem.
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The central idea in PEBO is to translate the estimation of a
(time-varying) system state into one of estimating constant
parameters. Another merit is that, unlike all existing solu-
tions, the proposed observer neither requires instantaneous
observability [14], uniform complete observability [17], nor
PE conditions [8], and its convergence is achieved under a
much weaker interval excitation (IE) condition.

Our second contribution is applying the proposed scheme to
visual inertial navigation, arising for in Global Positioning
System (GPS)-denied environment, which is concerned with
fusing the information from IMUs and cameras, using the
inertial coordinates of some feature points in a known map.
Many types of Kalman filters have became the de facto stan-
dard algorithms in industrial applications [19], which, how-
ever, are intrinsically local. In order to enlarge domain of
attraction, many researchers from the nonlinear control com-
munity have made important contributions in recent years
[4,30]. In this paper, we provide a simple, almost globally
asymptotically convergent solution only requiring the trajec-
tory being IE. The relaxed excitation condition is especially
important for the case with unknown gravitational constant
and sensor bias, for which it is quite strict to impose the
uniformity of excitation with respect to time.

Notation. We use generally εt to represent exponentially de-
caying terms with proper dimensions. 0n ∈ Rn and 0n×m ∈
Rn×m denote the zero column vector of dimension n and
the zero matrix of dimension n×m, respectively. We use p
to represent the differential operator p := d

dt [·], and | · | as
the Euclidean norm of a vector. Given a square matrix A ∈
Rn×n, the Frobenius norm is defined as ‖A‖ =

√
tr(A>A),

and adj(A) and det(A) denote its adjugate matrix and deter-
minant, respectively. We use SO(3) = {R ∈ R3×3|R>R =
I3, det(R) = 1} to represent the special orthogonal group,
and so(3) is its Lie algebra. Given a variable R ∈ SO(3),
we use |R|I to represent the normalized distance on SO(3)
with |R|2I := 1

4 tr(I3−R). For any x ∈ R3/{0}, its projector
is defined as Πx := I3− 1

|x|2xx
>. Given a ∈ R3, we define

the operator (·)× as a× :=

[
0 −a3 a2

a3 0 −a1

−a2 a1 0

]
∈ so(3).

2 Model and Problem Formulation

Fig. 1. Coordinate systems of a robot observing fixed points

A single monocular camera provides 2D images of its envi-
ronment, and we focus the 3D position estimation of point
features extracted from images in the view of a camera on

the mobile robot, which is equipped with IMUs. To be pre-
cise, in the body-fixed frame {B} the observed feature point
is denoted by z ∈ R3, satisfying z = R>(Iz − x) with un-
known position x ∈ R3 of the robot in the inertial frame
{I}, and R ∈ SO(3) is the attitude of {B} with respect to
{I}. Here, the constant vector Iz ∈ R3 represents the fea-
ture position in {I}. The dynamics of z is given by

ż = −Ω×z − v, (1)

in which Ω ∈ R3 is the rotational velocity, and v ∈ R3 is
the linear velocity, both in the body-fixed frame {B}; see
Fig. 1. The kinematics of the robot is given by

ẋ = Iv, Ṙ = RΩ× (2)

in which Iv is the velocity in {I}, i.e. Iv := Rv. We have

v̇ = −Ω×v + a+ ba +R>g, (3)

in which a ∈ R3 is the “apparent acceleration” representing
all non-gravitational forces in {B} measured by IMUs, g :=
[0, 0, g]> is the gravity vector in {I}, and ba ∈ R3 is the
constant sensor bias. In this paper, we consider the spherical
projection model of the camera. In this case, the output is the
bearing of the feature point in the body-fixed frame {B}, i.e.

y =
z

|z|
∈ S2, (4)

for non-zero z. We make the following assumption.

Assumption 1 The origin of the robot never coincides with
the feature point, i.e. |z(t)| 6= 0 for all t ≥ 0. Besides, Ω
and a guarantee the systems state bounded over time.

The proposed approach is applicable to other image-based
estimation problems with different projection models. Now
let us recall some definitions and a technical lemma as fol-
lows. Note that the IE condition is called “exciting over a
finite time interval” in [28, pp. 108]. The swapping lemma
for stable filters is useful for dealing with unavailable “dirty
derivatives” to generate linear regressors.

Definition 1 Given a bounded signal φ : R+ → Rn, it
is 1) PE if

∫ t+T
t

φ(s)φ>(s)ds � δIn, ∀t ≥ 0 for some
T > 0, δ > 0; 2) IE if there exist t0, tc ≥ 0 such that∫ t0+tc
t0

φ(s)φ>(s)ds � δIn for some δ > 0.

Lemma 1 (Swapping lemma [24]) For C1-differential sig-
nals x, y : R≥0 → R, the following holds

α

p+ α
[xy] = y

α

p+ α
[x]− 1

p+ α

[
ẏ

α

p+ α
[x]

]
(5)

for any α > 0 with p := d/dt.

We are interested in the position estimation problem below.
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Problem 1 Consider the system (1)-(3) with Ω and y avail-
able.

P1 If the velocity v is measurable, design an observer ζ̇ =
N(ζ,Ω, v, y), ẑ = H(ζ,Ω, v, y); or

P2 If only a is measurable with ba and g unknown, design
an observer ζ̇ = N(ζ,Ω, a, y), (ẑ, v̂) = H(ζ,Ω, a, y)

with the observer state ζ ∈ Rnζ and the mappings N and H
of proper dimensions, such that limt→∞ |ẑ(t) − z(t)| = 0
for a class of robot trajectories.

3 Position Observer with Velocity Information

To start with, in this section we give a solution to P1 as a
motivating design, and in the next section, we will focus on
P2 without the information of v.

3.1 Generation of Linear Regression Models

For P1 we show that position estimation is equivalent to
identification of a constant scalar parameter. In the following
we present a new parameterization to the range, and show
how to generate a linear regression equation (LRE).

Proposition 1 Consider the dynamics (1) and the dynamic
extension

ξ̇ = −y>v (6)
with arbitrary ξ(0) ∈ R. Then, the position z satisfies

z(t) = [ξ(t) + θ]y, ∀t ≥ 0, (7)

in which the unknown constant θ ∈ R verifies the LRE

yR = φθ + εt (8)

with an exponentially decaying term εt, measurable signals

φ := G1[y] + αG2[Ω×y]

yR := −G2[αΠyv + y>vφ]− φξ,
(9)

the filters G1[·] := αp
p+α [·] , G2[·] := 1

p+α [·], and α > 0.

Proof 1 From |z|2 = z>z and (1), we have |z|
˙︷ ︷
|z| =

z>(−Ω×z − v) = z>v, and thus the bearing of z satisfies
d
dt |z| = −y

>v. Note that the time derivative of state in the
above coordinate is measurable. Thus, the dynamic exten-
sion (6) guarantees |z(t)| − ξ(t) = θ, ∀t ≥ 0, with ξ an
available signal, in which the constant scalar parameter θ is
defined as θ := |z(0)| − ξ(0). Hence, we have verified (7).

In the remainder, we show how to derive the LRE (8). By
calculating the time derivatives of (4), we obtain

ẏ =
1

|z|2
[
(−Ω×z − v)|z|+ zy>v

]
= −Ω×y −

1

|z|
v +

1

|z|
yy>v = −Ω×y −

1

|z|
Πyv,

equivalently,
r(ẏ + Ω×y) = −Πyv, (10)

where we have defined the variable r = |z| for convenience.
Noting the unavailability of the derivative ẏ, we thus apply
the filter α

p+α to both sides of (10) with α > 0. For the
first term, we utilize the swapping lemma for filters — see
Lemma 1 — and then obtain

α

p+ α
[rẏ] = r

αp

p+ α
[y]− 1

p+ α

[
ṙ

α

p+ α
[ẏ]

]
+ εt

= r
αp

p+ α
[y] +

1

p+ α

[
y>v

α

p+ α
[ẏ]

]
+ εt,

in which the exponentially decaying term εt arises from the
initial conditions of filters. To be precise, the state-space
model of the filter α

α+p [·] is given by ẏ = −αy + αu with
input u and output y. For non-zero y(0), it yields an expo-
nentially decaying term e−αty(0). Therefore, we have

r
αp

p+ α
[y] +

1

p+ α

[
y>v

α

p+ α
[ẏ]

]
+

α

p+ α
[rΩ×y]

= − α

p+ α
[Πyv] + εt,

then
rφ+G2[y>vφ] = −αG2[Πyv] + εt. (11)

Substituting r = ξ+ θ into the above equation, we have the
LRE (8). �

Thanks to the algebraic relation (7), we have translated, via
designing the dynamic extension (6), the estimation of the
position z into the on-line consistent identification of θ from
the LRE (8). Note that θ is a scalar constant, and φ is a
column vector, and thus the least squares problem is solvable
if φ(t?) is non-zero for some t? > 0. We make the following
assumption.

Assumption 2 There exists t? > 0 such that |φ(t?)| 6= 0.

3.2 Position Observer Design

Based on the LRE (8), we design in this section two globally
exponentially convergent position observers to address P1,
i.e., a gradient observer and a PEBO. In the former a PE
condition is imposed to guarantee convergence; in contrast
for the latter, we relax the requirement significantly.

Proposition 2 (Gradient position observer) Consider (1)
with v and y available. If φ> in (9) is PE, then the observer

˙̂r = −y>v − γφ>
(
φr̂ +G2[y>vφ] + αG2[Πyv]

)
ẑ = r̂y

(12)

with γ > 0, provides a globally exponentially convergent
estimate to the position z, i.e.,

lim
t→∞

|ẑ(t)− z(t)| = 0 (exp.). (13)
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Proof 2 See Appendix. �

The methodology of gradient observers may date back to
[25] for general nonlinear models, which has been extended
to several applications, e.g., electric motors [22] and pose es-
timation [16]. Its key step is to obtain a regression model of
unknown states, and PE conditions are imposed to achieve
uniform convergence. In many cases, it may not be guaran-
teed for given robot trajectories. To address this, we design
a PEBO under a weaker excitation requirement.

Proposition 3 (Position PEBO) Considering the dynamics
(1) with v and y available, the observer consisting of (6) and

ζ̇ = φ>yR − φ>φζ
ω̇ = − φ>φω, ω(0) = 1

˙̂
θ = γ[(ζ − ωζ0)− (1− ω)θ̂]

ẑ = (ξ + θ̂)y

(14)

with ζ(0) = ζ0, yR, φ defined in (9), and the filters G1[·] and
G2[·] starting from zero initial conditions, guarantees the
global exponential convergence (13) if Assumption 2 holds.

Proof 3 From Proposition 1, we have r ≡ ξ+θ.We need to
verify θ̂ → θ as t→∞. The following analysis is motivated
by the proof in our previous work [31, Proposition 1], where
an LTV filter is designed to generate PE regressors from the
ones only satisfying IE; see [29,6] for extensions. It yields

d

dt
(ζ − θ) = φ>yR − φ>φζ = −φ>φ(ζ − θ),

in which we have used (8), and the fact that θ is a constant.
It is underlined that, by setting zero initial conditions of the
filters G1[·] and G2[·], the decaying term εt disappears in
(8); see Remark 2 on how to implement it. It is easy to get
ζ − θ = ω(ζ0 − θ) with ω(t) = exp(−

∫ t
0
φ>(s)φ(s)ds),

then yielding a new linear regression model

ζ − ωζ0 = (1− ω)θ. (15)

Now, let us show that the new regression (1 − ω) is PE if
Assumption 2 holds. From the continuity of the signal φ,
Assumption 2 implies the existence of a sufficiently small
parameter ε > 0 such that

∫ t?+ε

t?
φ>(s)φ(s)ds > 0. Hence,

we conclude that φ> is IE. The solution of ω satisfies for
t ∈ [0, t? + ε], 1− ω(t) ≥ 0; and for t > t? + ε

1− ω(t) = 1− exp

(
−
∫ t

0

φ>(s)φ(s)ds

)
≥ 1− exp

(
−
∫ t?+ε

t?

φ>(s)φ(s)ds

)
> δ0,

for some constant δ0 > 0. Hence, the regression (1 − ω)
in (15) is non-negative and PE. We define the parameter

estimation error θ̃ := θ̂ − θ, the dynamics of which is

˙̃
θ = −γ(1− ω)θ̃, γ > 1. (16)

Using the Cauchy–Schwarz inequality for integrals, we con-
clude that (1− ω)

1
2 is PE. The global exponential stability

of the LTV dynamics (16) is established [24, Thm 2.5.1].
Then, we have limt→∞ |ξ(t) + θ̂(t) − r(t)| = 0 exponen-
tially. Invoking state boundedness, we complete the proof.�

Remark 1 In the new regressor (15), the signal (1− ω) ∈
[0, 1) — intuitively, this value characterizes how “strong” the
excited signal is — as a result limiting the convergence speed
of the observer. A possible way to overcome this issue is to
mix (15) with the original regressor (8), and then obtaining
a new LRE y′R = φ′θ, with y′R := ζ − ωζ0 + kpφ

>yR and
the new regression φ′ := (1 − ω) + kp|φ|2, which is not
necessarily less than one. Here, the gain kp > 0 plays the
role to make a tradeoff on the trust of historical and current
information. The last equation in the observer (14) may be
modified accordingly to accelerate convergence speed.

Remark 2 We underline that the third equation in the ob-
server (14), in which we have used both the PE condi-
tion of (1 − ω) as well as its positiveness after t? + ε, is
not a gradient flow. The gradient flow is given by d

dt θ̂ =

γ(1−ω)[(ζ−ωζ0)− (1−ω)θ̂], which also provides a glob-
ally exponentially convergent estimate to θ under the IE as-
sumption. We refer the reader to [24] for on-line gradient
descent algorithms. Besides, in Proposition 3 it is necessary
to carefully select the initial conditions of filters G1[·] and
G2[·] to deal with the term εt for the IE case. It can be im-
plemented as the state space models ẏ = −αy + u with
y(0) = 0 for G2[·], and ẋ = −αx + α2u, y = −x + αu
with x(0) = αu(0) for G1[·], in which x, u and y denote
the internal state, input and output of the filters, respectively.

4 Position-Velocity Observer with Biased Acceleration
Measurement

In this section, we present the main result of the paper, i.e.,
a solution to P2, for which we design a position-velocity
observer with availability of only the acceleration.

4.1 Generation of Linear Regression Models

We are interested in the estimation of position z, linear ve-
locity v and the bias ba, which are collected in the vector

X := col(z, v, ba) ∈ R9.

Proposition 4 Consider the dynamics (1)-(3), and design
the following dynamic extension

Q̇ = QΩ×

ξ̇ = A(y,Ω, Q)ξ +B(a), ξ(0) = 010

Ψ̇ = A(y,Ω, Q)Ψ, Ψ(0) = I10

(17)
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with Q(0) ∈ SO(3), and

A :=

 0 −y> 0>3 0>3
03 −Ω× I3 Q>

06 . . . . . . 06×3

 B :=

[
0
a
06

]
. (18)

Then, the state X satisfies the algebraic equation

X = T (y)[ξ + Ψθ] (19)

with T (y) := diag{y, [I6, 06×3]}, in which the unknown
constant vector θ admits the LRE yN = ψ>θ, with

yN := − φT1ξ −G2

[
(φy> + αΠy)T2ξ

]
ψ := (φT1Ψ)

>
+G2

[
(φy> + αΠy)T2Ψ

]>
,

(20)

φ defined in (9), the filtersG1[·], G2[·] starting from zero, the
parameter α > 0, and the matrices T1 := [1 01×9] , T2 :=
[03×1 I3 03×6] .

Proof 4 From the analysis in Section 3, the full dynamics
is given by (2)-(3) and ṙ = −y>v. Define the error between
Q and R in SO(3) as E(R,Q) := RQ>, and we have

˙︷ ︷
E(R,Q) := ṘQ> −RQ−1Q̇Q−1

= RΩ×Q
> −RQ>QΩ×Q

> = 0.

Hence, there exists a constant matrixQc ∈ SO(3) satisfying

R(t) = QcQ(t), ∀t ≥ 0,

withQc := R(0)Q(0)>. Then, we have the parameterization
to the last term in the dynamics of v as

R(t)>g = Q(t)>gc, ∀t ≥ 0

with a new constant unknown vector gc ∈ R3 defined as
gc := Q>c g.

Now considering that ba is a constant bias, and defining
the extended state χ := col(r, v, ba, gc) ∈ R10, the plant
dynamics may be compactly rewritten as

χ̇ = A(y,Ω, Q)χ+B(a). (21)

Comparing the dynamics (21) and (17) and following the
idea of generalized (G)PEBO [20], it yields d

dt (χ − ξ) =

A(y,Ω, Q)
[
χ − ξ

]
. The matrix Ψ(t)Ψ(s)> can be viewed

as the state transition matrix for this LTV system from s to
t. Hence, this yields

χ− ξ = Ψ[χ0 − ξ(0)] =⇒ χ = ξ + Ψχ0

θ:=χ0
=⇒ χ = ξ + Ψθ,

(22)

where in the second equation we have used ξ(0) = 0. From

the proof of Proposition 1, we have

rφ+G2[(φy> + αΠy)v] = 0 (23)

with φ defined in (9), for the case with zero filtering ini-
tial conditions. From the definitions of χ and X we have
X = T (y)χ, thus verifying the algebraic equation (19). Sub-
stituting the last equation of (22) into (23), we then have

φT1χ+G2[(φy> + αΠy)T2χ] = 0

=⇒ φT1(ξ + Ψθ) +G2[(φy> + αΠy)T2(ξ + Ψθ)] = 0

=⇒ yN = ψ>θ

with the signals yN and ψ given in (20). �

The above regression model is motivated by an extension
of PEBO from Euclidean space to matrix Lie groups in our
previous work [31]. By gathering the unknown but constant
matrices Qc ∈ SO(3) and g ∈ R3 in a new vector gc, it
provides an effective way to deal with the scenario with un-
known attitude and gravitational constant, e.g., in aerospace
applications.

4.2 Position-Velocity Observer Design

In the above subsection we present a novel linear regression
model with respect to the constant vector θ, the estimation
of which is sufficient to reconstruct the state X . Now, the
remaining task is to estimate θ stemmed from Proposition 4.
In the following we provide a globally convergent position-
velocity observer with biased inertial measurements for the
robot trajectory not satisfying the PE condition.

Proposition 5 Consider the dynamics (1)-(3) under As-
sumption 1, and the filtered signal

θ̂ = H[(yN, ψ)] (24)

with yN, ψ defined in Proposition 4 and filter H given by

Φ̇ = −ρΦ + ψψ>

Ẏ = −ρY + ψyN

ζ̇ = ∆Y−∆2ζ

ω̇ = −∆2ω, ω(0) = 1

˙̂
θ = γ

[
(ζ + kp∆Y)− (1− ω + kp∆

2)θ̂
]

(25)

with the gains ρ > 0, γ > 0 and kp > 0, ∆ := det{Φ}, Y :=
adj{Φ}Y , n = dim{θ}, and the initial conditions ζ(0) =
0n, Y (0) = 0n and Φ(0) = 0n×n. Then, the observer con-
sisting of (17), (25) and the estimate X̂ = T (y)(ξ + Ψθ̂)
with T (y) defined in Proposition 4, guarantees global expo-
nential convergence limt→∞ |X̂(t) − X(t)| = 0 from any
initial guess θ̂(0) ∈ Rn, assuming that ψ is IE.

Proof 5 According to Proposition 4, the system dynam-
ics (1) and (3), together with (17) admits the LRE yN =

5



ψ>θ. Following the dynamic regressor extension and mixing
(DREM) technique [1], after going through an LTV filter —
the first two equations in (25) — we obtain d

dt (Y − Φθ) =
−ρ(Y − Φθ) with ρ > 0 from Y (0) − Φ(0)θ = 0, thus
obtaining the Kreisselmeier’s extended LRE [15]

Y = Φθ (26)

with Y ∈ Rn and Φ ∈ Rn×n. After pre-multiplying the
adjugate matrix adj{Φ} to the both sides of (26), we get the
decoupled regressors Y = ∆θ with a scalar regression ∆,
which is now in the same form as in Proposition 3. Without
loss of generality, we assume ψ is IE in the interval [0, tc]

with tc > 0, i.e.,
∫ tc

0
ψ(s)ψ(s)>ds � δI for some δ > 0.

From Φ̇ = −ρΦ + ψψ> with Φ(0) = 0n×n, we have

Φ(tc) =

∫ tc

0

e−ρ(tc−s)ψ(s)ψ(s)>ds

� e−ρtc
∫ tc

0

ψ(s)ψ(s)>ds

� δe−ρtcI.

From the definition ∆ being the determinant of Φ, it yields

ψ ∈ IE =⇒ ∆ ∈ IE
=⇒ (1− ω + kp∆

2) ∈ PE,

where the second implication can be proved using the same
arguments as Proposition 3 thus omitted. On the other hand,
we can verify that the vector θ satisfies the LRE

ζ + kp∆Y = (1− ω + kp∆
2)θ. (27)

Now, we obtain a new LRE (27), satisfying the PE condition,
from the IE regressor (19). By defining the estimation error
θ̃ = θ̂ − θ, we have

˙̃
θ = −γ(1− ω + kp∆

2)θ̃. (28)

Since (1 − ω + kp∆
2) is PE and non-negative for kp > 0,

the LTV system (28) is globally exponentially stable at the
origin. By invoking the identity (19) and state boundedness
from Assumption 1, it completes the proof. �

5 Application to Visual-Inertial Navigation

We now apply the proposed observer to the vision-aided in-
ertial navigation systems as an illustration. In this problem,
there are several feature points in the camera view field,
whose inertial positions Izi are known in advance. We as-
sume that some data association algorithm has been used to
determine if these observations correspond to landmarks in
the given map. Note that a known map makes it significantly
simpler than the SLAM problem, which is of more practical
interests; see for example [17]. The camera may provide the

bearing measurement of features in the body-fixed frame

yi =
zi
|zi|

= R>
Izi − x
|Izi − x|

, i ∈ N := {1, . . . , n}. (29)

We adopt the same notations in Section 2, except the
subindex for feature points to distinguish them.

Problem 2 (Navigation observer) Consider (2)-(3) with
measurements (a,Ω) and yi. Both the bias ba ∈ R3 and the
gravity vector g ∈ R3 are unknown. Assume the positions
Izi in {I} are constant and known. Design an observer to
asymptotically estimate the pose (R, x).

A simple solution is to use the proposed range observer to
reconstruct the position of feature points in {B}, and then
solve the localization problem with “full position measure-
ment”. We need the following.

Assumption 3 There exist i, j ∈ N\{n} such that Iηi ×
Iηj 6= 0, i 6= j with the vectors Iηi := Izi+1 − Izi.

Proposition 6 Consider the navigation observer consisting
of the ranges observer

Q̇ = QΩ×

ξ̇ = Ae(Ω, Q, ȳ)ξ +Be(a), ξ(0) = 0 (30)

Ψ̇ = Ae(Ω, Q, ȳ)Ψ, Ψ(0) = I (31)

θ̂ = H(yN, ψ), v̂ = Tv(ξ + Ψθ̂),

ẑi = Tz,i(ξ + Ψθ̂)yi (32)

with ȳ := col(y>1 , . . . , y
>
n ) and

yN := − ΛφTrξ −G2[(Λφȳ + αΠ)Tvξ]

ψ := (ΛφTrΨ)> +G2[(Λφȳ + αΠ)TvΨ]>,
(33)

the filter H defined in (24)-(25), Π := col(Πy1 , . . . ,Πyn),
the matrices Tr := [0n×9 In], Tv := [I3 03×(6+n)], Tz,i :=

[01×9 e>i ], ei being the i-th canonical basis in Rn, Λφ :=
diag{φ1, . . . , φn}, φi in (9) for the i-th feature point, and

Ae :=


−Ω× I3 Q> 03×n

— 06×(n+9) —
−y>1 0

...
. . .

−y>n 0

 , Be :=


a
0
...
0

 , (34)

cascading to the (full-position) localization observer

˙̂
Qc = − w×Q̂c, R̂ = Q̂cQ,

w =
1

2

∑
i∈N\{n}ki

Iηi × (Q̂cQη̂i) (35)

˙̂x = Q̂cQv̂ +
∑
i∈N σi(

Izi − x̂− Q̂cQẑi)

with η̂i = ẑi+1−ẑi and the gains ki, σi, α > 0. If ψ is IE and
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(a) Range estimate r̂ (IE)
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(c) Position estimate error |ẑ − z| (IE)

Fig. 2. Comparison among the PEBO, the I&I observer in [3], the feature depth observer (FDO) in [8], the LTV Kalman filter in [17] and
the Riccati observer in [10] with linear velocity information (with noise)
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Fig. 3. Performance of the proposed position-velocity observer with biased acceleration measurement (IE, with noise)
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Fig. 4. Performance of the proposed navigation observer with biased acceleration measurement (IE, noise-free)

Assumption 3 holds, then the convergence limt→∞[‖R̂(t)−
R(t)‖+ |x̂(t)− x(t)|] = 0 holds almost globally.

Proof 6 It is given in Appendix. �

The proposed navigation observer is implemented in a mod-
ular manner, i.e., it constitutes of a ranges observer (31) and
a full-position localization observer (35). To be precise, we
first use (31) to reconstruct the full position “measurement”,
which is then utilized in the localization observer (35). We
figure out that the “integrated” ranges observer (31) can be
replaced by several “individual” observers in Propositions
4-5 for each feature point.

6 Simulation Results

In this section, we present simulation results to illustrate the
properties of the proposed observers. Full details and addi-
tional figures can be found in Appendix. First, consider the
case of measurable velocity in Section 3 with two trajecto-

ries, one being PE and the other being IE but not PE. In Fig.
2, we observe that the estimate from the PEBO with mea-
surement noise ultimately converges to a small neighbour-
hood of its true value, showing robustness vis-à-vis noise.
We also simulated the I&I observer [14], the feature depth
observer [8], the LTV Kalman filter [17] and the Riccati ob-
server [10] all of which require some PE conditions. Since
the observers in [8,14] are concerned with the depth esti-
mation, we draw them together for comparison using the IE
trajectory in Fig. 2(a). These observers have different state
spaces, so we chose the initial range estimates as close as
possible to make a fair comparison. Note that both the I&I
and the feature depth observers have large ultimate errors
since their excitation conditions are not satisfied. In Figs.
2(b)-2(c), we compare to the position observers in [17] and
[10] using both the PE and IE trajectories. As expected, these
three observers admit similar accuracy for PE trajectories;
however, for IE trajectories, the proposed PEBO is superior
to the others.
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Now let us consider position and velocity estimation in Sec-
tion 4, testing with an IE but not PE trajectory and noisy
measurements. The initial conditions for the observer are set
as θ̂(0) = [01×9, 10] with a small sensor bias. Fig. 3 shows
convergence of all estimation errors to a neighborhood of
zero.

Lastly, we evaluate the performance of the navigation ob-
server in Proposition 6 with three known landmarks in {I}.
The same robot trajectory and conditions were adopted. The
behaviour is shown in Fig. 4 in the absence of measurement
noise. The pose (including the position and the attitude) es-
timate converge its true value after a short transient stage,
showing high estimation performance.

7 Concluding Remarks

We have proposed a nonlinear observer for the problem of
range estimation of a visual feature, using only its bearing
and linear acceleration measurements, by means of the re-
cently developed PEBO methodology. The design is appli-
cable to the case with unknown sensor bias and gravitational
constant, and can achieve global exponential convergence
under a weak IE condition on the robot trajectory. The trade
off is that the design requires a more complicated observer
structure than other methods. To illustrate its utility, we ap-
ply the observer to the problem of visual inertial navigation,
providing a novel almost globally convergent solution.
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Appendix

A Proof of Proposition 2

Proof. Define the estimation error of range as r̃ := r̂ − r
with r = |z|, the dynamics of which is given by

˙̃r = −γφ>
(
φr̂ +G2[y>vφ] + αG2[Πyv]

)
.

Invoking (11), we have

˙̃r = −γφ>φr̃ + εt, (A.1)

in which the exponentially decaying term εt is caused by
initial conditions of the stable filters G1[·] and G2[·].
Now we use the standard perturbation analysis to show that
r̃ → 0 as t→∞. Consider an auxiliary (nominal) system

˙̃r = −γφ>φr̃, (A.2)

for which the necessary and sufficient condition of the global
exponential stability (GES) of the origin is that φ> is PE [24,
Thm 2.5.1]. For the LTV system (A.2), invoking the converse
Lyapunov theorem [Kha02, Thm 4.14], there exist a smooth
function V (r̃, t) and constants ci ∈ R>0 (i = 1, . . . , 4)
satisfying

c1|r̃|2 ≤ V (r̃, t) ≤ c2|r̃|2

∂V

∂t
+
∂V

∂r̃
(−γφ>φr̃) ≤ −c3|r̃|2∣∣∣∣∂V∂r̃ (r̃, t)

∣∣∣∣ ≤ c4|r̃|.
(A.3)

Consider the Lyapunov-like function

W (r̃, t) = V (r̃, t) + Vε(t)

with

Vε :=

∫ +∞

t

c24
2c3
|εt(s)|2ds,

which is well-defined since εt is exponentially decaying —
thus square integrable. Calculating the time derivative of
W (r̃, t) along the trajectory of the perturbed system (A.1),
we have

Ẇ =
∂V

∂t
+
∂V

∂r̃
(−γφ>φr̃ + εt)−

c24
2c3
|εt(t)|2

≤ −c3|r̃|2 +

∣∣∣∣∂V∂r̃
∣∣∣∣ |εt| − c24

2c3
|εt|2

≤ −c3
2
|r̃|2

≤ − c3
2c2

(W − Vε(t)),

where in the third inequality we have used |∂V∂r̃ ||εt| ≤

c3
2 |r̃|

2 +
c24
2c3
|εt|2, as well as the last equality in (A.3).

Using the comparison lemma to the inequality Ẇ ≤
− c3

2c2
(W − Vε(t)) and the fact Vε → 0 exponentially due

to its definition, we have both W (r̃, t) and r̃ converging to
zero exponentially fast as t → ∞. Invoking the algebraic
relation z = ry, as well as the boundedness assumption of
y, it completes the proof. �

B Proof of Proposition 6

Proof. In the problem set of navigation, the full system dy-
namics is given by

Ṙ = RΩ×

v̇ = −Ω×v + a+ ba +R>g

ṙ1 = −y>1 v
...

ṙn = −y>n v

(B.1)

With the dynamic extension Q̇ = QΩ×, we define the con-
stant vector

gc := Q(0)R(0)>g,

and the full-state variable

χ :=
[
v> b>a g>c r1 . . . rn

]>
with ri := |zi| (i ∈ N ). Then, we have

χ̇ = Ae(Ω, Q, ȳ)χ+Be(a)

with the matrices Ae and Be defined in (34). It yields

˙︷ ︷
χ− ξ = A(ȳ,Ω, Q)[χ− ξ],

thus χ = ξ + Ψθ with θ := χ0.

From (23), we have

ΛφTr(ξ + Ψθ) +G2 [(Λφȳ + αΠ)Tv(ξ + Ψθ)] = 0

and

ȳ =

y
>
1
...
y>n

 , Π =

Πy1
...

Πyn


in which we have defined φi as (9) for the i-th feature point
with a slight abuse of notation using subscripts. Then, we
obtain the linear regressor yN = ψ>θ with (33). Following
Proposition 5, if ψ is IE, then θ̂ = H[yN, ψ] provides a
globally exponentially convergent estimate to θ. Invoking
state boundedness from Assumption 1, it yields for all i ∈ N

lim
t→∞

∣∣∣∣[ v̂(t)− v(t)
ẑi(t)− zi(t)

]∣∣∣∣ = 0 (exp.). (B.2)

9



The second step is to show that Q̂c ∈ SO(3) is an almost
global asymptotic estimate toQc, which is similar to attitude
estimation in [18] but with a constant matrix Qc rather than
a time-varying one. Define its estimation error as

Q̃c := QcQ̂
>
c ,

and its time derivative is given by 1

˙̃Qc = Q̃c

n−1∑
i=1

ki
2

[(Q̂cQη̂i)(
Iηi)

> − Iηi(Q̂cQη̂i)
>]

= Q̃c

n−1∑
i=1

kiskew[Q̃>c
I η̂i(

Iηi)
>]

= Q̃cskew[Q̃>c M ] + E(t)

(B.3)

where in the second equation we have used the fact [c ×
d]× = dc>−cd> for any c, d ∈ Rn, and define the constant
matrix M :=

∑n−1
i=1 ki

Iηi(
Iηi)

>, the vectors I η̂i = Rη̂i,
and

E := Q̃c

n−1∑
i=1

kiskew[Q̃>c Rη̃i(
Iηi)

>]

with exponentially decaying terms η̃i := η̂i − ηi, which
satisfy ηi → 0 as t → 0 exponentially fast invoking (B.2).
Since both Q̃c and R living in a compact space SO(3) and
Iηi being constant, there exist two constants a0, a1 > 0 such
that

|tr(E>(t)M)| ≤ a0e
−a1t =: ε(t). (B.4)

We consider the time-varying Lyapunov function

V (Q̃c, t) =

n−1∑
i=1

ki|Iηi|2 − tr(Q̃>c M) +

∫ ∞
t

|ε(s)|ds

which is a non-negative function and well defined, since ε
is absolutely integrable, i.e.∫ ∞

0

|ε(s)|ds < +∞.

Now let us show non-negativeness of V (Q̃c, t). Since the
last term

∫∞
t
|ε(s)|ds ≥ 0, we focus on the first two terms.

According to the definition of matrix M , invoking that Iηi
are constant vectors, we have

n−1∑
i=1

ki|Iηi|2 − tr(Q̃>c M)

=

n−1∑
i=1

ki|Iηi|2
[
1− tr(Q̃>c

Iηi
|Iηi|

(
Iηi
|Iηi|

)>)

]
.

1 The operator skew(·) is defined as skew(A) := 1
2
(A−A>) for

a square matrix A.

Noting that Q̃c ∈ SO(3) and
Iηi
|Iηi| is a unit vector, we

have tr(Q̃>c
Iηi
|Iηi| (

Iηi
|Iηi| )

>) ≤ 1. As a result, we verify that

Ṽ (Q̃c, t) ≥ 0 .

The time derivative of V (Q̃c, t) is given by

V̇ = −tr
(

skew(Q̃>c M)>Q̃>c M + E>M
)
− |ε(t)|

= −
∥∥skew

(
Q̃>c M

)∥∥2 − tr
(
E>M

)
− |ε(t)|

≤ −
∥∥skew

(
Q̃>c M

)∥∥2
,

in which we have used (B.4) in the last inequality. Then, it
yields ∫ ∞

0

∥∥skew
(
Q̃>c (s)M

)∥∥2
ds < +∞.

Invoking the boundedness of the time derivative of
skew

(
Q̃>c M) and using Babalat’s lemma, we conclude that

all the trajectories converge to the invariant set

Ωe := {Q̃c ∈ SO(3) | skew
(
Q̃>c M

)
= 0}.

Following the similar procedure of the proof in [18, Theorem
5.1], we can show that the set Ωe has a locally exponentially
stable equilibrium Q̃c = I3, and other three isolated unsta-
ble equilibria Qi (i = 1, 2, 3) on SO(3), and there are no
poles on the imaginary axis. By using the non-autonomous
version of Hartman-Grobman theorem [AW00], the obser-
vation error dynamics (B.3) is topologically equivalent to
an LTV dynamics in a small neighbourhood of these three
unstable equilibria. As a result, only some very specific tra-
jectories, from a zero Lebesgue measure setMε, ultimately
converge to the unstable equilibria Qi (i = 1, 2, 3). Combin-
ing the local exponential stability of the equilibrium I3, thus
it yields the almost global asymptotic stability of the error
dynamics (B.3) at Q̃c = I3. It is equivalent to show that

∀Q̃c(0) ∈ SO(3)\Mε, lim
t→+∞

‖Q̂c(t)−Qc‖ = 0, (B.5)

and Q̂c(t) ∈ SO(3), ∀t ≥ 0. Namely, R̂ provides an asymp-
totically convergent estimate to R as well.

The last part of the proof is to show the convergence of
position estimate x̂. Now define its estimation error as x̃ :=
x̂− x, and it yields

˙̃x = R̂v̂ −Rv +

n∑
i=1

σi(
Izi − x̂− R̂ẑi)

=

n∑
i=1

σi(
Izi − x̂−Rzi) + εt

=

n∑
i=1

σi(
Izi − x̂−RR>(Izi − x)) + εt,
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thus
˙̃x = −σΣ · x̃+ εt

with σΣ :=
∑n
i=1 σi > 0 and an exponentially decaying

term εt, where in the second equation we have used the
convergence (B.2) and (B.5), as well as the compactness of
SO(3) and the boundedness of v. The dynamics of x̃ is a
linear time-invariant (LTI), stable system perturbed by εt,
thus also being globally exponentially stable. It completes
the proof. �

C Simulation details

In this section, we provide additional details to the simula-
tion results in Section 6.

Position estimation with velocity measurement. We consider
two trajectories: the first trajectory being PE, i.e.,

x1 =

 cos( t2 )
1
4 sin(t)

−
√

3
4 sin(t)

 , Ω1 =

[
sin(0.1 + π)
0.5 sin(2t)

0.1 sin(0.3t+ π
3 )

]

from the initial attitude R(0) = I3; and the second being
IE but not PE with the same scenario as the first one but
decaying after 4s, i.e.,

[
Iv2

Ω2

]
=


[
ẋ1(t)
Ω1(t)

]
, t ∈ [0, 4][

e−5(t−4)ẋ1(t)
e−5(t−4)Ω1(t)

]
, t ≥ 4.

The parameters and initial conditions in the observers are
selected as

α = 1, γ = 50, r̂(0) = 0, ξ(0) = 0, θ̂(0) = 0.

For this case, We give some simulation results complemen-
tary to Fig. 2. In Fig. C.1 we present the estimation perfor-
mance of the proposed gradient observer (12) and the PEBO
(14) under two robot trajectories. For the first trajectory,
both achieve satisfactory performance; but for the IE trajec-
tory there is a significant ultimate estimation error from the
gradient observer. In the feature depth observer [8], we set
ki = 1 (i = 1, . . . , 3) and x̂(0) = [0.2 0.2 0.5]>. In the
I&I observer [14] we select the initial guess as 0.5 and the
gain λ = 0.2. Even though states in these three observers
live in different spaces, we tried to make the initial range
estimates as close as possible to make a fair comparison. In
Figs. 2(b)-2(c), we also compare to the LTV Kalman filter
[17] and the Riccati observer [10]. The initial conditions of
position estimates are both set as ẑ(0) = 03. See also the
last figure in Fig. C.2.

Position estimation with biased acceleration measurement.
In the second group of simulations, we consider position
and velocity estimation with bearing and biased linear ac-
celeration measurable. The robot trajectory we use is given

by for t ∈ [0, 20]s

Ia =

−0.5 cos(0.5t)
−0.5 sin(t)√

3
4 sin(t)

 , Ω =

[
0.2 sin(0.1t+ π)

0.1 sin(0.2t)
0.1 sin(0.3t+ π

3 )

]

and t ≥ 20s
Ia = 03, Ω = 03.

Such a trajectory only guarantees the regression being IE
rather than PE. The parameters and initial conditions for the
observer in Section 4 are set as

α = 2, γ = 100, ρ = 0.4, kp = 500, θ̂(0) = [0, . . . , 0, 10]>.

We consider a small sensor bias ba = [0.09, 0.10, 0.11]>

and the feature point is located at Iz = [−2, 1, 3]>. We show
in the second sub-figure of Fig. C.2 the position z and its
estimate ẑ as complement to Fig. 3.

Vision-aided inertial navigation. Finally, we evaluate the
performance of the visual inertial navigation observer in
Proposition 6. Three known landmarks in the inertial frame
are located at [−2, 1, 3]>, [−2, 2, 1]> and [1, 1, 1]>. The
same robot trajectory and parameters as in the last subsec-
tion were adopted, except α = 1 and kp = 103. The be-
haviour is shown in Fig. 4 and the last sub-figure of Fig. C.2
in the absence of measurement noise. Note that, for visual-
ization, in Fig. C.2 we draw in the inertial frame {I} the
attitude and its estimate by means of the unit vector along
x-axis of the body-fixed frame {B}.
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Fig. C.1. Performance of the proposed position observers under PE and IE trajectories, i.e., the gradient observer (12) and the PEBO (14)
for the case with unbiased velocity information and noisy measurement

 

(a) Position estimate ẑ from PEBO,
I&I observer and feature depth observer
(complementary to Fig. 2(a))
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to Fig. 3(a))
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Fig. C.2. Some complementary figures: Estimated trajectories and their true values
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