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Abstract

Input design is an important problem for system identification and has been well studied for the classical system identification,
i.e., the maximum likelihood /prediction error method. For the emerging regularized system identification, the study on input
design has just started, and it is often formulated as a non-convex optimization problem that minimizes a scalar measure of
the Bayesian mean squared error matrix subject to certain constraints, and the state-of-art method is the so-called quadratic
mapping and inverse embedding (QMIE) method, where a time domain inverse embedding (TDIE) is proposed to find the
inverse of the quadratic mapping. In this paper, we report some new results on the embeddings/inverse embeddings of the
QMIE method. Firstly, we present a general result on the frequency domain inverse embedding (FDIE) that is to find the
inverse of the quadratic mapping described by the discrete-time Fourier transform. Then we show the relation between the
TDIE and the FDIE from a graph signal processing perspective. Finally, motivated by this perspective, we further propose a
graph induced embedding and its inverse, which include the previously introduced embeddings as special cases. This deepens
the understanding of input design from a new viewpoint beyond the real domain and the frequency domain viewpoints.
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processing.
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1 Introduction mum likelihood /prediction error methods for short/low
signal-to-noise ratio data. The key idea of the KRM is
to first encode prior knowledge on the dynamic system
by parameterizing the kernel matrix with a few number
of parameters (kernel design), called hyperparameter,
then to estimate the hyperparameter based on the data
(hyperparameter estimation), and finally to calculate
the regularized least squares estimator of the model.
For kernel design, many kernels have been proposed for
various kinds of prior knowledge such as exponential

Over the past decade, kernel-based regularization meth-
ods (KRMs) have received increasing attention in the
system identification community (Chen et al., 2012}
Chiuso], 2016} [Pillonetto & De Nicolaol, [2010; [Pillonetto
et all 2014), which has shown better average accu-
racy and robustness compared to the classical maxi-
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decaying, smoothness, high-frequency decay property,
direct current gain, and among others (Carli et al.,[2017}
Chenl, 2018} |Chen et al. 2016} [Fujimotol, 2021} [Fuji-
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moto & Sugie, [2018b; Marconato et al., 2016} |Pillonetto|
et al., [2016;|Zorzi & Chiuso, 2018)). For hyperparameter
estimation, the asymptotic properties of the empirical
Bayes (EB) estimator, the Stein’s unbiased risk estima-
tor (SURE), cross-validation (CV) estimator have been
investigated in the sense of mean square error (MSE)
(Mu et all 2018, |2021} [Pillonetto & Chiusol 2015). In
particular, it was shown in Mu et al.| (2018} 2021)) that
the SURE and the CV estimators are asymptotically
optimal but the widely used EB estimator is not in the
MSE sense.

Input design is an important problem in system iden-
tification and can be used to further improve the per-
formance of model estimators by careful design of the
input signal. For ML/PEM, input design has been well
studied, e.g., the survey papers (Gevers| [2005; [Hjalmars-
son, [2005; [Mehra), [1974) and the monographs (Goodwin
& Payne, [1977; [Ljung, [1999; |Zarropl 1979))). The clas-
sical method of input design, e.g., Hildebrand & Gev-
lers| (2003)); [Hjalmarsson| (2009); [Jansson & Hjalmarsson
(2005), is to minimize a scalar measure (e.g., the deter-
minant, the trace or others) of the asymptotic covariance
matrix of the parameter estimators with constraints on
the input and/or output, which can be considered both
in the time domain and in the frequency domain. In con-
trast to the input design in the time domain, the input
design in the frequency domain has a clear physical in-
terpretation (Jansson & Hjalmarsson, 2005).

For KRM, the study on input design has just started
(Fujimoto et all, 2018} [Fujimoto & Sugiel 2018a}
& Chen), [2018). This issue was first investigated for a
fixed kernel matrix in [Fujimoto & Sugie| (2016 [2018a))
by maximizing the mutual information between the out-
put and the impulse response subject to an input energy
constraint. Since the formulated optimization problem
in [Fujimoto & Sugie| (2018a)) is non-convex, projected
gradient algorithms are adopted to search for optimal
inputs. This issue was also considered in the frequency
domain (Fujimoto et al. 2018) by minimizing the pos-
terior uncertainty of the model with a bounded input
constraint, where the input sequence was generated by
an online greedy algorithm and also an offline algorithm
based on a projected gradient method was employed to
search for the optimal input.

Different from [Fujimoto et al|(2018); |Fujimoto & Sugie

since it works in the time domain) from the input to
its autocovariance transforms the non-convex optimiza-
tion problem (with respect to the input) to a convex one
(with respect to the autocovariance), and the inverse im-
age set of the quadratic mapping from given autocovari-
ance to its associated inputs is explicitly characterized
and called the time domain inverse embedding (TDIE).
That is, the QMIE method first calculates the optimal
autocovariance and then finds optimal inputs by invok-
ing the TDIE.

Interestingly, as pointed out by an anonymous reviewer
of Mu & Chen| (2018)), the idea to use embeddings and
inverse embeddings for input design problems has actu-
ally appeared before in classical system identification.
In particular, the frequency domain embedding (FDE)
of the quadratic mapping described by the discrete-time
Fourier transform (DFT) and the corresponding inverse
embedding (describing the inverse image set of the
quadratic mapping for a given autocovariance by the
FDE), called the frequency domain inverse embedding
(FDIE), have been sketched in [Hjalmarsson & Ninness|
(2006); |[Jansson| (2004). However, it seems that the pro-
posed FDIE only works for the case N = n, where N
and n are the sample size and the number of model pa-
rameters, respectively, but can not be directly applied
to the more general case N > n. Moreover, the FDIE
only sketches a route to find inputs for given squared
magnitudes of the DFT of the input, but does not give
a complete description of inputs for a given autocovari-
ance, i.e., the inverse image set of the quadratic map-
ping). Then it is natural to ask the following problems:

e [s it possible to give a complete description of the
inverse image set of the quadratic mapping for given
autocovariance based on the FDE and especially for
the case N > n?

e What is the relation between the FDIE in (Hjalmars-

son & Ninness, 2006; |Jansson, [2004)) and the TDIE in

Mu & Chen| (2018)?

In this paper, we aim to address these problems. In par-
ticular, we first study how to characterize the FDIE and
then to establish the relation between the TDIE and the
FDIE and we show that for the given autocovariance,
both the TDIE and the FDIE give the same set of inputs.
Interestingly, this finding can actually be interpreted
from a unified graph signal processing perspective, e.g.,

(2018al), the input design problem considered in Mu &

[Sandryhaila & Moura (2013]), and moreover, motivated

2018)) was formulated as a non-convex optimiza-
tion problem that minimizes a scalar measure (the de-
terminant, the trace, or the largest eigenvalue) of the
Bayesian mean squared error (the posterior covariance
of the parameter estimate) subject to the input power
constraint. Moreover, a quadratic mapping and inverse
embedding (QMIE) method was proposed to search for
optimal inputs and in particular, the quadratic map-
ping (that is expressed by a composition of three simple
real mappings, called the time domain embedding (TDE)

by this perspective, we further propose a graph induced
embedding and its inverse, which include the previously
introduced TDE and FDE as special cases. The graph
signal processing perspective provides a new viewpoint
on understanding the input design problem. Also, some
well developed tools for graph signal processing
haila & Moural 2013), e.g., graph Fourier transform,
graph spectral representation, etc, might have the po-
tential to be used for input design problems. Finally, it
is worth to note that the obtained results also applies




to the case without regularization, i.e., the least squares
estimators.

The remaining parts of this paper are organized as fol-
lows. In Section 2, we first briefly review the input de-
sign problem of the KRM and then present the problem
statement. In Section 3, we present an explicit route to
fully characterize the FDIE for the case N > n. In Sec-
tion 4, we first study the relation between TDE and FDE
and then interpret them from a unified graph signal pro-
cessing perspective, which motivates us to find more em-
beddings. Finally, we conclude the paper in Section 6.
All proofs of Theorems and Propositions are postponed
to the Appendix.

2 Preliminaries and Problem Statement
2.1 Regularized Least Squares Estimators

Consider a discrete-time time-invariant finite impulse
response (FIR) system

Y =a1Up—1+ -+ api—pn + €, L<ES N, (1)

where y;, us € R are the output and input of the system
at time ¢, respectively, {¢;} is a sequence of zero mean
white noise with finite variance ¢ > 0 and is indepen-
dent of input {u;}. The system (1) has the following
matrix-vector form:

y=®0+¢, 0 =[ayay --- an]T, (2a)
uo U1 cU—n+1
(51 Uy - U—py2
Q= . . . . ) (Qb)
UN—-1 UN—-2 " UN—n
_ T T
y=1[ypy2 - yn] e=lerea - enl’, (2¢)

where (-)7 denote the transpose of a matrix or vector.

The least squares (LS) estimator 5%\,8 = argmingcpn ||y—
®0||? = (®T®)~1®Ty is a prevalent way to identify the
parameter vector §. When either n is large or the input is
ill-conditioned, the LS estimator might have a large vari-
ance (Chen et al.,|2012; Pillonetto & De Nicolaol [2010)).
While the regularized least squares (RLS) estimator, see
e.g., Chen et al.| (2012), defined by

O} =argmin |ly — )2 + 026TK'0  (3a)
OcR™
=(®T® + 2K 1) teTy (3b)

can mitigate the large variance problem of the LS esti-
mator by introducing a small bias, where K € R"*"™ is

called a kernel matrix and assumed to be positive def-
inite (02K ~! is often called the regularization matrix).
Also, the RLS estimator (3) can be explained as the pos-
terior mean of the parameters 6 for the Gaussian prior
0 ~ A4 (0,K) in a Bayesian perspective.

Given the data {u;,y;,1 < t < N}, to make the RLS
estimator (3) achieve a good performance, it is neces-
sary and critical to tune the kernel matrix K in terms
of data. Kernel-based regularization methods proposed
in |Pillonetto & De Nicolao| (2010|) established a two-
step procedure to select a “good” K by embedding prior
knowledge of the system to be identified, consisting of
kernel design and hyperparameter estimation.

Kernel design is to parameterize the matrix K by a few
number of parameters 7, called hyperparameter, namely,
K(n), n € Q C RP, and meanwhile prior knowledge of
the system to be identified (exponential stability and
smoothness) is encoded within the structure of K. Sev-
eral parameterization strategies of K have been pro-
posed, such as the stable spline (SS) kernel (Pillonetto
& De Nicolao| [2010)), the diagonal correlated (DC) ker-
nel and the tuned-correlated (TC) kernel (Chen et al.|
2012), etc.

Hyperparameter estimation is to estimate the hyper-
parameter n for a given parameterization of K by the
data in terms of optimization criteria. Currently preva-
lent hyperparameter estimators include the empirical
Bayes (EB) estimator, the Stein’s unbiased risk estima-
tor (SURE), cross-validation (CV) estimator, and so on
(Pillonetto et al., 2014]).

2.2  Input-design Problem for Regularized Linear Sys-
tem Identification

There has been a lot of work dedicated to the classical
input design issue of the FIR model (1) estimation from
both time domain and frequency domain, e.g.,|Goodwin
& Paynel (1977)); Jansson| (2004). While the goal of input
design for the regularized FIR model estimation is to
determine an input sequence

,U—1,Up, UL,y " " ;uNfl}

{uin+1) P
such that the RLS estimator (3) is as good as possible
under given constraints.

Since the input sequence has finite length in practice,
there are mainly two ways to design inputs. One way is to
consider asymptotic approximation, namely minimizing
a scalar measure of the asymptotic covariance matrix
of the parameter estimate (the asymptotic covariance
matrix of the estimated transfer function in frequency
domain) (Ljung}|1999). As mentioned in|Jansson| (2004]),
the asymptotic approximation might not be accurate in



some cases. The other way is to assume the unknown
initial inputs as

U_; =uy_4, t=1,--- n—1, (4)
which was introduced in |Hjalmarsson & Ninness
(2006)); [Jansson| (2004), such that the input sequence
{t—pt1, "+, U—1,Up, U1, - ,un—1} is N-periodic and
® is circulant. This assumption (4) guarantees that
the explicit expression for the covariance matrix of the
parameter estimate (the estimated transfer function in
frequency domain) is accurate for finite sample sizes.

This paper adopts the latter way, i.e., the assumption
(4), and the input design problem for the RLS estimator
(3) is formulated as follows: given a tuned kernel matrix
K and known o2, the optimal input u* is optimized by

w8 arg min J(o*P7Y), P=®T® 4+ s°K!, (5a)

ueEU
U = {u: [ug - yun_1]" G]RN‘ uTu:C}, (5b)

where C is a predetermined constant (the power con-
straint) and the function J(-) is concave and strictly in-
creasing with respect to the convex cone S, (consisting
of symmetric positive definite matrices of size n x n).
Namely, for X, Z € S;F, there should hold that

aJ(X)+(1-a)J(Z) < J(aX +(1-a)Z)

forall0 < a <1,and J(X) > J(Z2)if X — Z € S,
When 02K ~! = 0, the problem (5) reduces to the in-
put design problem for the LS estimator (See (6.3.11)—
(6.3.12) of|Goodwin & Payne| (1977)).

Remark 1 The posterior covariance of the RLS esti-
mator (3) is o?P~" if the 0 has a Gaussian prior 0 ~
(0, K) (Chen et all|2012). The concave function J(-)
is a scalar measure of the posterior covariance c2P~!
and some typical choices of J(-) are the logarithm of de-
terminant, the trace, and the least eigenvalue of a posi-
tive definite matriz, which correspond to the classic D-
optimality, A-optimality, and E-optimality, respectively
(Ljung, |1999).

2.8 Quadratic Mapping and Inverse Embedding Meth-
ods

The quadratic mapping and inverse embedding (QMIE)
method proposed in Mu & Chen| (2018) introduces a
two-step procedure for finding global minima of the non-
convex input design problem (5). Under the periodic as-
sumption (4) on the unknown initial inputs, the QMIE
method essentially relies on the following vertor-valued
quadratic mapping f from the input u to its autocovari-
ance sequence 7, defined by

r=fw) = [folw), - far(w)]” (6)

with r = [ro,r1, -+ ,rn_1]7 and

N—
ri = filu) = Zututﬂ‘, 0<i<n—1, (7)

t=

—

where 1o = C since the total power constraint Zi\; Lui=

C. Thus, the Gram matrix

To T1 *Th—2 Tn—1
1 To e Tp—3 Th—2
efo=| ¢ .o (8)
Tn—2 Th—3 "+ 710 T1
_’I"n,1 Tp—2 =+ T1 To ]

is Toeplitz and positive semidefinite. Therefore, the orig-
inal nonconvex input design problem (5) is transformed
into a convex problem with respective to r:

r* = argmin J(o? P~ 1), (9)

res

where the constraint set .7 = {f(u)|u € %} is a convex
polytope described by a group of known vertices.

As a result, the first step of the QMIE method is to find
a global minimum of the convex problem (9) by convex
optimization algorithms, and the second step is to find
au € % for any given r € .F, e.g., characterizing the
inverse mapping f~!(-) of the f(-), namely, given any

r € Z, find the set f~1(r) 2 {u € %|f(u) = r}. Let

1 0
o] cosim) o | sinGe)
&= y G =
cos((N—1)jw) sin((N—1)jw)
(10)
with w = 27 /N for j > 0. Define the matrices
T N
S=[60.61, bnn] € RN, (11a)
B R T gig oo 1| for odd N
We N | V2’ 1, s N;27 V2’ %7 561
2 57%,&7“' ,§N2—17€N2—1,"' 7C1] for even N.
(11b)

The characterization of its inverse mapping and in-
verse set is achieved in |Mu & Chen| (2018)) by rewrit-
ing f(-) as a composition of three simple mappings:

f(u) = hi(ha(hs(w))) with

hi(2%) = S22, (12a)



hQ(Z) = [ ngfa o 7212\771]T7 (12b)
h(u) = W, (12¢)
where z = [ZO, 21yt 7ZN—1]T7 Z2 = [287 2127 e 7Z]2V71]Ta

and W is an orthogonal matrix of size N x N. The
route from 7 to v with r € % based on the embedding
(12), i.e., finding the f=1(r), refers to (53)—(55) of [Mu
& Chen| (2018), termed the time domain inverse embed-
ding (TDIE) in the following since it works in the time
domain. Accordingly, the expression (12) is called the
time domain embedding (TDE).

For a periodic input (4), it has been found in [Hjalmars-
son & Ninness| (2006); [Jansson| (2004), the autocovari-
ance r defined in (6) can be put into the form of

N-1

ri= Y |[Uk[Pe/=H, (13)

k=0

where 0 <i <n-—1,w = 27n/N, j is the imaginary unit
j2 = —1, and

N-—1
1 .
U= ——= Y we 7 k=0... N—1, (l4a)
UF 2
1 N-—1
w= ) Usd™, 1=0,- N =1, (14b)

e

=0

which are the discrete Fourier transform (DFT) pair of
an N-periodic signal u. It is clear that the DFT coef-
ficients satisfy Uy, = Uy_g, K = 1,--- N — 1, where
(1) means the conjugate of a complex number, vector,
or matrix. Actually, the equation (13) also defines the
mapping from the DFT of the input signal v to r and
thus is also an embedding but stated in the frequency
domain, and thus called the frequency domain embed-
ding (FDE) in the sequel. The FDE (13) clearly shows
that the magnitude of the k-th spectral line of the auto-
covariance coefficient r; for 0 < i < n — 1 at frequency
wki is the squared magnitude |Uy|?.

Moreover, it has been suggested by [Hjalmarsson & Nin-
ness| (2006); [Jansson| (2004) and also by an anonymous
reviewer of [Mu & Chen| (2018)) that the frequency do-
main inverse embedding (FDIE) based on the FDE (13)
(finding f~!(r) for a given r € .F) can be obtained ac-
cording to the following procedure:

i). take the inverse Fourier transform of r and get:
N
U = (0o, [Un-a )", (15)
ii). get

A
U= U, ,Unv1]" (16)

by making the square-root of |Uy|?, k=1, , N —
1, and assigning phases consistent with a Fourier
transform.

iii). take the inverse Fourier transform (14b) and obtain
the u satisfying f(u) = r.

It should be noted that the first step (15) of the FDIE
involves the inverse Fourier transform. When N > n, we
can not directly take the inverse Fourier transform of r
with dimension n and obtain the vector |U|? with dimen-
sion N. Actually, it needs more technical treatments. On
the other hand, it is clear to see that the inverse em-
bedding (finding the inverse mapping of the quadratic
mapping (6)) is an essential step not only for the input
design problem (5) of the RLS estimator but also for the
input design problem (See (6.3.11)—(6.3.12) of|Goodwin
& Payne| (1977)) of the LS estimator.

2.4 Problem Statement

In this paper, we aim to investigate the embedding and
inverse embedding problems for the input design prob-
lem (5) and in particular, we are interested in the fol-
lowing questions:

Q1: How to characterize the FDIE of the mapping (6)
for the more general case N > n?

Q2: What is the relation between the TDE and the FDE
of the mapping (6) as well as their inverse embed-
dings?

Q3: Whether or not there exist more embeddings be-
sides (12) and (13)?

It should be noted that solutions to these questions will
deepen our understanding on the input design problem
(5) not only for the RLS estimator and but also for the
LS estimator.

3 Frequency Domain Inverse Embedding

In the following, when N > n, we give an explicit way
to fully characterize the FDIE in terms of the following
composite decomposition of the FDE (13)—(14):

f(u) = hy(ha(hs(u))) with (17a)
h(|UP?) = S|UP, (17b)
}VL2(U) = [|U0|27 3|UN71|2]Tﬂ (17C)
ha(u) = U = W, (17d)
where
1 1 1
- 1 el eJw(N-1)
G : (18a)
| eiw(n=1) ... gimn-1(N-1)



1 1 1

N 1 1 e J®m ... g—Jw(N-1)

= i (18b)
1 e dw(N-1) .., —jw(N-1)*

Moreover, the image of hs(-) under % is

Z = {hs(u)juc %}

={UUAU =C, U, =Uyn_p, k=1,--- ,N — 1},
(19)
where (-)f denotes the complex conjugate transpose of
a complex vector or matrix, the image of ha(-) under &

2 = {ha(U)|U € Z}

N-1
—{WwP| > wi=c, v =0k =01,... N1,
k=0

‘Uk|2 = |UN—k|27 k= 1,--- ,N_l} (20)

is convex, and the image of hi(-) under 2 (also the
image of f(-) under %)

F={wen}={EUPUPe2} (@)
is a convex polytope.
Based on the decomposition (17), the FDIE (finding the

set f~1(r) with r € .Z) can be obtained according to
the following procedure:

i). finding the inverse image of hy(-) for r € .Z:

AOE {|U|2‘§|U|2 =1 |U|? € f}
:{\U|2‘§|U|2 =1 [U?>0,0<k<N—1,

Uk = [Un- k21 <K< N-1}, (22)

where the constraint >N M U|2 =C in 2 is in-
cluded by the first equality of S|U|*> = r;
ii). finding the inverse image of hy(-) for |U[?> € 2 (r):

Z(r) = {UIha(v) € Z(r)} (23)
{U‘Uo = +/[00%, Unja = £1/|Uny 2l

U = V/UkPe3Pr, Un_j = U,

Ogﬁk<27r,1§k§N/271}
{U‘Uo = +/0o]%, Un_i = Uy,

U = \/Wejﬁk, ,0 < B <27

1§k§(N71)/2}

for even N,

for odd N,

where each phase (; can be arbitrary between 0
and 27;

iii). finding the inverse image of hs(-) for U € Q?/(r):

AOE {U|Wu € Q?ir)} = (WHUU € Z(r)}.
(24)

For the sets 2°(r), Z(r), and % (r) describing the in-
verse mappings of three simple component mappings,

the set % (r) is to take the inverse Fourier transform of

U € Z(r) and the set Z(r) is to take the square root of
|U|?, assign arbitrary phase, and preserve the symmetry

of the U for any |U|*> € 27(r). While the set 27 (r) is a
convex polytope and more detailed properties are given
in the following proposition.

Proposition 1 i). When N > 2n, 2°(r) is a convex
polytope with at least one element and its dimension
is less than or equal to N/2 —n + 1.

it). Whenn < N < 2n, Z'(r) is singleton. In partic-

ular, when N = n, the unique element is R/\/n,
where R = [Ro, Ry, -+, Rp_1])T and {Ry,,0 < k <
n — 1} are the Fourier transform coefficients of
{T‘,’,O S ) S n — 1}

The explicit expression of 2 (r) for the singleton case is

given in the proof of Proposition 1 in Appendix.

3.1 Comparison with the FDIFE in|Jansson (2004)

It is worth to make detailed comparisons with the FDIE
proposed in |[Jansson| (2004)). To this goal, we first have
a brief review accordingly. For the periodic input (4),
an input design problem is proposed in (4.33)—(4.34) of
Chapter 4 in [Jansson| (2004]) for any finite sample size
N. That is to minimize the root mean square (RMS)
subject to a frequency constraint

N-1
oIz | 2 o (252)
k=0
2
; O rH( j Ta\—17( oJ b(w)
subject to NP (e7) (2" @)~ T(e’¥) < Fle) P’
(25b)
Qp = |Uk7|2a (25C)

where F(q) is a known stable transfer function, I'(¢g~!) =
[, -, ¢ "7, and ®T® has the form (8).

The inequality constraint (25b) is non-convex in |Uy|
and so the problem (25) is not tractable. As a result,
two methods are introduced to transform the problem
into a convex problem in|Jansson| (2004)). The first one is
a solution based on geometric programming, which re-
quires that m = n, where m is the number of the nonzero



DFT coefficients and n is the number of the estimated
parameters (See (4.38) and (4.39) on page 103 of |Jans-
son| (2004)). The second one is a solution based on the
linear matrix inequality (LMI), where m can be larger
than n (See (4.41) on page 105 of |Jansson| (2004))). Af-
ter the optimal squared magnitude |Ug|* corresponding
to the chosen m nonzero spectral lines are obtained, the
optimal input can be found by the route consisting of
two steps: 1) take the square-root of |Uy|? with a proper
phase setting, 2) take the Fourier transform (14b), which
is briefly denoted by |U|?> — U — u in the following.

Here, we would like to highlight the differences between
the problem (25) and our problem (5):

e the optimization variables of (25) are the DFT coeffi-
cients U}, or its squared magnitude |Uy|? of the input
rather than its correlation sequence r. After the opti-
mal |Ug|? is found, then the two-step method above
gives the optimal input. In other words, the method
proposed in Chapter 4 of |Jansson| (2004]) does not de-
termine r first, i.e., it does not formulate the input
design problem with r as the optimization variable.

e the route |U|?> — U — u provides a route to find the
optimal input u by the optimal squared magnitude
|U|? in terms of the DFT. Here, we derive a route from
r to u by the FDIE (22)-(24): r — |U|> = U — u
based on the DFT, which characterizes all the u’s sat-

isfies f(u) = r. Moreover, the set 2" (r) given in (22)
consists of all the |U|?s related to the optimal r and
its property is clearly characterized in Proposition 1,
and it will also be shown in Theorem 1 below that the
FDIE (22)—(24): r — |U|*> = U — u is equivalent to
the TDIE in terms of the TDE (12), namely, both of
them characterize the set f~1(r), and the correspond-
ing computational complexities of these two inverse
embeddings are almost the same.

4 Graph Induced Embeddings: A Unified Per-
spective

This section first investigates the relation between the
TDE and the FDE as well as their inverse embeddings
and then applies the graph signal processing (Sandry-
haila & Moura|(2013))) for a ring graph to interpret them
in a unified perspective under the periodic assumption
(4) on input sequences.

4.1  Connections between Two Embeddings

Let us rewrite the FDE (13) and the TDE (12) as

U= Wuv |U|2 = [|U0|27 B ‘UN—1|2]T7 r= §|U‘27
(26a)
z=WTu, 2% =[22,22-- 2% )%, r =522 (26D)

Since the element-wise quadratic mappings (26) in be-
tween two linear transforms are the same, we denote the
FDE and the TDE by (W,S) and (WT,S) for conve-
nience, respectively. Their connections are established
in the following proposition.

Proposition 2 For the FDE (W,g) and the TDE
(WTS), there holds that

wT = AW, S=(5+85)/2 (27)

where A is a unitary matriz. In particular, for even N,
we have

1 0 0 00 ---0 |
1 1
0 7 7
1 1
A 0 5 05
0 0 0 10 -0
_d o
0 7Y
_0_%... %
and for odd N, we have
1 0 0 0 - 0]
1 1
0 75 -
_ 1 1
A=10 v
0 _J  J
V2 V2
g g
L0 V2 V2 4

In addition, the vectors z and U satisfy z = AU.

The following theorem shows that the FDIE (22)—-(24)
based on the composition (17) is equivalent to the TDIE.
Theorem 1 Given anyr € %, the set ?7(7“) determined
by (22)—(24) is the same as the set % (r) produced by the
TDIE and both of them are equal to the set f=1(r).

Example 1. We use asimple case N = 4 and n being one
of 1,2,3,4 to explicitly illustrates how the two inverse

embeddings are related with each other.

Given an r € .Z, suppose that

U = [|Uo% |02 |02 %, U 2] € 27(r).



Then for a given 0 < 8 < 2, define
U = [|Uol, |U11e7, Uzl |U1|e 9] € Z(r),

which yields the element & = WHU € @v(r) In the fol-
lowing, we show how the element u can also be generated
by the TDIE.

For the given vector |U|? and the chosen 3, define
= (U2, 2(cos(8))2|Us |2, |U[2, 2(sin(8))21 01 2]
and choose
= [|Uol, V2cos(B)|UL], |Us], \/ﬁsin(ﬂ)wﬂ], u=Wz
It follows that

u=WHU = WAU

1 0 00 |0
1 1 j
=W 0 V2 0 V2 |U1|€]ﬁ =Wz=u.
0 0 10 |||U
0 -3 0 25 | [[Uife”

[zg,z%,zg,zg] is chosen
r,zg’zoxi =C,x; >
0,0 < i < 3}, where S is defined by (11a). Choose
the element z = [\/23, —+/22, —\/22,/73]" from the
set { [ /28, /27, /23, #/23]" } including 2* = 16

elements for the given 22 and let u = Wz. Define

Conversely, suppose that 22 =
from the set 2°(r) = {x}Sx =

U2 = [ 2 A ;Z?’,ZS,Z%;Z’%] e 2 (r),

2, .2 2, .2 N
IERVEEE T Zlg%eml ¢ F),

where 8 = m + arctan(|z3//|21). Then the vector u =
WHU is an element of % ( ). We have

Ul =

100 0 |20]
1 0 _2 _
B el B Rl B
001 0 — |22
0 % 0 % |23

This illustrates the implication of Proposition 2 and The-
orem 1. [

4.2 Graph Interpretation

Firstly, the FDE (26a) can be interpreted by a directed
cycle graph of the input sequence {uy_p, -+ ,ug, -+ ,un—1}
under the periodic assumption (4). Define a directed
cycle graph & £ (¥,&) consisting of N nodes in Fig.
1(a), where the set of nodes are ¥ = {0,...,N — 1},
the edge set £ consists of all the directed edges from
each node to its next node with weight 1. The direction
of the edges reflects the causality of the time series. We
define a graph signal as a mapping from ¥ to R, which
aligns with the circular input template uog, ..., uy_1 for
the node set as follows: i € ¥ — u;. The cyclic pattern
of ¥ reflects the periodicity of the input sequence. Let
A be the adjacent matrix of the graph ¥:

0...01
.00
AL (28)
0...10

Note that A elementwise shifts a signal u forward in a
cyclic manner, i.e., Aug, ..., unx_1]7 = [un_1,u0, ..., un_2]%.
Therefore it is a linear system of the unit delay (also
known as the forward shift).

©O—@O— " ()

Fig. 1. Cyclic graph representation for an N-periodic dis-
crete time series. (a) Causal time series. (b) Anti-causal time
series.

By Lemma Bl in Appendix B, the eigenvalues and
the associated unit eigenvectors of A are {e!®', i =



0,...,N —1} and

1 . , .
——[1,e7F e IFWNUIT i~ N — 1}
i |
with @ = 27 /N. Then it can be seen that

e the mapping h3(+) in (17d) corresponds to the Fourier

transform of u on ¢ (all the rows of W are exactly the
eigenvectors of A);

e hy(-)in (17b) is an expression of the autocovariance of
w in terms of the spectrum ha(h3(u)) of u (the matrix
S consists of all the eigenvalues of A).

Secondly, the TDE (26b) can be interpreted by a directed
cycle graph of the input sequence {uy_, -+, ug, - -
under the periodic assumption (4). Define the reserve
graph ¢’ = (¥, &") of ¢ with the adjacent matrix AT
in Fig. 1(b), where &” is a set of directed edges from
each node to its last node with weight 1, reflecting
the anti-causality of the time series. The adjacent ma-
trix elementwise shifts a signal u backward in a cyclic
manner, i.e., AT [ug,...,un_1]7 = [u1,...,un_1,u0]".
Therefore it is a linear system of the unit advance (also
known as backward shift).

Fig. 2. The mirror graph of an N-periodic casual discrete
time series.

Combining ¢4 and ¢’ together, we define the mirror of ¢
as ¥y = (¥, U&), e.g. Fig.2, whose adjacent matrix is
given by %(A + A7) and whose edge set &' U & consists
of the directed edges from each node to its last and next
node with identical weight 1/2. By Lemma B1 in Ap-
pendix B, the eigenvalues of 1 (A+A”) are {cos(wi),i =
0,...,N — 1} and the associated unit eigenvectors are

{%751,"'f%f%@%r”,@}/\/z for even
N and {%7517'"7§¥,Cu,“-,ﬁ}/\/7forodd

N, where & = [1,cos(iw), - - cos((N Viw)]?, ¢ =
[0,sin(iw), - - - ,sin((N—1)iw)]T for i > 0. Then it can
be seen that

e the mapping hs3(-) in (12c) corresponds to the graph
Fourier transform of u on ¢ (Sandryhaila & Moura,

7uN—1}

2013)) (all the rows of W7 are exactly all the eigenvec-
tors of (A + AT));

e hy(-)in (12&) is an expression of the autocovariance of
u in terms of the spectrum ha(hs(u )) of u (the matrix
S consists of all the eigenvalues of 3(A + AT)).

As a result, the two kinds of embeddings have been uni-
fied from this graph signal processing perspective, which
are fully characterized by the eigenvectors and eigenval-
ues of the matrices A and %(A + AT), respectively.

4.8 More Embeddings by Graph Diffusions

Interestingly, it is in fact possible to obtain more em-
bedding from the graph signal processing perspective.
To state this result, we start from an observation. Define
a directed graph ¢(y) = (¥, &(y)) with the adjacency
matrix A(y) = yA + (1 — y)AT for any v € C, where
each node i in ¥ is connected to its preceding node i — 1
with the weight v and to its following node ¢ + 1 with
the weight 1 — . It follows that A(y)[uo, ..., unx_1]T =
’Y[UN—I, uQg, - . - ,uN_Q]T + (1 — 7)[u1, o, UN—T1, uo] R
which is a weighted sum of the forward shift and back-
ward shift. Clearly, the two kinds of embeddings above
are special cases with v = 1 and v = 1/2, respectively.

Then it is natural to raise one question: whether or not

the graph ¢(v) for any v € C corresponds to one em-
bedding for the quadratic mapping (6). Note that r; =
uT Aty and r; = uT (AT)ufori =0, -- ,n—1. Thus, we
have 7; = u” (yA* + (1 —v)(AT))u withi = 0,--- ,n—1
holds for all v € C. Actually, the key for this question
lies in that whether or not A and A7 are simultaneously
diagonalizable, and if A and A7 are simultaneously di-
agonalizable, then the answer is affirmative.

By Lemma B1 in Appendix B, the fact that both A
and AT are circular means that they are simultaneously

diagonalizable by the matrix W, ie.,

_j(N—l)Qw)])/WH7
l)w])WH7

A= Wdiag([l, e IWIN=-D= .. ¢
AT = Wdiag([l, eI .. eI N

which implies that

A= WHdiag([l, W= . ,ej(N_l)Zw)])W,
AT _ WHdlag([L 6jw, - ’ej(Nfl)w])W,

since both A and AT are real. It follows that for i =



-on—1
ri=u (yA"+ (1 = 7)(AT))"u
= TWH (ydiag([l, e IN-1iw . e

j(N—l)iw]))Wu

j(Nfl)ZiW)])

(1 )dlag([178jlw7 €
-1

_ Z ’}/(:’J —1)kiw + (1 _ ’Y)ejkiw)‘UkF
k=0
N—-1

= 3 (eI (1= )i U 2
k=0

Define the matriva'('y) of size n x N with its (¢,j)-

element being ye 7% + (1 — v)e’**@. Then the embed-
ding of the mapping (6) can also be expressed by

r = S()|U|? = h] (ha(hs(u))) with (29a)

W(UP) = S(lUf? (29b)

ha(U) = [[U22, -+, [Un -1 PP]" (29¢)

ha(u) =U = Wu, (29d)

and is called the graph induced embedding (GIE) of the
mapping (6). Since the GIE is the same as the FDE ex-

cept for the mapping TLY(), the image sets of the map-
pings h3 and hg given in (29d) and (29¢) are the same
as Z and 42 given in (19) and (20), respectively.

Similarly to the FDIE route (22)—(24), the inverse em-
bedding of the GIE (29), called the graph induced inverse
embedding (GIIE), can be done in the following proce-
dure:

i). finding the inverse image of h](-) for r € .7:

Z7() ={JUR[SIUE =7, |0 20,0 < k<N -1,

|Uk|2=|UN_k|2,1gng—1}; (30)

ii). finding the inverse image of hy(-) for |U|% € éa(r):

{U‘Uo =£[0o]%, Unjz = £4/|Uny /212,
U = /|Ukl?e?Pr, Un_y = Ug,
0§ﬁk<2ﬁ,1§k’§N/2*l} for even N
{U‘Uozi\/W:Uka:Uik
U, = \/Wejﬁk, ,0< Bk <27
1<k < (N=1)/2} for odd N;

(31)
iii). finding the inverse image of hs(-) for U € 27 (r):
)

= {(WHU|U € 27(r)}. (32)
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More formally, we have the following result on the GIE
and the GIIE.

Theorem 2 1) All the pairs (W, 5(v)) with v € C are
the embeddings of the mapping (6).

2) The set @//VW(T) produced by the GIIE (30)—(32) is the
same as the set % (r) produced by the FDIE (22)—-(24).

It is worth to note that in contrast with the TDE (12)
and the FDE (17), the GIE (29) with v € C has an
extra design freedom corresponding to the choice of 7.
Clearly, how to make use of this extra design freedom is
an interesting problem and will be studied in details in
the future. In what follows, to shed some light on this
problem, we study the case v = 1/2, which corresponds
to the directed graph in which each node i in 7 is con-
nected to its neighboring nodes ¢ — 1 and ¢ + 1 with the
identical weight 1/2. In this case, the matrix S(1/2) re-
duces to a real matrix

1 1 1
1 cos(w) cos((N — 1)w)

(n—1)) -+ cos((N —

1)(n - 1))

1 cos(w

and its k-th and (N — k)-th columns are identical since
cos(ikw) = cos(i(N — k)) for i = 0,1--- ,n — 1 and
k= 0,1---,N — 1. Also, S(1/2) is the unique real
matrix among all v € C. This property of the matrix

5(1/2) )) leads to more embeddings besides the embed-
ding (W, S(1/2)) for the mapping (6). For even N, define
the set Ag consisting of all the unitary matrices having
the form of

1 0 ... 0 0 0 .0

0 Y 2

LT

00 .- 0 1 0 o0 |

Y el

oy )
q(l) q(l)

where Q; = 8) 112) fori = 1,--- (N — 2)/2 are

d21 922

arbitrary unitary matrices of size 2 x 2. Similarly, we
define the set Ag for odd NV.

Then we have the following result on the embeddings



of the mapping (6) corresponding to the directed graph
with the weight v = 1/2.

Theorem 3 When v = 1/2, all the pairs (KW, 5(1/2))
with A € Ag are the embeddings of the mapping (6).

Remark 2 Clearly, the FDE (17) corresponds to the
pair( ( )), while the TDE (12) corresponds to the
pair (A S(1/2)), where A is defined in Proposition 2.

Note that the pair (AW, 5(1/2)) is a real embedding.
Then we are wondering whether or not there are more

real embeddings besides (AW, 5(1/2)) among all the em-
beddings (AW, S(1/2)) with A € Ag. If true, how are
these real embeddings related to each other?

The existence of real embeddings is because the k-th row
and the (N —k)-row of W are complex conjugate. Thus,

the matrix AW is real if each Q; in A chooses one from
the following eight unitary candidates

11 _ 1 _ 1 11 1 1
R Vi Vil |va R NI
TR B B A N DR I R I A
g i 4 g G
VeIV Vi V3 Vi VB Vi VR
D RS U I S SRS U A (0 S W N I S

Clearly, each matrix above plays the following roles when
it is embedded in A: 1) extract the real part and imagi-

nary part of the corresponding two rows of W; 2) assign
a sign (positive or negative) for the two rows; 3) keep or
change the order of the two rows. Otherwise, if at least
one of @;s is not chosen from the eight matrices, then

AW will involve complex numbers. Thus, we have the
following conclusion.

Theorem 4 There are 87
N (8% real embeddings for odd N) among all the em-
beddings having the form of (AW, S(1/2)) with A € Ag.
Moreover, the pair (AW S(1/2)) is unique up to signs
and orders of the rows ofAW

real embeddings for even

5 Numerical Illustration

The GIIE procedure (30)—(32) characterizes all the in-
puts u corresponding to a given autocovariance r in the
set .%. This section uses a numerical example to verify
this procedure.

The setting of the numerical example is as follows: N =
120,n = 50,C = 120,02 = 0.5 and the TC kernel with
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the scale hyperparameter and the decaying one equal to
1 and 0.85, respectively.

Firstly, the optimal autocovariance r* corresponding to
the setting above is obtained by using the CVX software
package developed in |Grant & Boyd| (2016 to solve the
convex optimization problem (9).

Secondly, we randomly generate 100 inputs correspond-
ing to r* and each input is generated by the GIIE (30)—
(32) in the following way: given v = 1/2,

1) obtaina |U|? in the set (30) by using the fmincon func-
tion in MATLAB to solve the optimization problem

. r 2 )2
Hﬁnplélﬂ (S@/2)|U)? —r¥)
N-1
0= {|U|2‘ S UE=C U] > 0,k=0,1,...,N—1,
k=0
‘U7k|2 = |UN71€|27 k= 17 JN_l}

with a randomly chosen starting point in 2.

obtain a U in the set (31) corresponding to the |U|?
produced in 1) by independently and randomly choos-
ing all of the phase parameters O,k =1,--- ,N/2—1
from the uniform distribution [0, 27).

obtain an input u by taking the inverse Fourier trans-
form of the U obtained in 2).

3)

For each input u produced above, it needs to check
whether f(u) = r* or not. To show that all of the gen-
erated 100 inputs indeed belong to the inverse image
set of the quadratic mapping (6) corresponding to r* in
a visual form. We plot the 100 pairs of the quantities
{Jlull1, (I f (w) = 7*||2 + 1)||u||1} related to the 100 inputs
in Fig. 3, where each blue plus symbol represents one
input, the red solid line is the straight line y = =, and
I -1z and || - ||2 are the ¢; and ¢5 norms of a column vec-
tor. If f(u) = 1*, then (|f(u) — r*[l2 + Dllulls = Jull.
Therefore, we can claim that all the 100 inputs by the
GIIE procedure (30)—(32) are located in the inverse im-
age f~1(r*) if all the 100 pairs are on the line y = x of
Fig. 3. We see from Fig. 3 that all the 100 produced in-
puts are almost on the straight line y = x. This means
that the GIIE (30)—(32) indeed characterizes the inverse
embedding of the quadratic mapping.

6 Conclusions

This paper took steps forward for the QMIE method pro-
posed for solving the input design of the RLS estimator.
Firstly, the FDIE of the quadratic mapping was devel-
oped for general cases N > n based on the well-known
FDE of the mapping. Secondly, a clear connection be-
tween the FDIE and the TDIE of the quadratic mapping
was discovered and these two embeddings actually corre-
spond to two special directed graphs of periodic signals,



102

100

Quantities (||f(u) — r*[|a + 1)|lu|/

86 B‘E 9‘0 9‘2 9‘4 9‘6 9‘8 150 102
£; norm of inputs

Fig. 3. The produced 100 inputs by the GIIE procedure.

respectively. Lastly, more embeddings corresponding to
different directed graphs of periodic signals were found
in a unified graph signal processing perspective and the
real embedding is unique if ignoring the signs and orders
of the rows of the orthogonal matrix.
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Appendix A

The appendix A contains the proofs of the results in the
paper.
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A.1  Proof of Proposition 1

Firstly, by definition the set 2" (r) is nonempty if r € .Z.

We intend to prove the conclusion by considering even
N and odd N, respectively.

For the case of even IV, by using the constraints {|U|? =

|Un—k|?,1 <k < N—1} of 2°(r), we have

Z(r) = {|U|2’|Uk\2 >0,0<k<N-1,
Unv_i*=|Up>,1 <k < N/2-1,

S|UP® = 7“}
1 1 1
g2 1 cos(w) cos(w(N/2))
1 cos(w(n —1)) -+ cos(w((n — 1)N/2))
(U 2 (106 2001, 2Tz U]

Note that the size of S is n x (N/2+1). Thus rank(S) =
min(N/2+1,n) by Theorem 2 of[Mu & Chenl (2018). So,
it is clear that S is of full column rank and accordingly
the linear equation S|U|?> = r only has one solution if

N < 2(n —1). Suppose that
T
U2 = [0 O, - [Unja—a 27 (U2l
is the unique solution and note that A (r) contains at

least one element. Then 2 (r) consists of the unique
element

U2 (U272, - *|Unja-1)?/2,% |Unjal?,
* * T
Unyjo—1?/2, - |U1]2/2]

when N < 2(n — 1) for even N.

On the other hand, the dimension of the null space of the
linear equation S|U|? = ris N/2+1—nwhen N > 2n for

even N. Let *|U|? be one element in 2 (r). This implies
that the set

V(r) 2 {|U|2‘§|U|2 =1, U2 = |Un 421 <k < N-1}
=" |U|2®Range{£j7j =N, 7N/2} (Al)

with &; being defined by (10), is an affine space of dimen-
sion N/2 —n + 1, where @& means the direct sum of two
subspaces and Range{-} means the range of columns.

Therefore, we have the dimension of 2 (r) is less than

or equal to N/2 —n + 1 since 2 (r) C #(r).



Similarly, for the case of odd N, we have

Z() = {JUP|un 20,0 < k<N -1
Un-i = U1 <k < (N —1)/2

S|UP? = 7“}
1 1 1
g2 1 cos(w@) cos(w((N—1)/2))
1 cos(w(n —1)) -+ cos(w((n—1)(N-1)/2))
U 2 [[Tof?, 2T, - 20—y 2) "

Thus, the matrix S is of full column rank and accordingly
§\U|2 = r has one solution if N < 2n — 1. Suppose

T .
that *|U|? = [*|U0|2,* U2, |U(N,1)/2|2] is the

unique solution of S|U|? = r. Then 2 (r) includes only
one element

(IO U122, U1y 217/2,
* * T
Un—1)/21/2,-- UL /2] .

Meanwhile, 2°(r) is a convex polytope and its dimen-
sion is less than or equal to (N 4+ 1)/2 — n by a similar
statement as for the even N case when N > 2n + 1 for
odd N.

Therefore, by combining the results for even N and odd
N, we proved that 2" (r) has one element when N < 2n.

When N = n, by the previous derivation, 2 () has
only one element and so for proving the vector R =
[Ro, Ry, -+, R,_1]" is the unique one, one just needs to
show that this vector is a solution of the linear equation
SR/\/n = r, which is verified straightforwardly by the

inverse Fourier transform from R to 7.
This completes the proof.
A.2  Proof of Proposition 2

The proof is straightforward by comparing the corre-
sponding matrices and is omitted.

A.83 Proof of Theorem 1

For the sets 2°(r), Z(r), % (r) involved in the proof,
please refer to Theorem 1 of Mu & Chen)| (2018]).

We first prove the theorem for even N.
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Let u be any element of % (r). Then, we have f(u) =
r and accordingly there exists a route to generate u
from 7 by the way of (22)—(24). First of all, based on

u we have the element U = Wu € Z(r) denoted by
[Ug, -+ ,Un—1]T. Second of all, let us define

U2 =062 ,|Un- AT

where |Ug|> = |Un_|? for 1 < k < N — 1. Thus, we
have S|U|? = r and hence |U|? € 2 (r) since f(u) = r.
AU (20,21, an—1]T, 22
(23,22 -+ ,2% )7, where A is defined in Proposition 2.
By the relation z = AU given in Proposition 2, we have

Now define =z

% = |(70|2» 212\//2 = |(7N/2\2 (A.2a)
22 =2x (Re(Up))?, 24_, =2x (Im(Uz))?> (A.2b)

for 1 <k < N/2 — 1, where Re(-) and Im(-) denote the
real part and the imaginary part of a complex number,

respectively. This yields that 22 + 22,_, = 2|Uj|?
2|Un—_g|? for 1 < k < N/2 — 1. It follows that

20
27
>< .
R
R D 1 |Uo|?
1 e—Jw e—Jw(N-1) |(71‘2
1 e~ diwm(n=1) ... —jw(r-1)(N-1) |L~7N71|2

=S|UP? =r.

This means that 22 € 27(r) and also z € Z(r). Fur-
thermore, we define u = Wz and hence u € % (r). Now,
one still needs to show @ = w, which is verified by

w=Wz=(AW)"z=AW)IAU =WHU =a.
Conversely, it also requires to show that, for any element

u € % (r), there exist the corresponding elements |U|? €
Z (r) and U € Z(r) such that u = WHU. By applying



the inverse mapping of (A.2), namely,
|[70|2 = 25, \(7N/2|2 = 212\//2 (A.3a)

Ukl? = 1Un-kl” = (21 + 2K _1) /2 (A.3b)

for1 <k < N/2—1and U= A 2, the assertion can be
proved in a similar way and is omitted.

When N is odd, the proof is similar and one just needs
to modify (A.2) and (A.3) as
= [Tol*, 2 =2 % (Re(Ux))*, 2Ry = 2 x (Im(Ty))”

for 1 <k < (N -1)/2 and

Uol* = 28, |Ukl* = Ukl = (5} + 22 _4)/2.
1)/2.

A.J  Proof of Theorem 2

for1 <k < (N -

The conclusion 1) is straightforward.

Given any |[U[* with its elements satisfying |Uy|* =
|Uv_x|?,1 < k < N—1, we have S( U2 = S(0)|U)2.
For any given v € C, let [U|2 € 277(r), which mean that
S()IU = 7, namely, ST + (1 - 7)8(0)[U] =
r. It follows that S|U|2 = r due to S(1) = S.
This means that 5/57“’(7“) C ,9/&7(7")
U2 € é”v( ), namely, §|U|2 = 7. This derives
that ~5(1 )|U\2 + (1 —~)5(0 )|U\2 = r. We have
%( ) C 3&”7( ). We proved that 3&”(7“) 7( ) and
accordingly Z7(r) = Z(r) and % 7(r) = % (r). This
proves the conclusion 2).

Conversely, let

A.5  Proof of Theorem 3
For proving Theorem 3, it suffices to show the identity

AT S(1/2)A = S(1/2),

cos(kw) 0
Q=
w)] l 0 cos(kw)]

for an arbitrary 2 x 2 dimensional unitary matrix Q;,7 =
,(N—=2)/2 withaneven N (i=1,---,(N —1)/2
with an odd N) and k > 0.

which holds since

H cos(kw) 0
@ [ 0  cos(k

A.6  Proof of Theorem 4

The proof is straightforward and is omitted.
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Appendix B

This appendix contains one technical lemma.

Lemma B1 (Gray (2006, Theorem 3.1),Tee (2007))
Denote the circulant matriz B generated by a row vector

b=1[bg,b1, -+ ,bn_1] by
i bo b1 - by—o bN—l_
by—1 by - bn_3 bn_2
B = circ(b) 2
by b3 . by by
L b1 by i bno1 by |

Then B has unit eigenvectors

,exp(—ja(N—1)ym)]",

,U(m) —

1, exp(~jwm)
—= |1, exp(—jwm), - -
N P

m=0,--- ,N—1,

where @ = 2w /N and j is the imaginary unit (72 = —1),
and the corresponding eigenvalues

N-1
r(m = Z by, exp(—jmkw)
k=0
= b[la exp(fjmw), e 7eXp(7jm(N - 1)w)]T
and can be expressed by

B = Adiag([T(O)7 e ,T(N_l)])AH

where A = [ ... vWN=D] is unitary and A¥ denotes
the complex conjugate transpose of A.
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