
An Efficient Implementation for Spatial-Temporal Gaussian

Process Regression and Its Applications ?

Junpeng Zhang a, Yue Ju a, Biqiang Mu b, Renxin Zhong c, Tianshi Chen a

aSchool of Data Science and Shenzhen Research Institute of Big Data, The Chinese University of Hong Kong, Shenzhen
518172, China

bKey Laboratory of Systems and Control, Institute of Systems Science, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100190, China

cSchool of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou, P. R. China

Abstract

Spatial-temporal Gaussian process regression is a popular method for spatial-temporal data modeling. Its state-of-art im-
plementation is based on the state-space model realization of the spatial-temporal Gaussian process and its corresponding
Kalman filter and smoother, and has computational complexity O(NM3), where N and M are the number of time instants
and spatial input locations, respectively, and thus can only be applied to data with large N but relatively small M . In this
paper, our primary goal is to show that by exploring the Kronecker structure of the state-space model realization of the
spatial-temporal Gaussian process, it is possible to further reduce the computational complexity to O(M3 + NM2) and thus
the proposed implementation can be applied to data with large N and moderately large M . The proposed implementation is
illustrated over applications in weather data prediction and spatially-distributed system identification. Our secondary goal is
to design a kernel for both the Colorado precipitation data and the GHCN temperature data, such that while having more
efficient implementation, better prediction performance can also be achieved than the state-of-art result.

Key words: Large scale spatial-temporal data; Gaussian process regression; Kalman filter and smoother.

1 Introduction

Gaussian process regression is a popular method in sta-
tistical data modeling and analysis, closely related with
the kernel method, e.g., [16], and the kernel-based reg-
ularization method in system identification, e.g., [24],
and has wide applications in many fields such as ma-
chine learning, signal processing, and automatic control,

? A preliminary version of this work [31] was presented in
the 39th Chinese Control Conference (CCC), 2020. Corre-
sponding author Tianshi Chen. This work was supported by
the Shenzhen Science and Technology Innovation Council
under contract No. Ji-20170189 (JCYJ20170411102101881),
the Robotic Discipline Development Fund (2016-1418) from
Shenzhen Government, the general project funded by NSFC
under contract No. 61773329, the Thousand Youth Talents
Plan funded by the central government of China.

Email addresses: junpengzhang@link.cuhk.edu.cn
(Junpeng Zhang), yueju@link.cuhk.edu.cn (Yue Ju),
bqmu@amss.ac.cn (Biqiang Mu),
zhrenxin@mail.sysu.edu.cn (Renxin Zhong),
tschen@cuhk.edu.cn (Tianshi Chen).

e.g., [23, 24, 29]. In contrast with the common para-
metric modeling methods in system identification, e.g.,
the prediction error/maximum likelihood method [19],
its advantage lies in that, first, its model structure is
determined by its covariance function (also called the
kernel function), which incorporates the prior knowl-
edge of the underlying function/system to be identified
into the estimation procedure; second, its model com-
plexity is governed by the parameter (called the hyper-
parameter) used to parameterize the covariance func-
tion, and can be tuned in a continuous way. To apply
Gaussian process regression methods, there are several
issues that should be addressed, including the kernel
design, e.g., [9, 10, 14, 30], the hyper-parameter esti-
mation, e.g., [24, 29], and the efficient implementation,
e.g., [4, 10, 25]. Gaussian process regression has been
used widely in dealing with the spatial-temporal data in
many areas, such as climate science, social science, krig-
ing, signal processing and physical inverse problems, e.g.,
[3, 13, 22, 26]. When dealing with the spatial-temporal
data, the Gaussian process has two inputs: the locations
and the time instants, and thus is often referred to as
the spatial-temporal Gaussian process, e.g., [7, 26, 27].

Preprint submitted to Automatica 27 September 2022

ar
X

iv
:2

20
9.

12
56

5v
1

 [
ee

ss
.S

Y
]

 2
6

Se
p

20
22

For large scale spatial-temporal data, the aforemen-
tioned issues often become more involved. The current
practice is to design a separable spatial-temporal kernel,
which is a product of a spatial kernel and a temporal ker-
nel, e.g., [7, 26, 27], whose design should be based on the
prior knowledge on the underlying function to be iden-
tified. For a designed separable spatial-temporal kernel,
many methods can be used for the hyper-parameter esti-
mation, such as the empirical Bayes (EB) method (also
called the marginal likelihood maximization (MLM)
method), the Stein’s unbiased risk estimate (SURE)
minimization method, the generalized cross validation
(GCV) method, e.g., [24, 29]. The straightforward im-
plementation of the hyper-parameter estimation and
the following estimation and prediction step has com-
putational complexity O(N3M3), where N and M are
the numbers of temporal and spatial data, respectively,
and thus is too expensive to be applied to large scale
data. To reduce the computational complexity, it has
been tried to first explore the structure of the temporal
kernel, then derive a state-space model realization of the
temporal Gaussian process in different ways, and finally
convert the hyper-parameter estimation, function esti-
mation and prediction to Kalman filtering, smoothing
and prediction problems, e.g., [7, 17, 26, 27]. Such im-
plementation has computational complexity O(NM3)
and thus is inefficient to be applied to spatial-temporal
data with moderately large or large M .

In this paper, we focus on the following two issues. Our
primary focus is on the issue of how to further reduce the
computational complexity such that the Gaussian pro-
cess regression can be applied to spatial-temporal data
with large N and moderately large M . To tackle this
problem, we first find that the state-space model real-
ization of the spatial-temporal Gaussian process has a
Kronecker structure and then by exploring this struc-
ture, we propose transformations for the original state-
space model and then derive a new state-space model
realization of the spatial-temporal Gaussian process. Fi-
nally, the Kalman filter, smoother and predictor are ap-
plied to handle the hyper-parameter estimation, func-
tion estimation and prediction, respectively. The pro-
posed implementation is illustrated over applications in
weather data prediction including the Colorado precip-
itation data considered in [27] and the Global Histori-
cal Climatology Network (GHCN) temperature data in
[21, 31], and spatially-distributed system identification,
e.g., [18]. Our secondary focus is to design a kernel for
the two weather data sets, such that while having more
efficient implementation, better prediction performance
can also be achieved than the kernel proposed in [27].
To this purpose, the designed kernel should have state-
space model realizations and also incorporate the prior
knowledge that both data sets are not strictly periodic
but with slight temporal variation.

In contrast with the state-of-art result [27], this paper
has the following contributions:

1) a more efficient implementation algorithm with com-
putational complexity O(M3 +NM2) is proposed for
the hyper-parameter estimation, the spatial-temporal
Gaussian process regression and prediction, while the
one in [27] has a computational complexity O(NM3)
and did not consider the efficient implementation of
hyper-parameter estimation;

2) a kernel is designed for the Colorado precipitation data
and the GHCN temperature data and shown to give
better prediction performance than the one in [27].

Finally, in contrast with the preliminary version [31] of
this paper, we have included new theoretical results in-
cluding Propositions 1 to 3, and Theorem 1, designed
a new kernel that gives better prediction performance
for both the Colorado precipitation data and the GHCN
temperature data, illustrated the implementation over a
new application in spatially-distributed system identifi-
cation, and included more implementation details, e.g.,
the derivation of the discrete-time state-space model re-
alization of the temporal kernel, the treatment of the
missing data and the selection of the starting points.

The remaining parts of this paper are organized as fol-
lows. In Section 2, we first introduce some preliminary
materials and then the problem statement. In Section
3, we propose an implementation with computational
complexity O(M3 + NM2). In Section 4, we test the
proposed implementation over applications in weather
data prediction and spatially-distributed system iden-
tification, where in Section 4.2, we design a kernel and
show its better prediction capability over the one in [27]
for both the Colorado precipitation data and the GHCN
temperature data. In Section 5, we give the conclusion
of this paper. All proofs of theorems and propositions
are included in Appendix A.

2 Preliminary and Problem Statement

In this section, we first introduce some preliminary ma-
terials and then the problem statement of this paper.

2.1 Spatial-temporal Function Estimation

In this paper, we consider the spatial-temporal function
estimation problem described by

yi,j = f(pi, tj) + vi,j , (1)

i = 1, · · · ,M, tj = jTs, j = 1, · · · , N +NT ,

where pi ∈ Rν with ν ∈ N is the ith location, tj ∈
R+ = {x|x ≥ 0, x ∈ R} is the jth time instant, f(pi, tj),
vi,j ∈ R and yi,j ∈ R are the unknown spatial-temporal
function value, the measurement noise and the measure-
ment output at the ith location and the jth time in-
stant, respectively, Ts > 0 the sampling interval, M is

2

the number of locations, and N and NT are the num-
bers of time instants for the function estimation and val-
idation, respectively. The measurement noises vi,j with
i = 1, · · · ,M , j = 1, · · · , N + NT are assumed to be
independently Gaussian distributed as follows

vi,j ∼ N (0, σ2). (2)

We aim to estimate the function f : Rm × R+ → R
based on the training data {pi, tj , yi,j}M,N

i=1,j=1 such that
it has as good prediction performance over the test data

{pi, tj , yi,j}M,N+NT
i=1,j=N+1 as possible.

2.2 Gaussian Process Regression

Gaussian process regression models the spatial-temporal
function f(pi, tj) as a spatial-temporal Gaussian process

f(pi, tj) ∼ GP(0, k(pi, tj , pi′ , tj′ ;α)), (3)

k(pi, tj , pi′ , tj′ ;α) = ks(pi, pi′ ;αs)kt(tj , tj′ ;αt), (4)

where i, i′ = 1, · · · ,M , j, j′ = 1, · · · , N + NT , GP
represents a Gaussian process, k(pi, tj , pi′ , tj′ ;α) the
covariance function (also called the kernel) with a sep-
arable structure in space and time, e.g. [7, 26, 27],
ks(pi, pi′ ;αs) : Rν × Rν → R the spatial kernel,
kt(tj , tj′ ;αt) : R+ × R+ → R the temporal kernel,
α = [αTt , α

T
s]T ∈ Ω ⊂ Rd with d ∈ N, αs ∈ Rds with

ds ∈ N and αt ∈ Rdt with dt ∈ N the hyper-parameters
of k, ks and kt, respectively, and d = dt+ds. It is assumed
that for any i, i′ = 1, · · · ,M , j, j′ = 1, · · · , N + NT ,
f(pi′ , tj′) is independent of vi,j .

The kernel k(pi, tj , pi′ , tj′ ;α) determines the underly-
ing model structure and its design for the two test data
sets will be studied in Section 4.2. The hyper-parameter
α determines the model complexity and its estimation
can be handled by many methods. Here, we consider
the marginal likelihood maximization (MLM) method,
the generalized cross validation (GCV) method, and the
Stein’s unbiased risk estimation (SURE) method, e.g.,
e.g., [24], which are listed below, respectively,

α̂MLM = arg min
α∈Ω

{
NM

2
log(2π) +

1

2
log |Σ(α)|

+
1

2
Y TΣ−1(α)Y

}
, (5)

α̂GCV = arg min
α∈Ω

{
S

NM(1− δ/NM)2

}
, (6)

α̂SURE = arg min
α∈Ω

{S + 2σ2δ}, (7)

where α̂MLM , α̂GCV and α̂SURE denote the correspond-

ing hyper-parameter estimate,

Σ(α) = Kt(αt)⊗Ks(αs) + σ2INM ∈ RNM×NM , (8a)

[Kt(αt)]jj′ = kt(tj , tj′ ;αt), j, j′ = 1, · · · , N, (8b)

[Ks(αs)]ii′ = ks(pi, pi′ ;αs), i, i′ = 1, · · · ,M, (8c)

yj = [y1,j , · · · , yM,j]
T ∈ RM , (8d)

Y =
[
yT1 , · · · , yTN

]T ∈ RNM , (8e)

δ = trace
{

[Kt(αt)⊗Ks(αs)] Σ(α)−1
}
, (8f)

S = ||Ŷ − Y ||22, (8g)

Ŷ = [Kt(αt)⊗Ks(αs)] Σ(α)−1Y, (8h)

⊗ denotes the Kronecker product between two matrices,
INM ∈ RNM×NM an NM -dimensional identity matrix,
[·]jj′ the (j, j′)th entry of a matrix, | · | and trace(·) the
determinant and trace of a square matrix, respectively.

2.3 Problem Statement

To state the problem, it is worth to note the following two
observations. Firstly, the state-of-art implementation in
[27] designed a kernel such that the spatial-temporal
Gaussian process has a state-space model realization
and then convert the function estimation problem to a
Kalman filtering and smoothing problem, and the im-
plementation has computational complexity O(NM3),
e.g., [7, 26, 27] and thus can be applied to data with large
N but relatively small M , e.g., the Colorado precipita-
tion data with N = 1212 and M = 367 was studied
in [27]. However, the implementation in [27] is still very
expensive to apply for data with moderately large M ,
e.g., the GHCN temperature data with N = 6575 and
M = 3955. Secondly, the kernel designed in [27] does
not give very good prediction performance for the Col-
orado precipitation data [17], indicating there is a room
to design better kernels.

The above observations motivate us to tackle the follow-
ing two problems in this paper:

1) to develop implementation with lower computational
complexity in terms of M than the one in [27], which
can be applied to data with large N and moderately
large M , e.g., the GHCN temperature data;

2) to design a kernel for both the Colorado precipitation
data and the GHCN temperature data that gives bet-
ter prediction performance than the one in [27].

3 An Efficient Implementation

In this section, we propose a new implementation algo-
rithm with computational complexity O(M3 + NM2),
which can thus be applied to data with large N and
moderately large M .

3

3.1 State-space Model Realization of Spatial-Temporal
Gaussian Process

For convenience, we assume in this section that the tem-
poral kernel kt(tj , tj′ ;αt) is a stationary kernel and then
with a slight abuse of the notation, we can denote it by

kt(τ ;αt), τ = (j − j′)Ts, j, j′ = 1, · · · , N +NT .
(9)

Recall that the power spectral density (PSD) of a
discrete-time kernel kt(τ ;αt), denoted as Φ(ω), can be
obtained by its discrete Fourier transform

Φ(ω) =

+∞∑
τ=−∞

kt(τ ;αt)e
−iωτ ∈ R+, i =

√
−1. (10)

Assumption 1 Φ(ω) is a rational power spectral density
with the order of 2r with r ∈ N.

Under Assumption 1, the spectral factorization tech-
nique, e.g., [2, 15], can be applied to (10) and there exists
a rational transfer function W such that

Φ(ω) = W (eiω)W (e−iω). (11)

From the realization theory of linear systems e.g., [8]
and the transfer function W (eiω), for each location pi,
the corresponding discrete-time state-space model real-
ization of a zero mean Gaussian process with the covari-
ance function (9) can be derived by

si,j = FDsi,j−1 +GDwi,j−1, si,0 ∼ N (0,Σ0),

zi,j = HDsi,j , j = 1, · · · , (12)

with i, i′ = 1, · · · ,M , j, j′ = 1, · · · , N +NT ,

E[zi,j′zi,j] = kt(τ ;αt),E[zi,jzi′,j] = 0, (13)

where FD ∈ Rr×r, GD ∈ Rr and HD ∈ R1×r are the
system matrix, the input matrix and the output matrix,
respectively, si,j ∈ Rr is the state vector of the ith lo-
cation at the jth time instant with si,0 and si′,0(i 6= i′)
being independent from each other, wi,j ∈ R is white
Gaussian noise with zero mean and unit variance, Σ0

is the solution of the discrete-time Lyapunov equation
Σ0 = FDΣ0F

T
D +GDG

T
D ∈ Rr×r and E(·) is the mathe-

matical expectation.

Then we define that

χj = [f(p1, tj), · · · , f(pM , tj)]
T ∈ RM , (14)

and according to Assumption 1 and (4), its covariance
matrix is

E
[
χj′χ

T
j

]
= Ks(αs)kt(τ ;αt) ∈ RM×M , (15)

where Ks(αs) is defined in (8c). We let

zj = [z1,j , · · · , zM,j]
T ∈ RM , (16)

and then with (13) and (15), we obtain

χj = Ks(αs)
1/2zj , (17)

where Ks(αs)
1/2 is the “square root” of Ks(αs) defined

in (20). With (15)-(17), we rewrite (12) as follows

sj = Fsj−1 +Gwj−1, s0 ∼ N (0, IM ⊗ Σ0), (18a)

χj = Hsj , j = 1, 2, · · · , (18b)

where sj = [sT1,j , · · · , sTM,j]
T ∈ RMr, F = IM ⊗

FD ∈ RMr×Mr, G = IM ⊗ GD ∈ RMr×M , H =
Ks(αs)

1/2(IM ⊗HD) ∈ RM×Mr and wj = [w1,j , · · · ,
wM,j]

T ∈ RM .

According to (17) and (15), the state-space model (18)
is a realization of the Gaussian process (3). Then the
model (1) can be accordingly rewritten as follows

sj = Fsj−1 +Gwj−1, s0 ∼ N (0, IM ⊗ Σ0), (19a)

yj = Hsj + vj , j = 1, 2, · · · , (19b)

where vj = [v1,j , · · · , vM,j]
T ∈ RM , with vj ∼

N (0, σ2IM), yj is defined in (8d), and wj and vj are
independent for any j = 1, · · · , N +NT .

Then the spatial-temporal function estimation and pre-
diction problem can be converted to a Kalman filter-
ing, smoothing and prediction problem for (19) and the
corresponding implementations has computational com-
plexity O(NM3), same as the ones in e.g., [7, 26, 27].

Remark 1 Note that Section 3.1 and [27, Proposition
2] use two different routes to derive the discrete-time
state-space model realization (19) of the spatial-temporal
Gaussian process. It is not hard to show that they are
equivalent in theory, but they are different in implemen-
tation. In particular, the discretization technique used
in [27] includes solving an integral involving the matrix
exponential, which needs to be handled carefully and if
otherwise, numerical problem may occur, see e.g., [28]
and the references therein. Therefore, the route in Sec-
tion 3.1 is preferable in practice, because no discretiza-
tion of continuous-time state-space model is involved
and thus possible numerical problems are avoided. More-
over, in practice one can design directly the discrete-time
simulation-induced kernel [9] based on the prior knowl-
edge, which is represented in a state-space model form.

3.2 A Transformed State-space Model Realization

In order to further reduce the computational complex-
ity in terms of M , it is useful to explore the Kronecker

4

structure of the system, input and output matrices of the
state-space model (19) and perform a coordinate and an
output transformation to (19).

Firstly, we denote the singular value decomposition
(SVD) of the spatial kernel matrix Ks(αs) and its

“square root” Ks(αs)
1
2 as follows

Ks(αs) = ΛDΛT ,Ks(αs)
1
2 = ΛD

1
2 ΛT , (20)

where D ∈ RM×M is a diagonal matrix and its main
diagonals are singular values ofKs(αs),D

1
2 is a diagonal

matrix with the square root of diagonals of D and Λ is
an orthogonal matrix, i.e. ΛΛT = ΛTΛ = IM .

Then for j = 0, 1, · · · , we introduce a state transform

xj = (ΛT ⊗ Ir)sj ⇐⇒ sj = (Λ⊗ Ir)xj ,
xj+1 = (ΛT ⊗ Ir)(Fsj +Gwj)

= (ΛT ⊗ Ir)F (Λ⊗ Ir)xj +GΛTwj

= (IM ⊗ FD)xj +GΛTwj , (21)

where (ΛT ⊗Ir)G = (ΛT ⊗GD) = (IM⊗GD)(ΛT ⊗1) =
GΛT , and an output transform for j = 1, 2, · · · ,

lj = ΛT yj (22)

= ΛT (Hsj + vj)

= ΛTH(Λ⊗ Ir)xj + ΛT vj

= ΛTKs(αs)
1
2 (IM ⊗HD)(Λ⊗ Ir)xj + ΛT vj

= D
1
2 ΛT (IM ⊗HD)(Λ⊗ Ir)xj + ΛT vj

= D
1
2 (IM ⊗HD)xj + ΛT vj ,

where the last equation is true because ΛT (Im⊗HD)(Λ⊗
Ir) = (ΛT ⊗ 1)(Λ ⊗ HD) = IM ⊗ HD. Then the state-
space model (19) is transformed to

xj = F̄ xj−1 +Gw̄j−1, x0 ∼ N (0, IM ⊗ Σ0), (23a)

lj = H̄xj + v̄j , j = 1, 2, · · · , (23b)

where F̄ ∈ RMr×Mr, H̄ ∈ RM×Mr and the covariance
of x0 are computed as

F̄ = IM ⊗ FD, H̄ = D
1
2 (IM ⊗HD), (24a)

IM ⊗ Σ0 = (Λ⊗ Ir)(IM ⊗ Σ0)(ΛT ⊗ Ir), (24b)

w̄j = ΛTwj ∼ N (0, IM) and v̄j = ΛT vj ∼ N (0, σ2IM).
We denote the transformed output vector and its co-
variance matrix by L and Σ(α), respectively, which are
described by

L =[lT1 , · · · , lTN] = (IN ⊗ ΛT)Y, (25a)

Σ(α) =COV[L,L] = (IN ⊗ ΛT)Σ(α)(IN ⊗ Λ). (25b)

3.3 Kalman Filter Based Estimation and Prediction

Firstly, we define the estimate x̂j|m and its covariance

matrix Σj|m for j = 1, 2, · · · ,m = 0, 1, · · · , N as

x̂j|m = E[xj |l0:m], (26a)

Σj|m = E[(xj − x̂j|m)(xj − x̂j|m)T |l0:m], (26b)

where l0 is a null vector and

l0:m = {l0, · · · , lm} . (27)

Then the Kalman filter for (23) can be expressed as

ēj = lj − H̄x̂j|j−1, (28a)

Ēj = COV[ēj , ēj] (28b)

= H̄Σj|j−1H̄
T + σ2IM , (28c)

x̂j|j = x̂j|j−1 + Σj|j−1H̄
T Ē−1

j ēj , (28d)

Σj|j = Σj|j−1 − Σj|j−1H̄
T Ē−1

j H̄Σj|j−1, (28e)

x̂j+1|j = F̄ x̂j|j , (28f)

Σj+1|j = F̄Σj|jF̄
T +Q, (28g)

where ēj is known as the innovation,

Q = IM ⊗ (GDG
T
D) (29)

and the iterative algorithm starts from j = 1.

For the purpose of function estimation, we apply Kalman
smoother as follows

Σj|j = Σj|j−1 − Σj|j−1H̄
T Ē−1

j H̄Σj|j−1, (30a)

J̄j = Σj|jF̄
TΣ
−1

j+1|j , (30b)

x̂j|N = x̂j|j + J̄j(x̂j+1|N − F̄ x̂j|j), (30c)

Σj|N = Σj|j + J̄j(Σj+1|N − Σj+1|j)J̄
T
j , (30d)

f̂j|N = ΛH̄x̂j|N , j = N − 1, · · · , 1, (30e)

where f̂j|N = E [χj |l0:N] with χj defined in (14).

For the purpose of function prediction, we apply the
Kalman predictor as follows

x̂j|N = F̄ x̂j−1|N , (31a)

Σj|N = F̄Σj−1|N F̄
T +Q, (31b)

f̂j|N = ΛH̄x̂j|N , j = N + 1, · · · , N +NT , (31c)

where f̂j|N = E [χj |l0:N] is the prediction of χj at jth
time instant.

5

3.4 Hyper-parameter Estimation

Based on the Kalman filter (28), it is possible to propose
efficient implementation algorithms for the MLM, GCV
and SURE methods.

Lemma 1 [6, p. 302, Properties of the Innovation Se-
quence] For j = 1, · · · , N , the innovation ēj in (28a) can
be represented as a linear function of l0:j in (27), i.e.

ē1 = l1, (32a)

ēj = lj −
j−1∑
i=1

bj,ili, for j = 2, · · · , N, (32b)

COV[ēj , ēj′] = 0, for j′ = 1, · · · , N and j 6= j′, (32c)

where bj,i ∈ R is the corresponding coefficient for i =
1, · · · , j − 1.

Proposition 1 Let

Θ =[ēT1 , · · · , ēTN]T , (33a)

Ψ =COV[Θ,Θ], (33b)

where ēj, j = 1, · · · , N , are defined in (28a). Then fol-
lowing Lemma 1, Θ and Ψ can be rewritten as

Θ = ΓL, (34a)

Ψ = ΓΣ(α)ΓT , (34b)

= blkdiag(Ē1, · · · , ĒN), (34c)

whereL is defined in (25a), Γ ∈ RNM×NM is a lower uni-
triangular matrix with |Γ| = 1 and for j, i = 1, · · · , NM ,
the (j, i)th element of Γ is

[Γ]ji =


0, j < i,

1, j = i,

bj,i, j > i,

(35)

and blkdiag(Ē1, · · · , ĒN) is a block diagonal matrix with
Ē1, · · · , ĒN , defined in (28b), on the main diagonals.

By Proposition 1, the cost function of the MLM method
(5) can be calculated as shown in the proposition below.

Proposition 2 The cost function of the MLM method
(5) can be computed by using

log |Σ(α)| =
N∑
j=1

log |Ēj |, (36a)

Y TΣ−1(α)Y =

N∑
j=1

ēTj Ē
−1
j ēj . (36b)

Then by Propositions 1 and 2, the cost functions of the
GCV and SURE methods can be calculated as shown in
the following proposition.

Proposition 3 The cost functions of the GCV method
(6) and the SURE method (7) can be computed by using

S =σ4
N∑
j=1

[
ēTj Ē

−1
j (H̄P̄j|j−1H̄

T + IM)Ē−1
j ēj

+ 2ζ̄Tj|j−1H̄Ē
−1
j ēj

]
, (37)

δ =MN − σ2
N∑
j=1

trace
[
Ē−1
j (H̄P̄j|j−1H̄

T + IM)
]
,

where ζ̄j|j−1 and P̄j|j−1 can be computed recursively:

• for j = 1, ζ̄1|0 = 0 ∈ RMr and P̄1|0 = 0 ∈ RMr×Mr;
• for j = 2, · · · , N ,

ζ̄j|j−1 = F̄ ζ̄j−1|j−2 + F̄ P̄j−1|j−2H̄
T Ē−1

j ēj

− F̄ Σ̄j−1|j−2H̄
T Ē−1

j (H̄P̄j|j−1H̄
T + IM)Ē−1

j ēj

− F̄ Σ̄j−1|j−2H̄
T Ē−1

j H̄ζ̄j−1|j−2, (38)

P̄j|j−1 = F̄ P̄j−1|j−2F̄
T − F̄ P̄j−1|j−2H̄

T Ē−1
j H̄Σj−1|j−2F̄

T

− F̄Σj−1|j−2H̄
T Ē−1

j H̄P̄j−1|j−2F̄
T

− F̄Σj−1|j−2H̄
T Ē−1

j (H̄P̄j−1|j−2H̄
T + IM)

Ē−1
j H̄Σj−1|j−2F̄

T . (39)

3.5 Summary of the Implementation Algorithm and Its
Computational Complexity Analysis

The proposed implementation, as shown in Sections 3.2-
3.4, can be summarized in Algorithm 1 below. To analyze
the computational complexity of Algorithm 1, it should
be noted that the dimension r of the state-space model
(12) is determined by the temporal kernel (9) and is
irrespective of, and often much smaller than, M and N ,
and thus in what follows, we ignore r and moreover, let
NT = N in the analysis for brevity.

Theorem 1 The proposed implementation, as shown
in Algorithm 1, has computational complexity O(M3 +
NM2). In particular,

• the state-space model transformation (20), (24a) and
(25a) has computational complexity O(M3 +NM2);

• the Kalman filter (28) has computational complexity
O(NM);

• the evaluation of the cost functions of the MLM method
(5), the GCV method (6) and the SURE method (7)
has computational complexity O(NM);

• the Kalman smoother (30) and Kalman predictor (31)
have computational complexity O(NM2).

6

Algorithm 1 The Proposed Implementation

Input: data {pi, tj , yi,j}M,N+NT
i=1,j=1 , kernels kt(tj , tj′ ;αt),

ks(pi, pi′ ;αs)

Output: f̂j|N and Σj|N for j = 1, · · · , N +NT .
Step 1: State-space model derivation

Derive (19);
Step 2: State-space model transformation

Calculate (20), (24a) and (25a);
Step 3: Hyper-parameter Estimation
• Kalman filter

Calculate (28);
if use the MLM method (5) then

Calculate (36);
end
if use the GCV method (6) then

Calculate (38), (39), (A.8a), (A.8b) and (A.6);
end
if use the SURE method (7) then

Calculate (38), (39), (A.8a), (A.8b) and (A.6);
end

Step 4: Function estimation and prediction
• Kalman smoother for estimation

Calculate (30);
• Kalman predictor for prediction

Calculate (31);

Remark 2 For spatial-temporal data with large N and
moderately large M , to reduce the computational com-
plexity of the MLM method (5), the GCV method (6) and
the SURE method (7), it is suggested to use derivative-
free optimization algorithms or algorithms that only re-
quire numerical gradient, approximated by finite differ-
ence of the cost function of the optimization problems
involved. With such optimization algorithms, solving the
MLM method (5), the GCV method (6) and the SURE
method (7) only involves the state-space model transfor-
mation, the Kalman filter and the evaluation of the cost
function of the optimization problems and thus has com-
putational complexity O(M3 +NM2).

4 Applications

In this section, we illustrate the proposed implementa-
tion over applications in weather data prediction and
spatially-distributed system identification.

4.1 Computing Platform

Firstly, we introduce our computing platform in Fig. 1,
which consists of 1 server and 2 GPUs:

• Server 1: Intel(R) Xeon(R) Platinum 8168 2.7GHz
CPU×2 (48 cores), 64GB×24=1.48TB RAM,
• GPU: NVIDIA V100 ×2, 16GB RAM.

It is worth to note that many computations in the pro-
posed implementation can be parallelized. For example,

Fig. 1. Computing platform

the creation of the spatial kernel matrixKs(αs), the SVD
of Ks(αs), the output transformation in (22), the com-
putation of (30e) and (31c). Then by using the parallel
computing structure of the computing platform and the
parallel computing toolbox in MATLAB, the proposed
implementation can be made more efficient.

4.2 Weather Data Prediction

4.2.1 Weather Data Sets

We consider the following two weather data sets.

1) Colorado Precipitation Data: This data set has
been tested in e.g., [17, 27], contains monthly precipi-
tation data between 1895 and 1997 from 367 weather
stations in Colorado, USA 1 . The data set contains
in total 1236 time instants and 367 locations (sta-
tions) located in a rectangular longitude/latitude re-
gion [109.5◦W, 101◦W]×[36.5◦N, 41.5◦N]. We treat
the data in 1895− 1995 as the training data, and the
data in 1996− 1997 as the test data, that is, we have
tj = jTs, j = 1, · · · , N + NT with Ts = 1 month,
N = 1212, NT = 24 and M = 367. This data set
contains in total 453, 612 data points.

2) GHCN Temperature Data: This data set is ob-
tained from the Global Historical Climatology Net-
work (GHCN), and contains daily average tempera-
tures collected from over ten thousands weather sta-
tions over the world [21]. We first choose 4000 stations
with most complete data records from the 301th day
of 1999 to the 300th day of 2018. Then we take out
those stations with daily average temperature over
80◦C or under −80◦C and there are 3955 locations
left. The data set contains in total 6940 times in-
stants and 3955 locations (stations) and we treat the
data in the former 18 years as the training data, and
the data in the last year as the test data, that is, we
have tj = jTs, j = 1, · · · , N + NT with Ts = 1 day,
N = 6575, NT = 365 and M = 3955. This data con-
sist of more than 27 million data points and is much
larger than the Colorado precipitation data.

4.2.2 Kernel Design

In this section, we design a kernel for both the Col-
orado precipitation data and GHCN temperature data.

1
https://www.image.ucar.edu/Data/US.monthly.met/CO.shtml.

7

The kernel design problem here is tricky, because the
designed kernel should on the one hand incorporate
the prior knowledge on the underlying spatial-temporal
function to be estimated and on the other hand has
state-space model realizations.

We first consider the spatial kernel design. Since the pre-
cipitation and the temperature are diffusion processes,
the spatial prior knowledge is that for two locations, the
closer the two locations, the larger the correlation be-
tween their weather data, and thus the squared expo-
nential (SE) kernel is often adopted, e.g., [27, 29],

kSE(pi, pi′ ;αse) = exp
(
−||pi − pi′ ||22/αse

)
, (40)

where αse > 0, and for the Colorado precipitation data,
pi ∈ R2 and its components are the longitude and lat-
itude of the location, respectively, and for the GHCN
temperature data, pi ∈ R3 and its components are the
earth-centered earth-fixed (ECEF) coordinates of the lo-
cations considered and the units are in 10 kilometers.

Then we consider the temporal kernel design. To capture
the periodicity of the weather data, an intuitive way is
to use the periodic kernel, e.g., [29]

kper(τ ; δt, ct) = δt exp
{
−2ct [sin(πfτ)]

2
}
, (41)

where ct > 0, δt > 0 are the hyper-parameters, and
f ∈ R is the period of the weather data. However, the
periodic kernel (41) does not have a proper PSD and
thus has no state-space model realization. To overcome
this difficulty, we first consider the Taylor expansion of
exp(x) at x = 0 to the second-order, then replace x by
−2ct[sin(πfτ)]2 in the expansion, and finally, multiply it
by an exponential kernel kEXP(τ) = e−|τ |/σt and obtain
the following positive definite kernel

kTE2(τ ; δt, ct)kEXP(τ)

= δt

[
(1− ct +

3

4
c2t) + (ct − c2t) cos(2πf|τ |) (42)

+
c2t
4

cos(4πf|τ |)
]

exp

(
−|τ |
σt

)
,

where δt > 0 and ct ∈ (0, 1) are the hyper-parameters,
ct ∈ (0, 1) is imposed to guarantee that (42) is positive
semidefinite. The derivation of the state-space model of
(42) is included in Appendix A.5. Here, it should be
noted that both f and σt are not hyper-parameters: f
is chosen to be f = 1/12 for the Colorado precipitation
data and f = 1/365.3 for the GHCN temperature data
due to the periodicity of the data, and σt is chosen to be
σt = 5×103 such that the exponential kernel kEXP(τ) =
e−|τ |/σt has a negligible effect. Moreover, to describe the
slight temporal variation of the data, we further include

a Matérn kernel, e.g., [29], i.e.,

kMatern(τ ;ht, θt) = ht

(
1 +

√
3|τ |
θt

)
exp

(
−
√

3|τ |
θt

)
,

(43)

where ht, θt > 0 are the hyper-parameters of (43). Then
we can obtain the following temporal kernel

kt(τ ;αtm) = kTE2(τ ; δt, ct)kEXP(τ) + kMatern(τ ;ht, θt),
(44)

where αtm = [δt, ct, ht, θt]
T with

0.01δt ≤ ht ≤ 0.1δt, (45)

which is enforced to guarantee that the Matérn kernel
(43) describes the slight temporal variation of the data.

Remark 3 Beside the spatial prior knowledge consid-
ered above, it is interesting to note that the spatial prior
knowledge considered in [32] is that the edges in the graph-
ical model are sparse, where the graphical model is due
to the existence of a number of modules with a graphical
structure, and that each module has a number of nodes
sharing the same graphical structure, and thus, a sparsity
inducing kernel/regularization was designed accordingly.
It is also interesting to mention that the following kernel

kPD(τ ; δt, σt) = δt cos(2πf|τ |)e−
|τ|
σt , (46)

where δt, σt > 0 are hyper-parameters and f = 1/12, is
chosen in [17, 27] as the temporal kernel.

4.2.3 Hyper-parameter Estimation and Function Pre-
diction

For the two data sets and designed kernels, we use the
MLM, GCV and SURE methods, as shown in Section
3.4, to estimate the hyper-parameter α = [αTt , α

T
s]T .

Moreover, for the MLM method, the noise variance
σ2 is treated as an additional hyper-parameter, i.e.,
α = [αTt , α

T
s , σ

2]T , and its estimate is then used for
the SURE and GCV methods. With the estimated
hyper-parameter, we can further run the Kalman filter,
smoother and predictor in Section 3.3 to compute the

function prediction f̂T = [f̂N+1|N , · · · , f̂N+NT |N].

The function fmincon in Matlab, using the interior-point
algorithm with numerical gradient approximated by fi-
nite difference of the cost function, is applied to solve
(5), (6) or (7). Since the selection of initial points is sig-
nificant for the search of “good” local minima, the fol-
lowing way is used to find a “good” local minimum:

1) for each component of the hyper-parameter, we se-
lect a set of initial points and thus obtain a grid of
initial points of the hyper-parameter;

8

2) calculate the cost functions over the grid of initial
points;

3) select 5 initial points corresponding to the smallest
5 values of the cost function;

4) use the function fmincon with selected 5 initial
points to solve the optimization problem involved
in the hyper-parameter estimation, respectively;

5) choose the optimal solution with the smallest value
of the cost function as the optimal hyper-parameter
estimate.

To assess how good the prediction f̂T is at jTs for j =
N + 1, · · · , N +NT , we use the measure of fit, e.g., [20],

fitj = 100

(
1−
||f̂j|N − yj ||2
||yj − yj ||2

)
, yj =

1

M

M∑
i=1

yi,j . (47)

The maximum of fitj is 100, meaning a perfect match

between f̂j|N and yj . The average prediction fit over the
test data set is defined as

fit =
1

NT

N+NT∑
j=N+1

fitj . (48)

4.2.4 Filling the Missing Data

The Colorado precipitation and GHCN temperature
data contain 58.39% and 3.3% missing data, respec-
tively, and we need to fill the missing data before
running simulations. To this goal, we first split the
spatial-temporal data into M temporal data sets
{p1, tj , y1,j}N+NT

j=1 , · · · , {pM , tj , yM,j}N+NT
j=1 according

to the M locations. For each temporal data set, the
temporal kernel (46) or (44) is applied, respectively.
Then for each i = 1, · · · ,M , we use the MLM method
to estimate the corresponding hyper-parameter and in
particular, if yi,j is missing for some j = 1, · · · , N +NT ,
then no measurement update is needed, i.e., (28d) and
(28e) should be replaced by

x̂j|j = x̂j|j−1, Σj|j = Σj|j−1, (49)

respectively, e.g., [1]. Finally, with the obtained hyper-
parameter estimate, the Kalman smoother (30) is used
to fill the missing data.

Remark 4 The above treatment of the missing data im-
plicitly assumes that for i, i′ = 1, · · · ,M and j, j′ =
1, · · · , N +NT , if i 6= i′, yi,j and yi′,j′ are independent.
The treatment in [27] does not rely on this assumption
and thus is more general but with the price of higher com-
putational complexity.

4.2.5 Illustration of Computational Efficiency

Firstly, we consider the Colorado precipitation data and
choose (40) as the spatial kernel and (46) as the temporal

kernel, and then we evaluate the cost functions of the
MLM method (5), GCV method (6), and SURE method
(7) for 10 times. The average computing time of the cost
functions for the proposed implementation and the one
in [17, 27] are shown in the Table 1, which shows that,
our proposed implementation is over 300 and 200 times
faster than the one in [17, 27] for the MLM method, and
GCV and SURE methods, respectively.

Table 1
The average computing time (in second) of the cost functions
of the MLM method (5), GCV method (6) and SURE method
(7) for the Colorado precipitation data.

Implementation Proposed in [17, 27]

MLM method 0.6485 197.3668

GCV method 1.5983 332.9270

SURE method 1.5904 331.9392

0 500 1000

Number of Locations

0

500

1000

1500

2000

2500

3000

3500

C
om

pu
tin

g
tim

e(
s)

Implementation in [17, 27]

MLM method

GCV method

SURE method

0 500 1000

Number of Locations

0

0.5

1

1.5

2

2.5

3

3.5

4

C
om

pu
tin

g
tim

e(
s)

Proposed Implementation

MLM method

GCV method

SURE method

Fig. 2. The average computation time (in second) of the cost
functions of the MLM method (5), GCV method (6) and
SURE method (7) for the GHCN temperature data with
N = 800 and M = 100, 200, · · · , 1000, respectively, where
our proposed implementation and the one in [17, 27] are
shown on the right and left panels, respectively.

Secondly, we consider the GHCN temperature data but
only use part of it, because the implementation in [17, 27]
is too expensive to be applied to the full data. In par-
ticular, we only use the first 800 time instants and 1000
locations, i.e., {pi, tj , yi,j}1000,800

i=1,j=1 . Then we choose (40)

and (44) as the spatial kernel and temporal kernel, re-
spectively, and evaluate the cost functions of the MLM
method (5), GCV method (6), and SURE method (7) for
10 times with N = 800 and M = 100, · · · , 1000, respec-
tively. The average computing time of the cost functions
for the proposed implementation and the one in [17, 27]
are shown Fig. 2, which shows that, our proposed imple-
mentations is more efficient than the one in [17, 27], as
the number of the locations increases. It is worth to men-
tion that for the full GHCN temperature data, our pro-
posed implementation has the average computing time
30.2, 68.2 and 67.8 seconds, for the cost functions of the
MLM, GCV, and SURE methods, respectively.

4.2.6 Illustration of Prediction Performance

For the Colorado precipitation data, the prediction
fits (47), the average prediction fits (48), and the opti-

9

0 5 10 15 20 25

Months

-60

-40

-20

0

20

40

60

F
it

(40)+(44)

(40)+(46)

(a)

0 5 10 15 20 25

Months

-200

-150

-100

-50

0

50

100

F
it

(40)+(44)

(40)+(46)

(b)

0 5 10 15 20 25

Months

-200

-150

-100

-50

0

50

100

F
it

(40)+(44)

(40)+(46)

(c)

Fig. 3. Profile: Monthly prediction fits (47) for the Colorado precipitation data using two kernel combinations: (40)+(44) and
(40)+(46), and three hyper-parameter estimation methods, respectively. Panel (a): Monthly prediction fits using the MLM
method. Panel (b): Monthly prediction fits using the GCV method. Panel (c): Monthly prediction fits using the SURE method.

0 50 100 150 200 250 300 350 400

Days

-150

-100

-50

0

50

100

F
it

(40)+(44)

(40)+(46)

(a)

0 50 100 150 200 250 300 350 400

Days

-250

-200

-150

-100

-50

0

50

100

F
it

(40)+(44)

(40)+(46)

(b)

0 50 100 150 200 250 300 350 400

Days

-250

-200

-150

-100

-50

0

50

100

F
it

(40)+(44)

(40)+(46)

(c)

Fig. 4. Profile: Daily prediction fits (47) for the GHCN temperature data using two kernel combinations: (40)+(44) and
(40)+(46), and three hyper-parameter estimation methods, respectively. Panels (a): Daily prediction fits using the MLM
method. Panel (b): Daily prediction fits using the GCV method. Panel (c): Daily prediction fits using the SURE method.

mal hyper-parameters using two kernel combinations:
(40)+(44) and (40)+(46), and three hyper-parameter
estimation methods: MLM, GCV and SURE, are shown
in Fig. 3, Tables 2 and 3, respectively. It is worth to
stress that (40)+(46) was used in [17, 27].

Fig. 3 and Table 2 show that for the same hyper-
parameter estimation method, the prediction fits (47)
and the average prediction fits (48) obtained by the
kernel combination (40)+(44) are all larger than those
by (40)+(46), indicating that the temporal kernel (44)
can better describe the Colorado precipitation data
than (46) used in [17, 27]. Table 2 also shows that the
kernel combination (40)+(44) with hyper-parameters
estimated by the MLM method gives the best average
prediction fit 28.25. One may wonder why this fit is not
so good and the reason is perhaps due to that 58.39%
of the Colorado precipitation data are missing.

Table 2
The average prediction fits (48) for the Colorado precipita-
tion data using two kernel combinations, where the hyper-
parameters are estimated by MLM, GCV and SURE meth-
ods, respectively. The values in parentheses are the corre-
sponding smallest prediction fits.

Kernel (40)+(44) (40)+(46)

MLM 28.25 (-8.31) -27.54 (-47.39)

GCV 25.66 (-11.24) -47.56 (-166.35)

SURE 25.66 (-11.24) -47.38 (-165.38)

For the GHCN temperature data, the prediction fits
(47), the average prediction fits (48), and the opti-
mal hyper-parameters using two kernel combinations:
(40)+(44) and (40)+(46), and three hyper-parameter
estimation methods: MLM, GCV and SURE, are shown
in Fig. 4, Tables 4 and 5, respectively. It is worth to
stress that (40)+(46) was used in [17, 27].

Fig. 4 and Table 4 show that for the same hyper-
parameter estimation method, the prediction fits (47)
and the average prediction fits (48) obtained by the ker-
nel combination (40)+(44) are most of time larger than
those by (40)+(46), indicating that the temporal kernel
(44) can better describe the GHCN temperature data
than (46) used in [17, 27]. Table 4 also shows, among
three hyper-parameter estimation methods, the MLM
method gives the best average prediction fit 60.34 and
the corresponding smallest prediction fit 44.12. More-
over, Fig. 4 also shows that the prediction fit of the
GCV and SURE methods drop down quickly in the be-
ginning and then go up again, while the MLM method
can avoid such drop.

4.3 Spatially-distributed System Identification

In this section, we consider the identification of spatially-
distributed system, e.g. [18], which is a class of dis-
tributed parameter systems.

10

Table 3
The hyper-parameter and the corresponding optimal values of the cost functions for the Colorado precipitation data using
two kernel combinations: (40)+(44) and (40)+(46), and three hyper-parameter estimation methods, respectively.

Method, Kernels Optimal cost function value δt σt σ2 αse ct ht θt

MLM, (40)+(44) 1.8876e+06 4.6377e+03 5000 173.0302 0.1303 0.3834 109.4592 0.0663

MLM, (40)+(46) 2.0311e+06 361.7502 2.2946 501.5663 8.0899 − − −

GCV, (40)+(44) 242.3078 9.3410e+03 5000 173.0302 0.1373 0.5345 93.4106 0.1136

GCV, (40)+(46) 508.7996 9.0237e+08 1.1407e+07 501.5655 2.5726 − − −

SURE, (40)+(44) 9.8970e+07 9.2773e+03 5000 173.0302 0.1376 0.5346 92.7727 0.0562

SURE, (40)+(46) 2.2675e+08 5.0370e+08 6.8254e+06 501.5655 2.8876 − − −

Table 4
The average prediction fits (48) for the GHCN tempera-
ture date using two kernel combinations, where the hyper-
parameters are estimated by MLM, GCV and SURE meth-
ods, respectively. The values in parentheses are the corre-
sponding smallest prediction fits.

Kernel (40)+(44) (40)+(46)

MLM 60.34 (44.12) -62.85(-146.20)

GCV 60.30 (35.97) -57.48(-232.58)

SURE 52.40 (22.20) -53.57(-226.53)

First, we recall from e.g., [18], that the subsystem at
the ith location pi with i = 1, · · · ,M of a spatially-
distributed system can be described by the following
ARX model

Ai(qp, qt)f(pi, tj) =Bi(qp, qt)u(pi, tj),

tj = jTs, j = 1, 2, · · · , N, (50)

where qp and qt are the forward spatial and tempo-

ral shift operators, respectively, i.e., qpq
−1
t f(pi, tj) =

f(pi+1, tj−1), f(pi, tj) ∈ R and u(pi, tj) ∈ R are the out-
put and input at the ith location pi and jth time instant
tj , respectively, and

Ai(qp, qt) =1 +

na∑
ki=1

M∑
kj=0

ai(pkj , tki)q
−kj
p q−kit , (51)

Bi(qp, qt) =

nb∑
li=1

M∑
lj=0

bi(plj , tli)q
−lj
p q−lit , (52)

with ai(pkj , tki), bi(plj , tli) ∈ R, na, nb ∈ N and p0 a null
position. Then, we consider a special case of (50) with

Ai(qp, qt) = 1,

Bi(qp, qt) =

nb∑
k=1

bi(pi, tk)q−kt , u(pi, tj) = u(tj),
(53)

which is equivalent to assume that the subsystem at the
ith location pi with i = 1, · · · ,M , has a finite impulse
response (FIR) model. The FIR parameters bi(pi, tk),
k = 1, · · · , nb only depend on pi and moreover, assumed

to be smooth functions of pi. In this case, the output
f(pi, tj) takes the form of

f(pi, tj) =

nb∑
k=1

bi(pi, tk)u(tj−k), (54)

which plays the role as the spatial-temporal function
f(pi, tj) in (1).

In what follows, we study the identification of spatially-
distributed system (50) with (53), i.e., the estimation

of the FIRs {b(pi, tj)}M,nb
i=1,j=1 of M spatially-distributed

subsystems as well as possible based on the training

data {yi,j , u(tj)}M,N
i=1,j=1 by using the Gaussian process

regression approach in this paper. For comparison, we
also consider the estimation of the FIR {b(pi, tj)}nbj=1 of

the ith subsystem based on {yi,j , u(tj)}Nj=1 separately by
neglecting the spatial interconnections between M sub-
systems and by using the approach in [12]. These two
approaches are denoted by the “spatial-temporal” and
“temporal” approaches in the following, respectively.

4.3.1 Test Spatially-distributed Systems

We first generate a 30th order discrete time system us-
ing the procedure in [12] with 5 poles with the largest
modulus lying in [0.8, 0.9] and one pole with the 6th
largest modulus smaller than 0.75. For convenience, we
let pk, whose real part is ak and the imaginary part bk,
denote the pole of this system with the kth largest mod-
ulus. Then we generate M = 500 new test systems by
keeping zeros and poles of this system unchanged except
the 5 poles with the largest modulus, i.e., {pk}5k=1 and
then. Note that if there exists an unpaired non-real pole
in {pk}5k=1, e.g., ak + bki with bk 6= 0 is included but
ak − bki is not, we will regenerate the original system
until {pk}5k=1 include either real poles or complex con-
jugate pairs of poles. For the ith new test system with
i = 1, · · · , 500, {pk}5k=1 are modified as {pk,i}5k=1 with
the real part ak,i and the imaginary part bk,i as follows,

- for real pole pk, the modified pk,i = ak,i is uniformly
distributed in [ak − 0.05, ak + 0.05] and bk,i=0;

11

Table 5
The hyper-parameter and the corresponding optimal values of the cost functions for the GHCN temperature data using two
kernel combinations: (40)+(44) and (40)+(46), and three hyper-parameter estimation methods, respectively.

Method, Kernels Optimal cost function value δt σt σ2 αse ct ht θt

MLM, (40)+(44) 5.4912e+07 585.9242 5000 2.6159 984.0928 0.2867 5.8592 1.9000

MLM, (40)+(46) 5.7639e+07 626.4846 235.5695 1.1125 91.8811 - - -

GCV, (40)+(44) 2.1015 1.8304e+04 5000 2.6159 19.6885 0.6481 1.7664e+03 8.3648

GCV, (40)+(46) 2.4189 2.4023e+04 6.1204e+03 1.1125 47.8679 - - -

SURE, (40)+(44) 7.6828e+07 5.7973e+03 5000 2.6159 345.0477 0.4735 579.7336 50.3385

SURE, (40)+(46) 4.4955e+07 1.1622e+04 4.8269e+03 1.1125 64.0244 - - -

- for complex conjugate pair of poles pk = ak± bki, the
modified complex conjugate pair of poles are ak,i ±
bk,ii, where (ak,i, bk,i) is uniformly distributed in the
circle with the center (ak, bk) and radius 0.05.

Now we obtain 500 spatially-distributed test subsystems
and for the ith subsystem, the corresponding location is
pi = [a1,i, b1,i, · · · , a5,i, b5,i]

T ∈ R10.

4.3.2 Test Data Sets

We choose the test input signal u(tj) = e−αtj sin(ω0tj)
with α = 10−2 and ω0 = π/8, whose state-space model
is in the form of

z̃i,j+1 = Ẽz̃i,j + F̃ δj , z̃i,0 = 0 ∈ R2,

u(tj) = H̃z̃i,j , j = 0, 1, · · · , N,
(55)

where z̃i,j ∈ R2, δj denotes the impulsive input, i.e.,
δj = 1 for j = 0 and δj = 0 for j = 1, · · · , and

Ẽ =

[
2e−α cos(ω0) −e−2α

1 0

]
, (56a)

F̃ =

[
1

0

]
, H̃ =

[
e−α sin(ω0)

0

]T
. (56b)

Then for i = 1, · · · ,M , we simulate the ith test subsys-
tem with the test input signal to get the noise-free output
f(pi, tj) and then corrupt it with an additive measure-
ment noise vi,j , which follows a Gaussian distribution
with zero mean and variance σ2, leading to a data record
with 400 pairs of input and measurement output data
{yi,j , u(tj)}400

j=1. The average signal-to-noise ratio (SNR)
of 500 test subsystems is 1, where the SNR of each test
subsystem is defined as the ratio between the variance
of the noise-free output f(pi, tj) and that of the mea-
surement noise vi,j . In this way, the generated data sets
contain 500 data records, each with 400 pairs of input
and measurement output data, i.e., {yi,j , u(tj)}500,400

i=1,j=1.

4.3.3 Choice of Kernels

For the “spatial-temporal” approach, the spatial kernel
ks(pi, pi′ ;αs) and the temporal kernel kt(tj , tj′ ;αt) in (4)

are chosen to be the SE kernel (40), and the following
one, respectively,

kt(tj , tj′ ;αt) = κ(tj , tj′ ;αt)

nb∑
k=1

nb∑
k′=1

u(tj−k)u(tj′−k′),

(57)

where κ(tj , tj′ ;αt) : R+ × R+ → R is the diagonal cor-
related (DC) kernel in [12], i.e.,

κ(tj , tj′ ;αt) = δtλ
(tj+tj′)/2
t ρ

|tj−tj′ |
t , (58)

αt = [δt, λt, ρt] ∈ Ω = {δt ≥ 0, λt ∈ [0, 1), |ρt| ≤ 1}.

Noting the state-space model realization of the DC ker-
nel (58) in [9] and (55), it can be shown that the state-
space model realization of the spatial-temporal kernel
(4) with (40) as the spatial kernel and (57) as the tempo-
ral kernel takes the form of (19) by replacing (19a) with

sj+1 = Fsj +Gjwj , s1 ∼ N (0, IM ⊗ Σ1),

and using

r = 3, F =

[
IM ⊗ (λ

1/2
t ρt) 0 ∈ RM×2M

IM ⊗ ((1− ρ2
t)

1/2F̃) IM ⊗ Ẽ

]
,

Gj =

[
(IM ⊗ λ1/2

t)δ
1/2
t λ

tj/2
t

0 ∈ R2M×M

]
, H =

[
0 ∈ RM×M

(IM ⊗ H̃)

]T
,

Σ1 =

[
IM ⊗ (δt/(1− ρ2

t)) 0 ∈ RM×2M

0 ∈ R2M×M 0 ∈ R2M×2M

]
,

where Ẽ, F̃ and H̃ are given in (56). Note that for the
“temporal” approach, we only apply the DC kernel (58).

4.3.4 Hyper-parameter estimation and Impulse Re-
sponse Estimation

For the “spatial-temporal” approach, we use the MLM
method (5) to estimate α = [αTs , α

T
t , σ

2]T and ap-
ply the same strategy as stated in Section 4.2.3 for
finding a “good” local minimum. With the estimated
hyper-parameter, we further run the Kalman filter and

12

smoother to obtain the estimates of {bi(pi, tj)}M,nb
i=1,j=1,

denoted as {b̂i,j|N}M,nb
i=1,j=1, where for j = 1, · · · , nb,

b̂j|N =
[
b̂1,j|N · · · b̂M,j|N

]T
∈ RM , (59)

can be obtained by

b̂j|N = ΛD1/2(IM ⊗ (1− ρ2
t)

1/2)[x̂j|N]1:M . (60)

Here Λ and D are defined in (20), and [x̂j|N]1:M denotes
a vector containing the firstM elements of x̂j|N in (30c).

For the “temporal” approach, we use the MLM
method (5) to estimate α = [αTt , σ

2]T and then
with the estimated hyper-parameter, we calculate

b̂i = [b̂i,1|N , · · · , b̂i,nb|N]T ∈ Rnb for the ith system with
i = 1, · · · ,M , where the implementation [11] is used.

To evaluate the estimation performance of {b̂i,j|N}M,nb
i=1,j=1,

for the ith system with i = 1, · · · ,M , we let

b0i =
[
b0i,1 · · · b0i,nb

]T
,

denote the true value of [bi(pi, t1), · · · , bi(pi, tnb)]T , and
then define the measure of fit, e.g., [20],

fitbi = 100×

(
1− ‖b̂i − b

0
i ‖2

‖b0i − b̄0i ‖2

)
, b̄0i =

1

nb

nb∑
j=1

b0i,j .

The average estimation fit of {b̂i}Mi=1 is defined as

fit
b

=
1

M

M∑
i=1

fitbi . (61)

4.3.5 Simulation Results and Findings

In the simulation, we choose the FIR order nb = 125.

The average estimation fits of {b̂i}Mi=1 of the “spatial-
temporal” and “temporal” approaches in Table 6 show
that the “spatial-temporal” approach gives much better
estimation performance than the “temporal” approach.
This observation indicates that exploring the spatial in-
terconnections among subsystems is beneficial for the
identification of spatially-distributed system.

Table 6
Average estimation fits of M spatially-distributed systems

Approach “spatial-temporal” “temporal”

fit
b

(61) 77.27 8.78

5 Conclusion

In this paper, we proposed an efficient implementation
with computational complexity O(M3 + NM2), for
spatial-temporal Gaussian process regression by explor-
ing the Kronecker structure of its state-space model
realization, where N and M are the numbers of time
instants and locations, respectively. The proposed im-
plementation has been illustrated over applications in
weather data prediction and spatially-distributed sys-
tem identification. For the weather prediction, the design
kernel is shown to give better prediction performance
than the one in [27] and for the spatially-distributed
system identification, the benefit of exploring the spatial
interconnections among subsystems is confirmed.

Appendix A

This appendix contains the proofs of all theoretical re-
sults and the derivations of state-space model of (42).

A.1 Proof of Proposition 1

According to (32a)-(32b) in Lemma 1 and (33a), we have

Θ =


l1

l2 − b2,1l1
...

lN −
∑N−1
i=1 bN,ili

 = ΓL, (A.1)

where Γ is defined in (35). Then, inserting (34a)
into (33b), it follows that Ψ = COV[ΓL,ΓL] =
ΓCOV[L,L]ΓT , which leads to (34b) using (25b). Com-
bining (28b), (33b) and (32c), we can obtain (34c).

A.2 Proof of Proposition 2

First, note that the computation of the cost function of
(5) depends on that of log |Σ(α)| and Y TΣ−1(α)Y . Then
following the idea of [5], where the computation of the
generalized cross validation filter is discussed, and using
(25) and Proposition 1, log |Σ(α)| and Y TΣ−1(α)Y can
be computed as follows

log |Σ(α)|
= log |(IN ⊗ Λ)Σ(α)(IN ⊗ ΛT)| (A.2a)

= log |(IN ⊗ Λ)(IN ⊗ ΛT)|+ log |Σ(α)| = log |Ψ|
Y TΣ−1(α)Y

=LT (IN ⊗ ΛT)(IN ⊗ Λ)Σ(α)−1(IN ⊗ ΛT)(IN ⊗ Λ)L

=(Γ−1Θ)T (ΓTΨΓ)−1(Γ−1Θ) = ΘTΨ−1Θ, (A.2b)

where the first steps of both (A.2a) and (A.2b) are de-
rived from (25), and the second step of (A.2b) is derived

13

from (34a) and (34b). Then using (33a) and (34c), we
can obtain (36).

A.3 Proof of Proposition 3

As shown in (6) and (7), the computation of the cost
functions of the GCV and SURE methods depends on
that of δ and S defined in (8f) and (8g), respectively. For
convenience, we let γ = σ2. We first rewrite (8a) as

γΣ(α)−1 = INM − [Kt(αt)⊗Ks(αs)] Σ(α)−1. (A.3)

Following the discussions in [5], we can represent δ and S
as functions of log |Σ(α)| and Y TΣ−1(α)Y , respectively,

γ
∂ log |Σ(α)|

∂γ

= γ trace(Σ(α)−1 ∂Σ(α)

∂γ
) = γ trace(Σ(α)−1)

= trace
{
INM − [Kt(αt)⊗Ks(αs)] Σ(α)−1

}
= NM − trace

{
[Kt(αt)⊗Ks(αs)] Σ(α)−1

}
= NM − δ, (A.4)

− γ2 ∂Y
TΣ(α)−1Y

∂γ

= γ2Y TΣ−1 ∂Σ(α)

∂γ
Σ−1Y = γ2Y TΣ−2Y

= γ2Y T
{
INM − [Kt(αt)⊗Ks(αs)] Σ(α)−1

}T{
INM − [Kt(αt)⊗Ks(αs)] Σ(α)−1

}
Y

= ||Ŷ − Y ||22 = S. (A.5)

Then by using (36), S and δ can be computed as follows

S = −γ2 ∂Y
TΣ(α)−1Y

∂γ
= −γ2

N∑
j=1

∂ēTj Ē
−1
j ēj

∂γ
,

δ = MN − γ ∂ log |Σ(α)|
∂γ

= MN − γ
N∑
j=1

∂ log |Ēj |
∂γ

.

(A.6)

Now we define

ζ̄j|j−1 =
∂x̂j|j−1

∂γ
, P̄j|j−1 =

∂Σj|j−1

∂γ
, (A.7)

and then ∂ēTj Ē
−1
j ēj/∂γ and ∂ log |Ēj |/∂γ in (A.6) can

be further expressed as

−
∂ēTj Ē

−1
j ēj

∂γ
= ēTj Ē

−1
j (H̄P̄j|j−1H̄

T + IM)Ē−1
j ēj ,

+ 2ζ̄Tj|j−1H̄Ē
−1
j ēj , (A.8a)

∂ log |Ēj |
∂γ

= trace
[
Ē−1
j (H̄P̄j|j−1H̄

T + IM)
]
. (A.8b)

Combining (A.6) with (A.8), we can obtain (37). More-
over, inserting (28d) and (28f) into (A.7), and (28e) and
(28g) into (A.7), we can compute ζ̄j|j−1 and P̄j|j−1 re-
cursively as shown in Proposition 3.

A.4 Proof of Theorem 1

As shown in Algorithm 1, the proposed implementation
consists of three steps, and in what follows, we will study
their computational complexities, respectively:

1) Computational complexity of Step 1: We first calcu-
late the SVD of Ks ∈ RM×M in (20) and its com-
putational complexity is O(M3). Then the compu-
tational complexities of (24a) and (25a) are O(Mr)
and O(NM2), respectively. Hence, this step has the
computational complexity O(M3 +NM2).

2) Computational complexity of Step 2: Since the evalu-
ation of the cost functions of three hyper-parameter
estimation methods all rely on Kalman filter, we
first consider the computational complexity of the
Kalman filter (28) and then that of three hyper-
parameter estimation methods, respectively.
(a) Computational complexity of Kalman filter (28):

To show the computational complexity of the
Kalman filter, we first use induction to show that,
for j = 1, · · · , N , Ēj ∈ RM×M and Σj|j−1 ∈
RMr×Mr are diagonal and block diagonal matri-
ces, respectively. It consists of two steps.

Our first step is to prove that Ē1 and Σ1|0
are diagonal and block diagonal matrices, re-
spectively. For Σ1|0, inserting (24a), (29) and

Σ0|0 = E[(x0−E(x0))(x0−E(x0))T] = IM ⊗Σ0,
where we apply (23a) and (26), into (28g), we
have

Σ1|0 = IM ⊗ (FDΣ0F
T
D +GDG

T
D)

= blkdiag(Σ̄1,1, · · · , Σ̄1,M), (A.9)

where Σ̄1,i = FDΣ0F
T
D + GDG

T
D for i =

1, · · · ,M . For Ē1, we insert (24a) and (A.9) into
(28b) to obtain

Ē1 = HDΣ̄1,1H
T
DD + σ2IM

= diag(Ē1,1, · · · , Ē1,M), (A.10)

where Ē1,i = [D]iiHDΣ̄1,1H
T
D + σ2 for i =

1, · · · ,M .
Our second step is to show that for j =

1, · · · , N − 1, if we assume Ēj and Σj|j−1 are
diagonal and block diagonal matrices, respec-
tively, then we can show that Ēj+1 and Σj+1|j
are diagonal and block diagonal matrices, re-
spectively. For convenience, we define that

Ēj =diag(Ēj,1, · · · , Ēj,M), (A.11a)

Σj|j−1 =blkdiag(Σ̄j,1, · · · , Σ̄j,M), (A.11b)

14

where Ēj,i ∈ R and Σ̄j,i ∈ Rr×r for i =
1, · · · ,M . Combining (28g) and (28e), we have

Σj+1|j =F̄Σj|j−1F̄
T +Q

− F̄Σj|j−1H̄
T Ē−1

j H̄Σj|j−1F̄
T

=blkdiag(Σ̄j+1,1, · · · , Σ̄j+1,M), (A.12)

Σ̄j+1,i =FDΣ̄j,iF
T
D +GDG

T
D (A.13)

+ ([D]ii/Ēj,i)FDΣ̄j,iH
T
DHDΣ̄j,iF

T
D ,

where i = 1, · · · ,M , and we apply (24a),
(29), (A.11) and the fact that H̄T Ē−1

j H̄ =

(IM ⊗ HT
D)[(D1/2Ē−1

j D1/2) ⊗ 1](IM ⊗ HD) =

(D1/2Ē−1
j D1/2) ⊗ (HT

DHD) is a block diagonal

matrix with ith block being ([D]ii/Ēj,i)H
T
DHD ∈

Rr×r. Then for Ēj+1, we use (24a) and (A.12)
to obtain

Ēj+1 =H̄Σj+1|jH̄
T + σ2IM

=diag(Ēj+1,1, · · · , Ēj+1,M), (A.14)

where Ēj+1,i = [D]iiHDΣ̄j+1,iH
T
D + σ2 for i =

1, · · · ,M .
Hence for j = 1, · · · , N , it is clear that Ēj ∈

RM×M and Σj|j−1 ∈ RMr×Mr are diagonal and
block diagonal matrices, respectively. It follows
that Σj|j ∈ RMr×Mr in (28e) is also a block di-

agonal matrix due to that H̄T Ē−1
j H̄ is a block

diagonal matrix.
Then, according to the properties of the Kro-

necker product and the matrix multiplication,
for each j = 1, · · · , N , the computational com-
plexities of (28b), (28c) and (28d), and (28e)
and (28g) areO(Mr2) andO(Mr3), respectively.
Thus the computational complexity of (28) is
O(NM).

(b) Computational complexity of the computation of
the cost function of the MLM method: As shown
in Proposition 2, to calculate the cost function of
the MLM method (5), we first calculate ēj and
Ēj as shown in (28) for j = 1, · · · , N and the
computational complexity is O(NMr3). Then
we calculate (36) and (5), whose computational
complexity is O(NM). Therefore, the compu-
tational complexity of the cost function of the
MLM method is O(NM).

(c) Computational complexities of the computation
of the cost functions of the GCV and SURE meth-
ods: For the GCV method (6) and the SURE
method (7), as shown in Proposition 3, since Ēj
is a diagonal matrix, and Σj|j−1, F̄ and H̄ are
block diagonal matrices, the computational com-
plexity of ζ̄j|j−1 ∈ RMr and P̄j|j−1 ∈ RMr×Mr

with j = 1, · · · , N in (38) and (39) are O(Mr3).
Therefore, the computational complexities of the

cost functions of the GCV and the SURE meth-
ods are both O(NM).

3) Computational complexity of Step 3: We discuss the
computational complexities of the Kalman smoother
(30) and predictor (31), respectively.
(a) Computational complexity of Kalman smoother:

Since Σj|j ∈ RMr×Mr, j = N − 1, · · · , 1 are

block diagonal matrices, J̄j , j = N − 1, · · · , 1
are also block diagonal matrices. Hence, for
each j, the computational complexities of (30a),
and (30b), (30c) and (30d) are O(Mr2) and
O(Mr3), respectively. Finally, since the output
transform in (30e) has computational complex-
ity O(M2r), the computational complexity of
(30) is O(NM2).

(b) Computational complexity of Kalman predictor:
For each j, the computational complexities of
(31b) and (31c) are O(Mr3) and O(M2r), re-
spectively. Thus the computational complexity
of (31) is O(NM2).

Hence, the proof of Theorem 1 is complete.

A.5 State-space Model Realization of (42)

The kernel (42) can be divided into three parts:

kTe2(τ ; δt, ct)kEXP(τ) (A.15)

= δt[(1− ct +
3

4
c
2
t) exp

(
−
|τ |
σt

)
︸ ︷︷ ︸

(A.15a)

+ (ct − c2t) cos(2πf|τ |) exp
(
−
|τ |
σt

)
︸ ︷︷ ︸

(A.15b)

+
c2t

4
cos(4πf|τ |) exp

(
−
|τ |
σt

)
︸ ︷︷ ︸

(A.15c)

],

where (A.15a) is an exponential kernel, and (A.15b) and
(A.15c) are periodic kernels with different periods. To
obtain the state-space model of (42), we derive below
the state-space models of these kernels, respectively.

Firstly, we denote the PSD of (A.15a) as ΦEXP(ω), which
can be obtained using (10) as follows

ΦEXP(ω) =
δt(1− ct + 3

4c
2
t)(1− e−2βt)

(e−iω − e−βt) (eiω − e−βt)
, (A.16)

where βt = 1
σt

. According to Assumption 1 and (11), we

can obtain the transfer function of (A.16) in the form

WEXP(eiω) =

√
δt(1− ct + 3

4c
2
t)(1− e−2βt)

eiω − e−βt
. (A.17)

15

Then we can derive the corresponding state-space model
using the realization theory in [8] as follows

s1,j+1 = F1s1,j +G1w1,j , j = 1, · · · (A.18a)

y1,j = H1,js1,j , (A.18b)

where s1,j ∈ R, F1 = e−βt , G1 = 1 and H1,j =√
δt(1− ct + 3

4c
2
t)(1− e−2βt) and w1,j ∈ R is white

Gaussian noise with zero mean and unit variance.

Secondly, we denote the PSD of (A.15b) as ΦPD1(ω) and
it can be derived using (10) as follows

ΦPD1(ω) = δt(ct − c2t) (A.19)[
1

2

(
e3βt − eβt

) (
e−i%1 + ei%1

) (
e−iω + eiω

)
+ 1− e4βt

]
/
[(
eβt − e−i%1−iω

) (
eβt − ei%1−iω

)(
eβt − eiω−i%1

) (
eβt − ei%1+iω

)]
,

where %1 = 2πf. According to Assumption 1 and (11),
we consider the transfer function of (A.19) in the form

W (eiω) =
√
δt(ct − c2t)

n1e
iω + n2

e2iω − d2eiω − d1
, (A.20)

with d1 = −e−2βt , d2 = e−βt(ei%1 + e−i%1),

A = n2
1 + n2

2 = 1− e4βt , (A.21a)

B = n1n2 =
1

2

(
e3βt − eβt

) (
e−i%1 + ei%1

)
. (A.21b)

Therefore, we can derive n1 and n2 by solving

n4
1 −An2

1 +B2 = 0. (A.22)

With (A.20), n1 and n2, we can derive the state-space
model in controllable canonical form of (A.15b) using
the realization theory in [8] as follows

s2,j+1 = F2s2,j +G2w2,j , j = 1, · · · (A.23a)

y2,j = H2,js2,j , (A.23b)

where s2,j ∈ R2, w2,j ∈ R2 is white Gaussian noise with
zero mean and covariance matrix I2, and

F2 =

[
0 1

d1 d2

]
, G2 =

[
0

1

]
, H2,j =

√
δt(ct − c2t)

[
n2 n1

]
.

Moreover, it is necessary to check if the n1 and n2 guar-
antees that the zeros of (A.20) are inside the unit circle
and the largest eigenvalue of the corresponding system
matrices F2 should be less than 1.

The PSD of (A.15c) can be obtained by in a similar way

as (A.15b) by replacing the amplitude with δt
c2t
4 and

letting %1 = 4πf in (A.19), respectively. Let the state-
space model of (A.15c) in controllable canonical form be
represented as

s3,j+1 = F3s3,j +G3w3,j , j = 1, · · · (A.24a)

y3,j = H3,js3,j , (A.24b)

where s3,j ∈ R2, F3 ∈ R2×2, G3 ∈ R2, H3,j ∈ R1×2, and
w3,j ∈ R2 is white Gaussian noise with zero mean and
covariance matrix I2.

Therefore, the state-space model of (42) can be obtained
by combining the state-space models (A.18), (A.23) and
(A.24) as follows
s1,j+1

s2,j+1

s3,j+1

 =


F1 0 0

0 F2 0

0 0 F3



s1,j

s2,j

s3,j

+


G1 0 0

0 G2 0

0 0 G3



w1,j

w2,j

w3,j

 ,
yj =

[
H1,j H2,j H3,j

] [
sT1,j s

T
2,j s

T
3,j

]T
.

References

[1] B. D. O. Anderson and J. B. Moore. Optimal Fil-
tering. Prentice Hall, New Jersey, 1979.

[2] K. J. Åström. Introduction to stochastic control
theory. Courier Corporation, 2012.

[3] G. Atluri, A. Karpatne, and V. Kumar. Spatio-
temporal data mining: A survey of problems and
methods. ACM Computing Surveys (CSUR),
51(4):1–41, 2018.

[4] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl.
Algorithms for hyper-parameter optimization. In
J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira,
and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 24. Curran
Associates, Inc., 2011.

[5] G. Bottegal and G. Pillonetto. The generalized
cross validation filter. Automatica, 90:130–137,
2018.

[6] J. V. Candy. Model-based signal processing, vol-
ume 36. John Wiley & Sons, 2005.

[7] A. Carron, M. Todescato, R. Carli, L. Schenato,
and G. Pillonetto. Machine learning meets Kalman
filtering. In 2016 IEEE 55th Conference on Decision
and Control (CDC), pages 4594–4599. IEEE, 2016.

[8] C. Chen. Linear system theory and design. Oxford
University Press, New York, 3 edition, 1999.

[9] T. Chen. On kernel design for regularized LTI sys-
tem identification. Automatica, 90:109–122, 2018.

[10] T. Chen and M. S. Andersen. On semiseparable
kernels and efficient implementation for regularized
system identification and function estimation. Au-
tomatica, 132:109682, 2021.

16

[11] T. Chen and L. Ljung. Implementation of algo-
rithms for tuning parameters in regularized least
squares problems in system identification. Auto-
matica, 49(7):2213–2220, 2013.

[12] T. Chen, H. Ohlsson, and L. Ljung. On the estima-
tion of transfer functions, regularizations and gaus-
sian processes—revisited. Automatica, 48(8):1525–
1535, 2012.

[13] A. E. Gelfand, P. Diggle, P. Guttorp, and
M. Fuentes. Handbook of spatial statistics. CRC
press, 2010.

[14] M. G. Genton. Classes of kernels for machine learn-
ing: a statistics perspective. Journal of machine
learning research, 2(Dec):299–312, 2001.

[15] T. Glad and L. Ljung. Control theory: Multivariable
and nonlinear methods. Taylor & Francis, 2000.

[16] T. Hofmann, B. Schölkopf, and A. J. Smola. Kernel
methods in machine learning. The annals of statis-
tics, 36(3):1171–1220, 2008.

[17] Y. Kuang, T. Chen, F. Yin, and R. Zhong. Recur-
sive implementation of Gaussian process regression
for spatial-temporal data modeling. In 2019 11th
International Conference on Wireless Communica-
tions and Signal Processing (WCSP), pages 1–7.
IEEE, 2019.

[18] Q. Liu, H. S. Abbas, and J. M. Velni. An LMI-based
approach to distributed model predictive control
design for spatially-interconnected systems. Auto-
matica, 95:481–487, 2018.

[19] L. Ljung. System Identification - Theory for the
User. Prentice-Hall, Upper Saddle River, N.J., 2nd
edition, 1999.

[20] L. Ljung. System Identification Toolbox for use with
Matlab. Version 5. The MathWorks, Inc, Natick,
MA, 5th edition, 2000.

[21] M. J. Menne, I. Durre, B. Korzeniewski, S. McNeal,
K. Thomas, X. Yin, S. Anthony, R. Ray, R. S. Vose,
B. E. Gleason, et al. Global historical climatology
network-daily (GHCN-daily), version 3. NOAA Na-
tional Climatic Data Center, 10:V5D21VHZ, 2012.

[22] N. Pelekis, B. Theodoulidis, I. Kopanakis, and
Y. Theodoridis. Literature review of spatio-
temporal database models. The Knowledge Engi-
neering Review, 19(3):235–274, 2004.

[23] F. Perez-Cruz, S. Van Vaerenbergh, J. J. Murillo-
Fuentes, M. Lazaro-Gredilla, and I. Santamaria.
Gaussian processes for nonlinear signal processing:
An overview of recent advances. IEEE Signal Pro-
cessing Magazine, 30(4):40–50, 2013.

[24] G. Pillonetto, F. Dinuzzo, T. Chen, G. De Nicolao,
and L. Ljung. Kernel methods in system identifica-
tion, machine learning and function estimation: A
survey. Automatica, 50(3):657–682, 2014.

[25] J. Quinonero-Candela and C. E. Rasmussen. A uni-
fying view of sparse approximate Gaussian process
regression. The Journal of Machine Learning Re-
search, 6:1939–1959, 2005.

[26] S. Särkkä, A. Solin, and J. Hartikainen. Spatio-
temporal learning via infinite-dimensional Bayesian

filtering and smoothing. IEEE Signal Processing
Magazine, 30(4):51–61, 2013.

[27] M. Todescato, A. Carron, R. Carli, G. Pillonetto,
and L. Schenato. Efficient spatio-temporal Gaus-
sian regression via Kalman filtering. Automatica,
118:109032, 2020.

[28] N. Wahlström, P. Axelsson, and F. Gustafsson.
Discretizing stochastic dynamical systems using
Lyapunov equations. IFAC Proceedings Volumes,
47(3):3726–3731, 2014.

[29] C. K. Williams and C. E. Rasmussen. Gaussian
processes for machine learning, volume 2. MIT press
Cambridge, MA, 2006.

[30] A. Wilson and R. Adams. Gaussian process ker-
nels for pattern discovery and extrapolation. In In-
ternational conference on machine learning, pages
1067–1075. PMLR, 2013.

[31] J. Zhang, Y. Kuang, T. Chen, X. Lu, F. Yin,
and R. Zhong. Efficient recursive implementation
of spatial-temporal Gaussian process regression.
In 2020 39th Chinese Control Conference (CCC),
pages 1081–1086. IEEE, 2020.

[32] M. Zorzi. Autoregressive identification of kronecker
graphical models. Automatica, 119:109053, 2020.

17

	1 Introduction
	2 Preliminary and Problem Statement
	2.1 Spatial-temporal Function Estimation
	2.2 Gaussian Process Regression
	2.3 Problem Statement

	3 An Efficient Implementation
	3.1 State-space Model Realization of Spatial-Temporal Gaussian Process
	3.2 A Transformed State-space Model Realization
	3.3 Kalman Filter Based Estimation and Prediction
	3.4 Hyper-parameter Estimation
	3.5 Summary of the Implementation Algorithm and Its Computational Complexity Analysis

	4 Applications
	4.1 Computing Platform
	4.2 Weather Data Prediction
	4.3 Spatially-distributed System Identification

	5 Conclusion
	A.1 Proof of Proposition 1
	A.2 Proof of Proposition 2
	A.3 Proof of Proposition 3
	A.4 Proof of Theorem 1
	A.5 State-space Model Realization of (42)

