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Abstract

This paper is concerned with a class of highly nonlinear hybrid stochastic differential delay equations (SDDEs). Different from
the most existing papers, the time delay functions in the SDDEs are no longer required to be differentiable, not to mention
their derivatives are less than 1. The generalized Hasminskii-type theorems are established for the existence and uniqueness
of the global solutions. Comparing with the existing results, we show our new theorems are much more general and can be
applied to a much wider class of highly nonlinear SDDEs. Further sufficient conditions are also obtained for the asymptotic
boundedness and stability.
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1 Introduction

This paper is concerned with a class of highly nonlinear
hybrid stochastic differential delay equations (SDDEs)

dx(t) = f(x(t), x(t− δt), r(t), t)dt
+ g(x(t), x(t− δt), r(t), t)dB(t)

(1.1)

on t ≥ 0. Here the state x(t) takes values in Rd and
the mode r(t) is a Markov chain taking values in a fi-
nite space S = {1, 2, · · · , N}, B(t) is an m-dimensional
Brownian motion, f : Rd × Rd × S × R+ → Rd and
g : Rd×Rd×S×R+ → Rd×m are referred to as the drift
and diffusion coefficient, respectively, while δt is a map-
ping from R+ to itself and stands for the time delay at
time t. Further details on the notations will be explained
in Section 2. The high non-linearity means that the co-
efficients f and g do not satisfy the linear growth con-
dition (see, e.g., [10,11,16,18]). The SDDEs have been
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studied by many researchers. For the general theory of
hybrid SDDEs, including the stability theory, we refer
the reader to, for example, [5,8,9,17,21–24,29]. More ref-
erences can be found in the book [20].

In general, the time delay is a variable of time in many
real-world SDDE models (see, e.g., [6,20,26,30–33]) and
that is why a time-varying function δt is used to stand for
it in the SDDE (1.1). There are already many results on
the existence-and-uniqueness theorems and asymptotic
properties. For example, the Hasminskii-type theorem
was established in [7] (i.e., the cited Theorem 2.9 in this
paper), which forms the foundation for several recent pa-
pers on stochastic stabilization [3,9,13,15,29]. However,
a condition which was frequently imposed in many exist-
ing papers is that the delay function δt is differentiable
with its derivative being bounded by a positive num-
ber less than 1 (i.e., Assumption 2.1 below). This con-
dition has been imposed only because of the mathemat-
ical technique used—the technique of time change but
might not be a natural feature of SDDE models in the
real world (see, e.g., [8,19]). For example, piece-wise con-
stant delays (e.g., (1.2)) or sawtooth delays (e.g., (5.16))
occur frequently in sampled-data controls or network-
based controls where delays are commonly referred to
as fast varying delays (no assumptions on the delay-
derivatives) (see, e.g., [6,31]). A simplest example for
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the piece-wise constant delays is the case when the time
delay in a network is larger during business hours than
other time. Such a time delay can be described by a
piecewise constant function

δt =
∞∑
k=0

(
d1I[k,k+1/3)(t) + d2I[k+1/3,k+1)(t)

)
, (1.2)

where d1 > d2 > 0 are two numbers, the time unit is
one day and [0, 1/3) and [1/3, 1) stands for the business
and no business period per day, respectively. But, even
such a simple delay function is not differentiable. These
show clearly that there is a need to replace the differ-
entiability condition on the time delay function δt with
a weaker condition in the study of SDDEs. One of our
key aims in this paper is to establish such a weaker con-
dition (namely, Assumption 2.2). We will demonstrate
in Section 2 that this proposed weaker condition covers
many discontinuous or sawtooth delays. The study be-
comes more challenged when both coefficients f and g
do not satisfy the classical linear growth condition. The
key contributions of this paper are:

• There is few result on the SDDE (1.1) when the delay
function only satisfies the proposed weaker condition
while both coefficients f and g are highly nonlinear.
The conditions in the recent paper [3] are still stronger
than ours (see the comparisons in Section 2.3).

• The existence-and-uniqueness theorems are estab-
lished in terms of general Lyapunov functions and are
much more general than that in [3]. They will form
a foundation for further study of SDDEs when the
delay functions are not differentiable.

• The study of the long-time properties of the solutions,
including whether the LaSalle-type asymptotic sta-
bility (Theorem 4.1) still holds under the proposed
weaker conditions, presents a real challenge in math-
ematics. There is no LaSalle-type result in [3].

2 Existence and Uniqueness

2.1 Notation and assumptions

Throughout this paper, unless otherwise specified, we
use the following notation. Let Rd be the d-dimensional
Euclidean space and |x| denotes the Euclidean norm of
x ∈ Rd. Let R+ = [0,∞). Let AT denote the transpose

of a vector or matrix A. Let |A| =
√

trace(ATA) be
the trace norm of a matrix A. For h > 0, denote by
C([−h, 0];Rd) the family of continuous functions ϕ from
[−h, 0] → Rd with the norm ‖ϕ‖ = sup−h≤u≤0 |ϕ(u)|.
Denote by C(Rd;R+) the family of continuous functions
from Rd to R+. If both a, b are real numbers, then a∧b =
min{a, b} and a∨ b = max{a, b}. If A is a set, denote by
IA its indicator function; that is, IA(z) = 1 if z ∈ A and
0 otherwise. Moreover, a := x means that denote x by a
while x =: a means x is denoted by a.

Let (Ω,F ,P) be a complete probability space with its
filtration {Ft}t≥0 satisfying the usual conditions (i.e., it
is increasing and right continuous while F0 contains all
P-null sets). Let B(t) = (B1(t), · · · , Bm(t))T be an m-
dimensional Brownian motion defined on the probability
space. Let r(t), t ≥ 0, be a right-continuous Markov
chain on the same probability space taking values in
a finite state space S = {1, 2, · · · , N} with generator
Γ = (γij)N×N given by

P{r(t+ ∆) = j|r(t) = i} =

{
γij∆ + o(∆) if i 6= j,

1 + γii∆ + o(∆) if i = j,

where ∆ > 0. Here γij ≥ 0 is the transition rate from
i to j if i 6= j while γii = −

∑
j 6=i γij . We assume that

the Markov chain r(·) is independent of the Brownian
motion B(·) under P.

Consider the nonlinear hybrid SDDE (1.1). As pointed
out in Section 1, the following differentiability of the
delay function δt has been imposed in many existing
papers.

Assumption 2.1 The delay function δ : R+ → R+ is
differentiable and its derivative is less than 1. That is

dδt
dt
≤ δ̄ < 1, ∀t ≥ 0.

One of our key contributions in this paper is to replace
this assumption by a much weaker one.

Assumption 2.2 Let h1 be a non-negative constant.
The time-varying delay δt is a Borel measurable function
from R+ to [h1,∞) and has the properties that

−h := inf
0≤t<∞

(t− δt) > −∞ (2.1)

and

h̄ := lim sup
∆→0+

(
sup
s≥−h

µ(Ms,∆)

∆

)
<∞, (2.2)

where Ms,∆ = {t ∈ R+ : t − δt ∈ [s, s + ∆)} and µ(·)
denotes the Lebesgue measure on R+.

Remark 2.3 Let us make some useful remarks. We first
point out that under Assumption 2.2 we always have
h ≥ h1 and h̄ ≥ 1. In fact, condition (2.1) implies that
−h ≤ 0 − δ0 ≤ −h1 and hence h ≥ h1. But we will
explain why h̄ ≥ 1 after the proof of Lemma 7.1 in the
Appendix. We next highlight that Lemma 7.2 in the
Appendix shows that our new Assumption 2.2 is indeed
weaker than Assumption 2.1. Moreover, we are going to
demonstrate that many time-varying delay functions in
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practice satisfy Assumption 2.2 but not Assumption 2.1.
Due to the page limit, we only discuss two cases.

Case 1. Consider the left-limited-right-continuous piece-
wise constant function

δt =
∞∑
k=0

mkI[tk,tk+1)(t), t ≥ 0, (2.3)

where {tk}k≥0 and {mk}k≥0 are two sequence of num-
bers such that t0 = 0, infk≥0(tk+1 − tk) > 0 and

0 < h1 := inf
k≥0

mk < sup
k≥0

mk =: h2 <∞.

Letting k̄ = inf{k ≥ 0 : tk ≥ h2}, we have

−h := inf
0≤t<∞

(t− δt) = min
0≤k≤k̄

(tk −mk) ≥ −h2 > −∞,

namely, (2.1) is satisfied. We claim that h̄ defined by
(2.2) obeys h̄ ≤ [(h2 − h1)/∆∗] + 2, in which ∆∗ =
infk≥0(tk+1− tk) > 0 while [(h2−h1)/∆∗] is the integer
part of (h2 − h1)/∆∗. To show this, let s ≥ −h and
∆ ∈ (0,∆∗) be arbitrary. We need only consider the
case when Ms,∆ 6= ∅; otherwise µ(Ms,∆) = 0. Let ā =
inf{t ∈ Ms,∆}. It is easy to see that ā ∈ Ms,∆. Identify

the unique k̂ ≥ 0 such that tk̂ ≤ ā < tk̂+1. Then s ≤
ā − δā < s + ∆, which implies that ā ≥ s + h1. Let
n = [(h2 − h1)/∆∗] + 2. Then

tk̂+1+n ≥ tk̂+1 + n∆∗ > s+ h1 + n∆∗

and, whenever t ≥ tk̂+1+n,

t− δt > s+ h1 + n∆∗ − h2 ≥ s+ ∆.

This shows that Ms,∆ ⊂ [tk̂, tk̂+1+n), whence

Ms,∆ = ∪k̂+n

k=k̂
Ms,∆ ∩ [tk, tk+1).

But it is easy to see that µ(Ms,∆∩ [tk, tk+1)) ≤ ∆. Thus
µ(Ms,∆) ≤ n∆. As this holds for arbitrary s ≥ −h and
∆ ∈ (0,∆∗), we have

h̄ = lim sup
∆→0+

(
sup
s≥−h

µ(Ms,∆)

∆

)
≤ n <∞.

That is, (2.2) holds with h̄ ≤ [(h2−h1)/∆∗]+2. We have
therefore shown that the function δt defined by (2.3)
satisfies Assumption 2.2, but it is not differentiable so
cannot satisfy Assumption 2.1.

Case 2. Consider the function δt from R+ to [h1,∞)
which obeys the Lipschitz condition

|δt − δs| ≤ Θ(t− s), ∀ 0 ≤ s < t <∞, (2.4)

for some constants h1 ≥ 0 and Θ ∈ (0, 1). We claim
that this function satisfies Assumption 2.2 with h = δ0
and h̄ ≤ 1/(1 − Θ). In fact, it follows from (2.4) that
δt − δ0 ≤ Θt for all t ≥ 0. Hence

−h = inf
0≤t<∞

(t− δt) ≥ inf
0≤t<∞

(t−Θt− δ0) = −δ0,

namely h ≤ δ0. On the other hand, −h ≤ −δ0, i.e.,
h ≥ δ0. We must therefore have h = δ0. We next let s ≥ 0
and ∆ ∈ (0, 1) be arbitrary. Still let ā = inf{t ∈Ms,∆}.
Obviously, ā ∈ Ms,∆, namely s ≤ ā − δā < s + ∆. If
t ≥ ā+ ∆/(1−Θ), then

t− δt − s ≥ t− δt − (ā− δa) ≥ t− ā− |δt − δā|
≥ (1−Θ)(t− ā) ≥ ∆.

and hence t − δt ≥ s + ∆, i.e., t 6∈ Ms,∆. In other
words, we have shownMs,∆ ⊂ [ā, ā+∆/(1−Θ)), whence
µ(Ms,∆)/∆ ≤ 1/(1 − Θ). As this holds for arbitrary
s ≥ −h and ∆ ∈ (0, 1), we see from the definition h̄ (i.e.,
(2.2)) that h̄ ≤ 1/(1−Θ). On the other hand, there are
many functions which satisfy (2.4) but are not differen-
tiable so they cannot satisfy Assumption 2.1.

It is time to impose some conditions on the coefficients
f and g.

Assumption 2.4 The coefficients f and g are Borel
measurable functions and, for each positive constant a,
there is a positive constant Ka such that

|f(x, y, i, t)− f(x̄, ȳ, i, t)|2 ∨ |g(x, y, i, t)− g(x̄, ȳ, i, t)|2

≤ Ka(|x− x̄|2 + |y − ȳ|2)

for those x, y, x̄, ȳ ∈ Rd with |x|∨|y|∨|x̄|∨|ȳ| ≤ a and all
(i, t) ∈ S × R+. Moreover, sup(i,t)∈S×R+

(|f(0, 0, i, t)| ∨
|g(0, 0, i, t)|) <∞.

To solve the SDDE (1.1), we also need the initial data
{x(t) : −h ≤ t ≤ 0}

= {ξ(t) : −h ≤ t ≤ 0} ∈ C([−h, 0];Rd),
r(0) = r0 ∈ S.

(2.5)

But, without additional conditions to Assumptions 2.2
and 2.4, the solution of the hybrid SDDE (1.1) with
the initial data (2.5) may explode to infinity at a finite
time. To state the additional conditions, we need a few
more notations. Let C(Rd × [−h,∞);R+) denote the
family of all continuous functions from Rd × [−h,∞) to
R+. Denote by C2,1(Rd × S× R+;R+) the family of all
continuous non-negative functions V (x, i, t) defined on
Rd × S × R+ such that for each i ∈ S, they are con-
tinuously twice differentiable in x and once in t. Given
V ∈ C2,1(Rd × S × R+;R+), we define the function
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LV : Rd × Rd × S× R+ → R by

LV (x, y, i, t) = Vt(x, i, t) + Vx(x, i, t)f(x, y, i, t)

+
1

2
trace[gT (x, y, i, t)Vxx(x, i, t)g(x, y, i, t)]

+
N∑
j=1

γijV (x, j, t),

where Vt = ∂V/∂t, Vx = (∂V/∂x1, · · · , ∂V/∂xd), Vxx =(
∂2V/∂xi∂xj

)
d×d. Let us emphasize that LV is defined

on Rd × Rd × S × R+ while V on Rd × S × R+. With
these notations we can state our another assumption.

Assumption 2.5 There are three functions V ∈
C2,1(Rd×S ×R+;R+), U1, U2 ∈ C(Rd× [−h,∞);R+),
and three positive constants cj (1 ≤ j ≤ 3), such that

lim
|x|→∞

(
inf
t≥0

U1(x, t)
)

=∞, (2.6)

U1(x, t) ≤ V (x, i, t) (2.7)

for (x, i, t) ∈ Rn × S × R+, and

LV (x, y, i, t) ≤ c1[1 + U1(x, t) + U1(y, t− δt)]
− c2U2(x, t) + c3U2(y, t− δt) (2.8)

for (x, y, i, t) ∈ Rd × Rd × S× R+.

It should be pointed out that there are many SDDEs that
satisfy Assumption 2.5. For example, in the paragraph
below Theorem 2.10 we will show that if the coefficients
of an SDDE satisfy (2.23), then the SDDE satisfies As-
sumption 2.5.

2.2 Global solution

In this sub-section we will establish two new theorems on
the existence and uniqueness of the global solution. The
reader will see that h1 > 0 or h1 = 0 makes a significant
difference and hence we carefully distinguish them.

Theorem 2.6 Let Assumptions 2.2, 2.4 and 2.5 hold
with h1 > 0. Then the SDDE (1.1) with the initial data
(2.5) has a unique global solution x(t) on [−h,∞) and
the solution has the properties that, for all T > 0,

sup
0≤t≤T

EU1(x(t), t) <∞ (2.9)

and

E
∫ T

0

U2(x(t), t)dt <∞. (2.10)

Proof. Assumptions 2.2 and 2.4 guarantee that the hy-
brid SDDE (1.1) with the initial data (2.5) has a unique
maximal local solution, denoted by x(t) on [−h, e∞),
where e∞ is the explosion time (see, e.g., [20]). We need
to show e∞ = ∞ a.s. For each integer k ≥ ‖ξ‖, define
the stopping time

σk = e∞ ∧ inf{t ∈ [0, e∞) : |x(t)| ≥ k},

where throughout this paper we set inf ∅ =∞. As σk is
increasing, it has a limit and we set σ∞ = limk→∞ σk.
Obviously, σ∞ ≤ e∞ a.s. We divide the whole proof into
three steps.

Step 1. Restrict t ∈ [0, h1]. Noting that −h ≤ t− δt ≤ 0
we see x(t−δt) = ξ(t−δt) which is already known. By the
generalized Itô formula (see, e.g., [20]) and Assumption
2.5, we have

EU1(x(t ∧ σk), t ∧ σk)− V (ξ(0), r0, 0)

≤ E
∫ t∧σk

0

(
c1[1 + U1(x(s), s) + U1(x(s− δs), s− δs)]

− c2U2(x(s), s) + c3U2(x(s− δs), s− δs)
)
ds. (2.11)

This implies

EU1(x(t ∧ σk), t ∧ σk) + c2E
∫ t∧σk

0

U2(x(s), s)ds

≤ β1 + c1E
∫ t∧σk

0

U1(x(s), s)ds, (2.12)

where β1 is a positive number defined by

β1 = V (ξ(0), r0, 0) +

∫ h1

0

(
c1U1(ξ(s− δs), s− δs)

+ c3U2(ξ(s− δs), s− δs)
)
ds+ c1h1.

In particular, it follows from (2.12) that

EU1(x(t ∧ σk), t ∧ σk)

≤β1 + c1E
∫ t∧σk

0

U1(x(s), s)ds

≤β1 + c1

∫ t

0

EU1(x(s ∧ σk), s ∧ σk)ds.

An application of the well-known Gronwall inequality
yields

EU1(x(t ∧ σk), t ∧ σk) ≤ β1e
c1h1 =: β2 (2.13)

for all t ∈ [0, h1]. Define ρk = inf |x|=k,t≥0 U1(x, t). By
Assumption 2.5, ρk →∞ as k →∞. Moreover, it follows
from (2.13) that

ρkP(σk ≤ h1) ≤ EU1(x(h1 ∧ σk), h1 ∧ σk) ≤ β2.
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Letting k → ∞ we see that P(σ∞ ≤ h1) = 0 and hence
σ∞ ≥ h1 a.s. We can now letting k → ∞ in (2.13) to
obtain

sup
0≤t≤h1

EU1(x(t), t) ≤ β2. (2.14)

Setting t = h1 in (2.12) and then letting k →∞ we also
get

c2E
∫ h1

0

U2(x(s), s)ds ≤ β1 + c1

∫ h1

0

EU1(x(s), s)ds.

This, together with (2.14), yields

E
∫ h1

0

U2(x(s), s)ds ≤ (β1 + c1h1β2)/c2 := β3. (2.15)

Step 2. Restrict t ∈ [0, 2h1]. Noting that (2.11) holds for
t ∈ [0, 2h1] as well, we see from (2.11) that

EU1(x(t ∧ σk), t ∧ σk) + c2E
∫ t∧σk

0

U2(x(s), s)ds

≤ β4 + c1E
∫ t∧σk

0

U1(x(s), s)ds, (2.16)

where

β4 = V (ξ(0), r0, 0) + c1E
∫ 2h1

0

U1(x(s− δs), s− δs)ds

+ c3E
∫ 2h1

0

U2(x(s− δs), s− δs)ds+ 2c1h1.

We need to show β4 <∞. In Step 1, we showed that up
to time h1, x(t) has properties (2.14) and (2.15). We also
observe that −h ≤ t− δt ≤ h1 whenever t ∈ [0, 2h1]. In
other words, we already have x(t − δt) from Step 1. By
Lemma 7.1,∫ 2h1

0

U1(x(s− δs), s− δs)ds ≤ h̄
∫ h1

−h
U1(x(s), s)ds.

Consequently, using (2.14), we have

E
∫ 2h1

0

U1(x(s− δs), s− δs)ds

≤h̄
∫ 0

−h
U1(ξ(s), s)ds+ h̄h1β2 <∞. (2.17)

Similarly, using (2.15), we can show

E
∫ 2h1

0

U2(x(s− δs), s− δs)ds

≤h̄E
∫ 0

−h
U2(ξ(s), s)ds+ h̄β3 <∞. (2.18)

We therefore have β4 < ∞. We can then show
from (2.16) in the similar fashion as in Step 1 that
σ∞ ≥ 2h1 a.s., sup0≤t≤2h1

EU1(x(t), t) < ∞ and

E
∫ 2h1

0
U2(x(s), s)ds <∞.

Step 3. Repeating Step 2 for t ∈ [0, 3h1] and then [0, 4h1]
etc., we can show that σ∞ =∞ a.s. and assertions (2.9)
and (2.10) hold. The proof is therefore complete. 2

Theorem 2.6 requires h1 > 0. This is in general a natu-
ral condition as δt stands for the time delay and in many
practical situations we do have h1 > 0. Nevertheless,
there are some situations where h1 = 0, for example,
hybrid pantograph SDDEs in which the time delay func-
tion δt = δ̄t on t ≥ 0 for some constant δ̄ ∈ (0, 1) (see,
e.g., [2,7,25]). A natural question is: what may happen
if h1 = 0? The following theorem shows that Theorem
2.6 still holds but we need require c2 > c3h̄.

Theorem 2.7 Let Assumptions 2.2, 2.4 and 2.5 hold
with h1 = 0 and c2 > c3h̄. Then all the assertions of
Theorem 2.6 still hold.

Proof. We still use the same notations as in the proof
of Theorem 2.6. Fix T > 0 arbitrarily. Observing that
(2.11) holds for all t ∈ [0, T ] and k ≥ ‖ξ‖ and applying
Lemma 7.1, we obtain easily from (2.11) that

EU1(x(t ∧ σk), t ∧ σk) + (c2 − c3h̄)E
∫ t∧σk

0

U2(x(s), s)ds

≤ β5 + c1(1 + h̄)E
∫ t∧σk

0

U1(x(s), s)ds, (2.19)

where

β5 = V (ξ(0), r0, 0) + c1T

+ h̄

∫ 0

−h
[c1U1(ξ(s), s) + c3U2(ξ(s), s)]ds <∞.

It then follows from (2.19) that

EU1(x(t ∧ σk), t ∧ σk)

≤β5 + c1(1 + h̄)

∫ t

0

EU1(s ∧ σk), s ∧ σk)ds.

An application of the Gronwall inequality yields

EU1(x(t ∧ σk), t ∧ σk) ≤ β5e
c1(1+h̄)T := β6 (2.20)

for t ∈ [0, T ]. In the same way as we did in the proof of
Theorem 2.6, we can hence show that σ∞ ≥ T a.s. Since
T > 0 is arbitrary, we must have σ∞ = ∞ a.s. Letting
k →∞ in (2.20) we obtain assertion (2.9). Setting t = T
in (2.19) and then letting k → ∞, we get the other
assertion (2.10). The proof is therefore complete. 2
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2.3 Comparisons

Let us compare our new theorems with some known re-
sults to see the advances we have made so far before we
develop our further results. The first known result to be
compared is the main result in [7]. The assumptions im-
posed in [7] are Assumption 2.1 and the following one.

Assumption 2.8 There are three functions V ∈
C2,1(Rn × S × R+;R+) and U1, U2 ∈ C(Rn ×
[−h,∞);R+), as well as three positive constants cj
(1 ≤ j ≤ 3) with c2 > c3/(1− δ̄), such that (2.6) holds,

U1(x, t) ≤ V (x, i, t) ≤ U2(x, t), (2.21)

for (x, i, t) ∈ Rd × S× R+, and

LV (x, y, i, t) ≤ c1 − c2U2(x, t) + c3U2(y, t− δt) (2.22)

for all (x, y, i, t) ∈ Rd × Rd × S× R+.

By Lemma 7.2, under Assumption 2.1, the delay function
δt satisfies Assumption 2.2 with h1 = 0, h = δ0 and
h̄ ≤ 1/(1 − δ̄). We hence set h = δ0 in the initial data
(2.5). We cite the following theorem from [7].

Theorem 2.9 ([7, Theorem 4.3]) If Assumptions 2.1,
2.4 and 2.8 hold, then there is a unique global solution
x(t) to the hybrid SDDE (1.1) with any initial data (2.5)
(in which h = δ0).

This theorem is one of the existing results used fre-
quently. In particular, it forms the foundation for several
recent papers [5,13,15,29]. Comparing our new Theorem
2.7 with Theorem 2.9, we see the significant advantages:

• Theorem 2.7 does not require the delay function δt
to be differentiable. Conditions (2.7), (2.8) and c2 >
c3h̄ in Theorem 2.7 are weaker than conditions (2.21),
(2.22) and c2 > c3/(1−δ̄) in Theorem 2.9, respectively.

In other words, Theorem 2.7 is much more general than
Theorem 2.9.

It is also useful to compare our new Theorems 2.6 and 2.7
with each other. As pointed out before, in many practical
situations, we have h1 > 0 as δt stands for the time delay.
In these situations, Theorem 2.6 is applicable without
condition c2 > c3h̄, which is of course a great advantage.

Let us now compare Theorem 2.6 with a very recent
result from [3] which is cited below.

Theorem 2.10 ([3, Theorem 2.4]) Let Assumption
2.4 hold. Assume that δt is a Borel measurable func-
tion from R+ to [h1, h] and satisfies (2.2), where

0 < h1 < h < ∞. Assume also that there exist positive
constants p, q, α1, α2, α3 with p ∧ q > 2 such that

xT f(x, y, i, t) +
q − 1

2
|g(x, y, i, t)|2

≤ α1(|x|2 + |y|2)− α2|x|p + α3|y|p
(2.23)

for all (x, y, i, t) ∈ Rd × Rd × S × R+. Then there is a
unique global solution x(t) to the hybrid SDDE (1.1) with
any initial data (2.5).

Comparing Theorem 2.6 with the one above, we see
that Theorem 2.6 allows δt to be unbounded while the
one above needs δt to be bounded. Moreover, letting
V (x, i, t) = |x|q we can easily show from (2.23) that
there are three positive constants c1, c2, c3 such that

LV (x, y, i, t) ≤ c1(|x|q + |y|q)− c2|x|q+p−2 + c3|y|q+p−2

for (x, y, i, t) ∈ Rd × Rd × S × R+. In other words, As-
sumption 2.5 holds with U1(x, t) = |x|q and U2(x, t) =
|x|q+p−2. We hence see that Theorem 2.6 is a generali-
sation of Theorem 2.10.

3 Boundedness

In the previous section, we have not only established the
generalized Hasminskii-type theorems on the existence
and uniqueness of the solution to the SDDE (1.1) but
also obtained the useful estimates (2.9) and (2.10) on
the solution in terms of U1 and U2. If we know a bit
more on U1 and U2, for example, U1(x, t) = |x|q and
U2(x, t) = |x|q+p−2 as in the end of last section, we then
see from (2.9) and (2.10) that

sup
0≤t≤T

E|x(t)|q <∞ and

∫ T

0

E|x(t)|q+p−2dt <∞,

respectively, which are the familiar moment estimates.
In this section, we will establish more useful estimates
on the solution in terms of U1 or U2. Please also note
that we will no longer distinguish h1 = 0 and h1 > 0
as all the results from now on will hold as long as h1 ≥
0. Moreover, unless otherwise specified, we will fix the
initial data (2.5) arbitrarily and will not mention it.

Theorem 3.1 Let Assumptions 2.2, 2.4 and 2.5 hold ex-
cept condition (2.8) is replaced by the following stronger
condition

LV (x, y, i, t) ≤ c1 − c2U2(x, t) + c3U2(y, t− δt) (3.1)

for (x, y, i, t) ∈ Rd × Rd × S × R+ with c2 > c3h̄. Then
the solution of the SDDE (1.1) has the property

lim sup
t→∞

1

t

∫ t

0

EU2(x(s), s)ds ≤ c1
c2 − c3h̄

. (3.2)
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Proof. By the generalized Itô formula and condition
(3.1), it is straightforward to show that

0 ≤ EV (ξ(0), r0, 0) + c1t− c2E
∫ t

0

U2(x(s), s)ds

+ c3E
∫ t

0

U2(x(s− δs), s− δs)ds

for t ≥ 0. Applying Lemma 7.1 we obtain

(c2 − c3h̄)

∫ t

0

EU2(x(s), s)ds

≤EV (ξ(0), r0, 0) + c1t+ c3h̄E
∫ 0

−h
U2(ξ(s), s)ds. (3.3)

Dividing both sides by t and then letting t → ∞ yields
the required assertion (3.2). 2

The theorem above holds no matter δt is bounded or
not. In many practical situations, δt is bounded. In this
case, we can show a better result.

Theorem 3.2 In addition to the same conditions im-
posed in Theorem 3.1, we assume that δt is bounded from
above by a constant h2(> h1) (i.e., δt ≤ h2 for all t ≥ 0)
and, moreover, there is another positive constant c4 such
that

V (x, i, t) ≤ c4(1 + U2(x, t)) (3.4)

for all (x, i, t) ∈ Rd × S × R+. Then the solution of the
SDDE (1.1) has the property that

lim sup
t→∞

EU1(x(t), t) ≤ 1

ε1
(c1 + ε1c4), (3.5)

where ε1 > 0 is the unique root to the following equation

c2 − ε1c4 − h̄c3eε1h2 = 0. (3.6)

Proof. Observe that the right hand side of equation (3.6)
is a strictly decreasing continuous function of ε1 ≥ 0
which has value c2 − h̄c3 > 0 when ε1 = 0 and tends to
−∞ as ε1 → ∞. Equation (3.6) must therefore have a
unique root ε1 > 0.

By the generalized Itô formula and conditions (3.1) and
(3.4), it is not difficult to show that

eε1tEU1(x(t), t)− V (ξ(0), r0, 0)

≤E
∫ t

0

eε1s
(
c1 + ε1c4 − (c2 − ε1c4)U2(x(s), s)

+ c3U2(x(s− δs), s− δs)
)
ds. (3.7)

But by Lemma 7.1 and the boundedness of δt, we can
derive ∫ t

0

eε1sU2(x(s− δs), s− δs)ds

≤eε1h2

∫ t

0

eε1(s−δs)U2(x(s− δs), s− δs)ds

≤h̄eε1h2

∫ t

−h
eε1sU2(x(s), s)ds.

Substituting this into (3.7) and making use of (3.6), we
obtain

eε1tEU1(x(t), t)− EV (ξ(0), r0, 0)

≤ 1

ε1
(c1 + ε1c4)eε1t + c3h̄e

ε1h2

∫ 0

−h
eε1sU2(ξ(s), s)ds.

This implies the required assertion (3.5) immediately. 2

In applications, it is easier to verify the following as-
sumption than Assumption 2.5 as there is no need to
find the functions V,U1 and U2.

Assumption 3.3 There exist non-negative constants
p, q, α0, α1, α2, α3 with p > 2, q ≥ 2 and α2 > α3h̄ such
that

xT f(x, y, i, t) +
q − 1

2
|g(x, y, i, t)|2

≤α0 + α1(|x|2 + |y|2)− α2|x|p + α3|y|p
(3.8)

for all (x, y, i, t) ∈ Rd × Rd × S× R+.

Letting V (x, i, t) = |x|q and using Assumption 3.3, we
can easily show that

LV (x, y, i, t)

≤ q|x|q−2
(
α0 + α1(|x|2 + |y|2)− α2|x|p + α3|y|p

)
for all (x, y, i, t) ∈ Rd×Rd×S×R+. By the well-known
Young inequality, we can further show that

LV (x, y, i, t) ≤ qα0|x|q−2 + 2α1(q − 1)|x|q + 2α1|y|q

− q
(
α2 −

α3(q − 2)

p+ q − 2

)
|x|p+q−2 +

pqα3

p+ q − 2
|y|p+q−2.

(3.9)

Given α2 > α3h̄ and h̄ ≥ 1, we can find ε2 > 0 suffi-
ciently small for c2 > c3h̄, where

c2 := q
(
α2 −

α3(q − 2)

p+ q − 2

)
− ε2 and c3 :=

pqα3

p+ q − 2
+ ε2.
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It then follows from (3.9) that

LV (x, y, i, t) ≤ qα0|x|q−2 + 2α1(q − 1)|x|q + 2α1|y|q

− (c2 + ε2)|x|p+q−2 + (c3 − ε2)|y|p+q−2

≤ c1 − c2|x|p+q−2 + c3|y|p+q−2, (3.10)

where

c1 := sup
x∈Rd

(
qα0|x|q−2 + 2α1(q − 1)|x|q − ε2|x|p+q−2

)
+ sup
y∈Rd

(
2α1|y|q − ε2|y|p+q−2

)
<∞.

In other words, we have shown that (3.1) holds with
U2(x, t) = |x|p+q−2. Noting that |x|q ≤ 1 + |x|p+q−2

for all x ∈ Rd, we also see that (3.4) holds with c4 =
1. Moreover, letting U1(x, t) = |x|q, we naturally have
(2.6) and (2.7). By Theorems 3.1 and 3.2, we obtain the
following useful corollary.

Corollary 3.4 Let Assumptions 2.2, 2.4 and 3.3 hold.
Then the solution of the SDDE (1.1) has the property

lim sup
t→∞

1

t

∫ t

0

E|x(s)|p+q−2ds <∞. (3.11)

If, moreover, δt is bounded, then

lim sup
t→∞

E|x(t)|q <∞. (3.12)

4 Stability

In this section we will discuss the stability of the
SDDE (1.1). For this purpose we naturally assume that
f(0, 0, i, t) = 0 and g(0, 0, i, t) = 0 for all (i, t) ∈ S×R+.
The SDDE has therefore its equilibrium state 0.

Theorem 4.1 Let Assumptions 2.2, 2.4 and 2.5 hold ex-
cept condition (2.8) is replaced by the following stronger
condition

LV (x, y, i, t) ≤ −c2U2(x, t) + c3U2(y, t− δt) (4.1)

for (x, y, i, t) ∈ Rd×Rd×S×R+ with c2 > c3h̄. Moreover,
assume that there is a continuous function U3 : Rd → R+

such that U3(x) = 0 if and only if x = 0 while U3(x) ≤
U2(x, t) for all (x, t) ∈ Rd×R+. Then the solution of the
SDDE (1.1) has the property

lim
t→∞

x(t) = 0 a.s. (4.2)

Proof. The proof is very technical so is divided into four
steps.

Step 1. By condition U3(x) ≤ U2(x, t), we can easily
derive from (3.3) (bearing in mind c1 = 0) that

E
∫ ∞

0

U3(x(t))dt <∞. (4.3)

This implies ∫ ∞
0

U3(x(t))dt <∞ a.s. (4.4)

and

lim inf
t→∞

U3(x(t)) = 0 a.s. (4.5)

Step 2. We claim

sup
0≤t<∞

|x(t)| <∞ a.s. (4.6)

If this were not true, then ε3 := P(Ω1) > 0, where

Ω1 = {ω ∈ Ω : sup
0≤t<∞

|x(t, ω)| =∞}.

Set β7 := V (ξ(0), r0, 0) + c3h̄
∫ 0

−h U2(ξ(s), s)ds and

choose a number β8 > 2β7/ε3. Define the stopping time
σ = inf{t ≥ 0 : U1(x(t), t) ≥ β8}. Recalling (2.6), we see
that 0 < σ <∞ for all ω ∈ Ω1. We can then find a suffi-
ciently large number T such that P(0 < σ ≤ T ) ≥ 0.5ε3.
On the other hand, in a similar way as we did in the
proof of Theorem 2.7, we can show

β7 ≥ EU1(x(T ∧σ), T∧σ) ≥ β8P(0 < σ ≤ T ) ≥ 0.5β8ε3,

which is in contradiction with β8 > 2β7/ε3. We therefore
must have (4.6).

Step 3. In this step we are going to show

lim
t→∞

U3(x(t)) = 0 a.s (4.7)

If this were false, we can find a number ε4 > 0 such that

P(Ω2) ≥ 3ε4, (4.8)

where Ω2 = {ω ∈ Ω : lim supt→∞ U3(x(t, ω)) > 2ε4}.
Define a sequence of stopping times:

ν1 = inf{t ≥ 0 : U3(x(t)) ≥ 2ε4},
ν2k = inf{t ≥ ν2k−1 : U3(x(t)) ≤ ε4}, k = 1, 2, · · · ,

ν2k+1 = inf{t ≥ ν2k : U3(x(t)) ≥ 2ε4}, k = 1, 2, · · · .

By (4.5) and the definition of Ω2, we see that νk(ω) <
∞ for all k ≥ 1 whenever ω ∈ Ω2. Moreover, by (2.5)
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and (4.6), we can choose a positive number a = a(ε4)
sufficiently large for

P(Ω3) ≥ 1− ε4, (4.9)

where Ω3 = {ω ∈ Ω : sup−h≤t<∞ |x(t, ω)| < a}. Define
one more stopping time ηa = inf{t ≥ 0 : |x(t)| ≥ a}.
Obviously, ηa(ω) =∞ whenever ω ∈ Ω3, while

P(Ω2 ∩ Ω3) ≥ 2ε4. (4.10)

With these notations, we can derive from (4.3) that

∞ > E
∫ ∞

0

U3(x(t))dt

≥
∞∑
k=1

E
[
I{ν2k−1<∞, ν2k<∞, ηa=∞}

∫ ν2k

ν2k−1

U3(x(t))dt
]

≥ ε4

∞∑
i=1

E
[
I{ν2k−1<∞, ηa=∞}(ν2k − ν2k−1)

]
, (4.11)

where we have noted from (4.5) that ν2k <∞ whenever
ν2k−1 < ∞. To make our notations more simple, we
set ft = f(x(t), x(t − δt), r(t), t) and gt = g(x(t), x(t −
δt), r(t), t) for t ≥ 0. In view of Assumption 2.4 and
f(0, 0, i, t) = 0, g(0, 0, i, t) = 0, we see

|ft|2 ∨ |gt|2 ≤ 2a2Ka := K̄ if t ≤ ηa. (4.12)

Also set Ak = {ηa ∧ ν2k−1 <∞} for k ≥ 1. By Hölder’s
inequality, Doob’s martingale inequality and (4.12), we
derive that, for any θ > 0,

E
[
IAk

sup
0≤t≤θ

|x(ηa ∧ (ν2k−1 + t))− x(ηa ∧ ν2k−1)|2
]

≤2E
[
IAk

sup
0≤t≤θ

∣∣∣ ∫ ηa∧(ν2k−1+t)

ηa∧ν2k−1

fsds
∣∣∣2]

+2E
[
IAk

sup
0≤t≤θ

∣∣∣ ∫ ηa∧(ν2k−1+t)

ηa∧ν2k−1

gsdB(s)
∣∣∣2]

≤2θE
[
IAk

∫ ηa∧(ν2k−1+θ)

ηa∧ν2k−1

|fs|2ds
]

+8E
[
IAk

∫ ηa∧(ν2k−1+θ)

ηa∧ν2k−1

|gs|2ds
]

≤2K̄(θ + 4)θ. (4.13)

Given U3 is uniformly continuous in the closed ball S̄a :=
{x ∈ Rn : |x| ≤ a}, we can find a positive number
b = b(ε4) > 0 so small that

|U3(x)− U3(y)| < ε4 if |x− y| < b, x, y ∈ S̄h. (4.14)

We then choose θ = θ(ε4, a, b) > 0 sufficiently small for

2K̄(θ + 4)θ < b2ε4. It then follows from (4.13) that

P
(
Ak

∩
{

sup
0≤t≤θ

|x(ηa ∧ (ν2k−1 + t))− x(ηa ∧ ν2k−1)| ≥ b
})

≤ 2K̄(θ + 4)θ

b2
< ε4.

Consequently

P
(
{ν2k−1 <∞, ηa =∞}

∩
{

sup
0≤t≤θ

|x(ν2k−1 + t)− x(ν2k−1)| ≥ b
})

=P
(
{ηa ∧ ν2k−1 <∞, ηa =∞}

∩
{

sup
0≤t≤θ

|x(ηa ∧ (ν2k−1 + t))− x(ηa ∧ ν2k−1)| ≥ b
})

≤P
(
Ak

∩
{

sup
0≤t≤θ

|x(ηa ∧ (ν2k−1 + t))− x(ηa ∧ ν2k−1)| ≥ b
})

≤ε4.

Using (4.10), we further derive

P
(
{ν2k−1 <∞, ηa =∞}

∩
{

sup
0≤t≤θ

|x(ν2k−1 + t)− x(ν2k−1)| < b
})

=P({ν2k−1 <∞, ηa =∞})

−P
(
{ν2k−1 <∞, ηa =∞}

∩
{

sup
0≤t≤θ

|x(ν2k−1 + t)− x(ν2k−1)| ≥ b
})

≥P(Ω2 ∩ Ω3)− ε4 ≥ ε4.

Set

Ω̄k =
{

sup
0≤t≤θ

|U3(x(ν2k−1 + t))− U3(x(ν2k−1))| < ε4

}
.

Making use of (4.14), we moreover have

P
(
{ν2k−1 <∞, ηa =∞} ∩ Ω̄k

)
≥P
(
{ν2k−1 <∞, ηa =∞}

∩
{

sup
0≤t≤θ

|x(ν2k−1 + t)− x(ν2k−1)| < b
})

≥ε4. (4.15)

Observing

ν2k(ω)−ν2k−1(ω) ≥ θ if ω ∈ {ν2k−1 <∞, ηa =∞}∩Ω̄k,
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we derive from (4.11) and (4.15) that

∞ >ε4

∞∑
k=1

E
[
I{ν2k−1<∞, ηa=∞}(ν2k − ν2k−1)

]
≥ε4

∞∑
k=1

E
[
I{ν2k−1<∞, ηa=∞}∩Ω̄k

(ν2k − ν2k−1)
]

≥ε4θ
∞∑
k=1

P({ν2k−1 <∞, ηa =∞} ∩ Ω̄k)

≥ε4θ
∞∑
k=1

ε4 =∞,

which is a contradiction. So (4.7) must hold.

Step 4. Finally, we can show assertion (4.2). If this were
false, then there is an Ω4 ⊂ Ω with P(Ω4) > 0 such that

lim sup
t→∞

|x(t, ω)| > 0, ∀ω ∈ Ω4.

This, along with (4.6) and (4.7), implies there is some
ω̄ ∈ Ω4 such that

sup
0≤t<∞

|x(t, ω̄)| <∞ and lim
t→∞

U3(x(t, ω̄)) = 0, (4.16)

while there is a subsequence {x(tk, ω̄)}k≥1 of {x(t, ω̄)}t≥0

such that
|x(tk, ω̄)| ≥ ε5, ∀k ≥ 1,

for some ε5 > 0. Since {x(tk, ω̄)}k≥1 is bounded, we can
find its subsequence {x(t̄k, ω̄)}k≥1 which converges to z.
Clearly, |z| ≥ ε5 so U3(z) > 0. However, by (4.16),

U3(z) = lim
k→∞

U3(x(t̄k, ω̄)) = 0.

In other words, we have a contradiction. The required
assertion (4.2) must therefore hold. The proof is com-
plete. 2

Theorem 4.1 reveals that the solution will converge to 0
but does not show the convergence rate. With a slightly
different conditions we are going to show the exponential
convergence rate.

Theorem 4.2 Let Assumptions 2.2, 2.4 and 2.5 hold
except condition (2.8) is replaced by (4.1) with c2 > c3h̄.
Assume also that δt is bounded by a constant h2(> h1)
(i.e., δt ≤ h2 for all t ≥ 0) and, moreover,

V (x, i, t) ≤ U2(x, t) (4.17)

for all (x, i, t) ∈ Rd × S × R+. Then the solution of the
SDDE (1.1) has the properties that

lim sup
t→∞

1

t
log(EU1(x(t), t)) ≤ −ε6 (4.18)

and

lim sup
t→∞

1

t
log(U1(x(t), t)) ≤ −ε6 a.s. (4.19)

where ε6 > 0 is the unique root to the following equation

c2 − ε6 − h̄c3eε6h2 = 0. (4.20)

Proof. Obviously, the positive root to equation (4.20)
exists and is unique. The first assertion can be proved in
the same way as Theorem 3.2 was proved so the details
are omitted. To show the second assertion, it is sufficient
to show

sup
0≤t<∞

eε6tU1(x(t), t) <∞ a.s. (4.21)

If this were false, then ε7 := P(Ω5) > 0, where

Ω5 = {ω ∈ Ω : sup
0≤t<∞

eε6tU1(x(t, ω), t) =∞}.

Set β9 := V (ξ(0), r0, 0) + c3h̄e
ε6h2

∫ 0

−h U2(ξ(s), s)ds .

Choose a number β10 > 2β9/ε7. Define the stopping
time ρ = inf{t ≥ 0 : eε6tU1(x(t), t) ≥ β10}. Obviously,
0 < ρ <∞ for all ω ∈ Ω5. We can then find a sufficiently
large number T such that P(0 < ρ ≤ T ) ≥ 0.5ε7. On
the other hand, by the generalized Itô formula and con-
ditions (4.1), (4.17) etc., it is not difficult to show that

E
(
eε6(ρ∧T )U1(x(ρ ∧ T ), ρ ∧ T )

)
− EV (ξ(0), r0, 0)

≤E
∫ ρ∧T

0

eε6s
(
− (c2 − ε6)U2(x(s), s)

+ c3U2(x(s− δs), s− δs)
)
ds. (4.22)

But by Lemma 7.1 and the boundedness of δt, we can
derive ∫ ρ∧T

0

eε6sU2(x(s− δs), s− δs)ds

≤eε6h2

∫ ρ∧T

0

eε6(s−δs)U2(x(s− δs), s− δs)ds

≤h̄eε6h2

∫ ρ∧T

−h
eε6sU2(x(s), s)ds.

Substituting this into (4.22) and making use of (4.20),
we obtain

E
(
eε6(ρ∧T )U1(x(ρ ∧ T ), ρ ∧ T )

)
≤ β9.

This implies 0.5ε7β10 ≤ β9, which contradicts the fact
β10 > 2β9/ε7. We therefore must have (4.21) and hence
the second assertion (4.19) follows. 2
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To obtain a useful corollary, we impose a new assumption
which can be verified more easily in applications.

Assumption 4.3 There exist six positive constants p, q,
α1, · · · , a4 with q ≥ 2, α1 > α2h̄, α3 > α4h̄ and such that

xT f(x, y, i, t) +
q − 1

2
|g(x, y, i, t)|2

≤− α1|x|2 + α2|y|2 − α3|x|p + α4|y|p
(4.23)

for all (x, y, i, t) ∈ Rd × Rd × S× R+.

This looks similar to Assumption 3.3 but is different. In
particular, p is positive here but may not bigger than 2.
Letting V (x, i, t) = |x|q, we can show in the same way
as (3.9) was shown that

LV (x, y, i, t) ≤ −ᾱ1|x|q + ᾱ2|y|q

− ᾱ3|x|p+q−2 + ᾱ4|y|p+q−2, (4.24)

for all (x, y, i, t) ∈ Rd × Rd × S× R+, where

ᾱ1 = qα1 − (q − 2)α2, ᾱ2 = 2α2

ᾱ3 = qα3 −
q(q − 2)α4

p+ q − 2
, ᾱ4 =

pqα4

p+ q − 2
.

(4.25)

Given that α1 > α2h̄, α3 > α4h̄ and h̄ ≥ 1, we see
ᾱ1 > ᾱ2h̄ and ᾱ3 > ᾱ4h̄. Define U1(x, t) = |x|q and
U2(x, t) = ᾱ2|x|q + ᾱ4|x|p+q−2. Then (4.17) holds while

ᾱ1|x|q + ᾱ3|x|p+q−2 ≥ c2U2(x, t)

where c2 = (ᾱ1/ᾱ2) ∧ (ᾱ3/ᾱ4). It is easy to see c2 > h̄.
It then follows from (4.24) that

LV (x, y, i, t) ≤ −c2U2(x, t) + U2(y, t− δt). (4.26)

This means that (4.1) holds with c3 = 1. The following
useful corollary hence follows from Theorem 4.2.

Corollary 4.4 Let Assumptions 2.2, 2.4 and 4.3 hold.
Assume also that δt is bounded by a constant h2(> h1).
Then the solution of the SDDE (1.1) has the properties
that

lim sup
t→∞

1

t
log(E|x(t)|q) ≤ −ε8 (4.27)

and

lim sup
t→∞

1

t
log(|x(t)|) ≤ −ε8/q a.s. (4.28)

where ε8 > 0 is the unique root to the following equation

c2 − ε8 − h̄eε8h2 = 0, (4.29)

in which c2 = (ᾱ1/ᾱ2) ∧ (ᾱ3/ᾱ4) and ᾱ1, · · · , ᾱ4 are
defined by (4.25).

5 Examples

Let us discuss two examples in this section to illustrate
our theory.

Example 5.1 Many practical systems may experience
abrupt changes in their parameters. In this example,
we will illustrate how our new theory established in the
previous sections can be applied to study such systems.
For illustration, we only consider a 2-dimensional hybrid
SDDE

dx(t) = f(x(t), x(t− δt), r(t))dt
+ g(x(t), x(t− δt), r(t))dB(t)

(5.1)

on t ≥ 0. Here B(t) is a scalar Brownian motion, r(t) is
a Markov chain on the state space S = {1, 2} with its

generator Γ =

(
−3 3

1 −1

)
, while δt is defined by (2.3)

and hence satisfies Assumption 2.2 in view of Case 1 in
Section 2. Moreover, f, g : R2 ×R2 × S→ R2 are define
by

f(x, y, 1) = (−a11x
3
1 + a12x1y2, a21x2y1 − a22x

3
2)T ,

f(x, y, 2) = (−b11x
3
1 + b12x1y2, b21x2y1 − b22x

3
2)T ,

g(x, y, 1) = (a13x1 cos(y2), a23x2 sin(y1))T ,

g(x, y, 2) = (b13x1 sin(y2), b23x2 cos(y1))T ,

where all parameters a11, b11 etc. are positive numbers.
This is a simple version of the hybrid SDDE food chain
model (see, e.g., [1,16]). The coefficients f and g satisfy
Assumption 2.4 obviously. Let q ≥ 2 be arbitrary. It is
almost straightforward to show

xT f(x, y, i, t) +
q − 1

2
|g(x, y, i, t)|2

≤ a1|x|2|y| − a2|x|4 + a3|y|2

≤ (a3 + 0.5a2
1/a2)|y|2 − 0.5a2|x|4, (5.2)

where a1 = a12 ∨ a21 ∨ b12 ∨ b21, a2 = 0.5(a11 ∧ a22 ∧
b11 ∧ b22) and a3 = 0.5(q − 1)(a13 ∨ a23 ∨ b13 ∨ b23)2. In
other words, Assumption 3.3 is satisfied. By Corollary
3.4, we can hence conclude that for any given initial data
{x(t) : −h ≤ t ≤ 0} ∈ C([−h, 0];R2) and r(0) = 1 or 2
(please note h is defined in Case 1 in Section 2), there
is a unique solution to the SDDE (5.1) which has the
property that lim supt→∞ E|x(t)|q <∞ for any q ≥ 2.

Example 5.2 Many practical systems may experi-
ence abrupt changes in their structures. For example,
a stochastic population system (see, e.g., [1,16,22,23])
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may change from a delay geometric Brownian motion
in the dry mode to a delay Lotka-Volterra equation in
the rain mode; a stochastic financial system (see, e.g.,
[4,12,27,28]) may switch from a geometric Brownian mo-
tion to a constant elasticity of volatility (CEV) process.
In this example, we will illustrate how our new theory
can be applied to study such type of hybrid systems. To
make it more understandable, we consider the SDDE
(1.1) with a two-state Markov chain, namely, r(t) there
is a Markov chain on the state space S = {1, 2} with

its generator Γ =

(
−γ12 γ12

γ21 −γ21

)
, where both γ12 and

γ21 are positive numbers. We assume the coefficients f
and g satisfy Assumption 2.4 while the delay function
δt satisfies Assumption 2.2 and is bounded. Assume in
mode 1, the coefficients satisfy

2xT f(x, y, 1, t) + 3|g(x, y, 1, t)|2 ≤ a11|x|2 + a12|y|2
(5.3)

while in mode 2,

2xT f(x, y, 2, t) + |g(x, y, 2, t)|2

≤a21|x|2 + a22|y|2 − a23|x|4 + a24|y|4 (5.4)

for (x, y, i, t) ∈ Rd × Rd × S × R+, where a11, a21 ∈ R,
a12, a22, a24 ∈ R+ and a23 > 0. We need some conditions
on these parameters. First of all, we assume that

2a11 + a12 < γ12, a23 < γ21,

a11a21 − a11γ21 − a21γ12 > 0.
(5.5)

These guarantee that the 2×2-matrixA := −diag(a11, a21)−
Γ is non-singular as its determinant |A| = a11a21 −
a11γ21 − a21γ12 > 0. Set

(θ1, θ2)T = A−1(1, 1)T , (5.6)

namely

θ1 = (γ12 + γ21 − a21)/|A|, θ2 = (γ12 + γ21 − a11)/|A|.

They are both positive by condition (5.5). To apply The-
orem 4.2, we define

V (x, i, t) =

{
θ1|x|2 + η|x|4 if i = 1,

θ2|x|2 if i = 2,
(5.7)

for (x, i, t) ∈ Rd × S × R+, where η is a positive free
parameter to be determined later. Making use of (5.3),
(5.4) and (5.6), we can easily show that

LV (x, y, 1, t) ≤ −|x|2 − η(γ12 − 2a11 − a12)|x|4

+ θ1a12|y|2 + ηa12|y|4 (5.8)

and

LV (x, y, 2, t) ≤ −|x|2 − (a23 − ηγ21)|x|4

+ θ2a22|y|2 + θ2a24|y|4 (5.9)

for (x, y, t) ∈ Rd×Rd×R+. Condition (5.5) guarantees
that there is a unique η > 0 such that η(γ12 − 2a11 −
a12) = a23 − ηγ21, namely

η =
a23

γ12 + γ21 − 2a11 − a12
. (5.10)

It then follows from (5.8) and (5.9) that

LV (x, y, i, t) ≤ −|x|2 − η1|x|4

+ (θ1a12 ∨ θ2a22)|y|2 + (ηa12 ∨ θ2a24)|y|4 (5.11)

for all (x, y, i, t) ∈ Rd × Rd × S× R+, where

η1 =
a23(γ12 − 2a11 − a12)

γ12 + γ21 − 2a11 − a12
. (5.12)

We now impose additional conditions on the parameters

a12 <
1

h̄θ1
∧ η1

h̄η
, a22 <

1

h̄θ2
, a24 <

η1

h̄θ1
. (5.13)

With these conditions, we see from (5.11) that

LV (x, y, i, t) ≤ −|x|2 − η1|x|4 + η2(|y|2 + η1|y|4),
(5.14)

where η2 := (θ1a12 ∨ θ2a22)∨ [(ηa12 ∨ θ2a24)/η1] < 1/h̄.
Define U1(x) = (θ1 ∧ θ2)|x|2 and U2(x) = [θ1 ∨ θ2 ∨
(η/η1)](|x|2 + η1|x|4). It is easy to see that U1(x) ≤
V (x, i, t) ≤ U2(x) while it follows from (5.2) that

LV (x, y, i, t) ≤ −c2U2(x) + c3U2(y), (5.15)

where c2 = 1/[θ1 ∨ θ2 ∨ (η/η1)] and c3 = η2c2. We have
c2 > h̄c3 as η2 < 1/h̄. Applying Theorem 4.2, we can
conclude that under the conditions specified above the
SDDE (1.1) is exponentially stable both in mean square
and with probability 1.

We perform a computer simulation for the scalar SDDE
(1.1), where the coefficients

f(x, y, t, 1) = 0.5x, g(x, y, t, 1) = 0.2y,

f(x, y, t, 2) = −2(x+ x3), g(x, y, t, 2) = 0.6y2

for (x, y, t) ∈ R × R × R+, B(t) is a scalar Brownian

motion, the generator of r(t) is Γ =

(
−4 4

1 −1

)
, while
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the delay function has the form

δt =
∞∑
k=0

[
(0.1 + 0.05(t− 2k))I[2k,2k+1)(t)

+ (0.15− 0.05(t− 2k − 1))I[2k+1,2(k+1))(t)
]
. (5.16)

In view of Case 2 in Section 2, we see that δt is not only
bounded but also satisfies Assumption 2.2 with h1 = 0.1,
h = 0.1 and h̄ ≤ 1/(1 − 0.05) = 1.052632. It is easy to
see that (5.3) and (5.4) hold with a11 = 1, a12 = 0.12,
a21 = −4, a22 = 0, a23 = 4 and a24 = 0.36. These pa-
rameters satisfy condition (5.5). We can then compute
θ1 = 0.8181818, θ2 = 0.3636364, η = 1.449275, η1 =
2.550725 and check condition (5.13) is satisfied. Accord-
ingly, the solution with the initial data x(t) = 1 + sin(t)
for t ∈ [−0.1, 0] and r(0) = 1 will tend to 0 exponen-
tially with probability 1 (and in mean square too). The
computer simulation (Figure 5.1) using the truncated
Euler–Maruyama method (see, e.g., [14]) supports the
result.

0 2 4 6 8 10

1.
0

1.
8

t

r(t
)

0 2 4 6 8 10

0.
0

1.
0

t

x(
t)

Figure 5.1: Computer simulation of the sample paths of
r(t) and x(t) using the truncated Euler–Maruyama method

with step size 0.0001.

6 Conclusion

In this paper we have studied a class of highly nonlinear
hybrid SDDEs. One of the main advances we have made
is that the time delay functions in the SDDEs are no
longer required to be differentiable, not to mention their
derivatives are less than 1. This is significantly different
from the most existing papers, though the very recent
paper [3] already tackled this problem initially. We made
a comparison between the results in [3] and our new re-
sults in Section 2.3 and demonstrated that our new re-
sults are much more general. The other main advance

we have made is that the coefficients of the hybrid SD-
DEs are allowed to be highly nonlinear, namely, they do
not have to satisfy the classical linear growth condition
but satisfy the generalized Hasminskii-type conditions
in terms of Lyapunov functions. Comparing with the ex-
isting results in Section 2.3, we showed that our new
theorems are much more general and can be applied to
a much wider class of highly nonlinear SDDEs. We have
also established several new theorems on the asymptotic
boundedness and stability for the hybrid SDDEs. We
have discussed two examples in Section 5 to show that
our new theory can be applied to study many practical
systems that may experience abrupt changes not only in
their parameters but also in structures.

7 Appendix

In this Appendix, we present two useful lemmas which
were used before.

Lemma 7.1 Let Assumption 2.2 hold. Letϕ : [−h,∞)→
R+ be a continuous function. Then for any T > 0∫ T

0

ϕ(t− δt)dt ≤ h̄
∫ T−h1

−h
ϕ(t)dt. (7.1)

This lemma was essentially proved in [3]. But our As-
sumption 2.2 is more general than the corresponding as-
sumption in [3]. We hence give the proof to make our
paper more complete.

Proof. Fix T > 0 arbitrarily. By Assumption 2.2, for any
ε > 0, there is a positive number ∆̄ such that

sup
s≥−h

µ(Ms,∆)

∆
≤ h̄+ ε, ∀∆ ∈ (0, ∆̄). (7.2)

Note that −h ≤ t− δt ≤ T − h1 for t ∈ [0, T ]. Let u be
any large integer such that ∆ := (T − h1 + h)/u < ∆̄.
Set tv = −h + v∆ for v = 0, 1, · · · , u. By the definition
of the Riemann-Lebesgue integral, we have

∫ T

0

ϕ(t− δt)dt = lim
u→∞

u−1∑
v=0

µ(Mtv,∆)ϕ(tv).

But, by (7.2), µ(Mtv,∆) ≤ (h̄+ ε)∆. Hence

∫ T

0

ϕ(t− δt)ds ≤ lim
u→∞

u−1∑
v=0

(h̄+ ε)∆ϕ(tv)

= (h̄+ ε)

∫ T−h1

−h
ϕ(t)dt. (7.3)

Letting ε→ 0 yields the required assertion (7.1). 2
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If we let ϕ(t) = 1 for all t ≥ −h, this lemma shows that
T ≤ h̄(T − h1 + h) for any T > 0, which implies h̄ ≥
limT→∞ T/(T−h1+h) = 1. In other words, Assumption
2.2 forces h̄ ≥ 1 inexplicitly. Our next lemma shows that
Assumption 2.2 imposed in this paper is weaker than
Assumption 2.1 which was used in many existing papers
(see, e.g., [2,7,16,25]).

Lemma 7.2 If δt satisfies Assumption 2.1, then it sat-
isfies Assumption 2.2 with h1 = 0, h = δ0 and h̄ ≤
1/(1− δ̄).

Proof. If δt satisfies Assumption 2.1, then it is easy to
deduce that h1 = 0. Let ηt = t − δt for t ≥ 0. Then
dηt/dt = 1− dδt/dt ≥ 1− δ̄ > 0. This implies that ηt is
a strictly increasing continuous function on t ∈ R+ and
ηt → ∞ as t → ∞. Hence, by the definition of h (i.e.,
(2.1)),

−h = inf
0≤t<∞

(t− δt) = −δ0

as required. Moreover, for any s ≥ −h and ∆ > 0, there
is a unique pair of numbers 0 ≤ t1 < t2 < ∞ such
that ηt1 = s and ηt2 = s + ∆ while ηt < s for t < t1;
s < ηt < s+ ∆ for t1 < t < t2 and ηt > s+ ∆ for t > t2.
In other words, we have Ms,∆ = [t1, t2]. On the other
hand,

∆ = η(t2)− η(t1) =

∫ t2

t1

(dηt/dt)dt

≥
∫ t2

t1

(1− δ̄)dt = (1− δ̄)(t2 − t1).

These imply µ(Ms,∆) = t2 − t1 ≤ ∆/(1 − δ̄). By the
definition of h̄ (i.e., (2.2)), we see that

h̄ = lim sup
∆→0+

(
sup
s≥−h

µ(Ms,∆)

∆

)
≤ 1

1− δ̄

as required. 2
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