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Abstract

Traditional process monitoring methods, such as PCA, PLS, ICA, MD et al., are strongly dependent on continuous variables
because most of them inevitably involve Euclidean or Mahalanobis distance. With industrial processes becoming more and
more complex and integrated, binary variables also appear in monitoring variables besides continuous variables, which makes
process monitoring more challenging. The aforementioned traditional approaches are incompetent to mine the information
of binary variables, so that the useful information contained in them is usually discarded during the data preprocessing. To
solve the problem, this paper focuses on the issue of hybrid variable monitoring (HVM) and proposes a novel unsupervised
framework of process monitoring with hybrid variables including continuous and binary variables. HVM is addressed in the
probabilistic framework, which can effectively exploit the process information implicit in both continuous and binary variables
at the same time. In HVM, the statistics and the monitoring strategy suitable for hybrid variables with only healthy state
data are defined and the physical explanation behind the framework is elaborated. In addition, the estimation of parameters
required in HVM is derived in detail and the detectable condition of the proposed method is analyzed. Finally, the superiority
of HVM is fully demonstrated first on a numerical simulation and then on an actual case of a thermal power plant.
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1 Introduction

Process monitoring is indispensable because it is
the premise and guarantee for the safe and stable
running of industrial systems [13,2,15,3,39,33]. In
recent decades, a large number of data-driven ap-
proaches have been proposed for process monitoring
[12,22,5,26,11,38,32,4,37,41]. However, most of them are
highly based on continuous variables because they can’t
avoid involving Euclidean or Mahalanobis distance and
can’t be utilized for hybrid variables (containing con-
tinuous and binary variables) [37].

Among data-driven methods, principal component
analysis (PCA) has received continuous attention once
it was applied in process monitoring due to its effec-
tiveness of data dimensionality reduction [21,12]. Based
on PCA, dynamic PCA (DPCA) adopted the technol-
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ogy of time lag shift to construct augmented matrix to
mine time-related information [22]. Considering slowly
changing in normal process, recursive PCA (RPCA)
was proposed for adaptive process monitoring [27].
In order to capture nonlinear property, kernel PCA
(KPCA) was developed [31,5]. Unlike PCA, partial least
squares (PLS) and its variants pay much attention to
quality-related fault [29,26]. To weaken the Gaussian
hypothesis, independent component analysis (ICA) was
proposed for process monitoring [25]. The Mahalanobis
distance (MD) can also be directly used for process
monitoring [19]. As understanding of the fault initiation
becomes more and more thorough, the moving window
methods also be proposed for incipient fault detection
[18,32,30]. Considering the practical applicability in in-
dustrial processes, a large number of improved methods
have been developed for multimode and nonstationary
monitoring [40,42,17].

The aforementioned methods have made remarkable
achievements in process monitoring, but almost all
methods are based on Euclidean or Mahalanobis dis-
tance and are highly dependent on continuous variables.
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However, the practical industrial processes sometimes
have not only continuous variables, but also binary vari-
ables which may carry some useful information for pro-
cess monitoring [37] and are usually deleted in the data
preprocessing [14]. For hybrid variables, Langseth et al.
used hybrid Bayesian networks for estimating human
reliability [24]. Aguilera et al. developed the näıve Bayes
(NB) and tree augmented näıve Bayes (TAN) models
and applied to species distribution [1]. Zhu et al. consid-
ered the mixture of continuous and discrete variables in
semantic model [43]. Talvitie et al. introduced a related
model through employing an adaptive discretization
approach for structure learning in Bayesian networks
when there are both continuous and discrete variables
[34]. Recently, Wang et al. utilized continuous and bi-
nary (two-valued) variables to detect the abnormalities
of thermal power plant for the first time [37]. Then a
more effective anomaly monitoring model named fea-
ture weighted mixed naive Bayes model (FWMNBM)
was developed [36].

However, the hybrid variable approaches mentioned
above are supervised methods and require both normal
and fault data during training. Unfortunately, the sys-
tems in actual industrial processes are running without
fault in most time, and the determinations of fault sam-
ples requires repeated research and careful discussion by
experts, which are time-consuming and costly. So that
the healthy state samples are usually available and it is
difficult to collect sufficient fault instances, which is one
of the reasons why monitoring methods only based on
normal working condition data, such as PCA, PLS, ICA
et al., have attracted much attention. Process monitor-
ing methods with hybrid variables only based on healthy
state data are very urgently. Therefore, this paper fo-
cuses on hybrid variable process monitoring and pro-
poses a novel unsupervised framework of process moni-
toring with hybrid variables named HVM which can si-
multaneously capture the process information of both
continuous and binary variables. The main contributions
are summarized as follows:

(1) The article firstly focuses on hybrid variable moni-
toring only based on healthy state data. And a novel
unsupervised framework of process monitoring with
hybrid variables (continuous and binary variables)
named HVM is proposed.

(2) Under the unsupervised framework, the statistics
and the monitoring strategy suitable for hybrid vari-
ables are firstly defined and the physical explanation
behind the framework is elaborated. In addition, the
expressions of parameters are derived in detail and
the detectable condition is analyzed.

(3) The effectiveness and efficiency of the proposed
method is fully demonstrated first on a numerical

simulation and then on a practical fan system of
ultra-supercritical power plant.

The remainder of the paper is organized as follows.
The problem formulation and motivation are described
in detail in Section 2. The framework of hybrid vari-
able monitoring is introduced in Section 3. In Section
4, parameters learning and corresponding derivation are
described. The fault form of hybrid variables is defined
and the detectable condition is analyzed in Section 5.
In Section 6, the effectiveness and efficiency of proposed
framework is verified. Finally, conclusions are given in
Section 7.

2 Problem formulation and motivation

With industrial processes becoming more and more
complex and integrated, binary variables also appear in
monitoring variables. For example, in Zhejiang Zheneng
Zhongmei Zhoushan Coal and Electricity Co., Ltd.
(Zhoushan Power Plant), Zhejiang Province, China, the
number of monitoring variables in the No.1 power unit
is about 17380, in which the number of binary variables
among them is as many as 8820 [37]. In the fan system
of No.1 power unit, 260 continuous variables and 495 bi-
nary variables are collected, where the number of binary
variables is more than that of continuous variables [36].
The appearance of binary variables makes traditional
monitoring approaches no longer applicable and pro-
cess monitoring with hybrid variables more intractable.
The binary variables are usually discarded during the
data preprocessing because the traditional approaches
mostly have applied Euclidean or Mahalanobis distance
which can’t be used to describe binary variables [14].
However, binary variables may carry some useful infor-
mation for process monitoring [37,36].

The issue of supervised classification with hybrid
variables has been paid attention to and investigated in
other fields [24,1,43,34]. In process monitoring, Wang et
al. have utilized continuous and binary variables for the
anomaly detection of thermal power plant [37,36]. How-
ever, these approaches are supervised methods, which
require both normal samples and fault instances to train
the model. In practical processes, a lots of healthy state
samples can be collected and it is difficult to obtain
sufficient faulty samples. Therefore, this paper proposes
a novel unsupervised framework of process monitoring
with continuous and binary variables named HVM.
HVM can simultaneously mine the information of both
continuous and binary variables through a probabilistic
framework. In HVM, the statistics of hybrid variables
are computed with healthy state data and the control
limit is determined by kernel density estimation (KDE)
[28]. Then for the arriving sample xxxa, the statistic sa
can be computed with the same way of training. The
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state of xxxa can be determined through the monitoring
strategy. Finally the superiority of HVM is demon-
strated through a numerical simulation and an actual
case in the fan system of a thermal power plant.

3 Hybrid variable monitoring framework

3.1 Off-line statistics

Training dataXXX = {xxxi}ni=1 are sampled under normal
operating condition with n samples. xxxi ∈ Rd is the ith
instance and contains d (d = db + dc) features where db
binary features and dc continuous features are respec-
tively collected. Let xj be the jth variable. jb and jc
mean the jbth and jcth variable of binary variables and
continuous variables respectively. When the system is
running in a steady state, the monitoring data tends to
be stationary and with no trends [41]. Then the follow-
ing assumptions are introduced.

Assumption 1 If xj is a continuous variable (denoted
as xjc), we suppose it obeys Gaussian distribution under
normal condition, that is [37]

Pc(x
jc ;θθθjc) = N (xjc ;µjc , σjc), (1)

where θθθjc = {µjc , σjc}, N (xjc ;µjc , σjc) is the probabil-
ity density function (pdf) defined as N (xjc ;µjc , σjc) =

(2π)−1/2(σjc)−1 exp(−
(
xjc − µjc

)2
2−1(σjc)−2), µjc and

(σjc)2 are the mean and corresponding variance of the
jcth variable.

Assumption 2 If xj is a binary variable (denoted as
xjb), the Bernoulli distribution is introduced as follows
[9]:

Pb(x
jb ;θθθjb) = (ηj)x

jb
(1− ηjb)1−x

jb
, (2)

where θθθjb = {ηjb}, Pb(xjb ;θθθjb) is the distribution series
(ds), ηjb is the response probability which is defined as
ηjb = P (xjb = 1).

Definition 1 In practical processes, variables are often
correlated with each other. Then the occurrence probabil-
ity of xxxi under normal condition is defined as

P (xxxi;θθθ) =
dc
Π
jc=1

Pc(xxx
jc
i ;θθθjc)ϕ

jc db
Π
jb=1

Pb(x
jb ;θθθjb)ϕ

jb
, (3)

where θθθ = {θθθjc , θθθjb , ϕjc , ϕjb}, ϕ means the weight of the
corresponding variable.

Affected by noise, there may be some outliers in data
sampled under normal operating condition. Then the
probability that xxxi belongs to XXX can be obtained by

P (xxxi) = δ̃P (xxxi;θθθ), (4)

where δ̃ is the prior normal probability, which represents
the confidence level of the health state data and equals
to δ̃ = 1− δ, δ is the significance level [10].

Proposition 1 ∀ xxxi ∈ XXX, ∃ a positive decimal α (0 <
α < 1) to satisfy α ≤ P (xxxi) < 1.

Proof. For xxxi ∈XXX, suppose Assumption 1 holds and
ϕjc > 0 (which can be obtained by Definition 3, where
M(xj , xj

′
) is non-negative.), then

0 <
dc
Π
jc=1

Pc(xxx
jc
i ;θθθjc)ϕ

jc
< 1. (5)

Since the number of training samples n is an integer less
than infinity, Assumption 2 is introduced, and ϕjb > 0
(which can be obtained by Definition 3.), we have

0 ≤
db
Π
jb=1

Pb(x
jb ;θθθjb)ϕ

jb ≤ 1. (6)

Then 0 < P (xxxi) < 1 for any xxxi ∈ XXX. There must be a
positive value % that satisfies

0 < % ≤ P (xxxi) < 1. (7)

The prior normal probability 0 < δ̃ < 1, so that a
positive decimal 0 < α < 1 can be find to satisfy α ≤
P (xxxi) < 1, where α = %δ̃. 2

Remark 1 Pc(x
jc ;θθθjc) and Pb(x

jb ;θθθjb) are probability
distributions (pdf or ds), which are fitted by training data.
Thus the more xxxi deviates from the statistical character-
istics ofXXX, the smaller P (xxxi;θθθ) is and the smaller P (xxxi)
is.

Definition 2 When P (xxxi) of xxxi is obtained, then f(xxxi)
is computed as

f(xxxi) = ln(P (xxxi)), (8)

where ln(·) is the natural logarithmic function.

Proposition 2 Compared to P (xxxi), f(xxxi) obtained in
equation (8) is more sensitive to faulty instance.

Proof. According to Proposition 1, a lower bound
α(0 < α < 1) that satisfies P (xxxi) ∈ [α, 1) for normal
data xxxi can be found. For a natural logarithmic function
f(xxxi) = lnP (xxxi), f(xxxi) monotonically increases and the

derivative ∂f(xxxi)
∂P (xxxi)

= 1
P (xxxi)

always satisfy that 1
P (xxxi)

> 1

when 0 < P (xxxi) < 1. Fault data xxxf often deviates more
from the statistical characteristics ofXXX and 0 < P (xxxf ) <
α. The detection performance is mainly reflected in the
recognition ability of fault in the neighborhood U(α, ε)
of α, where U(α, ε) = {P (xxxi)|α − ε < P (xxxi) < α + ε}.
Since 0 < α − ε < P (xxxi) < α + ε < 1, so f(xxxi) is
more sensitive to faulty instance than P (xxxi). The trans-
formation of the natural logarithmic function is shown
in Fig. 1. For the normal sample xxx1 and faulty sample
xxx2, 0 < P (xxx2) < α < P (xxx1) < 1 and α − P (xxx2) =
P (xxx1)−α. f(xxx1), f(xxx2) and threshold are obtained from
P (xxx1), P (xxx2) and α with natural logarithmic transfor-
mation, respectively. According to the properties of the
natural logarithm function, f(xxx1)-threshold<threshold -
f(xxx2). 2
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Fig. 1. Transformation of the natural logarithmic function.

According to equation (3), (4) and (8), f(xxxi) can be
written as

f(xxxi) = ln(δ̃P (xxxi;θθθ)) = ln(δ̃) + ln(P (xxxi;θθθ))

= ln δ̃ + ln(
dc
Π
jc=1

Pc(x
jc ;θθθjc)ϕ

jc db
Π
jb=1

Pb(x
jb ;θθθjb)ϕ

jb
).

(9)

Let Ψ = ln(
dc
Π
jc=1

Pc(x
jc ;θθθjc)ϕ

jc db
Π
jb=1

Pb(x
jb ;θθθjb)ϕ

jb ), it

can be learned that

Ψ =

db∑
jb=1

ϕjb lnPb(x
jb ;θθθjb) +

dc∑
jc=1

ϕjc lnPc(x
jc ;θθθjc).

(10)

Considering equation (2), we have

db∑
jb=1

ϕjb lnPb(x
jb ;θθθjb) =

db∑
jb=1

ϕjb ln[(ηjb)x
jb

(1− ηjb)1−x
jb

]

=

db∑
jb=1

ϕjb [xjb ln(ηjb) + (1− xjb) ln(η̃jb)]

=

db∑
jb=1

[ϕjbxjb ln
ηjb

η̃jb
] +

db∑
jb=1

ϕjb ln η̃jb , (11)

where η̃jb = 1 − ηjb . According to equation (1), the
following equation can be obtained that

dc∑
jc=1

ϕjc lnPc(x
jc ;θθθjc) =

dc∑
jc=1

ϕjc lnN (xjc ;µjc , σjc)

=

dc∑
jc=1

ϕjc ln[(2π)−1/2(σj)−1]

+

dc∑
jc=1

ϕjc [−
(
xj − µj

)2
2−1(σj)−2]. (12)

Substituting equation (11) and (12) into equation (9),
f(xxxi) is learned as

f(xxxi) = τττ i · x̃xxTi + ξi + εi, (13)

where τττ i = [ϑ1, . . . , ϑjb , . . . , ϑdb ], ϑjb = ϕjb ln ηjb

η̃jb
, εi =

dc∑
jc=1

ϕjc
[
ln((2π)−

1
2 (σjc)−1)− 1

2 (xxxjci − µjc)2(σjc)−2
]
,

x̃xxi = [xxx1i , . . . ,xxx
jb
i , . . . ,xxx

db
i ], ξi = ln(1−δ)+

db∑
jb=1

ϕjb ln η̃jb .

f(xxxi) obtained in equation (13) is negative. The statis-
tics in process monitoring are often positive, and the
judgment logic is generally that the statistics of the
faulty data exceed the control limit. Thus for the col-
lected training samples XXX, the monitoring statistics sss
are computed as

sss = [s1, · · · , si, · · · , sn]

= [f2(xxx1), · · · , f2(xxxi), · · · , f2(xxxn)], (14)

where si is the statistic of xxxi.

3.2 On-line monitoring strategy

When the statistics sss of XXX are obtained, the control
limit slim can be got with the significance level δ by KDE
[28], δ = 0.01 in this paper. In online detection, the
statistic sa of arriving sample xxxa is computed by equa-
tion (13) and (14). Then the state of xxxa is determined
through the monitoring strategy:{

xxxa is normal, if sa < slim,

xxxa is faulty, otherwise.
(15)

Remark 2 Only continuous and binary variables are
considered in this work. The Bernoulli distribution is in-
troduced for binary variable which has only two values,
where 0 and 1 can also denote two state such as high or
low. It should be noted that the idea and the skills for bi-
nary variables in this work can be referenced to discrete
variables with more than two values. Then the Bernoulli
distribution should be replaced by the multinomial distri-
bution and the subsequent processing of the model may
also need to be adjusted.

4 Parameters learning

The model described in 3.1 mainly involves the esti-
mation of parameters µj , σj , ηj , and ϕj . µj , σj and ηj

can be obtained through maximum likelihood estima-
tion (MLE) [6].

uj =

n∑
i=1

xji/n, (16)

σj = {
n∑
i=1

(
xji − u

j
)2
}1/2(n− 1)

−1/2
, (17)

ηj =

n∑
i=1

xji/n, (xji ∈ {0, 1}). (18)
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In practical process, variables are usually correlated
with others and variables that are more related to the
other variables are more sensitive when abnormalities
occur [37]. So each variable is assigned with the different
feature weight ϕj [20]. The mutual information (MI)
can capture the dependence of variables, both linear and
non-linear [8], and is used to construct the feature weight
ϕj which is defined as follows.

Definition 3 For the jth variable, the weight ϕj is de-
fined as

ϕj = 1 +
1

d− 1

d∑
j=1,j 6=j′

M(xj , xj
′
). (19)

whereM(xj , xj
′
) is the MI of xj and xj

′
.

If xj and xj
′

are continuous variables or both are bi-
nary variables,M(xj , xj

′
) can be obtained by the defini-

tion of MI for continuous variables or discrete variables.
However, xj and xj

′
may include both continuous and

binary variables. Then the auxiliary binary variable is
constructed by Definition 4 for the continuous variable
when the feature weight is computed.

Definition 4 If xj is a continuous variable, x′j is con-
structed as

x′
j
i = [xji > µj], (20)

where [ · ] is Iverson brackets. If the condition xji > µj is
true, it returns 1, otherwise it returns 0.

Definition 4 makes it possible to characterize the cor-
relation between hybrid variables. Then x′j instead of xj

is used to compute MI. However, if xj and xj
′
are contin-

uous variables,M(xj , xj
′
) andM(x′

j
, x′

j′
) are not com-

pletely equivalent. The relationship betweenM(xj , xj
′
)

andM(x′
j
, x′

j′
) is shown in Theorem 1.

Theorem 1 If xj and xj
′

are continuous variables, xj

and xj
′

obey Gaussian distributions N (µj , (σj)2) and

N (µj
′
, (σj

′
)2) respectively, x′

j
and x′

j′
are constructed

by equation (20), the relationship between M(x′
j
, x′

j′
)

andM(xj , xj
′
) is

M(x′
j
, x′

j′
) = (

1

π
arcsin ρ+ 0.5) log(

2

π
arcsin ρ+ 1)

+ (0.5− 1

π
arcsin ρ) log(1− 2

π
arcsin ρ), (21)

where ρ is the correlation coefficient of continu-
ous variables xj and xj

′
, and is expressed as ρ =

[1− e−2M(xj ,xj′ )]1/2.

Proof. See Lemma 1 and appendix A. 2

Lemma 1 [35] For continuous variables xj and xj
′

that
follow Gaussian distributions,M(xj , xj

′
) is the MI of xj

and xj
′
. ρ is the correlation coefficient between xj and

xj
′
. Then

ρ = [1− e−2M(xj ,xj′ )]1/2. (22)

The Lemma 1 is proved in [7].

With Definition 4, the MI computation of hybrid vari-
ables is transformed to that of binary variables (or con-
structed binary variables).M(xj , xj

′
) is defined as

M(xj , xj
′
) =

∑
xj ,xj′

P (xj , xj
′
) log

P (xj , xj
′
)

P (xj)P (xj′)
, (23)

where xj , xj
′

are binary variables or constructed binary
variables. P (xj) is the probability of xj = ψxj , ψxj is
the indicative coefficient (ψxj = 1 when P (xj = 1) is
computed, andψxj = 0 otherwise), P (xj , xj

′
) is the joint

probability of xj = ψxj and xj
′

= ψxj′ . P (xj) (P (xj
′
)

can be obtained in the same way) can be computed by

P (xj) = ψxj

n∑
i=1

xji

n
+ (1− ψxj )(1−

n∑
i=1

xji

n
), (24)

where xji is the value at time i of xj .

Proposition 3 For binary variables xj and xj
′
,

P (xj , xj
′
) can be denoted as

P (xj , xj
′
) = P (xj

′
= ψxj′ )ς

ψxjψxj′ (1− ς)ψxj′−ψxjψxj′

× ς ′ψxj−ψxjψxj′ (1− ς ′)1+ψxjψxj′−ψxj−ψxj′ , (25)

where P (xj = 1|xj′ = 1) = ς, P (xj = 1|xj′ = 0) = ς ′.

Proof. See appendix B. 2

Theorem 2 For binary variables xj and xj
′
, P (xj , xj

′
)

is obtained as

P (xj , xj
′
) = P (xj

′
= ψxj′ ){1− ψxj + (2ψxj − 1)

× [ψxj′ ς + (1− ψxj′ )ς ′]}, (26)

where ς =
n∑
i=1

(xjix
j′

i )(
n∑
i=1

xj
′

i )−1, ς ′ = (
n∑
i=1

xji −
n∑
i=1

xjix
j′

i )

(n−
n∑
i=1

xj
′

i )−1.

Proof. See appendix C. 2

After M(xj , xj
′
) is estimated, the weight ϕj of jth

variable could be obtained through (19).

Remark 3 When the correlation between variables is
not considered, that is ϕj = 1, all variables have the same
weight.

5 Detectability analysis

5.1 Fault description

In multivariate statistical process monitoring, the
fault model is usually described as

Xf = X +ΞF, (27)

where Ξ is the fault direction vector, F represents the
fault magnitude vector[2,32]. The emergence of binary
variables makes that the fault model described in equa-
tion (27) is no longer suitable. Thus the fault model of
hybrid variables is defined as follows.
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Definition 5 The fault model of hybrid variables (con-
taining continuous and binary variables) is defined as

XXXf = XXX +ΞΞΞ ◦FFF , (28)

where XXX is the healthy state data, ΞΞΞ means the fault di-
rection matrix, FFF represents the fault magnitude matrix,
◦ is Hadamard product [16] which means the correspond-
ing elements of ΞΞΞ and FFF are multiplied, XXXf is the fault
data.

Remark 4 When only continuous variables are moni-
tored, fault can be described as multiplying with the di-
rection vector and the amplitude vector. In fact, equation
(27) is a special case of equation (28).

The fault model at time i in Definition 5 is

(XXXf )i = (XXX)i +ΞΞΞi ◦FFF i, (29)

where (XXXf )i, (XXX)i,ΞΞΞi,FFF i are 1 × d vectors. If there is
a fault at time i and it occurs on the jth (1 ≤ j ≤ d)
variable, thenΞΞΞji = 1,FFF ji means the corresponding fault

amplitude, otherwise ΞΞΞji = 0 or FFF ji = 0. Faults can also
appear on multiple variables.

Remark 5 If the jth variable is a binary variable, the
fault amplitude FFF j must be 1 or −1. FFF j must be −1 when
(XXX)j = 1, and FFF j must be 1 when (XXX)j = 0.

5.2 Detectability conditions

According to the monitoring strategy (15), the state
of xxxa is judged as fault if the statistic sa exceed the
control limit slim. The detectable condition is shown as
the following Theorem.

Theorem 3 For the arriving sample xxxa, it can be judged
to be faulty if and only if

P (xxxa;θθθ) < δ̃es̃, (30)

where s̃ = −
√
slim, P (xxxa;θθθ) =

dc
Π
jc=1
N (xxxjca ;µjc , σjc)ϕ

jc

db
Π
jb=1

[(ηjb)xxx
jb
a (1− ηjb)1−xxx

jb
a ]ϕ

jb , N (xxxjca ;µjc , σjc) =

(2π)−1/2(σjc)−1 exp(−
(
xxxa

jc − µjc
)2

2−1(σjc)−2).

Proof. The fault occurs if the statistic sa ofxxxa exceeds
the control limit slim. According to Proposition 1 and
Proposition 2, the state of xxxa is judged as fault when
0 < P (xxxa) < α. Let ln2 α = slim, we have

α = e−
√
slim (31)

Then the following inequality can be obtained

0 < P (xxxa) < es̃ (32)

where s̃ = −
√
slim. When the significance level δ is

given, δ̃ = 1−δ. It can be learned that P (xxxa) < δ̃es̃. Ac-
cording to Assumption 1 and 2, Theorem 3 is proved. 2

The procedure is summarized in Algorithm 1.

Algorithm 1 HVM

Off-line modeling:
Step 1 Identify continuous and binary variables.
Step 2 Estimate the means µj and the standard devia-

tion σj for each continuous variable via (16) and (17).
Step 3 Estimate the response functions ηj for each bi-

nary variable via (18).
Step 4 Give the significance level δ and the confidence

level δ̃ = 1− δ.
Step 5 Construct x′

j
for each continuous variable xj ac-

cording to Definition 4.
Step 6 Estimate probability P (xj) and joint probability
P (xj , xj

′
) via (24) and (26).

Step 7 Estimate MIM(xj , xj
′
) between xj and xj

′
via

(23).
Step 8 Estimate weight ϕj via (19).
Step 9 Calculate f(xxxi) of xxxi via (13).
Step 10 Calculate statistics sss of XXX via (14).
Step 11 Calculate control limit slim through KDE.
On-line monitoring:
Step 12 Construct x̃xxa through the arriving sample xxxa.
Step 13 Calculate εa and ξa.
Step 14 Calculate f(xxxa) of xxxa via (13).
Step 15 Calculate statistic sa of xxxa via (14).
Step 16 Determine the state of sample xxxa via (15).

6 Experimental verification

In this section, the superiority of HVM is demon-
strated through two cases.

6.1 Numerical case

The fault model is considered as follows:

XXXf = XXX +ΞΞΞ ◦FFF (33)

where XXX,ΞΞΞ,FFF ,XXXf ∈ Rn×d. ΞΞΞ = 000 in the normal
working condition. XXX contains 5 continuous variables
(x1, . . . , x5) and 5 binary variables (x6, . . . , x10). 4000
normal samples are generated for training. Then 4000
instances are collected for verifying the effectiveness and
efficiency of the proposed model. The fault is introduced
from time 2001.

Two experiments are conducted. Under normal con-

Table 1
The distributions of continuous variables.

Experiment I Experiment II

normal(XXX) fault (FFF ) normal (XXX) fault (XXXf )

x1 N (1.35, 0.662) N (0.15, 0.662) N (1.50, 0.762) N (0.55, 0.552)

x2 N (2.65, 0.802) N (0.05, 0.782) N (3.00, 0.682) N (2.55, 1.012)

x3 N (0.86, 0.662) N (0.10, 0.602) N (1.70, 0.852) N (2.20, 1.002)

x4 N (1.80, 0.902) N (0.15, 0.892) N (0.80, 1.012) N (1.45, 0.912)

x5 N (0.99, 0.552) N (0.30, 0.582) N (0.89, 0.642) N (1.30, 0.552)
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Fig. 2. Detection performance in experiment II.

dition in experiment I, the distributions of continuous
variables and the values and ratios of binary variables
are shown as normal (XXX) in Table 1 and Table 2 respec-
tively. A fault occurred from the time 2001, the contin-
uous variables were disturbed by the Gaussian noises
whose distributions is shown as fault (FFF ) in Table 1, the
ratios of binary variables after fault arriving are listed as
fault (FFF ) in Table 2. In experiment II, the process infor-
mation carried by the binary variable is increased, and
the difference in the distributions of continuous variables
under normal and fault conditions is narrowed. The con-
tinuous variable distributions before fault occurring are
assumed as normal (XXX) of experiment II in Table 1, the

Table 2
The parameters of binary variables.

Experiment I Experiment II

normal (XXX) fault (FFF ) normal (XXX) fault (XXXf )

value ratio value ratio value ratio value ratio

x6 0 5 0 50 0 10 1 5

x7 0 6 0 45 0 5 1 10

x8 1 12 0 38 1 15 0 10

x9 1 2 0 35 1 8 0 15

x10 1 8 0 48 1 10 0 8

Table 3
The means of FARs and FDRs in the numerical study.

PCA DPCA ICA

MD HVM
T 2 Q T 2 Q I2 I2e Q

FARI 0.94 0.98 0.92 0.89 0.87 0.95 0.90 0.93 0.62

FDRI 7.45 13.77 10.26 35.21 8.97 14.08 8.59 16.63 52.34

FARII 0.83 0.27 0.87 0.19 0.72 0.90 0.62 0.64 0.60

FDRII 1.47 2.40 0.86 6.47 3.22 4.96 0.47 6.01 94.73

values and ratios of binary variables under normal con-
dition are listed as normal (XXX) of experiment II in Table
2. The values of binary variables after fault significantly
changed which is depicted as fault (XXXf ) of experiment
II in Table 2. In order to make it more general, random
jumps are added on binary variables and the adjustment
ratio is shown in Table 2. Random jump means that the
value changes at a time and recovers at the next moment.
The distributions of continuous variables after fault are
listed as fault (XXXf ) of experiment II in Table 1.

According to the above parameters, 100 independent
repeated experiments were conducted. Some classic
methods, such as PCA [21,12], DPCA [22], ICA [25],
MD [19] are used to verifying the effectiveness of HVM.
For PCA and DPCA, the cumulative percent variance
(CPV) is 0.80. Generally speaking, a larger CPV leads
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Fig. 3. Structure diagram and working condition of the primary air fan.
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Fig. 4. Detection performance of PCA in the fan system.

to a larger number of principal components. The num-
ber of principal components is 4 in PCA when CPV is
0.80. In order to be consistent, the CPV is also 80% in
DPCA. The number of principal components is 12 (the
total dimension is 15). The time lag in DPCA is 2 [23].
The number of independent components (IC) in ICA
equals to 3. The means of false alarm rates (FARs) and
fault detection rates (FDRs) are listed in Table 3. The
statistics of mentioned methods in experiment II are
depicted in Fig. 2. In experiment I, the statistical char-
acteristics of both continuous and binary variables are
slightly different under normal and faulty conditions.
The FDR of Q in DPCA is 35.21%. When the informa-
tion carried in both continuous and binary variables is
simultaneously mined, the FDR is improved to 52.34%.
The difference in the distributions of continuous vari-
ables under normal and fault conditions is narrowed,
and the difference of binary variables is more significant
in experiment II. The best FDR of traditional methods
with continuous variables is just 6.47%. But the FDR

of HVM is 94.73%, and the FAR is only 0.60%.

6.2 Fan system of the power plant

The ultra-supercritical thermal power plants have
made great contributions to the development of society
and still play a pivotal role in the current power sys-
tem [30]. Efficient process monitoring is the foundation
of continuous and stable operation for power plants.
In this case, the effectiveness and efficiency of PVM
is verified by an actual data collected from Zhoushan
Power Plant, Zhejiang Province, China. The number of
variables monitoring the No.1 power unit in Zhoushan
power plant is more than 17380, and the number of bi-
nary variables among them is as many as 8820 [37]. In
the fan system of the No.1 power unit, 260 continuous
variables and 495 binary variables are collected, where
the number of binary variables is more than that of
continuous variables [36].

A vibration fault of the #1A primary air fan in the
No.1 power unit occurred on September 3, 2017. The pri-
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Fig. 5. Detection performance of DPCA in the fan system.

Table 4
The FARs and FDRs in the fan system

methods

PCA(CPV=0.80) PCA(CPV=0.85) PCA(CPV=0.90) PCA(CPV=0.95) DPCA(CPV=0.80) DPCA(CPV=0.85)

T 2 Q T 2 Q T 2 Q T 2 Q T 2 Q T 2 Q

FAR(%) 3.80 34.40 5.40 35.60 6.20 37.20 22.40 36.40 3.80 33.80 5.80 35.20

FDR(%) 19.40 100.00 19.80 100.00 83.80 100.00 97.60 100.00 17.20 100.00 20.20 100.00

methods

DPCA(CPV=0.90) DPCA(CPV=0.95) ICA(IC=10) ICA(IC=15)

MD HVM
T 2 Q T 2 Q I2 I2e Q I2 I2e Q

FAR(%) 7.80 36.00 19.60 36.20 39.80 42.00 39.60 42.10 38.60 39.80 42.00 4.20

FDR(%) 86.60 100.00 95.60 100.00 100.00 100.00 99.80 100.00 100.00 100.00 100.00 100.00

Table 5
The number of principal components in PCA and DPCA.

methods PCA DPCA

CPV(%) 80 85 90 95 80 85 90 95

number 2 3 5 7 2 3 5 8

mary air fan is the driving force for the transportation
of pulverized coal, and provides hot air for the drying
and oxygen for the combustion of pulverized coal. The
working environment and structure diagram of the pri-
mary air fan are shown in Fig. 3. According to the rec-
ommendation of the practical engineers, 35 continuous
variables and 35 binary variables are sampled every 5
seconds. 1000 instances under normal condition are used
for modeling. 500 samples before and after the fault are
collected respectively to test the effectiveness and effi-
ciency.

For traditional monitoring models, PCA [21,12],
DPCA [22], ICA [25] and MD [19] are adopted for pro-
cess monitoring with continuous variables. Experiments

were conducted with CPV equals to 0.80, 0.85, 0.90, 0.95
respectively for PCA and DPCA, where T 2 andQ statis-
tic are calculated. The number of principal components
in PCA and DPCA is listed in Table 5. For DPCA, the
time lag is 2 [23]. The FARs and FDRs of T 2 statistics
keep increasing with the increase of CPV for PCA and
DPCA. The best results appear on T 2 statistics of PCA
and DPCA at CPV=0.9. The FAR and FDR of PCA
with CPV=0.9 are 6.20% and 83.80% respectively. For
DPCA, the FAR and FDR with CPV=0.9 are 7.80%
and 86.70% respectively. The monitoring charts of PCA
with CPV equals to 0.85, 0.90 and 0.95 are shown in Fig.
4. The statistics of DPCA when CPV is 0.85, 0.90 and
0.95 are depicted in Fig. 5. In ICA, IC=10 and IC=15
are considered. The results show that the monitoring
performances of ICA are similar with different IC. The
statistics of ICA when IC=15 is shown in Fig. 6(b),
6(c) and 6(g). The detection performance of MD can be
seen in Fig. 6(a). The logarithmic statistics of I2, I2e in
ICA and MD are shown in Fig. 6(d), 6(e) and 6(f). The
FDRs of MD and ICA are satisfactory, but the FARs is
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Fig. 6. Detection performance of MD, ICA and HVM in the fan system.

too high to be accepted. However, the FDR of HVM is
100% and FAR of HVM is 4.2% when both continuous
and binary variables are utilized. Continuous variables
contain current, air volume, vibration, temperature etc.
of the fans. Binary variables mainly including control
command signal, vibration over-limit signal, bearing
vibration danger signal, moving blade position feedback
signal, state signal, etc. are taken into consideration in
HVM. Variables that are more strongly correlated with
other variables tend to change easily when any other
variable changes. In this case, the vibration-related
variables have relatively larger weights. The detection
performance of HVM is depicted in Fig. 6(h) and 6(i).
The FARs and FDRs of all methods are listed in Table 4.

7 Conclusions

This paper focuses on the issue of hybrid variable mon-
itoring only based on healthy state data and proposes
a novel unsupervised process monitoring framework for
hybrid variables named PVM. The statistics suitable for
hybrid variables are defined and the physical explana-
tion behind the framework is elaborated. In addition,
the estimation of parameters is derived in detail and the
detectable conditions of HVM is analyzed. Finally a nu-
merical simulation and an actual case in the plant pro-
cess of thermal power are utilized to verified the effec-
tiveness and efficiency of the proposed model. Studies

demonstrate that HVM have the superiority when the
information of both continuous and binary variables are
effectively utilized.
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A Proof of Theorem 1

For continuous variables xj and xj
′
, the joint proba-

bility function of xj and xj
′

is

f(xj , xj
′
) = (2πσjσj

′
)−1(1− ρ2)−1/2 exp{−(2− 2ρ2)−1

× [(xj − µj)2(σj)−2 + (xj
′
− µj

′
)2(σj

′
)−2

− 2ρ(xj − µj)(xj
′
− µj

′
)(σj)−1(σj

′
)−1]}.

(A.1)

Then P (x′
j

= 1, x′
j′

= 1) is learned as

P (x′
j

= 1, x′
j′

= 1) = P (xj > µj , xj
′
> µj

′
)

=

∞∫
µj

∞∫
µj′

f(xj , xj
′
)dxjdxj

′
=

∞∫
0

∞∫
0

f(yj , yj
′
)dyjdyj

′
,

(A.2)
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where yj = (xj − µj)(σj)−1 and yj
′

= (xj
′ − µj′)σj′

−1
.

Since

f(yj , yj
′
) = (2π)−1(1− ρ2)−1/2 exp{−(2− 2ρ2)−1

× [(yj)2 + (yj
′
)2 − 2ρyjyj

′
]}. (A.3)

Thus

P (x′
j

= 1, x′
j′

= 1) =

∞∫
0

∞∫
0

{(2π)−1(1− ρ2)−1/2

× exp{−(2− 2ρ2)−1[(yj)2 + (yj
′
)2 − 2ρyjyj

′
]}}dyjdyj

′

=

∞∫
0

π/2∫
0

{(2π)−1(1− ρ2)−1/2r

× exp{−(2− 2ρ2)−1(1− ρ sin 2α)}}dαdr

=

π/2∫
0

{(2π)−1(1− ρ2)−1/2(1− ρ sin 2α)−1}dα

=

π/2∫
0

{(2π)−1(1− ρ2)−1/2

× (1 + tanα2 − 2ρ tanα)−1}d tanα

=
1

2π
arcsin ρ+ 0.25. (A.4)

In the same way, we have

P (x′
j

= 0, x′
j′

= 0) = P (xj ≤ µj , xj
′
≤ µj

′
)

=

µj∫
−∞

µj∫
−∞

f(xj , xj
′
)dxjdxj

′
=

0∫
−∞

0∫
−∞

f(yj , yj
′
)dyjdyj

′

=

0∫
−∞

0∫
−∞

{(2π)−1(1− ρ2)−1/2 exp{−(2− 2ρ2)−1

× [(yj)2 + (yj
′
)2 − 2ρyjyj

′
]}}dyjdyj

′
. (A.5)

Since yj and yj
′

are Gaussian distributions, it can be
obtained that

f(zj , zj
′
) = f(−yj ,−yj

′
) = f(yj , yj

′
). (A.6)

where zj = −yj , zj′ = −yj′ . Then

P (x′
j

= 0, x′
j′

= 0) =

∞∫
0

∞∫
0

{(2π)−1(1− ρ2)−1/2

× exp{−(2− 2ρ2)−1[(zj)2 + (zj
′
)2 − 2ρzjzj

′
]}}dzjdzj

′

=
1

2π
arcsin ρ+ 0.25. (A.7)

The MIM(x′
j
, x′

j′
) of x′

j
and x′

j′
( x′

j
and x′

j′
are

constructed through equation (20)) is defined as

M(x′
j
, x′

j′
) =

∑
x′j ,x′j′

P (x′
j
, x′

j′
) log

P (x′
j
, x′

j′
)

P (x′j)P (x′j
′
)
.

(A.8)

Since xj is a Gaussian process, it is obvious that

P (x′
j

= 1) =
∞∫
µj

xjdxj = 1/2. In the same way, we have

P (x′
j
) = P (x′

j′
) = 1/2. Then equation (A.8) is

M(x′
j
, x′

j′
) =

∑
x′j ,x′j′

P (x′
j
, x′

j′
) log 4P (x′

j
, x′

j′
)

= P (x′
j

= 0, x′
j′

= 0) log 4P (x′
j

= 0, x′
j′

= 0)

+ P (x′
j

= 0, x′
j′

= 1) log 4P (x′
j

= 0, x′
j′

= 1)

+ P (x′
j

= 1, x′
j′

= 0) log 4P (x′
j

= 1, x′
j′

= 0)

+ P (x′
j

= 1, x′
j′

= 1) log 4P (x′
j

= 1, x′
j′

= 1), (A.9)

Let P (xj = 0|xj′ = 0) = λ, P (xj = 1|xj′ = 1) = λ′.
Since P (xj

′
= 0) = P (xj

′
= 1) = 1/2, then

P (x′
j

= 0, x′
j′

= 0) =
1

2
λ, (A.10)

P (x′
j

= 0, x′
j′

= 1) =
1

2
(1− λ′), (A.11)

P (x′
j

= 1, x′
j′

= 0) =
1

2
(1− λ), (A.12)

P (x′
j

= 1, x′
j′

= 1) =
1

2
λ′. (A.13)

According to equation (A.5) and (A.7), we have

λ = λ′ =
1

π
arcsin ρ+ 0.5. (A.14)

Then

M(x′
j
, x′

j′
) = 2P (x′

j
= 0, x′

j′
= 0) log 4P (x′

j
= 0, x′

j′
= 0)

+ 2P (x′
j

= 0, x′
j′

= 1) log 4P (x′
j

= 0, x′
j′

= 1)

= λ log 2λ+ (1− λ) log 2(1− λ)

= (
1

π
arcsin ρ+ 0.5) log(

2

π
arcsin ρ+ 1)

+ (0.5− 1

π
arcsin ρ) log(1− 2

π
arcsin ρ), (A.15)

According to equation (A.15) and lemma 1, it is
learned that

M(x′
j
, x′

j′
) = (

1

π
arcsin ρ+ 0.5) log(

2

π
arcsin ρ+ 1)

+ (0.5− 1

π
arcsin ρ) log(1− 2

π
arcsin ρ), (A.16)

where ρ = [1− e−2M(xj ,xj′ )]1/2. 2
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B Proof of Proposition 3

Let

P (xj = 1|xj
′

= 1) = ς, P (xj = 1|xj
′

= 0) = ς ′, (B.1)

it has

P (xj = 0|xj
′

= 1) = 1− ς, (B.2)

P (xj = 0|xj
′

= 0) = 1− ς ′. (B.3)

Then we have

P (xj = ψxj |xj
′

= ψxj′ ) = ςψxjψxj′ (1− ς)ψxj′−ψxjψxj′

× ς ′ψxj−ψxjψxj′ (1− ς ′)1+ψxjψxj′−ψxj−ψxj′ .
(B.4)

Since

P (xj , xj
′
) = P (xj = ψxj , xj

′
= ψxj′ )

= P (xj
′

= ψxj′ )P (xj = ψxj |xj
′

= ψxj′ ). (B.5)

Thus Proposition 3 is proved. 2

C Proof of Theorem 2

Since

P (xj = xj1, x
j′ = xj

′

1 ) . . . P (xj = xjn, x
j′ = xj

′

n )

=

n∏
i=1

P (xj
′

= xj
′

i )P (xj = xji |x
j′ = xj

′

i ). (C.1)

The likelihood function is

`(ς, ς ′) =

n∏
i=1

P (xj
′

= xj
′

i )P (xj = xji |x
j′ = xj

′

i )

=

n∏
i=1

P (xj
′

= xj
′

i )

n∏
i=1

P (xj = xji |x
j′ = xj

′

i )

= $ς

n∑
i=1

xj
i
xj′
i

(1− ς)

n∑
i=1

xj′
i
−

n∑
i=1

xj
i
xj′
i

ς ′

n∑
i=1

xj
i
−

n∑
i=1

xj
i
xj′
i

× (1− ς ′)
n+

n∑
i=1

xj
i
xj′
i
−

n∑
i=1

(xj
i
+xj′

i
)

, (C.2)

where $ is a constant. Then ∂`(η,η′)
∂η can be obtained as

∂`(ς, ς ′)

∂ς
= $ς ′

n∑
i=1

xj
i
−

n∑
i=1

xj
i
xj′
i

(1− ς ′)
n+

n∑
i=1

xj
i
xj′
i
−

n∑
i=1

(xj
i
+xj′

i
)

[(−1)(1− ς)−1(

n∑
i=1

xj
′

i −
n∑
i=1

xjix
j′

i )(1− ς)
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(C.3)

Let ∂`(ς,ς′)
∂ς = 0, it can be obtained that

ς = (

n∑
i=1

xjix
j′

i )(

n∑
i=1

xj
′

i )−1. (C.4)

In the same way, ∂`(ς,ς
′)

∂ς′ is

∂`(ς, ς ′)

∂ς ′
= $ς

n∑
i=1

xj
i
xj′
i

(1− ς)

n∑
i=1

xj′
i
−

n∑
i=1

xj
i
xj′
i

[(

n∑
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n∑
i=1

xjix
j′

i )ς ′
−1
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n+

n∑
i=1

xj
i
xj′
i
−

n∑
i=1

(xj
i
+xj′

i
)

× ς ′
n∑
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i
−

n∑
i=1
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i
xj′
i

+ (−1)(n+

n∑
i=1

xjix
j′

i −
n∑
i=1

(xji + xj
′

i ))

× (1− ς ′)−1(1− ς ′)
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n∑
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i
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i
−

n∑
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(xj
i
+xj′

i
)
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i=1

xj
i
−

n∑
i=1

xj
i
xj′
i

].
(C.5)

Let ∂`(ς,ς′)
∂ς′ = 0, ς ′ can be achieved as

ς ′ = (

n∑
i=1

xji −
n∑
i=1

xjix
j′

i )(n−
n∑
i=1

xj
′

i )−1. (C.6)

According to equation (B.1), (B.2) and (B.3), we have

P (xj = ψxj |xj
′

= ψxj′ ) = {1− ψxj + (2ψxj − 1)

× [ψxj′ ς + (1− ψxj′ )ς ′]}. (C.7)

Hence, Theorem 2 is proven. 2
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