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Abstract

The dynamics of cellular chemical reactions are variable due to stochastic noise from intrin-
sic and extrinsic sources. The intrinsic noise is the intracellular fluctuations of molecular copy
numbers caused by the probabilistic encounter of molecules and is modeled by the chemical
master equation. The extrinsic noise, on the other hand, represents the intercellular variation
of the kinetic parameters due to the variation of global factors affecting gene expression. The
objective of this paper is to propose a theoretical framework to analyze the combined effect of
the intrinsic and the extrinsic noise modeled by the chemical master equation with uncertain
parameters. More specifically, we formulate a semidefinite program to compute the intervals of
the stationary solution of uncertain moment equations whose parameters are given only par-
tially in the form of the statistics of their distributions. The semidefinite program is derived
without approximating the governing equation in contrast with many existing approaches.
Thus, we can obtain guaranteed intervals of the worst possible values of the moments for all
parameter distributions satisfying the given statistics, which are prohibitively hard to estimate
from sample-path simulations since sampling from all possible uncertain distributions is diffi-
cult. We demonstrate the proposed optimization approach using two examples of stochastic
chemical reactions and show that the solution of the optimization problem gives informative
upper and lower bounds of the statistics of the stationary copy number distributions.

Keywords: Analysis of systems with uncertainties, Markov process, Uncertain dynamical systems,
Biomolecular systems, Mathematical optimization

1 Introduction

The stochastic response of biomolecular reactions in cells is often explained by two types of noise
called intrinsic and extrinsic noise (Elowitz et al. 2002, Taniguchi et al. 2010). The intrinsic noise
is the intracellular fluctuations of molecular copy numbers caused by the probabilistic encounter
of molecular species such as mRNA and proteins in a single cell. The extrinsic noise, on the other
hand, arises from the intercellular variation of the global factors affecting gene expression, and
some of these are modeled by the variation of the rate parameters of the reactions.

The dynamics of the intrinsic noise is modeled by a continuous-time discrete state Markov process
on a possibly infinite integer lattice associated with the copy numbers of molecular species, whose
governing equation is called the chemical master equation (CME) (McQuarrie 1967, Gillespie 1992).
However, the exact solution of the CME is hard to obtain since the number of the states, which
is equal to the order of the equation, becomes extremely large or even infinite in applications of
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practical interest. Thus, analyses of stochastic chemical reactions are carried out either by sample-
path generation using the stochastic simulation algorithm (Gillespie 1976) or by approximate
models.

Examples of the approximate models include the chemical Langevin equation (Gillespie 2000), the
linear noise approximation (van Kampen 2007), and the truncated moment equations (Singh &
Hespanha 2011, Lakatos et al. 2015, Schnoerr et al. 2015), which allow for computing approximate
sample paths or dynamic moments of the molecular copy numbers of interest. Efforts were also
made to theoretically guarantee the accuracy of analysis by bounding the error of the approxima-
tion. For instance, Munsky & Khammash (2006), Gupta et al. (2017) proposed the finite state
projection, which enables analytic quantification of the error bound of the copy number distri-
butions. Ahmadi et al. (2016) developed a method for bounding the solution of the Langevin
equation. More recently, Ghusinga et al. (2017), Sakurai & Hori (2017, 2018, 2019), Dowdy &
Barton (2018a,b), Kuntz et al. (2019) independently proposed an optimization based approach for
bounding the solution of truncated moment equations based on the SDP relaxation of the gener-
alized moment problem (Lasserre 2009), of which the idea was extended to the analysis of a wider
class of systems (Lamperski & Dhople 2017, Lamperski et al. 2019, Ghusinga et al. 2020).

Despite these advancements, one limitation of these general frameworks is that they focus only on
the analysis of intrinsic noise while experimental observations suggest that the stochastic cellular
response is the result of the combined effects of intrinsic and extrinsic noise (Taniguchi et al. 2010).
Thus, an important next step is to generalize these frameworks to enable simultaneous analysis for
intrinsic and extrinsic noise.

Toward this goal, this paper considers a computational method to obtain theoretically guaranteed
bounds of the stationary moments of the copy number distributions subject to extrinsic noise
modeled by the uncertainty of reaction rates. Since exact identification of the uncertainty is hard
in practice, we here assume that only part of the statistics of the parameter distribution such as the
mean is available. This implies that the stationary moments of the copy number distribution can
be obtained only as the worst-case interval for all possible parameter distributions satisfying the
a priori statistics (Fig. 1). We show that the problem of the worst-case interval analysis reduces
to a similar form of the semidefinite program that was designed for the deterministic parameter
case (Ghusinga et al. 2017, Sakurai & Hori 2017, 2018, Dowdy & Barton 2018a, Kuntz et al. 2019)
by reorganizing the CME and adding various types of constraints to the optimization problem. In
particular, we show that the proposed optimization program is capable of computing informative
bounds on the stationary moments of highly uncertain moment equations that are hard to analyze
with the widely-used stochastic simulation algorithm (Gillespie 1976).

The organization of this paper is as follows. In Section 2, we formally address the worst-case
analysis problem to be solved. In Section 3, we formulate the optimization problem for computing
valid bounds of uncertain stationary moments. Then, specific forms of the optimization constraints
for characterizing the set of uncertain parameter distributions are presented in Section 4. Section 5
is devoted to the demonstration of the proposed approach using two illustrative examples. Finally,
we summarize the results in Section 6.

Notations: N0 is the set of natural numbers including zero, N0 := {0, 1, 2, . . .}, Z is the set of
integers, and R>0 is the set of positive real numbers, R>0 := {x ∈ R | x > 0}. A superscript is
used to represent the dimension of the vector space, e.g., Nn0 . A probability distribution defined on
the sample space X and its support is denoted by PX and supp(PX), respectively. The probability
PX(X = x) is denoted by PX(x), and, when necessary, time t is explicitly displayed as PX(x; t).
A scalar Xα is defined for vectors X = [X1, X2, . . . , Xn]> and α = [α1, α2, . . . , αn]> as Xα :=
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Figure 1: The concept of the worst-case interval of stationary moments for uncertain parameter
distributions

∏n
i=1X

αi
i = Xα1

1 Xα2
2 . . . Xαn

n . E[Xγ ] with ‖γ‖1 = p denotes a p-th order moment of PX defined
by

E[Xγ ] :=

∫
X
xγ dPX(x),

where X := supp(PX).

2 Model of Uncertain Stochastic Chemical Reactions and
Problem Formulation

In this section, we first introduce a chemical master equation, a mathematical model of stochastic
chemical reactions, and define the problem of moment analysis with uncertain reaction parameters.

Consider a chemical reaction system that consists of n species of molecules, M1,M2, . . . ,Mn,
and r reactions. We denote the copy number of the molecular species Mj by Xj and define
X := [X1, X2 . . . , Xn]> ∈ Nn0 . The stoichiometry of the i-th reaction is defined by si ∈ Zn,
meaning that the molecular copy numbers change from X to X + si by reaction i. The reactions
occur in a stochastic manner due to the low copy nature of the molecular species, and thus,
the dynamics of the copy number X is considered as a stochastic process. More specifically, the
probability of the occurrence of reaction i in an infinitesimal time dt is given by wi(X,Ki)dt, where
wi(X,Ki) is the propensity function with a constant Ki ∈ R>0. We assume that all reactions are
elementary, meaning that the propensity function is a zero-th, first, or second order polynomial in
Xi (i = 1, 2, . . . , n).

Let PX|K,X0
denote the conditional probability distribution of X given the time-invariant rate

constants K := [K1,K2, . . . ,Kr]
>Rr>0 and the initial value of the copy number X0 ∈ Nn0 .

The evolution of the distribution is then governed by the chemical master equation (CME) (Gille-
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spie 1992)

d

dt
PX|K,X0

(x|k,x0; t)

=

r∑
i=1

{wi(x− si, ki)PX|K,X0
(x− si|k,x0; t)

− wi(x, ki)PX|K,X0
(x|k,x0; t)}. (1)

The CME is also known as Kolmogorov’s forward equation for a discrete state Markov chain, where
the state of the chain is the copy number of molecular species.

The CME (1) characterizes the dynamics of the intrinsic variability caused by the stochastic reac-
tion events within a cell. On the other hand, the cell population is also subject to extrinsic noise
resulting from the variation of global factors. Hence, we here consider the extrinsic noise that can
be modeled by the variation of the time-invariant kinetic parameters across the cell population
that is characterized by a distribution PK .

In what follows, we consider analyzing the stationary moments of the copy number distribution
PX when the parameter distribution PK is partially given in the form of its moments. Specifically,
our goal is to propose a mathematical optimization program for computing valid bounds of the
stationary moments and their associated statistical values such as the mean and the variance of the
distribution based on the a priori information of the parameter distribution PK . More formally,
the problem is stated as follows.

Problem. Consider the chemical master equation (1). Suppose a set of parameter distributions
P is given. Compute mathematically valid upper and lower bounds of the stationary moments of
PX for all parameter distributions PK ∈ P and all initial distributions PX0 .

It is reasonable, in practice, to assume that the actual distribution of the parameters PK is unknown
but only some statistics such as the mean and the covariance are known. Thus, we here consider
the case where the set P is characterized by some of the moments of parameter distributions. The
stationary distribution of the copy numbers PX might not be unique for the set of the parameter
distributions P. In other words, we can obtain only an interval of statistics of the copy number
distribution. The computed upper and lower bounds of the statistics then gives a valid range of
the worst-case statistics for the stochastic chemical system (1) when the underlying parameter
distribution PK ∈ P is uncertain (Fig. 1).

In what follows, we impose the following assumptions to enable moment based analysis of the
stationary distribution of the molecular copy numbers.

Assumption 1. For any parameter distributions PK in the given set P, and any initial copy
number distributions PX0 , (i) the stationary solution of the CME (1) exists, and (ii) its associated
Markov chain is non-explosive. Moreover, (iii) all moments of the stationary distributions PX are
finite.

Remark 1. The conditions (i) and (ii) guarantee the existence of the stationary distributions
(Theorem 30 in Kuntz et al. (2019)). The condition (iii) is necessary to rule out the case of heavy-
tailed copy number distributions as observed in Ham et al. (2020), in which case moment based
characterization of the stationary distribution is not possible.
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3 Mathematical Optimization for the Worst-case Analysis

To analyze the uncertain stationary moments of the copy number distribution, we first introduce
the moment equation of the joint distribution of the molecular copy number X and the parameter
K. To this goal, we reorganize the CME (1) by marginalizing the parameter K and the initial copy

number X0, and incorporating the parameter into the state by X̂ := [X>,K>]>. Specifically, eq.
(1) becomes

d

dt
PX̂(x̂; t) =

r∑
i=1

{ŵi(x̂− ŝi)PX̂(x̂− ŝi; t)

− ŵi(x̂)PX̂(x̂; t)}, (2)

where ŝi := [s>i , 0
>]> and ŵi(x̂) := wi(x, ki).

Eq. (2) can be viewed as a chemical master equation for the new state X̂. In particular, the rate
constants are incorporated into the state. Thus, the dynamics of the moments of the distribution
PX̂ can be modeled by the moment equation using the standard approach (see Sakurai & Hori
(2018) for example). This allows us to recast the analysis problem of the uncertain stationary
moments into an optimization problem that was previously studied for computing valid moment
bounds of stochastic reactions without parameter uncertainty (Ghusinga et al. 2017, Sakurai &
Hori 2017, 2018, Dowdy & Barton 2018a, Kuntz et al. 2019).

The moment equation is a set of linear ordinary differential equations of the moments of PX̂ , and
its stationary solution gives the stationary moment. The stationary moment equation is specifically
given by

0 =

r∑
i=1

∑
γ

aζi,γE[X̂γ ] (3)

for each ζ := [ζ1, ζ2, . . . , ζn+r] ∈ Nn+r
0 , where the constant aζi,γ is the coefficient of X̂γ in the

polynomial {(X̂ + ŝi)
ζ − X̂ζ}ŵi(X̂) (i = 1, 2, . . . , r) and γ ∈ Nn0 is the exponent (see Notations

in Section 1). A finite subset of eq. (3) can then be written as

0 = Aµ+Bν + Cξ, (4)

where

µ := [E[Xα1 ],E[Xα2 ], . . . ,E[Xαn1 ]]>,

ν := [E[Xα1Kβ1 ],E[Xα1Kβ2 ], . . . ,E[Xαn2Kβn3 ]]>,

ξ := [E[Kβ1 ],E[Kβ2 ], . . . ,E[Kβn4 ]>

are finite dimensional vectors of moments obtained by truncating all moments beyond a chosen
order, and the matrices A,B, and C are defined with the coefficients in eq. (3).

Eq. (4) implies that, given the stoichiometry ŝ and the propensity ŵi(X̂), the stationary moment
of the copy number distribution PX can be found as a solution of the linear equation

Aµ̄+Bν̄ + Cξ̄ = 0, (5)

where µ̄, ν̄ and ξ̄ are vectors of independent variables. When the information of the parameter
distribution PK is partially known in the form of moments, the variable ξ̄ is constrained by the
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a priori information of the moments Ω, i.e., ξ̄ ∈ Ω. This means that the stationary moment of
the copy number distribution can be found as a solution of the linear equation (5) subject to the
constraint ξ̄ ∈ Ω, which will be discussed in detail in Section 4. In general, however, the linear
equation is highly underdetermined, i.e., there is no subset of equations that can close the system
of equations, and simply solving the linear equation (5) does not give informative moment bounds.

Hence, we here introduce additional necessary conditions that the solution of the linear equation
(5) must satisfy, and formulate an optimization problem that bounds the target moment of the
copy number distribution.

Proposition 1. Consider the stochastic reaction system governed by the CME (1). Let P denote
a given set of uncertain parameter distributions characterized by the constraints of their moments
Ω, i.e., P := {PK | ξ ∈ Ω}. Suppose Assumption 1 holds, and polynomials ci(K) and di(X)
satisfying

supp(PK) ⊆ {K | ci(K) ≥ 0}`1i=1

supp(PX) ⊆ {X | di(X) ≥ 0}`2i=1.

are given. Let ϕ∗min (resp., ϕ∗max) denote the minimum (resp., maximum) value of the stationary
moment f>µ among all possible PK ∈ P, i.e., ϕ∗min := minP f

>µ (resp., ϕ∗max := maxP f
>µ),

where f is a given constant vector for defining the moments of interest. Then, the solution of the
following minimization (resp., maximization) problem gives the lower (resp., upper) bound of ϕ∗min.

min
µ̄,ν̄,ξ̄

f>µ̄ subject to

Aµ̄+Bν̄ + Cξ̄ = 0, ξ̄ ∈ Ω

H̄i :=


L(E[g0g

>
0 ])�O (i = 0)

L(E[ci(K)gig
>
i ])�O (i = 1, . . . , `1)

L(E[di−`1(X)gig
>
i ])�O (i = `1+1, . . . , `1+`2),

where µ̄ := L(µ), ν̄ := L(ν), and ξ̄ := L(ξ) with a bijective operator L(·) that maps each moment
in the entries to an independent variable, and gi is a vector of the monomial basis of polynomials
R[X̂] of an arbitrary degree.

The linear matrix inequality (LMI) conditions for the matrices H̄i (i = 0, 1, 2, . . . , `1 + `2) are the
necessary conditions for the variables to be the moments of the joint distribution PX̂ since the
entries of H̄i correspond to the moments of the joint distribution. Thus, the optimization problem
explores valid bounds of uncentered moments f>µ over the set of variables that the moments of
PX̂ must satisfy.

In particular, if the constraints Ω on the moments of PK is represented by LMIs, the optimization
problem becomes a semidefinite program (SDP), which will be discussed in detail in Section 4. More
specifically, this class of optimization is known as an SDP relaxation of the generalized moment
problem (Lasserre 2009). The use of such SDP relaxation was previously studied for computing
valid bounds of the moments when the parameter Ki of the propensity function wi(X,Ki) is
given and deterministic (Ghusinga et al. 2017, Sakurai & Hori 2017, 2018, Dowdy & Barton 2018a,
Kuntz et al. 2019). Proposition 1 extends these results to enable the exploration of the worst-case
moments when the parameters are given as an uncertain set of distributions P.

Remark 2. When a conservation law holds for some molecular species, the redundant state
variables in the CME can be systematically removed by using the bases of the left null space of
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the stoichiometry matrix [s1, s2, . . . , sr] as shown in Dowdy & Barton (2018a). This allows for
reducing the number of variables and tightening computed bounds of the optimization problem.

4 Formulation of Uncertain Parameter Set for Optimization

In this section, we introduce specific forms of the constraints Ω in the optimization problem in
Proposition 1 by considering typical analysis problems of stochastic biomolecular reactions. In
particular, we show the constraints that arise in many practical analysis problems can be expressed
by linear (matrix) inequalities, enabling the optimization problem to be computed by SDP solvers.

4.1 Uncertain parameter distributions in practical analysis

In practice, the joint distribution PK of the rate parameters is rarely identified from experimental
data because of the sparse measurement and the lack of well-established methodology. Instead,
the rate parameters are only expressed as the mean value µi and the standard deviation σi of the
marginal distribution of the parameter PKi , which are defined by

µi := E[Ki], σ
2
i := E[K2

i ]− (E[Ki])
2. (6)

The correlation between the parameters

corr(Ki,Kj) :=
E[KiKj ]− µiµj√

E[K2
i ]− µ2

i

√
E[K2

j ]− µ2
j

(7)

is also an important factor that is identified or estimated from experimental data since, in a single
cell, the rate parameters are affected by shared resource molecules and common environmental
factors such as ribosomes, RNA polymerases, and temperature (Boo et al. 2019, Taniguchi et al.
2010).

Therefore, for the worst-case analysis, the set of parameter distributions P needs to be explored
based on the partial information of (i) the mean, (ii) the variance, and (iii) the correlation between
the parameters. Moreover, these statistics themselves are potentially uncertain due to the limita-
tion of parameter identification. In what follows, we consider specific forms of the constraints Ω
to solve these analysis problems.

4.2 Worst-case analysis with known moment values

Let us first consider the case where the mean and the variance (6) of the uncertain parameter
distribution are given. In literatures, the marginal distribution of each parameter is often assumed
to be a parametric distribution such as a gamma distribution (see Taniguchi et al. (2010), for
example). Then, the moments of the marginal distributions PKi

can be analytically obtained, and
ξ̄ in Proposition 1 can simply be set to the values computed by the analytic solution. For example,
the moments of gamma distributions are given by

E[Kβi

i ] = θβi

i

βi∏
j=1

(ηi + j − 1), (8)

using the two parameters θi and ηi, which can be identified from the given mean and variance.

In reality, however, the parameter distribution is not necessarily parametric. Thus, it is more
reasonable to explore all possible parameter distributions PK , i.e. the set of distributions P,
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constrained only by the first and the second order moments of the marginal distributions PKi
.

The following corollary summarizes the constraints Ω of the optimization problem in Proposition
1 when part of the statistics in eqs. (6) and (7) is given.

Corollary 1. Suppose the mean µi and the variance σ2
i of the marginal distribution PKi are given,

and the bound of the correlation between the parameters is given by |corr(Ki,Kj)| ≤ rij. Let the
constraints Ω be set as 

L(E[Ki])− µi = 0,

L(E[K2
i ])− µ2

i − σ2
i = 0,

− L(E[KiKj ]) + µiµj + rijσiσj ≥ 0,

L(E[KiKj ])− µiµj + rijσiσj ≥ 0.

(9)

Then, the solution of the minimization problem in Proposition 1 gives a valid lower bound of f>µ.

4.3 Worst-case analysis with uncertain moment values

When the number of experimental data is not sufficient, the variance itself could also be uncertain
and is given as an interval by σ2

i ≤ σ2
i ≤ σ2

i . As shown in the next Corollary, the optimization
problem in Proposition 1 can also incorporate such uncertainty as semidefinite constraints, allowing
for the problem to be solved by SDP solvers.

Corollary 2. Suppose the mean values µ` of the marginal distributions PK`
(` = i, j) are given,

and the interval of the variance and the correlation between the parameters are given by 0 < σ2
i ≤

σ2
i ≤ σ2

i and 0 < |corr(Ki,Kj)| ≤ rij, respectively. Let the constraints Ω be set as
σ2
` ≤ L(E[K2

` ])− µ2
` ≤ σ`2 (` = i, j),[

rij(L(E[K2
i ])− µ2

i ) L(E[KiKj ])− µiµj
L(E[KiKj ])− µiµj rij(L(E[K2

j ])− µ2
j )

]
� O.

Then, the solution of the minimization problem in Proposition 1 gives a valid lower bound of fTu.

In Corollary 2, the semidefinite constraint is obtained by the Schur complement of the inequality
(corr(Ki,Kj))

2 ≤ r2
ij . In the case of rij = 0, the parameters are not correlated, i.e. E[KiKj ] =

µiµj , and thus, the cross-moment can be immediately substituted into E[ξ̄].

It should be noted that the proposed optimization can flexibly incorporate the information of
parameter distributions PK . In Corollaries 1 and 2, the only constraints on PK are the partial
statistics of the distribution, and no parametric distributions need to be assumed. However, if
necessary, one can also assume parametric distributions and can easily incorporate the associated
constraints into the proposed optimization framework, as demonstrated in the next section.

5 Application examples

In this section, we demonstrate the proposed optimization approach by using two examples of
stochastic chemical reactions and show that the solution of the optimization problem gives in-
formative upper and lower bounds of the statistics of the stationary copy number distribution
PX .
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Table 1: Specification of dimerization process (10)
index i Reaction rate wi Stoichiometry si

1 w1 = K1D s1 = 1
2 w2 = K2X s2 = −1
3 w3 = K3X(X − 1) s3 = −2

5.1 Analysis for partially known parameter distributions

We consider the dimerization process of a molecular species A, which consists of three reactions:

φ
w1−−→ A, A

w2−−→ φ, 2A
w3−−→ A : A, (10)

where the copy number of the molecular species A is denoted by X, and the stoichiometry and
the propensity functions are defined in Table 1. These reactions correspond to gene expression,
degradation, and protein dimerization, for instance. Suppose the mean and the variance of the
marginal parameter distribution PK1

are 0.8 and 0.32, respectively, and those of PK2
are 0.4 and

0.04, respectively. We assume that these marginal distributions are gamma distributions. Then,
the shape factor ηi and the scale factor θi for Ki in eq. (8) are identified as (η1, θ1) = (2, 0.4)
and (η2, θ2) = (4, 0.1), respectively. K3 and D are assumed to be constants, and K3 = 0.02 and
D = 5. The parameters K1 and K2 are possibly correlated and the correlation is bounded by
|corr(K1,K2)| ≤ r. This constraint is expressed by the linear inequality conditions as shown in eq.
(9).

In what follows, we analyze the stationary mean copy number of the monomer A. To this goal,
the moment equation (4) is computed based on the CME (1). For instance,

0 =

 2K3 −2K3

0 0
0 0

[ E[X]
E[X2]

]
+

 D 0 0
0 D 0
0 0 D

 E[K1]
E[K2

1 ]
E[K1K2]



+

 0 0 −1 0 0 0
2K3 −2K3 0 0 −1 0

0 0 2K3 −2K3 0 −1




E[XK1]
E[X2K1]
E[XK2]
E[X2K2]
E[XK1K2]
E[XK2

2 ]

 (11)

which is obtained from eq. (3) with X̂ζ = Xζ1Kζ2
1 Kζ3

2 . For later convenience, we define

ρ := max ζ1, σ := max(ζ2 + ζ3), (12)

which are the parameters that determine the order of moments included in the truncated moment
equation. These parameters are used to control the tradeoff between accuracy and computation
time. For example, eq. (11) corresponds to the case of ρ = σ = 1. Substituting eq. (8) into the
corresponding entries in eq. (11), we obtain the linear equation of the optimization problem in
Proposition 1.

We further narrow the solution space of eq. (11) by using H̄0, H̄1, H̄2, and H̄3. For ρ = σ = 1, we
use

g0 = [1, X,K1, XK1,K2, XK2]>,

g1 = g2 = [1, X]>, g3 = [1,K1,K2]>,

9



and c1(K) = K1, c2(K) = K2, d1(X) = X, which allows for including all moments in eq. (11)
into the matrices.

Finally, based on Proposition 1, we compute mathematically valid upper and lower bounds of the
mean copy number E[X] for different values of r. The results are illustrated in Fig. 2(A), where
ρ = 5 is used. We observe from Fig. 2(A) that, for each r, the gap between the upper and
lower bounds monotonically decreases with increasing σ. This is because the constraints for the
optimization program with smaller σ become a subset of those for the larger ones. This feature
allows us to automate the choice of σ by iteratively solving the optimization problem by increasing
σ until the gap between the bounds reaches to an acceptable range or the decrease of the gap starts
stalling. Another important observation is that the gap increases monotonically with r. This gap
shows the uncertainty of the mean copy number that originates from the uncertainty of the joint
distribution PK due to the possible correlation of the parameters. In other words, Fig. 2(A)
shows the worst-case value of the uncertain moment for each r. The gap becomes zero (with two
significant digits) for σ = 9 when the parameters are independent, for which case PK is uniquely
determined as the product of the two gamma distributions.

This result can be verified by generating sample paths for each r and plotting the intervals of the
mean copy number as shown in Fig. 2(A). More specifically, the sample paths are generated by
the following procedure:

1. Generate 100000 random numbers K1,i and K2,i (i = 1, 2, . . . , 100000) from the gamma
distributions PK1

and PK2
, respectively.

2. Sort each parameter in ascending order and make pairs of parameters (K1,i1 ,K2,i2).

3. Randomly choose two pairs of parameters, say (K1,i1 ,K2,i2) and (K1,j1 ,K2,j2), and swap K2

so that (K1,i1 ,K2,j2) and (K1,j1 ,K2,i2).

4. Repeat (2) and (3) unless corr(K1,K2) ≤ r

5. Run the stochastic simulation algorithm (SSA) (Gillespie 1976) for each parameter pair, and
record the mean copy number at time t = 1440.

In short, positively correlated parameter pairs are generated by step (2), and then the correlation
is reduced in step (3). To make negatively correlated pairs,

(6) Run (1)-(5) again, but K2 is sorted in descending order in step (2) and corr(K1,K2) ≥ −r
in step (4).

(7) Plot the range of the mean copy numbers obtained in steps (5) and (6).

The average computation time for generating a single sample path was 0.6094 second for r =
0.30, 0.50, 0.70, and 1.00 in Fig. 2(A). We observed that 10000 or more sample paths were necessary
to obtain informative asymptotic bounds, which equates 6094 second in average for each bound.
On the other hand, the computation time of the proposed optimization was 2400 second in average.

In general, obtaining asymptotic bounds using the sample path generation approach tends to be
prohibitively hard when there are fewer assumptions on the parameter distributions. For example,
if we remove the assumption that the marginal distributions PK1

and PK2
are gamma distributions,

there are many other possible distributions satisfying the constraints of the mean, the variance, and
the correlation |corr(K1,K2)| ≤ r. Consequently, searching for all possible distributions would be
very hard by the Monte Carlo approach. On the other hand, the computational cost of the proposed
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Figure 2: Bounds of maximum and minimum values of mean copy number E[X] for the reaction
system (10). (A) gamma distribution is assumed for PK1 and PK2 . (B) Only the first and the
second order moments are assumed for PK1 and PK2 .

optimization remains almost the same even for such cases since the bounds can be computed simply
by changing the constraints of the optimization.

5.2 Analysis for fully unknown parameter distributions

Next, we consider a more practical scenario where the marginal distributions of the parameters
K1 and K2 are not completely known, but only their first and second order moments are. We
assume K3 = 0.02 and D = 5, and the correlation between the two parameters is assumed to be
|corr(K1,K2)| ≤ r, which is the same as the previous example. Thus, the only difference from the
previous example is that the parameter distribution PK has larger uncertainty in that the marginal
distribution is not unique.

We formulate the same optimization problem as the previous example in Section 5.1 except that
the third and the higher order moments for K1 and K2, i.e., E[Kr

1 ] and E[Kr
2 ] with r ≥ 3, are

set as variables. The mathematically valid upper and lower bounds of the mean copy number
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computed by the optimization program are plotted in Fig. 2(B). As expected, the gap between
the upper and the lower bounds becomes larger than those in Fig. 2(A) since the parameter
distribution PK in this example has larger uncertainty than in the previous example. It should
be noted that the marginal distributions of the parameters are no longer limited to the gamma
distributions. Since parameterization of such uncertain parameter distributions is not available, it
is prohibitively difficult to obtain a reasonable estimation of valid bounds by using the sampling
based approach such as the SSA (Gillespie 1976). The proposed approach, on the other hand,
gives mathematically valid bounds, and thus, it is useful for rational engineering and analysis of
stochastic chemical reaction systems.

Remark 3. All optimization problems were solved with SeDuMi 1.3.2 (Sturm 1999) on MATLAB
2021a. To avoid numerical instability of the solver, the variables were normalized by constants as
shown in Appendix A.

6 Conclusion

We have proposed a computational framework to analyze the worst-case stationary moments of the
molecular copy number distributions in stochastic chemical reactions with parametric uncertainty.
Specifically, a mathematical optimization method has been developed to compute the intervals
of the possible moment values of uncertain moment equations whose parameters are given only
partially using the statistics of the parameter distributions. A distinctive feature of the proposed
method is that it has been derived without approximating the governing equation of the stochas-
tic chemical reactions, i.e., the CME, unlike many other approaches reviewed in Section 1. In
other words, the moments of interest are guaranteed to be within the computed bounds for all
possible parameter distributions satisfying the given statistics. This feature is useful for model-
based rational engineering of biomolecular circuits, where the robustness of synthetic reactions is
important.
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A Scaling of the variables for the optimization

Scaling constants were introduced to avoid numerical instability caused by rounding error. Let

Escaled[XαKβ1

1 Kβ2

2 ] :=
1

C(α, β1, β2)
E[XαKβ1

1 Kβ2

2 ]

denote a scaled moment, where C(α, β1, β2) := CαXC
β1

K1
Cβ2

K2
with CX and CKi being given constants

associated with the copy number X and the parameters Ki (i = 1, 2).

When solving the optimization problem, we reformulated equivalent constraints by dividing the
stationary moment equation (3) with ζ = [α, β1, β2]> by C(α, β1, β2). The variables in H̄i were also
replaced with the scaled moments with appropriate scaling. The constants were CX = 5, CK1

= 3
and CK2 = 0.7 for Fig. 2.

14


	1 Introduction
	2 Model of Uncertain Stochastic Chemical Reactions and Problem Formulation
	3 Mathematical Optimization for the Worst-case Analysis
	4 Formulation of Uncertain Parameter Set for Optimization
	4.1 Uncertain parameter distributions in practical analysis
	4.2 Worst-case analysis with known moment values
	4.3 Worst-case analysis with uncertain moment values

	5 Application examples
	5.1 Analysis for partially known parameter distributions
	5.2 Analysis for fully unknown parameter distributions

	6 Conclusion
	A Scaling of the variables for the optimization

