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Abstract

We consider nonlinear impulsive systems on Banach spaces subjected to disturbances and look for dwell-time conditions
guaranteeing the the ISS property. In contrary to many existing results our conditions cover the case where both continuous
and discrete dynamics can be unstable simultaneously. Lyapunov type methods are use for this purpose. The effectiveness of
our approach is illustrated on a rather nontrivial example, which is feedback connection of an ODE and a PDE systems.
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1 Introduction

Hybrid systems accommodate continuous and discon-
tinuous behavior, which allow to model modern practi-
cal processes, where a combination of analog and digi-
tal effects takes place as well as other processes where,
for example, collisions can change the systems state in-
stantaneously. The general theory of hybrid systems in-
cludes results on existence, uniqueness, continuous de-
pendence on initial data, stability and robustness of so-
lutions, see [20,19,10]. Impulsive systems are a particu-
lar subclass of hybrid ones, see [15,9], where many sta-
bility results were developed, in particular by means of
the linear approximations and by the direct Lyapunov
method as well as by means of the corresponding com-
parison principle. Such systems can be seen as a combi-
nation of continuous and discrete subsystems. Stability
conditions for nonlinear impulsive systems using contin-
uously differential Lyapunov functions were provided in
[15]. The proofs are based on the comparison principle
and require that either of the continuous and discrete
subsystems is stable. More general stability conditions
were developed in [9] on the base of Lyapunov functions
discontinuous in time. These conditions allow also to es-
tablish stability even in the case, when both dynamics
are unstable. Moreover in this class of Lyapunov func-
tions these conditions are necessary and sufficient [7].
Practical applications of these results lead to difficul-
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ties in contructions of suitable Lyapunov functions. This
problem was considered in [16,2] for the case of linear
finite dimensional impulsive systems with constant co-
efficients. Even in this relatively simple case these works
need to use lyapunov functions, which depend explicitly
on time. In general, a construction of Lyapunov function
leads to a rather complex boundary value problem for a
systems of matrix differential equations [2].

In contrary to the above mentioned works, we will con-
sider nonlinear infinite dimensional impulsive systems.
Our aim is to establish stability conditions by means of
smooth Lyapunov functions, which do not depend on
time at least in case when the right hand sides of the
equations do not depend on time. As well we would like
to cover the case, where both continuous and discrete
dynamics can be unstable. Our class of systems is essen-
tially more general, than in the above mentioned litera-
ture and the existing methods cannot be applied directly
for our purposes.

Certain results in this direction exist: The work [11] uses
second order and the work [5] uses even higher order
derivatives of Lyapunov functions, which leads to addi-
tional restrictions on the equations constituting the im-
pulsive system. Different related approaches were devel-
oped in [17,1], devoted to linear impulsive systems on Ba-
nach spaces containing continuous operators only. Also
these results cannot be extended directly to the class of
systems considered in this paper.

Furthermore, we will consider systems with disturbances
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and hence we will work in the ISS framework. This al-
lows for potential applications in view of studying sta-
bility of interconnected systems. Several related results
in this framework exist, see [4,14,3], for example. The
work [4] provides stability conditions of the dwell-time
type for systems in Banach spaces, however it was as-
sumed that either discrete or continuous dynamics pos-
sesses the ISS property. Interconnections of impulsive
systems, such that not all of them are ISS were stud-
ied in [14]. The work [3] studies ISS properties of impul-
sive systems where jump mappings may depend on time
and provides dwell-time conditions establishing the ISS
property. However only finite dimensional systems were
considered in the last two papers.

The main result of our work extends the results of [4]
to the general case, where we do not require that either
continuous or discrete dynamics is ISS. To this end we
use completely different approach. We split the state
space into two subsetsX = G−∪G+ with int G−∩G+ =
∅ and such that G+ is forward invariant. We use two
auxiliary functions, one is V of the Lyapunov type the
other one is W of Chetaev type. The latter one is used
to establish the invariance property of G+.

The Lyapunov function V decays along the trajectories
in G− but can increase in G+ and allows to estimate
the change of solutions between the jumps. It is assumed
that the jumps from the state in G+ are always stabi-
lizing, and there is no such restriction in G−. Finally,
the ISS property is guaranteed by a dwell-time condi-
tion. In the particular case, when both continuous and
discrete dynamics are not stable this conditions restricts
the jumps frequency both from below and above.

We apply our result to a feedback connection of a linear
ODE and a nonlinear PDE of the parabolic type. This
illustrates how our approach can be applied and demon-
strates its powerfulness. Let us note that this example
cannot be handled in view of stability by the existing
results because of its nonlinearity, possible instability
of both dynamics as well as irregular time instants of
jumps.

2 Preliminaries

We will use the following classes of continuous functions,
frequently called comparison functions
P = {γ : R+ → R+| γ(r) = 0 ⇔ r = 0},
K = {γ ∈ P| γ is strictly increasing},
K∞ = {γ ∈ K| γ is unbounded},
K2

∞ = {γ : R2
+ → R+ | γ(·, s) ∈ K∞, γ(s, ·) ∈ K∞},

L = {γ : R+ → R+| decreasing with lim
t→∞

γ(t) = 0},
KL = {β : R+ × R+ → R+| β(·, t) ∈ K, β(s, ·) ∈ L}.
For any ̺ ∈ K and any a, b ∈ R+ it follows by the
monotonicity that

̺(a+ b) ≤ ̺(2a) + ̺(2b). (1)

C[0, l] denotes the space of functions continuous on [0, l]
with values in R and the norm ‖f‖C[0,l] = max

x∈[0,l]
|f(x)|,

Ck[0, l] stands for the space of k-times continu-
ously differentiable functions normed by ‖f‖Ck[0,l] =

max
p=0,...,k

max
x∈[0,l]

|f (p)(x)|. H0[0, l] = L2[0, l] is the Hilbert

space of measurable and square integrable functions

with the scalar product (f, g)L2[0,l] =
l∫
0

f(z)g(z) dz.

L(L2[0, l]) denotes the Banach algebra of linear bounded
operators on L2[0, l].

The Hilbert spaceHk[0, l] ⊂ L2[0, l] is a subset ofL2[0, l]
of functions f such that f (p) ∈ L2[0, l] for , p = 0, . . . , k
and the scalar product defined by

(f, g)Hk[0,l] =
k∑

p=0

l∫

0

f (p)(z)g(p)(z) dz. (2)

Recall that Hk[0, l] is the completion of Ck[0, l] with re-

spect to the norm ‖f‖Hk[0,l] =
√

(f, f)Hk[0,l]. C
∞
0 [0, l] is

the space of infinitely smooth on [0, l] functions vanishing
in the vicinity of x = 0 and x = l. C∞

0 ([0, T ], C∞
0 [0, l])

is the set of mappings f : [0, T ] → C∞
0 [0, l] vanish-

ing in the vicinity of t = 0 and t = T . Completion
of C∞

0 [0, l] with respect to the norm (2) is denoted by
Hk

0 [0, l]. In the space H1
0 [0, l], due to the inequality of

Friedrichs, the norms ‖·‖H1[0,l] and ‖·‖H1
0
[0,l] defined by

‖f‖H1
0
[0,l] = ‖fz‖2L2[0,l], are equivalent. L∞(R+) is the

space of measurable and essentially bounded functions
f : R+ → R,

For M ⊂ R and a Banach space X by L∞(M,X) we
denote the space of mappings f : M → X normed
by ‖f‖L∞ = supm∈M ‖f(m)‖X , where in the particular
case M = Z+ we write L∞(Z+, X) = l∞(X). Br(x)
denotes the open ball centered at x ∈ X of radius r > 0.
For Banach spaces X,Y and mappings f : R → X ,
g : R → Y the Cartesian product f × g : R → X × Y
is defined by (f × g)(t) = (f(t), g(t)). For α ∈ (0, 1] the
space of locally Hölder continuous functions = f : R+ →
X is denoted by Hα(R+, X) and let Hloc(R+, X) :=
∪α∈(0,1]Hα(R+, X).

For a linear bounded operator A defined on a Bacnach
space by σ(A) we denote its spectrum and by rσ(A) its
spectral radius.

R
n×m denotes the linear space of matrices of the size

n × m, where in case m = n, the space R
n×n is a Ba-

nach algebra. For A ∈ R
n×n we denote R

n: ‖A‖ =

sup‖x‖=1 ‖Ax‖ = λ
1/2
max(ATA). S

n denotes the set of
symmetric matreces of the size n. For P,Q ∈ S

n we
write P ≻ Q if the matrix P −Q is positive definite. For

2



A ∈ S
n by λmin(A) and λmax(A) we denote the small-

est and the largest eigenvalues of A respectively. The
inequality P ≤ Q should be understood element-wise.

The following well-known inequalities will be used

xy ≤ xp1

p1
+
yp2

p2
, x ≥ 0, y ≥ 0, p1 ∈ (0,∞),

1

p1
+

1

p2
= 1,

(3)
and for any f ∈ Lp1 [0, l] and g ∈ Lp2 [0, l] it holds that

∣∣∣
l∫

0

f(t)g(t) dt
∣∣∣ ≤

( l∫

0

|f(t)|p1 dt
)1/p1(

l∫

0

|g(t)|p2 dt
)1/p2

,

p1 ∈ (1,∞),
1

p1
+

1

p2
= 1,

(4)
known as Young’s and Hölder’s inequalities, in the par-
ticular case p1 = p2 = 2 they are also known as Cauchy
inequalities. For any f ∈ H1

0 (0, l) also holds

‖f‖2H1
0
(0,l) ≥

π2

l2
‖f‖2L2[0,l], (5)

and if additionally f ∈ H1
0 (0, l) ∩H2(0, l), then

‖∂zzf‖2L2[0,l] ≥
π2

l2
‖∂zf‖2L2[0,l], (6)

3 Stability notions

Let us introduce dynamical systems that we will consider
adapting definitions from [18,12,13].

Definition 1 Let X be the state space with the norm
‖ · ‖X and U1 ⊂ {f : R → U1} be the space of input
signals normed by ‖·‖U1

with values in a nonempty subset
U1 of some linear normed space and invariant under the
time shifts, that is if d1 ∈ U1 and τ ∈ R, then Sτd1 ∈ U1,
where Ss : U1 → U1, s ∈ R is the linear operator defined
by Ssu(t) = u(t + s) and satisfying ‖Ss‖ ≤ 1. It is also
assume that for all u1, u2 ∈ U and any t ≥ t0 we have
that u(τ) := u1(τ) for τ ∈ [t0, t] and u(τ) := u2(τ) for
τ > t0 it holds that u ∈ U .

The triple Σc = (X,U1, φc) is called dynamical sys-
tem with inputs if the mapping φc : (t, t0, x, d1) 7→
φc(t, t0, x, d1) defined for all (t, t0, x, d1) ∈ [t0, t0 +
ǫt0,x,d1) × R × X × U1 for some positive ǫt0,x,d1 and
satisfies the following axioms

(Σc1) for t0 ∈ R, x ∈ X, d1 ∈ U1, t ∈ [t0, t0 + ǫt0,x,d1)
the value of φc(t, t0, x, d1) is well defined and the mapping

t 7→ φc(t, t0, x, d1) is continuous on (t0, t0+ ǫt0,x,d1) with
limt→t0+ φc(t, t0, x, d1) = x;

(Σc2) φc(t, t, x, d1) = x for any (x, d1) ∈ X × U1, t ∈ R

(Σc3) for any t0 ∈ R, (t, x, d1) ∈ [t0, t0+ǫt0,x,d1)×X×U1

and d̃1 ∈ U1 with d1(s) = d̃1(s) for s ∈ [t0, t] it holds that

φc(t, t0, x, d1) = φc(t, t0, x, d̃1);

(Σc4) for any (x, d1) ∈ X × U1 and t ≥ τ ≥ t0 with
τ ∈ [t0, t0+ǫt0,x,d1), t ∈ [τ, τ+ǫτ,φ(τ,t0,x,d1),d1)∩ [t0, t0+
ǫt0,x,d1) it holds that

φc(t, t0, x, d1) = φc(t, τ, φ(τ, t0, x, d1), d1),

(Σc5) for any (x, d1) ∈ X ×U1 and t ∈ [t0, t0 + ǫt0,x,d1),
it holds that

ǫt0+τ,x,d1 = ǫt0,x,Sτd1 ,

φc(t+ τ, t0 + τ, x, d1) = φc(t, t0, x,Sτd1).

Note that (Σc5) implies that for all t ∈ [τ, τ + ǫτ,x0,d1),
τ ≤ t

φc(t, τ, x, d1) = φc(t− τ, 0, x,Sτd1). (7)

Systems with impulsive actions are defined as follows

Definition 2 Let E = {τk}∞k=0, τk ∈ R be a strictly
increasing time sequence of impulsive actions with
lim
k→∞

τk = ∞. Let U2 ⊂ {f : Z+ → U2} be the space

of input signals normed by ‖ · ‖U2
and taking values

in a nonempty subset U2 of some linear normed space.
Let g : X × U2 → X be a mapping defining im-
pulsive actions and the mapping φ be defined for all
(t, t0, x, d1, d2) ∈ R× R×X × U1 × U2, t ≥ t0.

The following dataΣ = (X,Σc,U2, g, φ, E) defines a (for-
ward complete) impulsive system if

(Σ1) for all (k, x, d1) ∈ Z+ × X × U1 the system Σc
satisfies

τp(t0) − t0 < ǫt0,x,d1, Tk := τk+1 − τk < ǫτk,x,d1

where we denote p(t0) := min{k ∈ Z+ : τk ∈ Et0} with
Et0 = [t0,∞) ∩ E; and

(Σ2) the mapping φ satisfies

φ(t, t0, x, d1, d2) = φc(t, t0, x, d1), for all t ∈ [t0, τp(t0)],

φ(t, t0, x, d1, d2) = φc(t, τk, g(φ(τk, t0, x, d1, d2), d2(k)), d1)

for all t ∈ (τk, τk+1], k ∈ Z+, k ≥ p(t0).

We will denote for short

φ(τ+k , t0, x, d1, d2) = g(φ(τk, t0, x, d1, d2), d2(k)),

k ≥ p(t0), τk ≥ t0

3



The conditions (Σc1) and (Σ2) imply

lim
t→τk+

φ(t, t0, x, d1, d2) = φ(τ+k , t0, x, d1, d2),

lim
t→τk−

φ(t, t0, x, d1, d2) = φ(τk, t0, x, d1, d2);

and (Σc4), (Σc5), (Σ2) imply that for t ≥ τ ≥ t0,
(x, d1, d2) ∈ X × U1 × U2 the following holds

φ(t, t0, x, d1, d2) = φ(t, τ, φ(τ, t0, d1, d2), d1, d2). (8)

The system Σc describes the continuous dynamics of the
impulsive system Σ. One can also consider its discrete
dynamics separately as a system Σd defined next

Definition 3 A discrete dynamical system with input
Σd = (X, g, φd,U2) is defined by a normed state space
(X, ‖·‖X); a space of input signals U2 ⊂ {f : Z+ → U2}
with norm ‖ · ‖U2

and values in a nonempty subset U2

of a linear normed space; a mapping g : X × U2 → X;
and a mapping φd : (k, l, x, d2) 7→ φd(k, l, x, d2), for
(k, l, x, d2) ∈ Z+ × Z+ ×X × U2, k ≥ l such that

(Σd1) d(k, k, x, d2) = x and
φd(k + 1, l, x, d2) = g(φd(k, l, x, d2), d2(k)) for all k ≥ l.

We assume that Σ satisfies the following

Assumption 1 There exist ξ, ξτ ∈ K∞, τ ∈ R+ and
ητ , η ∈ K∞ such that

‖φc(t, 0, x, d1)‖ ≤ ξτ (‖x‖) + ητ (‖d1‖U1
), t ∈ [0, τ ],

(9)
where (x, d1) ∈ X × U1 and

‖g(x, d2)‖ ≤ ξ(‖x‖) + η(‖d2‖U2
), (10)

where (x, d2) ∈ X × U2.

Now we define the main stability property of this paper.

Definition 4 For a fixed time sequence E of impulsive
actions the system Σ is called input-to-state stable (ISS)
if there exist functions βt0 ∈ KL, γt0 ∈ K∞, such that
for all x ∈ X and all (d1, d2) ∈ U1 × U2 it holds that

‖φ(t, t0, x, d1, d2)‖X ≤ βt0(‖x‖X , t) + γt0(d), t ≥ t0
(11)

where d := max{‖d1‖U1
, ‖d2‖U2

}.

Definition 5 The Lie derivative of a function V : X →
R is defined by

V̇ (x, ξ) = lim
t→0+

1

t
(V (φc(t, 0, x, ξ))− V (x)), (x, ξ) ∈ X × U1

In many practical particular cases there are simpler ex-
pressions for calculation of the Lie derivative possible,
see Remark 2.15 in [13].

The aim of our work is to establish conditions guaran-
teeing the ISS property for nonlinear impulsive systems.
Next we define the class of functions that we will use as
Lyapunov functions for studying the ISS property.

Definition 6 A continuous function V : X → R+ is
called ISS-Lyapunov function if for some α1, α2 ∈ K∞

it holds that

α1(‖x‖X) ≤ V (x) ≤ α2(‖x‖X), x ∈ X, (12)

and there exists a functionW ∈ C(X,R),W (0) = 0 such

that the Lie derivatives V̇ (x, ξ) and Ẇ (x, ξ) exist for all
(x, ξ) ∈ X × U1, the sets

G+ = {x ∈ X : W (x) ≥ 0},
G− = {x ∈ X : W (x) ≤ 0}, (13)

are not empty and for some χ ∈ K∞ and ϕi ∈ P, ψi ∈ P,
i = 1, 2 so that

x ∈ G−, ‖x‖X ≥ max{χ(‖ξ‖U1
), χ(‖µ‖U2

)}

⇒
{
V̇ (x, ξ) ≤ −ϕ1(V (x)),

V (g(x, µ)) ≤ ψ1(V (x))

(14)

x ∈ G+, ‖x‖X ≥ max{χ(‖ξ‖U1
), χ(‖µ‖U2

)}

⇒
{
V̇ (x, ξ) ≤ ϕ2(V (x)),

V (g(x, µ)) ≤ ψ2(V (x))

(15)

and

W (x) = 0, ξ 6= 0, ‖x‖ ≥ χ(‖ξ‖) ⇒ Ẇ (x, ξ) > 0. (16)

This definition defers from the known ones, as for exam-
ple in [4], due to the auxiliary function W which is of
Chetaev type.

4 Main result

Our main results establish conditions guaranteeing the
ISS property of Σ.

Theorem 1 Let the impulsive system Σ satisfy the As-
sumption 1 and possesses an ISS-Lyapunov function V ,
satisfying (12)–(15) such that for some constants θ1 and
θ2 (θ1 ≤ θ2) and δ > 0 for all a > 0 holds

ψ1(a)∫

a

ds

ϕ1(s)
≤ θ1 − δ, (17)
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a∫

ψ2(a)

ds

ϕ2(s)
≥ θ2 + δ. (18)

Then for any E such that the dwell-time Tk = τk+1 − τk,
k ∈ Z+ satisfies θ1 ≤ Tk ≤ θ2 the system Σ is ISS.

The proof of this theorem is split into several steps.
Without loss of generality we assume t0 ≤ τ0, p(t0) = 0.

Proposition 1 Let Σ satisfy the Assumtion 1 and for
some βτ+

0

∈ KL, γτ+

0

∈ K∞ its solutions satisfy for all

t > τ0 the inequality

‖φ(t, t0, φ0, d1, d2)‖X
≤ βτ+

0

(‖φ(τ+0 , t0, φ0, d1, d2)‖X , t) + γτ+

0

(d),
(19)

Then Σ is ISS.

Proof. Let us fix any initial state φ0 and disturbance
d1, d2. From Σ2, (7) and (9) it follows that for all t ∈
[t0, τ0] the next estimate holds

‖φ(t, t0, φ0, d1, d2)‖X = ‖φc(t− t0, 0, φ0,St0d1)‖X
≤ ξτ0−t0(‖φ0‖X) + ητ0−t0(d).

(20)
Also from (10) and (1) we have the next estimate
‖φ(τ+0 , t0, φ0, d1, d2)‖X ≤ ξ(‖φ(τ0, t0, φ0, d1, d2)‖X) +
η(d) ≤ ξ(ξτ0−t0(‖φ0‖X) + ητ0−t0(d)) + η(d)

≤ ξ̂τ0−t0(‖φ0‖X) + η̂τ0−t0(d),

for some fixed ξ̂τ0−t0 ∈ K∞, η̂τ0−t0 ∈ K∞.

Finally, from (19) and (1) we have

‖φ(t, t0, φ0, d1, d2)‖ ≤ βτ+

0

(‖φ(τ+0 , t0, φ0, d1, d2)‖X , t)
+γτ+

0

(d) ≤ βτ+

0

(ξ̂τ0−t0(‖φ0‖X) + η̂τ0−t0(d), t) + γτ+

0

(d)

≤ β̂τ+

0

(‖φ0‖X , t) + β̃τ+

0

(η̃τ0−t0(d), τ
+
0 ) + γτ+

0

(d)

≤ β̂τ+

0

(‖φ0‖X , t) + γ̂τ+

0

(d), t > τ0

(21)

for some β̂τ+

0

, β̃τ+

0

∈ KL, γ̂τ+

0

∈ K∞. Let us define for

s ≥ 0 and t ≥ t0

bt0(s, t) :=

{
ξτ0−t0(s), t ∈ [t0, τ0],

ξτ0−t0(s)e
−t+τ0 , t > τ0;

βt0(s, t) := max{bt0(s, t), β̂τ+

0

(s, t)};

γt0(s) := max{γ̂τ+

0

(s), ητ0−t0(s)}.
From these definitions follows βt0 ∈ KL, γt0 ∈ K∞ and
(20) with (21) imply the ISS property for the impulsive
system Σ, which proves the proposition.

Lemma 1 Let V be an ISS-Lyapunov function of Σ sat-
isfying (12)–(15) with ϕ1, ϕ2 satisfying (17)-(18). Fix

any φ0 ∈ X, (d1, d2) ∈ U1 × U2 and r > χ(d). If
‖φ(t, t0, φ0, d1, d2)‖X ≥ r for all t ∈ (τp, τm] with some
m > p, then

F (v(τ+l ), v(τ+p )) ≥ δ(l − p), p ≤ l ≤ m (22)

where v(t) := V (φ(t, t0, φ0, d1, d2)) and
for any s > 0, q > 0

F (s, q) :=

q∫

s

ds

ϕ̂(s)
, ϕ̂(s) := min{ϕ1(s), ϕ2(s), s},

so that F (s, q) → ∞ for s→ 0+ for any fixed q > 0.

Proof. For l = p the inequality (22) is trivially satisfied.
For l = p+ 1 we consider the solution φ(t, t0, φ0, d1, d2)
of Σ for t ∈ (τp, τp+1] and either of two possible cases 1)
φ0 ∈ G+ and 2) φ0 ∈ int (G−), recalling thatG+∪G− =
X and G+ ∩ int (G−) = ∅ by definition.

1) Forφ0 ∈ G+ we will show that φ(t, t0, φ0, d1, d2) ∈ G+

for t ∈ (τp, τp+1]. Assume, this is not the case, that is
there exists

t̃ = sup{t ∈ (τp, τp+1] : φ(t, t0, φ0, d1, d2) ∈ G+} ∈ (τp, τp+1)

such that φ(t, t0, φ0, d1, d2) ∈ G+, t ∈ (τp, t̃] and

φ(t̃, t0, φ0, d1, d2) ∈ ∂G+. Let us denote for shortw(t) :=
W (φ(t, t0, φ0, d1, d2)), where t 7→ W (φ(t, t0, φ0, d1, d2))

is absolutely continuous. Hence w(t̃) = 0. By assump-

tions of the lemma we have ‖φ(t̃, t0, φ0, d1, d2)‖X ≥
r > χ(d), hence due to (16) and (4.8) from [8] follows

ẇ(t) > 0. This means that for some ǫ > 0 for t ∈ (t̃, t̃+ǫ)

it holds that w(t̃) ≥ 0, that is φ(t̃, t0, φ0, d1, d2) ∈ G+

contradicting the choice of t̃.

This means that φ(t, t0, φ0, d1, d2) ∈ G+ and
‖φ(t, t0, φ0, d1, d2)‖X ≥ r > χ(d) for t ∈ (τp, τp+1],
hence (15) imples

v̇(t) ≤ ϕ2(v(t)), t ∈ (τp, τp+1].

We calculate

v(τp+1)∫

v(τ+
p )

ds

ϕ2(s)
=

τp+1∫

τp

dv(s)

ϕ2(v(s))
≤

τp+1∫

τp

ds = τp+1 − τp = Tp ≤ θ2.

Setting a = v(τp+1) in (18) we obtain

v(τp+1)∫

ψ2(v(τp+1))

ds

ϕ2(s)
≥ θ2 + δ ≥

v(τp+1)∫

v(τ+
p )

ds

ϕ2(s)
+ δ.
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which implies

v(τ+
p )∫

ψ2(v(τp+1))

ds

ϕ2(s)
≥ δ.

Due to ‖φ(τp+1, t0, φ0, d1, d2)‖X ≥ r > χ(d) from (18)

follows v(τ+p+1) ≤ ψ2(v(τp+1)) which implies

v(τ+
p )∫

v(τ+

p+1
)

ds

ϕ̂(s)
≥

v(τ+
p )∫

v(τ+

p+1
)

ds

ϕ2(s)
≥ δ

or equivalently

F (v(τ+p+1), v(τ
+
p )) ≥ δ. (23)

2) Now let φ0 ∈ int G−, then either

(i) φ(t, t0, φ0, d1, d2) ∈ int G− for t ∈ (τp, τp+1] or

(ii) φ(t̃1, t0, φ0, d1, d2) ∈ G+ for some t̃1 ∈ (τp, τp+1].

In case (i) from ‖φ(t, t0, φ0, d1, d2)‖X ≥ r > χ(d) and
(14) it follows that

v̇(t) ≤ −ϕ1(v(t)), t ∈ (τp, τp+1].

which means

v(τp+1)∫

v(τ+
p )

ds

ϕ1(s)
=

τp+1∫

τp

dv(s)

ϕ1(v(s))
≤ −(τp+1 − τp),

and hence

θ1 ≤ Tp = τp+1 − τp ≤
v(τ+

p )∫

v(τp+1)

ds

ϕ1(s)
.

Setting a = v(τp+1) in (17) we obtain

θ1 ≥
ψ1(v(τp+1))∫

v(τp+1)

ds

ϕ1(s)
+ δ.

That is

v(τ+
p )∫

v(τp+1)

ds

ϕ1(s)
≥

ψ1(v(τp+1)∫

v(τp+1)

ds

ϕ1(s)
+ δ,

and
v(τ+

p )∫

ψ1(v(τp+1))

ds

ϕ1(s)
≥ δ.

From φ(τp+1, t0, φ0, d1, d2) ∈ G− and
‖φ(τp+1, t0, φ0, d1, d2)‖X ≥ r > χ(d), follows

v(τ+p+1) ≤ ψ1(v(τp+1)), and hence

v(τ+
p )∫

v(τ+

p+1
)

ds

ϕ̂(s)
≥

v(τ+
p )∫

v(τ+

p+1
)

ds

ϕ1(s)
≥

v(τ+
p )∫

ψ1(v(τp+1))

ds

ϕ1(s)
≥ δ

or in other words

F (v(τ+p+1), v(τ
+
p )) ≥ δ. (24)

In case (ii) we define

t̂ = inf{t ∈ (τp, τp+1] : φ(t, τ
+
p , φ0, d1, d2) ∈ int G+},

so that φ(t̂, t0, φ0, d1, d2) ∈ ∂G+ ⊂ G+ and t̂ > τp. From
the properties of W it follows that φ(t, t0, φ0, d1, d2) ∈
int G− for t ∈ (τp, t̂) and φ(t, t0, φ0, d1, d2) ∈ G+ for

t ∈ [t̂, τp+1] (similarly to the case 1) above).

From (14) follows

v(t̂) ≤ v(τ+p ). (25)

Since ‖φ(t, t0, φ0, d1, d2)‖X ≥ r > χ(d) and

φ(t, t0, φ0, d1, d2) ∈ G+ for t ∈ [t̂, τp+1], then from (15)
follows

v̇(t) ≤ ϕ2(v(t)), t ∈ [t̂, τp+1].

This allows to calculate

v(τp+1)∫

v(̂t)

ds

ϕ2(s)
=

τp+1∫

t̂

dv(s)

ϕ2(v(s))
≤ τp+1 − t̂ ≤ τp+1 − τp = Tp ≤ θ2,

so that (25) implies

v(τp+1)∫

v(τ+
p )

ds

ϕ2(s)
≤

v(τp+1)∫

v(̂t)

ds

ϕ2(s)
≤ θ2.

Now we set a = v(τp) into (18) and obtain

v(τp+1)∫

v(τ+
p )

ds

ϕ2(s)
≤ θ2 ≤

v(τp+1)∫

ψ2(v(τp+1))

ds

ϕ2(s)
− δ
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or
ψ2(v(τp+1))∫

v(τ+
p )

ds

ϕ2(s)
≤ −δ.

Having ‖φ(τp+1, t0, φ0, d1, d2)‖X ≥ r > χ(d),
φ(τp+1, t0, φ0, d1, d2) ∈ G+ and (18) we conclude that

v(τ+p+1) ≤ ψ2(v(τp+1)). Hence

v(τ+

p+1
)∫

v(τ+
p )

ds

ϕ̂(s)
≤

v(τ+

p+1
)∫

v(τ+
p )

ds

ϕ2(s)
≤

ψ2(v(τp+1))∫

v(τ+
p )

ds

ϕ2(s)
≤ −δ.

In other words

F (v(τ+p+1), v(τ
+
p )) ≥ δ. (26)

From (23)—(26) we conclude that (22) is true for l =
p + 1. Considering the solution between the next two
consequent jumps we obtain

F (v(τ+p+1), v(τ
+
l )) ≥ δ, l = p, p+ 1, . . . ,m− 1. (27)

From the definition of F for any s ≥ z ≥ q > 0 we have
F (s, z) + F (z, q) = F (s, q). Since the interval (τp, τl) is
split into l − p subintervals by the time instants of the
impulsive actions we finally obtain from (27) that (22)
is proved.

Remark 1 Let F−1(s, ·) be the inverse function to
F (·, s), s ∈ R+. From F (τ, s) → ∞ for τ → 0+ follows
F−1(s, τ) → 0 for τ → +∞. Also note that F−1(s, ·) is
strictly decreasing whereas F−1(·, s) is strictly increasing
for s > 0.

Lemma 2 Under the conditions of Theorem 1 let r be
such that r > χ(d), then there exists τk0 ≥ τ0 such that
φ(τ+k0 , t0, φ0, d1, d2) ∈ Br(0).

Proof. Assume by contradiction that for all k ∈ Z+ we
have ‖φ(τk, t0, φ0, d1, d2)‖X ≥ r. Lemma 1 implies that
the sequence {v(τ+k )}∞k=0 is decreasing. Being bounded
from below it has a limit v∗ ≥ 0. From (22) we have

F (v(τ+m), v(τ+0 )) ≥ δm.

If v∗ 6= 0 this inequality leads to a contradiction letting
m→ ∞. Hence, v∗ = 0. Due to (12) we have

0 ≤ α1(r) ≤ α1(‖φ(τ+m , t0, φ0, d1, d2)‖X) ≤
V (φ(τ+m , t0, φ0, d1, d2)) = v(τ+m)

and taking the limit for m → ∞ we arrive to α1(r) = 0
which implies r = 0 contradicting r > χ(d). This finishes
the proof of the lemma.

Lemma 3 Under the conditions of Theorem 1 the solu-
tion φ of Σ satisfy φ(τ+k0 , t0, φ0, d1, d2) ∈ Br(0) for some

τk0 ∈ E and r > χ(d), then there existsR ∈ K2
∞ such that

‖φ(t, t0, φ0, d1, d2)‖ ≤ R(r, d), t > τk0 .

Proof. We define for s ≥ 0, q ≥ 0

R(s, q) := max{R1(s, q), R4(s, q), R6(s, q), s},

where we use the following combinations of functions
from (9)-(10)

R1(s, q) = ξθ2(s) + ηθ2(q), R2(s, q) = ξ(s) + η(q),

R3(s, q) = max{ξ(R1(s, q)) + η(q), R2(s, q)},
R4(s, q) = ξθ2(R3(s, q)) + ηθ2(q),

R5(s, q) = (α−1
1 ◦ α2)(R3(s, q)),

R6(s, q) = ξθ2(R5(s, q)) + ηθ2(q).

Let t̂1 > τk0 be such that ‖φ(t̂1, t0, φ0, d1, d2)‖X ≤ r and

‖φ(t̂+1 , t0, φ0, d1, d2)‖X ≥ r (if such t̂1 does not exist,
then the result is proved). Define

t̂2 := sup{t > t̂1 : ‖φ(s, t0, φ0, d1, d2)‖X ≥ r

for s ∈ [t̂1, t]} ∈ [t̂1,∞],

so that

‖φ(t, t0, φ0, d1, d2)‖X ≥ r, t ∈ [t̂1, t̂2].

It is enough to show that ‖φ(t, t0, φ0, d1, d2)‖X ≤ R(r, d)

for t ∈ [t̂1, t̂2].

If E
[̂t1 ,̂t2]

:= [t̂1, t̂2] ∩ E = ∅, then by the properties (8),

Σ2, (7) for all t ∈ [t̂1, t̂2] we conclude

‖φ(t, t0, φ0, d1, d2)‖X
= ‖φ(t, t̂1, φ(t̂1, t0, φ0, d1, d2), d1, d2)‖X
= ‖φc(t, t̂1, φ(t̂1, t0, φ0, d1, d2), d1)‖X

= ‖φc(t− t̂1, 0, φ(t̂1, t0, φ0, d1, d2),St̂1d1)‖X
≤ ξθ2(r) + ηθ2(d) = R1(r, d).

If otherwise E
[̂t1 ,̂t2]

6= ∅ we denote its minimal element

by τp ≥ t̂1 and consider two possible cases (i) t̂1 = τp
and (ii) τp > t̂1 separately.

In case of (i) from (10) follows

‖φ(t̂+1 , t0, φ0, d1, d2)‖X ≤ ξ(‖φ(t̂1, t0, φ0, d1, d2)‖X)

+η(‖d2‖U2
) ≤ ξ(r) + η(d) = R2(r, d).
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In case of (ii) by means of (9) and (10) we obtain

‖φ(τ+p , t0, φ0, d1, d2)‖X ≤ ξ(‖φ(τp, t0, φ0, d1, d2)‖X) + η(‖d2‖U2
)

and with help of (8), Σ2, (7) we get

‖φ(τp, t0, φ0, d1, d2)‖X
= ‖φ(τp, t̂1, φ(t̂1, t0, φ0, d1, d2), d1, d2)‖X
= ‖φc(τp, t̂1, φ(t̂1, t0, φ0, d1, d2), d1)‖X

= ‖φc(τp − t̂1, 0, φ(t̂1, t0, φ0, d1, d2),St̂1d1)‖X
≤ ξθ2(‖φ(t̂1, t0, φ0, d1, d2)‖X) + ηθ2(‖d1‖U2

)

≤ ξθ2(r) + ηθ2(d) = R1(r, d).

Hence,

‖φ(τ+p , t0, φ0, d1, d2)‖X ≤ ξ(R1(r, d)) + η(d).

In bothe cases (i) and (ii) we see that
‖φ(τ+p , t0, φ0, d1, d2)‖X ≤ R3(r, d) holds.

If ♯E
[̂t1 ,̂t2]

= 1, then by means of Σ2, (7), (9) and (10) we

obtain for t ∈ (τp, t̂2]

‖φ(t, t0, φ0, d1, d2)‖X
= ‖φc(t− τp, 0, φ(τ

+
p , t0, φ0, d1, d2),Sτpd1)‖X

≤ ξθ2(‖φ(τ+p , t0, φ0, d1, d2)‖X) + ηθ2(‖d1‖U1
)

≤ ξθ2(R3(r, d)) + ηθ2(d) = R4(r, d).

If ♯E
[̂t1 ,̂t2]

≥ 2, then by Lemma 1 and observing that

F (s, q) > 0 ⇔ s < q we obtain for l ≥ p such that
τl ∈ E

[̂t1 ,̂t2]

α1(‖φ(τ+l , t0, φ0, d1, d2)‖X) ≤ V (φ(τ+l , t0, φ0, d1, d2))

= v(τ+l ) ≤ v(τ+p ) = V (φ(τ+p , t0, φ0, d1, d2))

≤ α2(‖φ(τ+p , t0, φ0, d1, d2)‖X) ≤ α2(R3(r, d)).

This implies ‖φ(τ+l , t0, φ0, d1, d2)‖X ≤ (α−1
1 ◦α2)(R3(r, d))

= R5(r, d). Hence for all t ∈ (τl, τl+1], from (9) and
properties Σ2, (7), (8) we obtain

‖φ(t, t0, φ0, d1, d2)‖X
= ‖φc(t, τl, φ(τ+l , t0, φ0, d1, d2), d1)‖X

= ‖φc(t− τl, 0, φ(τ
+
l , t0, φ0, d1, d2),Sτld1)‖X

≤ ξθ2(‖φ(τ+l , t0, φ0, d1, d2)‖X) + ηθ2(‖d1‖U1
)

≤ ξθ2(R5(r, d)) + ηθ2(d) = R6(r, d).

This implies the estimate

‖φ(t, t0, φ0, d1, d2)‖X ≤ R(r, d) for all t ∈ [τp, τm+1].

If t ∈ [t̂1, τp], then from Σ2, (7), (8) and (9) we get

‖φ(t, t0, φ0, d1, d2)‖X
= ‖φ(t, t̂1, φ(t̂1, t0, φ0, d1, d2), d1, d2)‖X
= ‖φc(t, t̂1, φ(t̂1, t0, φ0, d1, d2), d1)‖X

= ‖φc(t− t̂1, 0, φ(t̂1, t0, φ0, d1, d2),St̂1d1)‖X
≤ ξθ2(‖φ(t̂1, t0, φ0, d1, d2)‖X) + ηθ2(d)

= ξθ2(r) + ηθ2(d) = R1(r, d) ≤ R(r, d).

Since [t̂1, τm+1] ⊇ [t̂1, t̂2] holds, the lemma is proved.

Proof of Theorem 1 Take r = (1 + ε)χ(d) for
some ε > 0 and denote by k0 the smallest integer
for which φ(τ+k0 , t0, φ0, d1, d2) ∈ Br(0) holds, that is

‖φ(τ+k , t0, φ0, d1, d2)‖X ≥ r for all 0 ≤ k ≤ k0 − 1. From

Lemma 1 follows F (v(τ+k ), v(τ+0 )) ≥ δk, hence (see
Remark 1) we have

v(τ+k ) ≤ F−1(v(τ+0 ), kδ).

From (9) and properties Σ2, (8) and (7) it follows that
for t ∈ (τk, τk+1], k = 0, . . . , k0 − 1 the next inequality
holds

‖φ(t, t0, φ0, d1, d2)‖X = ‖φc(t, τk, φ(τ+k , t0, φ0, d1, d2), d1, d2)‖X
= ‖φc(t− τk, 0, φ(τ

+
k , t0, φ0, d1, d2),Sτkd1)‖X

≤ ξθ2(‖φ(τ+k , t0, φ0, d1, d2)‖X) + ηθ2(d).

Now (12) implies

α1(‖φ(τ+k , t0, φ0, d1, d2)‖X) ≤ V (φ(τ+k , t0, φ0, d1, d2))

= v(τ+k ) ≤ F−1(v(τ+0 ), δk),

v(τ+0 ) = V (φ(τ+0 , t0, φ0, d1, d2)) ≤ α2(‖φ(τ+0 , t0, φ0, d1, d2)‖X).

Defining βk(s) := F−1(α2(s), δk), s > 0 and βk(0) := 0
we can write

α1(‖φ(τ+k , t0, φ0, d1, d2)‖X)

≤ F−1(α2(‖φ(τ+0 , t0, φ0, d1, d2)‖X), δk)

= βk(‖φ(τ+0 , t0, φ0, d1, d2)‖X).

Which means

‖φ(τ+k , t0, φ0, d1, d2)‖X ≤ (α−1
1 ◦βk)(‖φ(τ+0 , t0, φ0, d1, d2)‖X).

By the properties of F−1 (see Remark 1) it follows that
βk ∈ K, βk+1(s) < βk(s) and limk→∞ βk(s) = 0 for
s > 0.

For t ∈ (τk, τk+1] the following estimate holds

‖φ(t, t0, φ0, d1, d2)‖X
≤ (ξθ2 ◦ α−1

1 ◦ βk)(‖φ(τ+0 , t0, φ0, d1, d2)‖X) + ηθ2(d).
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Defining β̂k(s) := (ξθ2 ◦ α−1
1 ◦ βk)(s) for k ∈ Z+ and

s ≥ 0 we see that β̂k ∈ K, β̂k+1(s) < β̂k(s) and

limk→∞ β̂k(s) = 0 for any s > 0. Further, we define

βτ+

0

(s, t) = β̂k(s) +
t− τk

τk+1 − τk
(β̂k+1(s)− β̂k(s)),

t ∈ (τk, τk+1], s ≥ 0

so that βτ+

0

∈ KL and for t ∈ (τ0, τk0 ] the following

estimate holds

‖φ(t, t0, φ0, d1, d2)‖X ≤ βτ+

0

(‖φ(τ+0 , t0, φ0, d1, d2)‖X , t)
+ηθ2(d).

(28)
From Lemma 3 follows that for any t > τk0 we have

‖φ(t, t0, φ0, d1, d2)‖X ≤ σ(d), (29)

where we denote σ(s) := R((1 + ε)s, s), ε > 0. Since
σ ∈ K then collecting the estimates (28) and (29) we
obtain

‖φ(t, t0, φ0, d1, d2)‖X ≤ βτ+

0

(‖φ(τ+0 , t0, φ0, d1, d2)‖X , t)
+γτ+

0

(d), t > τ0,

where γτ+

0

(s) := σ(s) + ηθ2(s). The statement of the

theorem follows then from the Proposition 1.

Remark 2 In the definition of an ISS-Lyapunov func-
tion V we have assumed that the sets G+ and G− are not
empty. Observe however that in case G+ = ∅, G− = X
Theorem 1 reduces to Theorem 1 from [4] and if G− = ∅,
G+ = X then Theorem 1 reduces to Theorem 3 from [4].

5 Nonlinear interconnection of an ODE and a
PDE

Let X̂ = L2[0, l] × R, X = H1
0 (0, l) × R, U1 = U2 =

H1
0 (0, l)× R and the spaces of input signals be

U1 = L∞(U1) ∩ (Hloc (R+, H
1
0 (0, l))×Hloc (R+,R)),

U2 = l∞(Z+, U2).

Consider the following nonlinear impulsive system

∂tx(z, t) = a2∂zzx(z, t) + Φ(x(z, t))

+B(z)y(t) + d11(z, t), t 6= τk,

ẏ(t) = c2y(t) +

l∫

0

D(z)x(z, t) dz + d12(t), t 6= τk,

x(z, t+) = α(z)x(z, t) + β(z)y(t) + d21(z, k), t = τk,

y(t+) =

l∫

0

γ(z)x(z, t) dz + δy(t) + d22(k), t = τk,

(30)
with initial and boundary conditions

x(z, 0) = x0(z) ∈ H1
0 (0, l), z ∈ [0, l],

y(0) = y0 ∈ R,

x(0, t) = x(l, t) = 0, t ∈ R+,

x0(0) = x0(l) = 0.

(31)

Here a, c, l are given positive constants, α ∈ C2[0, l], β ∈
H1

0 (0, l), γ ∈ L2[0, l],D ∈ L2[0, l],B ∈ H1
0 (0, l) are given

functions and d1(t) = (d11(·, t), d12(t)) ∈ U1, d2(k) =
(d21(·, k), d22(k)) ∈ U2 are unknown disturbances.

Assume that Φ : R → R satisfies:

(i) Φ ∈ C1(R) with locally Lipshitz Φ′ that is for any
s0 ∈ R and ̺0 > 0 there exists L = L(s0, ̺0) > 0
such that for all s ∈ R with |s − s0| ≤ ̺0 it holds that
|Φ′(s)− Φ′(s0)| ≤ L|s− s0|.

(ii) It holds that Φ′(s) ≤ 0, sΦ(s) ≤ 0 for all s ∈ R.

The problem (30)–(31) can be written in the following
form

d

dt

(
x(·, t)
y(t)

)
+A

(
x(·, t)
y(t)

)
= f(t, x, y, d1), t 6= τk

(
x(·, t+)
y(t+)

)
= B

(
x(·, t)
y(t)

)
+ d2(k), t = τk,

(32)

where A is the linear operator on X̂ defined by

A
(
x

y

)
=

(
−a2∂zzx(z)

−c2y

)

with domain D(A) = (H1
0 (0, l) ∩H2(0, l))× R, B is the

linear operator defined by

B
(
x

y

)
=



α(z)x(z) + β(z)y
l∫
0

γ(z)x(z) dz + δy



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and d2(k) = (d21(·, k), d22(k)).

The operator A being a direct product of two sectorial

operators is sectorial and hence it generates on X̂ an
analytic semi-group [6]. The mapping f : R×H1

0 (0, l)×
R → L2[0, l]× R in (32) is defined by

f(t, x, y, d1) =



Φ(x(z)) +B(z)y + d11(z, t)

l∫
0

D(z)x(z) dz + d12(t)




We consider classical solutions of (30)—(31) defined as
in Definition 3.3.1 of [6].

Remark 3 For any initial state (x0, y0) ∈ H1
0 (0, l)× R

and input (d1, d2) ∈ U1×U2 there exists a unique solution
to the propblem (30)–(31). This follows from the fact the
the corresponding problem without impulsive actions

d

dt

(
x(·, t)
y(t)

)
+A

(
x(·, t)
y(t)

)
= f(t, x, y), (33)

for each (x0, y0) ∈ H1
0 (0, l)×R possesses a unique solu-

tion defined for [t0, t0+ ǫt0,x0,y0,d1 ], ǫt0,x0,y0,d1 > θ2, and
that the mapping g(x, y, µ) = B(x, y)+µ keeps the space
X invariant for any µ ∈ U2.

The well-posedness of (33) can be established by means
of Theorems 3.3.3 and 3.3.4 from [6]. In order to check
the conditions of Theorem 3.3.3 (setting α = 0.5 there)
we need to show that the mapping f is locally Hölder
wrt t and locally Lipschitz wrt (x, y) ∈ H1

0 (0, l)×R, that
is for any (t0, x0, y0) ∈ R×H1

0 (0, l)× R there exists

O̺(t0, x0, y0) := {(t, x, y) ∈ R+ ×H1
0 (0, l)× R |

|t− t0| < ̺, ‖x− x0‖H1
0
(0,l) < ̺, |y − y0| < ̺}.

such that for any point (t, x, y) ∈ O̺(t0, x0, y0) it holds
that

‖f(t, x, y)− f(t0, x0, y0)‖X̂ ≤ L(|t− t0|ν1
+‖x− x0‖H1

0
(0,l) + |y − y0|)

for some constants L > 0, ν1 ∈ (0, 1].

Indeed,

‖f(t, x, y)− f(t0, x0, y0)‖X̂
≤ l

π
‖Φ ◦ x− Φ ◦ x0 +B(y − y0) + d11(·, t)− d11(·, t0)‖H1

0
(0,l)

+
∣∣∣

l∫

0

D(z)(x(z)− x0(z)) dz + d12(t)− d12(t0)
∣∣∣

≤ l

π
(‖Φ ◦ x− Φ ◦ x0‖H1

0
(0,l) + ‖B‖H1

0
(0,l)|y − y0|)

+‖D‖L2[0,l]‖x− x0‖L2[0,l] + |d12(t)− d12(t0)|

+
l

π
‖d11(·, t)− d11(·, t0)‖H1

0
(0,l).

(34)
Consider the first summand separately

‖Φ ◦ x− Φ ◦ x0‖H1
0
(0,l) = ‖∂z(Φ ◦ x− Φ ◦ x0)‖L2[0,l]

= ‖(Φ′ ◦ x) ∂zx− (Φ′ ◦ x0) ∂zx0‖L2[0,l]

≤ ‖(Φ′ ◦ x− Φ′ ◦ x0)∂zx‖L2[0,l]

+‖(Φ′ ◦ x0)(∂zx− ∂zx0)‖L2[0,l]

By the Sobolev embedding theorem we have x ∈ C[0, l]
and satisfies ‖x−x0‖C[0,l] ≤ C1‖x−x0‖H1

0
(0,l) ≤ C1̺, for

some C1 > 0. Hance, using the condition (i), we obtain

|Φ′(x(z))− Φ′(x0(z))| ≤ L1|x(z)− x0(z)|
≤ L1‖x− x0‖C[0,l] ≤ L1C1‖x− x0‖H1

0
(0,l),

where L1 is a positive constant, which can depend on x0
and ρ. Hence

‖Φ′ ◦ x− Φ′ ◦ x0‖C[0,l] ≤ C2‖x− x0‖H1
0
(0,l) ≤ C2̺,

where C2 = L1C1, and

‖Φ ◦ x− Φ ◦ x0‖H1
0
(0,l)

≤ ‖Φ′ ◦ x− Φ′ ◦ x0‖C[0,l]‖∂zx‖L2[0,l]

+‖Φ′ ◦ x0‖C[0,l]‖∂zx− ∂zx0‖L2[0,l]

≤ C2‖x− x0‖H1
0
(0,l)‖x‖H1

0
(0,l) + ‖Φ′ ◦ x0‖C[0,l]‖x− x0‖H1

0
(0,l)

≤ (C2(‖x0‖H1
0
(0,l) + ̺) + ‖Φ′ ◦ x0‖C[0,l])‖x− x0‖H1

0
(0,l),

which together with (34) proves that f is locally Lips-
chitz.

By means of Theorem 3.3.4 Exercise 1 from the Section
3.3 in [6]) we can show that the solution to (33) exists
globally. To this end it is sufficient to check that

‖f(t, x(·, t), y(t), d1)‖X̂
1 + ‖x(t)‖H1

0
(0,l) + |y(t)| (35)

is bounded on the domain of existence of the solution
(x(·, t), y(t)) ∈ X .
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To verify this fact we introduce the following auxiliary
function

U(x, y) = ‖x‖2L2[0,l] + y2, x ∈ H1
0 [0, l], y ∈ R

and use the following

Proposition 2 For any (x, y, ξ) ∈ H1
0 (0, l)× R× U1 it

holds that

U̇(x, y, ξ) ≤ ζT (Ã0 + ε id )ζ + ε−1‖ξ‖2U1
, (36)

where we denote

ζ = (‖x‖L2[0,l], |y|)T ,

Ã0 =

(
− 2π2a2

l2 ‖B +D‖L2[0,l]

‖B +D‖L2[0,l] 2c2

)
,

The proof can be found in the Appendix.

Corollary 1 Let (x(·, t), y(t)) be a solution to (33) with
initial conditions x(·, t0) = x0, y(t0) = y0 and defined
on t ∈ [t0, t0 + ǫt0,x0,y0,d1), then

sup
t∈[t0,t0+ǫt0,x0,y0,d1

)

‖(x, y)‖
X̂

≤ C(x0, y0, d1).

The proof can be found in the Appendix.

From this corollary and the locally Lipschitzness follows
that (35) is bounded, hence the solution (x(·, t), y(t)) of
(33) exists for all t ≥ t0. The properties of α, β guarantee
that g(H1

0 (0, l)×R×U2) ⊂ H1
0 (0, l)×R, which demon-

strates the well-posedness of the problem (30)–(31).

To state the asymptotic stability conditions of the sys-
tem (30)–(31) we define the following symmetric matri-
ces

A0 =

(
− 2π2a2

l2
‖B‖H1

0
(0,l) +

l
π
‖D‖L2[0,l]

‖B‖H1
0
(0,l) +

l
π
‖D‖L2[0,l] 2c2

)
,

B0 =(
‖α2‖C[0,l] +

l2

π2 ‖ααzz‖C[0,l] +
l2

π2 ‖γ‖
2
L2[0,l]

∗

‖αzβz + γδ‖L2 [0,l]
l
π
+ ‖αβz‖L2[0,l] δ2 + ‖β‖2

H1
0
(0,l)

)
,

σ = ‖α2‖C[0,l] +
l2

π2
‖ααzz‖C[0,l] +

l2

π2
‖γ‖2L2[0,l]

+2(‖αzβz + γδ‖L2[0,l]
l

π
+ ‖αβz‖L2[0,l]) + δ2 + ‖β‖2H1

0
(0,l),

ϑ :=
π2a2

l2
− ‖B‖H1

0
(0,l) −

l

π
‖D‖L2[0,l] − c2,

let ̺A0
max ∈ R

2 and ̺B0
max ∈ R

2 be eigenvectors of A0 and
B0, respectively, corresponding to the maximal eigenval-
ues λmax(A0) and λmax(B0), respectively.

Proposition 3 Let the impulsive system (30) satisfy

c2 +
π2a2

l2
>

l

π
‖D‖L2[0,l] + ‖B‖H1

0
(0,l), ϑ > 0,

(̺A0

max)
T diag {−1, 1}̺A0

max > 0

and additionally let one of the two following conditions
hold

(a) (̺B0
max)

T diag {−1, 1}̺B0
max ≥ 0, and θ1, θ2 satisfy

1

ϑ
ln
σ

2
< θ1 ≤ θ2 < − 1

λmax(A0)
lnλmax(B0).

(b) (̺B0
max)

T diag {−1, 1}̺B0
max < 0, and θ1, θ2 satisfy

1

ϑ
lnλmax(B0) < θ1 ≤ θ2 <

1

λmax(A0)
ln

2

σ
.

then (30) is ISS for all E satisfying the dwell-time con-
dition θ1 ≤ Tk ≤ θ2.

To show how the last proposition can be applied we con-
sider the following

5.1 Specific example

Consider (30) with a = 1, l = π, D(z) = 0.05z, B(z) =
0.05z(π − z), c = 0.5, α(z) = 1, β(z) = 0, γ(z) = 0.05,
δ = 0.25, Φ(s) = −s3. Then we have

A0 =

(
−2 0.3214875

0.3214875 0.5

)
,

B0 =

(
1.007853982 0.02215567314

0.02215567314 0.0625

)
,

λmax(A0) = 0.54067976, λmax(B0) = 1.0083729,

σ = 1.1146653, ϑ = 0.42851243,

̺A0

max = (0.12553504,−0.9920891862)T ,

̺B0

max = (0.99972578,−0.023417096)T

Then all conditions of the Proposition 3 are satisfied and
the dwell-time condition reads as

0.01945822 < θ1 ≤ Tk ≤ θ2 < 1.0812185.

Let us note that with this parameters choice we have
that both discrete and continuous dynamics of (30) con-
sidered separately are not asymptotically stable already
for the unperturbed case d1 = 0, d2 = 0. Indeed,W (x, y)
can be used as a Chetaev function for the continuous dy-
namics of (30), and to see that the discrete dynamics is
unstable just check that the spectral radius of the jump
operator is larger than 1.
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6 Conclusions

Our results provide a dwell-time condition that guaran-
tees the ISS property of a nonlinear impulsive system.
In contrary to the existing dwell-time conditions in the
literature our result can be in particular applied even to
the cases where both discrete and continuous dynamics
are unstable simultaneously. In contrary to the results
of [4] the ISS property is assured by the analysis of spe-
cific interaction of the discrete and continuous dynam-
ics instead of a compensation of the unstable discrete
(continuous) dynamics by means of the stable continu-
ous (discrete) one. Our future research will be devoted
to the development of constructive approach in order to
derive the auxiliary Lyapunov V and Chetaev W func-
tions. Another open problem that needs to be investi-
gated is the derivation of conditions under which a com-
bination of the simultaneously stable discrete and con-
tinuous dynamics leads to an unstable dynamics of the
overall impulsive system.

7 Appendix

7.1 Proof of Proposition 2

Consider the function

U(x, y) = ‖x‖2L2[0,l] + y2,

Its time derivative U̇ with respect to the system (30) is

U̇(x, y, ξ) = 2

l∫

0

x(z)(a2∂zzx(z) + Φ(x(z)) +B(z)y

+ξ1(z)) dz + 2y(c2y +

l∫

0

D(z)x(z) dz + ξ2)

Applying integration by parts and the Friedrich’s in-
equality (5) we get

l∫

0

x(z)∂zzx(z) dz = −
l∫

0

|∂zx(z)|2 dz ≤ −π
2

l2
‖x‖2L2[0,l].

By means of the Cauchy inequality we can write

U̇(x, y, ξ) ≤ −2π2a2

l2
‖x‖2L2[0,l] + 2c2y2

+2‖B +D‖L2[0,l]‖x‖L2[0,l]|y|
+2|y||ξ2|+ 2‖ξ1‖L2[0,l]‖x‖L2[0,l]

≤
(
− 2π2a2

l2
+ ε
)
‖x‖2L2[0,l] + (2c2 + ε)y2

+2‖B +D‖L2[0,l]‖x‖L2[0,l]|y|+ ε−1(‖ξ1‖2L2[0,l] + ξ22).

for all (x, y, ξ) ∈ L2[0, l]× R× U1 and ε > 0.

Recall that ζ = (‖x‖L2[0,l], |y|)T hence the last estimate
can be written as

U̇(x, y, ξ) ≤ ζT (Ã0 + ε id )ζ + ε−1‖ξ‖2U1
, (37)

which finishes the proof.

7.2 Proof of the Corollary 1

Denote u(t) := U(x(·, t), y(t)), t ∈ [t0, t0 + ǫt0,x0,y0,d1),
d1 ∈ U1, then Proposition 2 implies that

u̇(t) ≤ (λmax(Ã0) + ε)u(t) + ε−1‖d1(t)‖2U1

≤ (λmax(Ã0) + ε)u(t) + ε−1‖d1‖2U1
.

By the comparison principle we obtain

u(t) ≤ e(λmax(Ã0)+ε)(t−t0)u(t0)

+ε−1

t∫

t0

e(λmax(Ã0)+ε)(t−s) ds‖d‖2U1
.

By the basic inequality
√
a+ b ≤ √

a+
√
b, a, b ≥ 0 we

derive

‖(x(·, t), y(t))‖
X̂

≤ e(λmax(Ã0)+ε)ǫt0,x0,y0,d1
/2‖(x0, y0)‖X̂

+

√√√√e(λmax(Ã0)+ε)ǫt0,x0,y0,d1 − 1

ε(λmax(Ã0) + ε)
‖d1‖U1

,

for all t ∈ [t0, t0 + ǫt0,x0,y0,d1) which finishes the proof.

7.3 Proof of Proposition 3

Let us define

V (x, y) = ‖x‖2H1
0
(0,l) + y2, W (x, y) = y2 − ‖x‖2H1

0
(0,l)

and calculate

V̇ (x, y, ξ) = −2

l∫

0

∂zzx(z)(a
2∂zzx(z) + Φ(x(z))

+B(z)y + ξ1(z)) dz + 2y(c2y +

l∫

0

D(z)x(z) dz + ξ2)

Using the integration by parts

l∫

0

∂zzx(z)Φ(x(z)) dz = −
l∫

0

Φ′(x(z)) (∂zx(z))
2 dz,

(38)
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l∫

0

∂zzx(z)B(z) dz = −
l∫

0

∂zx(z)∂zB(z) dz,

l∫

0

∂zzx(z)ξ1(z) dz = −
l∫

0

∂zx(z)∂zξ1(z) dz,

as well as the property Φ′(s) ≤ 0 for all s ∈ R and (6),
we obtain

V̇ (x, y, ξ) ≤ −2π2a2

l2
‖x‖2H1

0
(0,l)

+2

l∫

0

∂zx(z)∂zB(z) dzy + 2

l∫

0

∂zx(z)∂zξ1(z) dz

+2c2y2 + 2

l∫

0

D(z)x(z) dzy + 2ξ2y

By the Friedrich’s inequality (5) we get

V̇ (x, y, ξ) ≤ −2π2a2

l2
‖x‖2H1

0
(0,l)

+2(‖B‖H1
0
(0,l) +

l

π
‖D‖L2[0,l])‖x‖H1

0
(0,l)|y|

+2c2y2 + 2|ξ2||y|+ 2‖x‖H1
0
(0,l)‖ξ1‖H1

0
(0,l)

≤
(
− 2π2a2

l2
+ ε
)
‖x‖2H1

0
(0,l) + 2(‖B‖H1

0
(0,l)

+
l

π
‖D‖L2[0,l])‖x‖H1

0
(0,l)|y|+ (2c2 + ε)y2

+ε−1(‖ξ1‖2H1
0
(0,l) + ξ22).

(39)

and by the Cauchy inequality with (6) and (38) we obtain

Ẇ (x, y, ξ) = 2y(c2y +

l∫

0

D(z)x(z) dz + ξ2)

+2

l∫

0

∂zzx(z)(a
2∂zzx(z) + Φ(x(z)) +B(z)y + ξ1(z)) dz

≥ 2c2y2 + 2a2
l∫

0

(∂zzx(z))
2 dz + 2y

l∫

0

D(z)x(z) dz

−2y

l∫

0

∂zB(z)∂zx(z) dz + 2yξ2 − 2

l∫

0

∂zx(z)∂zξ1(z) dz

Applying (6) we have

Ẇ (x, y, ξ) ≥ 2c2y2 +
2π2a2

l2
‖x‖2H1

0
(0,l)

−2(
l

π
‖D‖L2[0,l] + ‖B‖H1

0
(0,l))‖x‖H1

0
(0,l)|y|

−2|y||ξ2| − 2‖x‖H1
0
(0,l)‖ξ1‖H1

0
(0,l)

≥ (2c2 − ε)y2 +
(2π2a2

l2
− ε
)
‖x‖2H1

0
(0,l)

−2(
l

π
‖D‖L2[0,l] + ‖B‖H1

0
(0,l))‖x‖H1

0
(0,l)|y|

−ε−1(‖ξ1‖2H1
0
(0,l) + ξ22),

for all (x, y, ξ) ∈ X × U1. Further we have

V (g(x, y, µ)) ≤
l∫

0

(αz(z)x(z) + α(z)xz(z) + βz(z)y

+µ1z(z))
2 dz +

( l∫

0

γ(z)x(z) dz + δy + µ2

)2

≤ ‖α2‖C[0,l]‖xz‖2L2[0,l] + ‖βz‖2L2[0,l]y
2 + ‖µ1z‖2L2[0,l]

+‖ααzz‖C[0,l]‖x‖2L2[0,l] + 2‖αzβz + γδ‖L2[0,l]‖x‖L2[0,l]|y|
+2‖αβz‖L2[0,l]‖x‖H1

0
(0,l)|y|+ 2‖αz‖C[0,l]‖µ1‖H1

0
(0,l)‖x‖L2[0,l]

+2‖β‖H1
0
(0,l)‖µ1‖H1

0
(0,l)|y|+ 2‖α‖C[0,l]‖µ1‖H1

0
(0,l)‖x‖H1

0
(0,l)

+‖γ‖2L2[0,l]‖x‖2L2[0,l] + δ2y2 + µ2
2 + 2|δ||µ2||y|

+2|µ2|‖γ‖L2[0,l]‖x‖L2[0,l]

By the Friedrich’s inequality (5) we have

V (g(x, y, µ)) ≤
(
‖α2‖C[0,l] +

l2

π2
‖ααzz‖C[0,l] +

l2

π2
‖γ‖2L2[0,l]

+ε(
l2

π2
‖αz‖C[0,l] + ‖α‖C[0,l] + ‖γ‖L2[0,l]

l2

π2
)
)
‖x‖2H1

0
(0,l)

+2
(
‖αzβz + γδ‖L2[0,l]

l

π
+ ‖αβz‖L2[0,l]

)
‖x‖H1

0
(0,l)|y|

+(‖β‖2H1
0
(0,l) + δ2 + ε(‖β‖H1

0
(0,l) + |δ|))y2

+(1 + ε−1(‖αz‖C[0,l] + ‖β‖H1
0
(0,l) + ‖α‖C[0,l]))‖µ1‖2H1

0
(0,l)

+(1 + ε−1(|δ|+ ‖γ‖L2[0,l]))µ
2
2

Let us denote

B1 =

(
l2

π2 ‖αz‖C[0,l] + ‖α‖C[0,l] + ‖γ‖L2[0,l]
l2

π2 0

0 ‖β‖H1
0
(0,l) + |δ|

)
,

κ(ε) = max{1 + ε−1(‖αz‖C[0,l] + ‖β‖H1
0
(0,l) + ‖α‖C[0,l]),

1 + ε−1(|δ|+ ‖γ‖L2[0,l])},

then the last inequality can be written as

V (g(x, y, µ)) ≤ ζT (B0 + εB1)ζ + κ(ε)‖µ‖2. (40)

13



The inequalities (39) and (40) imply the estimates (9)
and (10): Denote w(t) = ‖x(·, t)‖2

H1
0
(0,l)

+ y2(t), t ≥ 0,

then from (9) follows:

ẇ(t) ≤ (λmax(A0) + ε)w(t) + ε−1‖d1(t)‖2U1

≤ (λmax(A0) + ε)w(t) + ε−1‖d‖2U1
.

By the comparison principle we have

w(t) ≤ e(λmax(A0)+ε)tw(0)+

ε−1

t∫

0

e(λmax(A0)+ε)(t−s) ds‖d1‖2U1
.

and with help of
√
a+ b ≤ √

a+
√
b, a, b ≥ 0 we get

‖(x(·, t), y(t))‖X ≤ e(λmax(A0)+ε)τ/2‖(x0, y0)‖X+√
e(λmax(A0)+ε)τ − 1

ε(λmax(A0) + ε)
‖d1‖U1

,

for all t ∈ [0, τ ], which proves (9). Similarly (10) follows
from (40).

Let us estimate V̇ (x, y, ξ), V (g(x, y, µ)) on the sets

G+ = {(x, y) ∈ X : |y| ≥ ‖x‖H1
0
(0,l)},

G− = {(x, y) ∈ X : |y| ≤ ‖x‖H1
0
(0,l)}

and Ẇ (x, y, ξ) on the set, where W (x, y) = 0 holds.

By the conditions of Proposition 3 we have
(̺A0

max)
T diag {−1, 1}̺A0

max > 0 and

−ϑ = −π
2a2

l2
+ ‖B‖H1

0
(0,l) +

l

π
‖D‖L2[0,l] + c2 < 0.

Hence by (39) for all (x, y) ∈ G+ we have

V̇ (x, y, ξ) ≤ (λmax(A0) + ε)(‖x‖2H1
0
(0,l) + y2) + ε−1‖ξ‖2U1

≤ (λmax(A0) + 2ε)(‖x‖2H1
0
(0,l) + y2),

if
√
‖x‖2

H1
0
(0,l)

+ y2 > ε−1‖ξ‖U1
.

For all (x, y) ∈ G− we have

V̇ (x, y, ξ) ≤ (−ϑ+
ε

2
)(‖x‖2H1

0
(0,l) + y2) + ε−1‖ξ‖2U1

≤ (−ϑ+ ε)(‖x‖2H1
0
(0,l) + y2),

if
√
‖x‖2

H1
0
(0,l)

+ y2 >
√
2ε−1‖ξ‖U1

.

Now choosing ε > 0 small enough (ε < ϑ), we can take
ϕ1(s) = (ϑ− ε)s, ϕ2(s) = (λmax(A0) + 2ε)s.

If the condition (a) is satisfied, that is
(̺B0

max)
T diag {−1, 1}̺B0

max ≥ 0, then for all (x, y) ∈ G+

we have

V (g(x, y, µ)) ≤ (λmax(B0) + ε‖B1‖)(‖x‖2H1
0
(0,l) + y2)

+κ(ε)‖µ‖2U2
≤ (λmax(B0) + ε(1 + ‖B1‖))(‖x‖2H1

0
(0,l) + y2).

if
√
‖x‖2

H1
0
(0,l)

+ y2 >
√
ε−1κ(ε)‖µ‖U2

.

For all (x, y) ∈ G− we have

V (g(x, y, µ)) ≤
(σ
2
+ ε(1 + ‖B1‖)

)
V (x, y),

if
√
‖x‖2

H1
0
(0,l)

+ y2 >
√
ε−1κ(ε)‖µ‖U2

.

In this case ψ1(s) =
(
σ
2 + ε(1 + ‖B1‖)

)
s, ψ2(s) =

(λmax(B0) + ε(1 + ‖B1‖))s.

If the condition (b) is satisfied, that is
(̺B0

max)
T diag {−1, 1}̺B0

max < 0, then for all (x, y) ∈ G+

we have

V (g(x, y, µ)) ≤
(σ
2
+ ε(1 + ‖B1‖)

)
V (x, y),

if
√
‖x‖2

H1
0
(0,l)

+ y2 >
√
ε−1κ(ε)‖µ‖U2

.

For all (x, y) ∈ G− we have

V (g(x, y, µ)) ≤ (λmax(B0) + ε‖B1‖)(‖x‖2H1
0
(0,l) + y2)

+κ(ε)‖µ‖2U2
≤ (λmax(B0) + ε(1 + ‖B1‖))(‖x‖2H1

0
(0,l) + y2).

if
√
‖x‖2

H1
0
(0,l)

+ y2 >
√
ε−1κ(ε)‖µ‖U2

. In this case

ψ1(s) = (λmax(B0)+ ε(1+ ‖B1‖))s, ψ2(s) =
(
σ
2 + ε(1+

‖B1‖)
)
s.

If

c2 +
π2a2

l2
>

l

π
‖D‖L2[0,l] + ‖B‖H1

0
(0,l),

then W (x, y) = 0 implies

Ẇ (x, y, µ) ≥
(
c2 +

π2a2

l2
−
( l
π
‖D‖L2[0,l]

+‖B‖H1
0
(0,l)

)
− 2ε

)
(‖x‖2H1

0
(0,l) + y2) > 0,

if
√
‖x‖2

H1
0
(0,l)

+ y2 > ε−1‖ξ‖U1
, with small enough ε.

14



Now applying Theorem 1 and choosing positive con-
stant ε and δ small enough, we see that the conditions of
Proposition 3 guarantee the ISS property for the system
(30), which finishes the proof.
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