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Abstract

This paper considers parameter estimation for nonlinear state-space models, which is an important but chal-
lenging problem. We address this challenge by employing a variational inference (VI) approach, which is a
principled method that has deep connections to maximum likelihood estimation. This VI approach ultimately
provides estimates of the model as solutions to an optimisation problem, which is deterministic, tractable and can
be solved using standard optimisation tools. A specialisation of this approach for systems with additive Gaussian
noise is also detailed. The proposed method is examined numerically on a range of simulated and real examples
focusing on the robustness to parameter initialisation; additionally, favourable comparisons are performed against
state-of-the-art alternatives.

1 Introduction

The problem of system identification is long-standing and has significant practical applications with a large body
of related literature across many different fields [27, 18]. In many important applications, the underlying system
exhibits nonlinear dynamic behaviour, which is assumed to be adequately captured by a time-indexed data record
of system inputs and outputs. The system identification problem is then to obtain a suitable model that best explains
this data. Such a model can then be employed as a surrogate for the actual system of interest for the purposes of
prediction, control, decision making and analysis.

Due to the enormous variety of systems, there is now a wide array of model classes. These range from linear
models [27], to block-structured nonlinear models [47], through to highly flexible nonlinear black-box models [30].
This paper focuses on probabilistic nonlinear state-space models, a highly flexible class of models that relies on a
so-called state, the time evolution of which models the system dynamics. It is important to highlight that the state
is typically unknown and, as such, is sometimes called hidden or latent. It is also well recognised that the system
identification problem for these models is important and difficult[30, 35]; the states being unknown is a significant
source of this difficulty [42].

In this paper, it is assumed that the structure of the state-space model is known but that the associated model
parameters are unknown and are to be estimated from the available data. There are many approaches available
for estimating these parameters, but we focus on maximum likelihood (ML) parameter estimation. The ML es-
timate has desirable statistical properties [2] and is commonly used in system identification [27, 35]. However,
computing the ML estimate is generally intractable for nonlinear state-space models. This intractability leads to
various approximations of the ML estimate; see, e.g. [43, 27, 35]. These approaches can be broadly grouped into
two categories according to the strategy used to handle unknown states; the so-called ‘marginalisation’ and ‘data
augmentation’ approaches [42].
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Marginalisation approaches compute the likelihood recursively by marginalising the unknown state and then max-
imise the resultant likelihood directly over the model parameters [40, 43]. This likelihood calculation is generally
intractable due to the required marginalisation step over an unknown state distribution. This fundamental difficulty
has lead to various approximations; for example, [23] and [43] consider using an unscented Kalman filter and
a particle filter, respectively. While promising results using stochastic quasi-Newton optimisation are shown in
[48], the marginalisation approach commonly has difficulties regarding undesirable local minima in the resulting
optimisation problems leading to issues regarding robustness to the initial parameter estimate [29, 28, 35].

Data augmentation approaches treat the unknown state as an auxiliary variable that is estimated alongside the
model parameters. A commonly used data augmentation method is the expectation maximisation (EM) approach
[12], which iterates between estimating the state and updating the parameters. Obtaining the state estimate for EM
is also generally intractable, and instead, various approximations have been used [8]. Both particle (PSEM) [43]
and assumed Gaussian [14, 22] approximations have been used within EM to deliver approximate ML estimates.
Stochastic approximation EM (SAEM) [11] offers improved performance over PSEM for nonlinear state-space
models [26], primarily due to more efficient iterations that use particles from previous iterations [42].

As an alternative to these methods, the primary contribution of this paper is the presentation of a variational infer-
ence (VI) [20, 5, 3, 4] based approach to approximate the ML parameter estimate for nonlinear state-space models.
The developed approach is a data augmentation method that provides parameter estimates that approximate the
maximum likelihood solution. The provided parameter estimate is obtained by solving a single optimisation prob-
lem of a standard form with readily available exact first- and second-order derivatives. The presented VI approach
jointly estimates the state and parameters and exhibits rapid convergence while remaining robust. This behaviour
contrasts with EM methods, where robustness is often observed, but the convergence rate decreases as the param-
eter estimate approaches the ML estimate.

Variational methods have also been applied to identify models of different classes in several works; see, for exam-
ple, [3, 4, 39, 25]. However, these methods do not apply to nonlinear state-space models and, along with many
other parameter estimation methods that use VI, are all variational-EM approaches [5, 49]. Compared to EM ap-
proaches, a key innovation of the proposed approach in this paper is the simultaneous optimisation over both the
state and the model parameters, which appears to offer significantly improved convergence rates.

2 Problem Formulation

The problem of system identification for nonlinear state-space models considered in this paper consists of using
the input and output measurements u , u1:T , {u1, . . . , uT } and y , y1:T , {y1, . . . , yT }, respectively, to
compute an estimate of the model parameters θ ∈ Rnθ for the following model structure

xk+1 = fk (xk, uk, vk, θ) , (1a)

yk = hk (xk, uk, ek, θ) , (1b)

where xk ∈ Rnx is the state, yk ∈ Rny is the observed measurement, uk ∈ Rnu is the measured input, and the
functions fk(·) and hk(·) describe the process and measurement models, respectively. The process and measure-
ment noise, vk and ek, respectively, are random variables assumed to belong to distributions of a known form.
Parameters of these distributions are included within θ. For ease of exposition, we henceforth drop the explicit
dependence on the inputs u.

Throughout this paper, we will frequently employ the alternative probabilistic representation of (1), given by

xk+1 ∼ pθ(xk+1 | xk), (2a)

yk ∼ pθ(yk | xk), (2b)

where p denotes a probability density function.

In this paper, the problem considered is approximating the maximum likelihood parameter estimate, given by

θML = argmax
θ

log pθ (y) . (3)

A well-known fundamental difficulty in solving (3) is that the log-likelihood function cannot be exactly com-
puted, which extends to the computation of gradient information, and therefore optimisation is challenging. In the
following section, we address this challenge by employing a so-called variational inference approach.
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3 Variational Nonlinear System Identification

In this section, the use of variational inference applied to nonlinear state-space systems will be presented in Sec-
tion 3.1. The relationship between variational inference and expectation maximisation is then examined in Sec-
tion 3.2.

3.1 Variational Inference

Variational inference is a widely used method where the primary aim is to approximate intractable distributions by
a tractable parametric density of an assumed form. The use of the epithet ‘variational’ stems from the idea that
these methods rely on optimisation as the primary tool for choosing the member of the parametric assumed density
that best matches the intractable distribution of interest. In this paper, we will employ the Kullback-Leibler (KL)
divergence [24] as the cost function for determining optimality. For ease of reference, the KL divergence between
two densities p(z) and q(z) is defined as

KL[p(z) || q(z)] ,
∫

p(z) log
p(z)

q(z)
dz. (4)

In the context of this paper, we motivate the use of VI by noting that the log-likelihood can be expressed using KL
divergence via

log pθ(y) =

∫

pθ(x | y) log pθ(y)dx (5a)

= −
∫

pθ(x | y) log pθ(x | y)
pθ(x,y)

dx (5b)

= −KL[pθ(x | y) || pθ(x,y)], (5c)

where x , x1:T+1 , {x1, . . . , xT+1} and the first equality comes from the fact that log pθ(y) does not depend on
x and is, therefore, invariant to expectation relative to any density in x. The second equality stems from the fact
that − log pθ(y) = log pθ(x | y) − log pθ(x,y) and the third equality from the definition of KL divergence (4).
Therefore, the maximum likelihood problem (3) can be equivalently stated as

θML = argmin
θ

KL[pθ(x | y) || pθ(x,y)]. (6)

Unfortunately, the smoothed state distribution pθ(x | y) cannot be expressed in closed form, rendering the associ-
ated optimisation problem (6) intractable.

In light of this, we propose to replace the intractable smoothed distribution pθ(x | y) with an η-parameterised
distribution qη(x), called the assumed density, and solve a similar problem

θ⋆, η⋆ = argmin
θ,η

KL[qη(x) || pθ(x,y)]. (7)

Note that the notation introduced here for an assumed density is general and is used with other parameters than
just η, and for distributions over other variables than just x, within this paper.

A major benefit of this approach is that qη(x) can be chosen in a convenient manner such that the resulting problem
is tractable. This procedure of approximating an intractable density with an assumed density and minimising
the KL divergence is known as variational inference (see, e.g. [5]). The utility of this approach is then highly
dependent on the choice of assumed density. In principle, this assumed density is selected to achieve two sometimes
competing goals, 1) the assumed density family should be flexible enough to ‘closely’ match pθ(x | y), and 2) the
assumed density qη(x) should result in a tractable optimisation problem (7).

To further discuss this approach, it will be convenient to introduce a cost function

L(η, θ) = −KL[qη(x) || pθ(x,y)], (8)

so that (7) becomes θ⋆, η⋆ = argmaxθ,η L(η, θ). The following lemma establishes that the log-likelihood
log pθ(y) is bounded below by L(η, θ), and the gap between the lower bound and log-likelihood is provided
by KL[qη(x) || pθ(x | y)]. Therefore, as the KL divergence between qη(x) and pθ(x | y) diminishes, the lower
bound becomes tight.
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Lemma 1. The log-likelihood can be expressed as

log pθ(y) = L(η, θ) + KL[qη(x) || pθ(x | y)], (9)

and is bounded below according to

log pθ(y) ≥ L(η, θ). (10)

Proof. Using conditional probability

log pθ(y) = log pθ(x,y) − log pθ(x | y). (11)

Through addition and subtraction of log qη(x) to the right-hand side of (11), this leads to

log pθ(y) = log
pθ(x,y)

qη(x)
+ log

qη(x)

pθ(x | y) . (12)

Taking expectation of both sides relative to qη(x) delivers

log pθ(y) =−
∫

qη(x) log
qη(x)

pθ(x,y)
dx

+

∫

qη(x) log
qη(x)

pθ(x | y)dx, (13)

which, from the definition of KL divergence, leads to the expression in (9). Since KL divergence is non-negative,
then KL[qη(x) || pθ(x | y)] ≥ 0 and (10) follows immediately from (9).

3.2 Comparison to Expectation Maximisation

There are close connections between solutions based on EM and VI; see, e.g. [34] and [44]. This section examines
some of these similarities and differences in the context of system identification for nonlinear state-space models.
Towards this end, the EM method can be summarised as iterating

θk+1 = argmin
θ

KL[pθk(x | y) || pθ(x,y)]. (14)

It is interesting to compare this with the ML problem in (6), where the only difference for EM is that the smoothed
density pθk(x | y) is fixed at the k’th parameter values. Importantly, EM relies on the smoothed density, which is
generally intractable. In theory, the EM approach generates parameters estimates θk that monotonically increases
log pθk(y) [7].

The following lemma reveals that EM can be viewed as block-ascent of the VI cost L(η, θ) over η and then
θ, respectively. This requires an assumption on qη(x), which essentially means that it is possible to match the
smoothed density pθk (x | y).
Lemma 2. Assume there exists an η such that

qη(x) = pθk(x | y). (15)

Then the EM iterations can be expressed as

ηk = argmax
η

L (η, θk) , (16a)

θk+1 = argmax
θ

L (ηk, θ) . (16b)

Proof. According to (9), we can state (16a) as

ηk = argmax
η

log pθk(y) − KL[qη(x) || pθk(x | y)].

Notice that log pθk(y) does not depend on η and, therefore, the above problem becomes

ηk = argmin
η

KL[qη(x) || pθk(x | y)]. (17)

Under assumption (15), KL[qη(x) || pθk(x | y)] has a global minimum value of zero, which is achieved for any
ηk that solves (17). Therefore, qηk

(x) = pθk(x | y), and (16b) coincides with (14).
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It is important to recognise that, generally, it is not possible to select a tractable qη(x) such that qη(x) = pθk(x | y)
for some η. Similarly, exactly computing the expectations with respect to the smoothed distribution pθk (x | y)
is generally not possible for nonlinear state-space models. As such, exactly performing EM on nonlinear state-
space models is generally intractable, which removes the guaranteed non-decrease of the log-likelihood. So-called
variational EM is obtained from iterating (16a)–(16b), where the assumed density qη(x) will not generally match
pθk(x | y) [5, 44]. This approach ensures a monotonic sequence of lower bounds to the log-likelihood.

Relative to these approaches, a major advantage of the proposed VI approach in (7) is that both η and θ are
jointly optimised; typically, this offers improved convergence rates compared with coordinate descent methods
[36]. While the simulations in Section 6 confirm this improved convergence rate, we recognise the limitations of
drawing general conclusions from these results.

4 Assumed Gaussian Distribution

As mentioned in Section 3, there are two competing goals when choosing the assumed density qη(x), namely that
it should be flexible enough to closely match pθ(x | y) and that it should result in a manageable optimisation
problem (7).

In light of this, we propose qη(x) to be a multivariate Normal (MVN) distribution

qη(x) = N (x | µ,Σ) , η , (µ,Σ) , (18)

where for clarity of exposition, the mean and covariance have the following structure

µ =











µ1

µ2

...
µT+1











, Σ =











Σ1,1 Σ1,2 · · · Σ1,T+1

ΣT

1,2 Σ2,2 · · · Σ2,T+1

...
. . .

...
ΣT

1,T+1 ΣT

2,T+1 · · · ΣT+1,T+1











, (19)

where each µk ∈ R
nx and Σk,j ∈ R

nx×nx . It is difficult to comment on whether or not this proposal will achieve
the first goal since pθ(x | y) is unknown in general. Nevertheless, this assumption aligns with other approaches
where the smoothed distribution is assumed to be MVN [40]. Note that this assumption on the form of the underly-
ing state may limit the performance of the overall system identification approach on some systems; examples may
include multi-modal systems. Importantly, the MVN assumption leads to a tractable and deterministic optimisation
problem (7). This section discusses the relevant details of this assumption and presents a different parameterisation
of η with a dimension significantly less than that of (µ,Σ).

4.1 Assumed Density qη(x) Details

In this section, we show that it is not necessary to compute the full joint state density qη(x) to compute θ⋆ under
the MVN assumption. Towards this, we begin by splitting η into two parts. First, α containing all the mean values
and the block-tridiagonal covariance matrices from (19), and second, γ containing all the remaining non-block-
tridiagonal covariance matrices from (19).

α ,

(

µ, (Σk,k)
T+1
k=1 , (Σk,k+1)

T

k=1

)

, (20a)

γ ,

(

(Σk,j)
T+1
j=k+2

)T−1

k=1
. (20b)

The following lemma shows that γ does not affect the optimal α parameters. This result means that γ can be
removed from the problem without impacting θ⋆. The benefit is that the dimension of α is significantly smaller
than η.

Lemma 3. Assume that η = (α, γ) according to (20) and let

θ⋆, α⋆ = argmax
θ,α

LR (α, θ) , (21)

where LR (α, θ) is defined as

LR (α, θ) = I1(α) + I2(α, θ)− I3(α), (22)
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and

I1 (α) =

∫

qα(x1) log p(x1)dx1,

I2 (α, θ) =

T
∑

k=1

∫

qα(xk:k+1) log pθ(xk+1, yk | xk)dxk:k+1,

I3 (α) =

T
∑

k=1

∫

qα(xk:k+1) log qα(xk:k+1)dxk:k+1

−
T
∑

k=2

∫

qα(xk) log qα(xk)dxk.

Then

θ⋆, α⋆, γ⋆ = argmax
θ,α,γ

L ((α, γ), θ) . (23)

Proof. See Appendix A.

Therefore, since we are ultimately interested in θ⋆, it suffices to solve (21), which has the major benefit of involving
a much-reduced parameter space. To solve (21) using standard gradient-based optimisation methods, it is crucial
LR (θ, α) can be evaluated, along with its gradient and possibly Hessian. For I1 (with a suitable choice for the
prior) and I3, these calculations are relatively straightforward since the required expectations have known closed-
form solutions. At the same time, these calculations are challenging for I2 since they cannot be computed in
closed-form in general.

To ameliorate this, here we introduce a parameterisation of the joint state (xk, xk+1) distribution that leads to both
computationally efficient approximations and straightforward computation of the first- and second-order deriva-
tives. To this end, let βk be defined as the set of parameters

βk = (µk, µ̄k, Ak, Bk, Ck), (24)

where Ak, Bk, Ck ∈ Rnx×nx and Ak, Ck are upper triangular. Then we can parameterise the assumed joint state
(xk, xk+1) density as

qβk
(xk, xk+1) = N

([

xk

xk+1

]

;

[

µk

µ̄k

]

, PT

k Pk

)

, (25)

where Pk is an upper triangular Cholesky factor

Pk =

[

Ak Bk

0 Ck

]

. (26)

We can collect all the βk’s into the tuple

β , (β1, β2, . . . , βT ). (27)

Note that this formulation is over-parameterised and it will lead to inconsistent results since the marginal distribu-
tion for xk can be computed from either qβk−1

(xk−1, xk) or qβk
(xk, xk+1). The following lemma introduces a

constraint set Ω that eliminates the unnecessary degrees of freedom in β.

Lemma 4. Assume that β is defined by (27). Let

Ω , {β | BT

kBk + CT

k Ck = AT

k+1Ak+1,

µk+1 = µ̄k, k = 1, . . . , T − 1}.

Then, for β ∈ Ω, it follows that

qα(xk:k+1) = qβk
(xk:k+1), (28)

whenever

Σk,k = AT

kAk, Σk,k+1 = AT

kBk. (29)

6



Proof. According to (18), note that qα(xk:k+1) is given by

N
([

xk

xk+1

]

;

[

µk

µk+1

]

,

[

Σk,k Σk,k+1

Σk+1,k Σk+1,k+1

])

. (30)

From (25), we note that qβk
(xk:k+1) is

N
([

xk

xk+1

]

;

[

µk

µ̄k

]

,

[

AT

kAk AT

kBk

BT

kAk BT

kBk + CT

k Ck

])

. (31)

If β ∈ Ω, then µ̄k = µk+1 and BT

kBk + CT

k Ck = AT

k+1Ak+1, and therefore (28) follows from (29).

The next section makes use of this parameterisation to approximate the required expectation in I2 in a computa-
tionally efficient manner.

4.2 VI Approximation

As mentioned in the previous section, it is vital for gradient-based optimisation that the expectation in I2 can
be approximated, along with its first- and second-order derivatives. The key difficulty in calculating I2 is the
computation of

∫

qα(xk:k+1) log pθ(xk+1, yk | xk)dxk:k+1. Employing Lemma 4, we can write this integral in
terms of βk, instead of α, as

Ek(βk, θ) ,

∫

qβk
(xk:k+1) log pθ(xk+1, yk | xk)dxk:k+1 .

Importantly, the choice in parameterisation affords a straightforward approximation of Ek(βk, θ), denoted as
Êk(βk, θ), using Gaussian quadrature (see, e.g. [21, 46]) via

Êk(βk, θ) ,

ns
∑

j=1

wj log pθ(x̄
j
k+1, yk | xj

k). (32)

In the above, wj are the so-called weights, and xj
k and x̄j

k+1 are the so-called sigma points. Importantly, the
weights are predefined constants, and the sigma points are defined as

[

xj
k

x̄j
k+1

]

=

[

µk AT

k 0
µ̄k BT

k CT

k

]

aj , (33)

where the vectors aj are also constant. Both the weights wj and vectors aj depend on the choice of Gaussian
quadrature, but they are nevertheless constant for this choice. For further details on specific quadrature methods
and the accuracy of different methods in a similar context, see, for example, [19, 41, 23]. Furthermore, the sigma
points being linear combinations of the elements of βk is critical as it significantly simplifies the calculation of
both first- and second-order derivatives used in the optimisation.

Using this approximation, we can define a tractable approximation to problem (21) via

β̂, θ̂ = argmax
β,θ

L̂R(β, θ), s.t. β ∈ Ω, (34)

where

L̂R (β, θ) = I1 (β) + Î2(β, θ)− I3 (β) , (35)

and

Î2(β, θ) =

T
∑

k=1

Êk(βk, θ). (36)

This constrained optimisation problem is of standard form and can be solved using exact first- and second-order
derivatives without any further approximations.

The assumptions contained within (34) are summarised as follows: first, an MVN distribution of the state is
assumed. Second, log pθ(x̄

j
k+1, yk | xj

k) can be evaluated and it is twice continuously differentiable, and third, the
use of quadrature to approximate the intractable expectations.
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4.3 Additive Gaussian Noise

In this section, we consider a simplification for nonlinear systems with additive Gaussian noise. This simplification
enables a reduction in the number of optimisation variables, brings numerical benefits, and enables an effective
approximation of the Hessian to be formed utilising only first-order derivatives. We consider a model structure of
the form

[

xk+1

yk

]

=

[

f(xk, φ)
h(xk, φ)

]

+

[

vk
ek

]

,

[

vk
ek

]

∼ N (0,Π), (37)

where θ = (φ,Π) includes model parameters φ and noise covariance Π. As detailed in the following Lemma 5,
the structure of this system allows for system identification to be performed using a more structured, reduced size
optimisation problem.

Lemma 5. For systems in the form of (37), identification can be performed by solving the reduced problem

β̂, φ̂ = argmax
φ,β

L̂AG (φ, β) , s.t. β ∈ Ω, (38)

where

L̂AG (φ, β) = I1(β) + ÎAG
2 (φ, β) − I3(β), (39a)

ÎAG
2 (φ, β) = c+

T

2
log |Π̂(φ, β)|, (39b)

Π̂ (φ, β) =
1

T

T
∑

k=1

ns
∑

j=1

wjξ
j
k

(

ξjk

)T

, (39c)

ξjk =

[

x̄j
k+1 − f(xj

k, φ)

yk − h(xj
k, φ)

]

, (39d)

and c is a constant that does not depend on φ or β.

Proof. Using (36) and (37), we can evaluate Î2 as

Î2 =
T

2
log |2πΠ|+ 1

2

T
∑

k=1

ns
∑

j=1

wj(ξ
j
k)

TΠ−1(ξjk). (40)

We note that (ξjk)
TΠ−1(ξjk) = tr{(ξjk)TΠ−1(ξjk)} = tr{Π−1(ξjk)(ξ

j
k)

T} since the trace operator is invariant to
cyclic permutations. Due to the fact that the trace is also a linear operator, we have that

Î2 =
T

2
log |2πΠ|+ tr







Π−1 1

2

T
∑

k=1

ns
∑

j=1

wj(ξ
j
k)

T(ξjk)







.

First-order necessary conditions of optimality require that ∂Î2 (β, θ) /∂Π = 0, which occurs when

Π = 1
T

∑T

k=1

∑ns

j=1 wjξ
j
k

(

ξjk

)T

, hence (39c). Substituting (39c) into (40) yields (39b), which completes the

proof.

Note that the final estimate of Π is subsequently given by evaluating Π̂
(

φ̂, β̂
)

using (39c). Further, decoupled

noise can be accommodated by constraining the off-diagonal block of Π to zero.

This specialisation possesses several benefits compared with a general approach. First, the number of variables
required to be optimised is reduced while still addressing the original underlying problem. Second, using only the
Jacobian of f(xk, φ) and h(xk, φ), the exact gradient and a good approximation for the Hessian of L̂AG (φ, β) can
be obtained; this is discussed further in Section 5.2, which focuses on the resulting optimisation problem.

5 Implementation Details

In this section, several key points regarding implementation details and the resulting optimisation problems are
considered. Section 5.1 examines the initialisation of the resultant optimisation problems, and Section 5.2 provides
some details regarding the optimisations required.
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5.1 Initialisation

Similar to all identification approaches for nonlinear systems, an initial estimate of θ must be provided and in-
fluences both the run-time required, and potentially, the parameter estimate produced. However, compared to
EM-based approaches, the proposed approach also requires an initial estimate of each pairwise joint distribution.
Similar to EM identification approaches, a smoother can provide this initialisation.

Alternatively, other approaches to initialise the state distributions can be used. This initialisation does not need to
satisfy the constraints and introduces an added level of flexibility to exploit. Generally, using the distributions from
a filtering pass has proven both effective and straightforward. The initial distribution can also be selected using
problem-specific knowledge; an example is when state estimates can be readily calculated from the measurements.
This alternative initialisation is particularly beneficial for the additive noise specialisation (Section 4.3), as it re-
moves the requirement to provide initial estimates for Π, which is not well known a priori.

Due to the general nature of the optimisation problems, it is not possible to describe the ‘best’ initialisation scheme
or how to ensure that undesirable local minima are avoided. As such, the numerical examples in Section 6 focus
on robustness with respect to the initialisation of parameters and use all of the initialisation schemes for the state
distributions discussed.

5.2 Optimisation

As previously stated, the resulting optimisation problems are of standard form and can be solved using standard
solvers. In the numeric examples, the solvers fmincon [32] and KNITRO [6] are both used.

To perform the optimisation effectively, the exact first- and second-order derivatives are used for the general form
of the proposed approach. Due to the assumed Gaussian distributions, closed-form expressions, and first- and
second-order derivatives exist for all terms, except for Î2 (β, θ). Due to the parametrisation of the optimisation
problem, the exact gradient and Hessian of Î2 (β, θ) can be efficiently obtained using automatic differentiation
[16]; we have used CasADi [1] for this purpose.

To further structure the optimisation problem a copy of θ for each time step, denoted θk, and the constraints
θ1 = θ2 =, . . . ,= θT , are introduced to result in a sparse block-diagonal Hessian. This structure allows the
Hessian to be both efficiently formed and used within optimisation routines with a computational complexity that
grows linearly in data length, i.e. O (T ).

For the additive Gaussian noise specialisation, the derivatives for ÎAG
2 (φ, β) are calculated using Lemma 6.

Lemma 6. The gradient and Hessian of ÎAG
2 (φ, β) with respect to x are given by

−∇xÎ
AG
2 (φ, β) = TJT

nvec
(

Π̄−
T

2 e(x)
)

, (41a)

−∇2
x,xÎ

AG
2 (φ, β) = TJT

nJn − T

2
V TV + S, (41b)

where

Jn =
(

ITns
⊗ Π̄−

T

2

) ∂vec (e (x))
∂xT

, (41c)

V = Ṽ + Pnx+ny
Ṽ , (41d)

Ṽ =
(

Π̄−
T

2 e (x) ⊗ Inx+ny

)

Jn, (41e)

Π̄ = e (x) e (x)
T
, (41f)

e (x) = [e (x)1 , . . . , e (x)T ], (41g)

e (x)k = [
√
w1ξ

1
k, . . . ,

√
wns

ξns

k ]. (41h)

The matrix Pnx+ny
is a square vec-permutation matrix [17], S contains second-order derivative terms, x is the

variables being optimised, JT

n Jn is block diagonal, V TV is dense, V ∈ R(nx+ny)
2
×Tnb , nb is the dimension of

the diagonal blocks, and, as e(x) is a linear function of the sigma points, both Jn and V can be obtained using

only the Jacobian of f(xk, φ) and h(xk, φ).

Proof. These equations can be verified by applying the approach to matrix calculus given in [31], properties of
Kronecker products, and extensive algebraic manipulations.
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The Hessian of −ÎAG
2 (φ, β) is approximated as

H2 ≈ TJT

nJn − T

2
V TV. (42)

For large T , the dense term renders both forming and factorising H2 computationally intractable. To avoid this
issue, we have developed a custom trust-region optimisation routine that, by exploiting the structure of the Hessian
approximation, performs an equivalent factorisation with a computational complexity linear in time with respect
to the number of measurements. The developed routine is based on the approaches in [36, 9, 33]; the full details
are beyond the scope of this paper.

6 Examples

In this section, we present three numerical examples. First, a stochastic volatility model (Section 6.1) that does not
possess additive Gaussian noise. Second, a simulated example of a differential drive robot (Section 6.2) and third,
an inverted pendulum using real data (Section 6.3). These latter two examples have additive Gaussian noise and
structures arising from first-principles modelling, representative of practical applications. The pendulum example
differs in that it compares with a particle, rather than an assumed Gaussian method, and that the system is unstable,
a property that can be challenging [38].

For all examples, unless specified otherwise, the proposed approach refers to the general form given by (34). A
third-order unscented transform [21, 46] has been used for all Gaussian quadrature approximations. All numerical
examples were conducted on a laptop with an i7-7820HK processor and 32GB of memory.

6.1 Stochastic Volatility Model

In this example, we consider the estimation of θ = [a, b, c] for the following stochastic volatility model

xk+1 = a+ bxk +
√
cvk, yk =

√
exkek, (43)

where vk ∼ N (0, 1) and ek ∼ N (0, 1) is considered using 726 simulated measurements. Results obtained using
stochastic approximation EM (SAEM) with a conditional particle filter (CPF) [26], referred to as CPF-SAEM,
which is an asymptotically convergent method, are used to compare against.

For the proposed method, each joint state distribution is initialised with a mean of [2, 2]T and a diagonal covariance
with standard deviations of 0.1. An initial parameter estimate of θ = [0, 0.5, 1]T is used for both approaches, and
50 particles were used for the CPF-SAEM approach.

The proposed method converged in 19 iterations and 3.18 s using fmincon [32] to perform the optimisation. In
contrast, CPF-SAEM did not converge and is limited to 1000 iterations, which required 326 s to complete. Fig. 1
shows the parameter trajectory of both methods and the true values. This result highlights that both methods
provide similar estimates that are close to the true parameter values. CPF-SAEM, however, requires a significantly
larger quantity of iterations and has only approached the parameter values obtained using the proposed method.

To examine if, at least for this example, the parameter estimates produced using the developed method converge
as expected for a maximum likelihood method, we have additionally estimated θ for 50 different data realisations
for differing numbers of simulated measurements. Table 1 shows the results of this experiment and illustrates
an asymptotic trend of decreasing bias and variance of the estimated parameters as the number of measurement
samples increases.

The robustness to initial estimates of the proposed method has also been examined using 100 random initial pa-
rameter estimates sampled from

a ∼ U(−0.5, 0.5), b ∼ U(0, 1.5), c ∼ U(0.25, 2).

Parameter trajectories for each trial are plotted in Fig. 2 and shows that each initialisation has converged to the
same parameter estimate.

In this section, the proposed system identification approach is applied to a system without additive Gaussian noise
and compared favourably with CPF-SAEM. The lack of additive Gaussian noise required no alterations to the
proposed approach, which proved to be both effective and robust to initial parameter estimates.
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Figure 1: Parameter trajectory vs. iteration count. The lines for the proposed method have been extended beyond 19 iterations
for clarity.

Table 1: Mean and standard deviation of the estimated parameters from the true values over 50 different realisations for differing
numbers of measurement samples.

Error of the Estimated Parameter

Samples a (true = 0.0848 ) b (true = 0.9393) c (true = 0.2369)

100 3.19× 10−1 ± 5.98× 10−1 −3.80× 10−1 ± 4.28× 10−1 4.76× 10−1 ± 6.51× 10−1

500 2.28× 10−2 ± 5.07× 10−2 −1.93× 10−2 ± 2.75× 10−2 4.85× 10−2 ± 8.11× 10−2

1000 2.31× 10−2 ± 4.12× 10−2 −1.40× 10−2 ± 2.26× 10−2 3.79× 10−2 ± 6.10× 10−2

5000 8.63× 10−3 ± 1.28× 10−2 −6.70× 10−3 ± 7.68× 10−3 3.05× 10−2 ± 2.36× 10−2

10 000 7.59× 10−3 ± 8.66× 10−3 −5.34× 10−3 ± 5.04× 10−3 2.86× 10−2 ± 1.74× 10−2

25 000 5.65× 10−3 ± 5.45× 10−3 −4.87× 10−3 ± 3.29× 10−3 2.50× 10−2 ± 1.10× 10−2

Figure 2: Parameter trajectory vs. iteration count for 100 random initial estimates using the proposed method.

6.2 Differential Drive Robot

In this example, we consider a continuous-time model of a differential drive robot given by













q̇1(t)
q̇2(t)
q̇3(t)
ṗ1(t)
ṗ2(t)













=

















cos(q3(t))p1(t)
m

sin(q3(t))p1(t)
m

p2(t)
J+ml2

−r1p1(t)
m

− mlp2

2
(t)

(J+ml2)2
+ u1(t) + u2(t)

(lp1(t)−r2)p2(t)
J+ml2

+ au1(t)− au2(t)

















,

where r1 = 1, r2 = 1, a = 0.5, m = 5, J = 0.2, l = 0.15, u1(t) is the force applied to the left wheel,
u2(t) is the force applied to the right wheel, and the state vector x(t) = [q1(t), q2(t), q3(t), p1(t), p2(t)]

T con-
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Figure 3: Comparison of proposed, VI-EM, and URTSS-EM approaches to identification on a simulated robot example. Pro-
posed extended past the 194 iterations required for convergence for clarity.

sists of x-position, y-position, heading, linear momentum, and angular momentum states, respectively. A 50 s
simulated trajectory is generated using an ODE solver disturbed by noise sampled from N (0, Q) where Q =
diag

(

0.001, 0.001, 1.745× 10−3, 0.001, 0.001
)

at 0.1 s intervals. Measurements at each interval are obtained ac-
cording to

yk = [q1(t), q2(t), q3(t)]
T
+ ek, ek ∼ N (0, R) ,

where R = diag
(

0.12, 0.12, 0.03492
)

. As the system identification methods considered in this paper are all for
discrete-time models, a Euler discretisation of the continuous-time dynamics over each 0.1 s interval was used to
obtain a model in the form of (37).

6.2.1 Convergence

This section examines the convergence when estimating m, l, r, and a decoupled additive Gaussian covariance.
For the proposed method, KNITRO [6] is used to perform the optimisation. The results are compared against two
assumed Gaussian EM approaches that approximate the smoothing step using the URTSS and the VI smoother in
[10]; these are denoted URTSS-EM and VI-EM, respectively and differ in how the assumed Gaussian smoothed
density is obtained. From Section 3.2, the VI-EM corresponds to variational EM. As such, VI-EM is expected
to converge towards the same values as the proposed method, albeit at a slower rate. For each method an initial
parameter estimate of m = 10, J = 4, l = 0.3, and

Π = diag
(

0.012, 0.012, 0.00352, 0.012, 0.012, 0.12, 0.12, 0.03492
)

,

is used. For the proposed method, the state distributions have been initialised using the filter developed in [10].

The proposed method converged to a locally optimal solution in 194 iterations in 297 s; neither the URTSS EM
nor the VI EM approaches converged within the 20× 103 iteration limit, which required 1.07 h and 5.81 h, respec-
tively, to reach. Fig. 3 shows the cost obtained using each method as a function of iteration count and illustrates
the 194 iterations of the proposed method outperformed the 20× 103 iterations of both the EM approaches. As
expected, VI-EM asymptotically approaches the cost achieved by the proposed method. Contrarily, URTSS-EM
does not approach this cost; neither does it maintain the desired monotonic behaviour of EM. This highlights the
benefit of following the more principled approach regarding any approximations introduced.

6.2.2 Robustness to Initialisation

This section examines the robustness of the proposed method to the initial parameter estimate. For this, estimation
of m, l, r, and coupled noise term Π is considered from 75 differing parameter initialisations given by

m ∼ U(0.5, 15), J ∼ U(0.01, 10), l ∼ U(0.01, 0.5),
Π = diag

(

0.12, 0.12, 0.03492, 0.12, 0.12, 0.52, 0.52, 0.17452
)

.

The initial state distributions for each optimisation were obtained by running the URTSS from the initial parameter
estimates.

Table 2 shows a subset of the estimated parameters for this experiment, whereΠii indicates the ith diagonal element
of Π. In the third column, the mean parameter estimate for each of the 75 trials is shown and is an effective estimate

12



Table 2: Parameter estimate for 75 differing initial parameter estimates to illustrate robustness.

Parameter True Estimated Maximum difference

m 5 5.07 6.15× 10−9

J 2 2.24 1.20× 10−8

l 0.15 0.14 6.64× 10−10

Π11 1.00× 10−3 1.12× 10−3 5.75× 10−9

Π22 1.00× 10−3 1.41× 10−3 3.04× 10−8

Π33 1.74× 10−3 1.85× 10−3 3.76× 10−9

Π44 1.00× 10−3 4.90× 10−3 1.52× 10−7

Π55 1.00× 10−3 1.40× 10−3 1.15× 10−8

Π66 1.00× 10−2 1.00× 10−2 4.69× 10−7

Π77 1.00× 10−2 8.25× 10−3 4.14× 10−7

Π88 1.22× 10−3 1.38× 10−3 1.33× 10−7

of the true parameters. The fourth column shows the maximum difference between this mean and each trial and
indicates that each of the 75 trials converged to the same parameter estimate, subject to a small tolerance.

These results indicate the robustness of the proposed approach and highlights that, at least for this example, the
proposed method does not suffer from a potentially large quantity of undesirable local minima. The estimates for
the off-diagonal elements of Π performed similarly as the parameters shown in Table 2. Due to the multi-variable
nature of Π, these numerical values are excluded for brevity.

6.3 Inverted Pendulum

This section considers a rotational inverted pendulum, or Furata pendulum [13], using data collected from a

Quanser QUBE-Servo 2. Letting the state vector used to model the Furata pendulum be x =
[

ϑ α ϑ̇ α̇
]T

,
where ϑ and α are the base arm and pendulum angles, respectively, and the controllable input to the system is the
motor voltage Vm. Then, the continuous time dynamics are then given by

M(α)

[

ϑ̈

α̈

]

+ ν(ϑ̇, α̇)

[

ϑ̇

α̇

]

=

[

km(Vm−kmϑ̇)
Rm

−Drϑ̇

−

1
2
mpLpg sin(α)−Dpα̇

]

,

M(α)=

[

mpL
2
r+

1
4
mpL

2
p(1−cos(α)2)+Jr

1
2
mpLpLr cos(α)

1
2
mpLpLr cos(α) Jp + 1

4
mpL

2
p

]

,

ν(ϑ̇, α̇)=

[

1
2
mpL

2
p sin(α) cos(α)α̇ −

1
2
mpLpLr sin(α)α̇

−

1
4
mpL

2
p cos(α) sin(α)ϑ̇ 0

]

,

where mp is the pendulum mass, Lr, Lp and the rod and pendulum lengths, Jr, Jp are the rod and pendulum iner-
tias, Rm and km are the motor resistance and constant, Dp and Dr are the pendulum and arm damping constants.
The considered process model is a two-step Euler discretisation of these continuous-time dynamics over an 8ms
sampling time subsequently disturbed by noise vk. The available measurements are from encoders on the rod and
pendulum angle, and the motor current. The resulting measurement model is

yk =
[

ϑ α Vm−kmϑ̇
Rm

]T

+ ek,
[

vTk eTk
]T ∼ N (0,Π) ,

which, together with the discrete process model obtained using the two-step Euler integration, results in a model
in the form of (37). We are interested in estimating the parameters θ = (Dr, Dp, Jr, Jp, km, Rm,Π).

This section compares the effectiveness and robustness of the additive noise specialisation of the proposed method
with CPF-SAEM from 50 differing parameter initialisations. These initialisations sampled from

Jr ∼ U(1× 10−7, 0.01), Dr ∼ U(1 × 10−7, 0.01),

Jp ∼ U(1× 10−7, 0.01), Dp ∼ U(1× 10−7, 0.01),

km ∼ U(0.001, 1), Rm ∼ U(4, 15),

with the noise covariance term initialised as

Π = diag
(

7.6154× 10−5, 7.6154× 10−5, 0.0012, 0.0012, 3.0462× 10−4, 3.0462× 10−4, 0.01
)

,
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Table 3: Mean and standard deviation of the parameter estimates for each successful trial from 50 differing initial values.
Twelve of the CPF-SAEM runs were unsuccessful and have been censored.

Parameter Proposed CPF-SAEM

Jr 1.07× 10−4 ± 8.17× 10−11 1.08× 10−4 ± 3.27× 10−7

Jp 2.92× 10−5 ± 3.32× 10−11 2.90× 10−5 ± 7.80× 10−8

km 4.57× 10−2 ± 2.73× 10−8 4.99× 10−2 ± 4.60× 10−4

Rm 9.59± 4.06× 10−7 1.02× 101 ± 7.42× 10−2

Dp 4.68× 10−5 ± 7.66× 10−11 5.03× 10−5 ± 7.24× 10−7

Dr 2.81× 10−4 ± 1.87× 10−9 2.15× 10−4 ± 4.32× 10−6

Π11 3.94× 10−6 ± 1.58× 10−10 6.12× 10−6 ± 3.41× 10−7

Π22 1.99× 10−6 ± 2.16× 10−10 4.63× 10−6 ± 2.98× 10−7

Π33 2.72× 10−2 ± 2.71× 10−7 2.58× 10−2 ± 1.10× 10−3

Π44 3.10× 10−2 ± 2.17× 10−7 3.08× 10−2 ± 1.61× 10−3

Π55 2.42× 10−6 ± 5.21× 10−10 1.31× 10−6 ± 9.42× 10−8

Π66 1.75× 10−6 ± 2.03× 10−10 1.28× 10−6 ± 6.68× 10−8

Π77 1.91× 10−2 ± 1.02× 10−9 1.96× 10−2 ± 1.18× 10−4

on a single data set consisting of 375 measurements, during which the pendulum undergoes full rotations. Note
that the noise terms are only utilised for the CPF-SAEM approach; in accordance with Section 5.1 they are not
required for the additive noise version of the proposed approach.

For these trials, the initial position and velocity states used the respective measurements and a finite-difference
approximation for the means, and standard deviations of 1° and 10 ° s−1, respectively. For the proposed method,
a relative function tolerance of 1× 10−8 on L̂AG (φ, β) was the termination condition, which required a median
of 170 iterations and 112 s to achieve. Importantly, the proposed method proved to be robust to the differing
initialisations, with all trials converging to the same value subject to a small numeric tolerance.

The CPF-SAEM approach was performed using a fully adapted auxiliary particle filter [37] with 100 particles, 50
particles for the backward simulation smoother [15], and a burn-in of 100 iterations before applying the stochastic
approximation. The iterations terminated when the change in all parameter estimates between successive iterations
fell below 1× 10−3 for five of the last ten iterations, which required a median of 156 iterations and 308 s to achieve.
In contrast to the proposed method, CPF-SAEM failed on 12 of the 50 trials.

Table 3 shows the mean and standard deviation of a subset of the estimated parameter values of each successful
trial, where Πii indicates the ith diagonal element of Π. The closeness of the estimates for the proposed method to
the successful CPF-SAEM trials illustrates that, despite the approximations introduced, similar parameter estimates
are obtained. While, for brevity, the numeric values of off-diagonal elements of Π are omitted here, they were
similarity estimated.

This section has demonstrated the applicability of the developed system identification approach on a real unstable
system of practical interest. In particular, this example has shown the robustness to initialisation, computational
efficiency, and ability to provide parameter estimates close to those of particle methods.

7 Conclusion

The contribution of this paper is to present a VI based approach to system identification for nonlinear state-space
models. The resulting system identification approach consists of a single, deterministic, optimisation problem.
Due to the assumed density and constrained parametrisation chosen, this optimisation problem is of a standard
form and is efficiently solved using readily available exact first- and second-order derivatives. A specialisation for
systems with additive Gaussian noise was also presented. The proposed method has been numerically examined
on a range of simulated and real examples to illustrate the robustness and effectiveness and is compared favourably
to state-of-the-art alternatives.
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A Proof of Lemma 3

Proof. The cost function L ((α, γ), θ) is given by

L ((α, γ), θ) =

∫

qη(x) log
pθ(x,y)

qη(x)
dx (44)

=

∫

qη(x) log pθ(x,y)dx

−
∫

qη(x) log qη(x)dx. (45)

Due to the Markovian nature of state-space models, conditional probability, and that qη(x) is a probability distri-
bution, similar to [43, 8, 40, 45, 10], we can write

∫

qη(x) log pθ(x,y)dx = I1 (α) + I2 (α, θ) . (46)

This is as only the pairwise joint distributions are required in the calculation of the first integral of (45), i.e. it is
independent of γ.

As shown in [10], the optimal assumed density qη⋆ (x) factors according to

qη⋆ (x) = qη⋆ (x1)

T
∏

k=1

qη⋆ (xk+1 | xk) , (47)

and that γ⋆ = g(α⋆), where g(α) is a function (defined by the process detailed in Appendix C of [10]) that provides
a γ such that the above factorisation is satisfied. As such, by substituting γ = g(α), the second integral in (45) is
given by

∫

qη(x) log qη(x)dx = I3 (α) . (48)

Therefore, we can equivalently find θ⋆ and α⋆ from either (21) or (23).
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