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Triggered Gradient Tracking
for Asynchronous Distributed Optimization

Guido Carnevale, Ivano Notarnicola, Lorenzo Marconi, Giuseppe Notarstefano

Abstract—This paper proposes ASYNCHRONOUS TRIGGERED
GRADIENT TRACKING, i.e., a distributed optimization algo-
rithm to solve consensus optimization over networks with asyn-
chronous communication. As a building block, we devise the
continuous-time counterpart of the recently proposed (discrete-
time) distributed gradient tracking called CONTINUOUS GRA-
DIENT TRACKING. By using a Lyapunov approach, we prove
exponential stability of the equilibrium corresponding to agents’
estimates being consensual to the optimal solution, with ar-
bitrary initialization of the local estimates. Then, we propose
two triggered versions of the algorithm. In the first one, the
agents continuously integrate their local dynamics and exchange
with neighbors their current local variables in a synchronous
way. In ASYNCHRONOUS TRIGGERED GRADIENT TRACKING,
we propose a totally asynchronous scheme in which each agent
sends to neighbors its current local variables based on a trig-
gering condition that depends on a locally verifiable condition.
The triggering protocol preserves the linear convergence of the
algorithm and avoids the Zeno behavior, i.e., an infinite number
of triggering events over a finite interval of time is excluded.
By using the stability analysis of CONTINUOUS GRADIENT
TRACKING as a preparatory result, we show exponential stability
of the equilibrium point holds for both triggered algorithms
and any estimate initialization. Finally, the simulations validate
the effectiveness of the proposed methods on a data analytics
problem, showing also improved performance in terms of inter-
agent communication.

I. INTRODUCTION

As the devices with computation and communication ca-
pabilities are growing all around us, several contexts ranging
from machine learning to autonomous vehicles and coopera-
tive robotics, need to control networks of communication and
computing agents. Tasks must be performed in an independent
and cooperative way, without resorting to a centralized unit.
Often, these tasks can be mathematically posed as distributed
optimization problems. For this reason, distributed optimiza-
tion has become an active research area, see [1]–[3] for recent
overviews. Some applications tasks can be performed relying
on distributed continuous-time optimization schemes. In [4], a
distributed continuous-time optimization algorithm is proposed
to solve a cost-coupled convex problem over a weighted
digraph. A constrained convex problem is solved in [5] for
a network of agents having local, second-order dynamics.
In [6], a nonsmooth convex optimization problem with local
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constraints is solved by using a novel distributed continuous-
time projected algorithm. In [7], a distributed optimization
problem with general differentiable convex objective functions
is studied for continuous-time multi-agent systems with single-
integrator dynamics. Objective functions subjected to bounds,
equality, and inequality constraints have been taken into ac-
count in [8] and addressed with a proportional-integral proto-
col. A distributed optimization problem on directed graphs
with nonconvex local objective functions is tackled in [9]
by using an adaptive continuous-time algorithm. In [10], a
passivity-based approach is used to prove the convergence of
distributed continuous-time schemes for both unconstrained
and constrained scenarios, also in presence of communication
delays. In [11], a continuous-time distributed optimization
algorithm is shown to possess exponential convergence proper-
ties by decomposing it into a set of input feedforward passive
systems that interact with each other. Paper [12] proposes
a continuous-time optimization algorithm designed by taking
inspiration from the existing discrete-time algorithm known as
Newton-Raphson method. In fact, a part of works is recently
trying to study the convergence properties of dynamic systems
representing the continuous counterpart of existing iterative
optimization algorithms. This line of research starts with the
work [13], where a second order differential equation is pre-
sented as the continuous counterpart of Nesterov’s accelerated
gradient method. The authors of [14] propose a systematic way
to go from continuous-time curves generated by a Lagrangian
functional to a family of discrete-time accelerated algorithms.
A connection between a Lyapunov approach and the so-
called estimating sequence analysis (typically adopted for
momentum-based algorithms) is proposed in [15] to analyze
accelerated optimization methods. In [16], high resolution
ordinary differential equations are introduced to better under-
stand the continuous-time counterpart of Nesterov algorithm
and heavy ball algorithm. Paper [17] studies the first order
mirror descent algorithm by deriving ordinary differential
equations from duality gaps.

Distributed continuous-time schemes rely on continuous-
time communication among the network agents. Being such a
mechanism not implementable in practice, a research effort
has been also devoted to study continuous-time distributed
algorithms with discrete-time communication. In this regard,
the authors of [18] propose a continuous-time optimization
algorithm for solving a cost-coupled problem in a distributed
manner. Moreover, they also propose variants of the plain
algorithm in which the communication between agents occurs
both in a periodic and event-triggered fashion. In [19], the
same scenario is addressed with a continuous-time algorithm
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in which the agents can only provide quantized information
to neighbors with an event-triggered protocol. In [20], a
continuous-time algorithm with event-triggered communica-
tion inspired from [18] is extended to reject external dis-
turbances by relying on internal model concepts. Paper [21]
employs a subgradient method is employed with an event-
triggered communication policy. In [22] a continuous-time
distributed optimization algorithm with second order dynam-
ics both with continuous communication and event-triggered
communication between agents is proposed. The work [23]
considers a quadratic optimization problem considered and a
continuous-time algorithm with event-triggered communica-
tion is proposed to solve it. Finally, nonconvex optimization
problems are addressed in [24] with an event-triggered imple-
mentation of the distributed gradient descent.

The main contribution of this paper is the development
of three distributed algorithms for strongly convex consensus
optimization problems over networks along with the theoreti-
cal proof of their linear convergence rate1. Specifically, the
development of two of them rely on alternative communi-
cation paradigms that allow for a practical implementation
of continuous-time-based schemes on real devices. The first
algorithm is called CONTINUOUS GRADIENT TRACKING and
has been designed as the continuous-time counterpart of the
recently proposed (discrete-time) distributed gradient tracking.
In the second algorithm, agents send their own variables
to neighbors ruled by a synchronous triggering condition.
Whereas, the third algorithm implements an asynchronous
communication protocol among the agents that trigger accord-
ing to locally verifiable triggering conditions. By relying on
a Lyapunov approach, we first develop a system theoretical
stability analysis to show that the equilibrium of a dynamical
system equivalent to CONTINUOUS GRADIENT TRACKING
is globally exponentially stable. The equilibrium point cor-
responds to agents’ solution estimates being consensual and
equal to the optimal solution of the original optimization
problem. Then, this result is extended to handle the stability
analysis of the two triggered algorithms. Indeed, the stability
of their equilibrium is addressed by recasting the triggered
algorithms as perturbed versions of CONTINUOUS GRADI-
ENT TRACKING. Under suitable conditions on the triggering
protocol, exponential stability of CONTINUOUS GRADIENT
TRACKING can be proved with arbitrary initial estimates.
The asynchronous version of the algorithm uses an additional
auxiliary variable and a specific triggering condition. These
features exclude the Zeno behavior (i.e., an infinite number of
events in a finite period of time) while preserving the linear
convergence. As a side result, we provide a robust stability
guarantee of our algorithms against inexactness computations
and/or communications.

As mentioned above, the discrete-time method called gradi-
ent tracking is instrumental for our novel triggered algorithms.
It has been obtained as an extension of [25], [26], in which the
gradient method is combined with consensus, by introducing
a “tracking action”. Such tracking action is based on the

1“Linear convergence to an optimum” in optimization and “Exponential
stability of an equilibrium” in control are two expressions that refer to closely
related concepts. In our paper they are equivalent.

dynamic average consensus (see [27], [28]) in order to let
each agent estimate the gradient of a total cost function,
which is only partially locally known. There exist several
variants of the gradient tracking, see [29]–[38]. A control-
based analysis of this algorithm has been proposed in [39],
where a suitable change of coordinates is considered and turns
out to be fundamental also for the analysis performed in this
paper. Finally, the approach in [39] has been exploited to de-
sign gradient tracking algorithms with sparse (non-necessarily
diagonal) gains in [40].

The paper is organized as follows. The problem setup
is given in Section II. In Section III the CONTINUOUS
GRADIENT TRACKING is derived along with its convergence
properties. In Section IV the triggered algorithms are proposed
and analyzed. Section V discusses robustness aspects, while
numerical simulations are provided in Section VI. The proofs
are all deferred to the Appendix.

Notation: The matrix M ∈ Rn×n is said to be Hurwitz
if its spectrum, denoted as σ(M), lies in the open left-
half complex plane. The identity matrix in Rm×m is Im,
while 0m is the all-zero matrix in Rm×m. The vector of N
ones is denoted by 1N , while 1 denotes 1N ⊗ Id with ⊗
being the Kronecker product. The vertical concatenation of
the column vectors v1 and v2 is col(v1, v2). We denote as
diag(m1, . . . ,mN ) ∈ RN×N the diagonal matrix with diag-
onal elements m1, . . . ,mN . Similarly, blkdiag(M1, . . . ,MN )
is the block diagonal matrix whose i-th block is Mi ∈ Rdi×di .

II. PROBLEM SET-UP AND PRELIMINARIES

A. Optimization and Network Setup

In this paper, we consider a network of N agents that aim
at solving optimization problems in the form

min
x∈Rd

N∑
i=1

fi(x), (1)

with the cost function fi : Rd → R known to agent i only, for
all i ∈ {1, . . . , N}. Let the following hold.

Assumption 2.1: For all i, the function fi : Rd → R is
strongly convex with coefficient α > 0. □

Assumption 2.2: For all i, the function fi : Rd → R has
Lipschitz continuous gradient with constant L > 0. □

Notice that Assumption 2.1 ensures that problem (1) has a
unique optimal solution, denoted by x⋆ ∈ Rd.

The N agents cooperate by exchanging information among
neighbors to solve problem (1). Their interaction is modeled as
a graph G = ({1, . . . , N}, E), with E ⊂ {1, . . . , N}2 being the
edge set. If an edge (i, j) belongs to E , then agents i and j can
exchange information, otherwise not. The set of neighbors of
an agent i is Ni := {j ∈ {1, . . . , N} | (i, j) ∈ E} and includes
i itself, i.e., G contains self-loops. We associate to the graph G
a symmetric weighted adjacency matrix W ∈ RN×N whose
entries match the graph, i.e., [W]ij > 0 whenever (i, j) ∈ E
and [W]ij = 0 otherwise. The weighted degree of an agent
is defined as di =

∑
j∈Ni

[W]ij . Finally, we associate to
G the so-called Laplacian matrix defined as L := D − W ,
where D := diag(d1, . . . , dN ) ∈ RN×N . Let the following
assumption of the network holds.
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Assumption 2.3: G is undirected and connected. □

B. Discrete Gradient Tracking

Let us recall the discrete-time gradient tracking, recently
proposed in the literature [29]–[38]. At iteration k ∈ N, each
agent i maintains a local estimate xi,k ∈ Rd of the optimal
solution of problem (1) and an auxiliary state si,k ∈ Rd. These
states are iteratively updated by agent i based on (i) the current
value of the its local cost function gradient ∇fi(xi,k) and (ii)
the information received from its neighbors according to

xi,k+1=
∑
j∈Ni

[W]ijxj,k − γ si,k (2a)

si,k+1=
∑
j∈Ni

[W]ijsj,k+∇fi(xi,k+1)−∇fi(xi,k), (2b)

where γ > 0 is a stepsize, while each [W]ij is the (i, j)-th
element of a symmetric doubly stochastic matrix W , i.e., such
that [W]ij ≥ 0 and

∑N
i=1[W]ij =

∑N
i=1[W]ji = 1 for all

j = {1, . . . , N}. The distributed algorithm (2) can be written
into an aggregate form as

xk+1 =Wxk − γ sk (3a)
sk+1 =W sk +∇f(xk+1)−∇f(xk). (3b)

where xk := col(x1,k, . . . , xN,k), sk := col(s1,k, . . . , sN,k),
and ∇f(xk) := col(∇f1(x1,k), . . . ,∇fN (xN,k)) collect all the
local variables of the agents while we set W := W ⊗ Id.
It can be proved that under the initialization s0 = ∇f(x0),
the algorithm in (3) converges to a point corresponding to a
consensual optimal solution of problem (1), see [29]–[38].

III. CONTINUOUS GRADIENT TRACKING

In this section, we introduce CONTINUOUS GRADIENT
TRACKING which is a novel continuous-time, distributed al-
gorithm to solve problem (1). We first show how to derive it as
the continuous-time counterpart of the discrete-time algorithm
recalled in (3). Then, the convergence result to the optimal
solution of problem (1) is provided.

A. From Discrete to Continuous

Let us first introduce an alternative, causal formulation of
the (discrete) gradient tracking. Consider the nonlinear change
of coordinates proposed in [39] that moves the gradient term
at k + 1 to the left-hand side in (3). Therefore, let zi,k :=
si,k −∇fi(xi,k) and rewrite (3) as

xi,k+1 =
∑
j∈Ni

[W]ijxj,k − γ zi,k − γ∇fi(xi,k)

zi,k+1 =
∑
j∈Ni

[W]ijzj,k +
∑
j∈Ni

[W]ij∇fj(xj,k)−∇fi(xi,k).

The latter can be also written into an aggregate form as

xk+1 =Wxk − γ zk − γ∇f(xk) (5a)
zk+1 =W zk − (INd −W )∇f(xk), (5b)

where zk := col(z1,k, . . . , zN,k) while xk, ∇f(xk), W and γ
are the same as in Section II-B.

Following the arguments proposed in [13] for a centralized
optimization algorithm, we interpret the sequences xk and zk
of (5) as sampled versions of two continuous-time signals x(t)
and z(t). These signals are assumed to be smooth. According
to this interpretation, the stepsize γ > 0 can be then seen as
the sampling time characterizing a discretization procedure.
Figure 1 shows a graphical representation of the discretization
of the continuous signal x(t) resulting in the discrete sequence
xk.

t

x(t)

xk xk+1

kγ (k + 1)γ
γ

Fig. 1. xk as sampled version of x(t).

Informally, we start from the intuition

xk ≈ x(t)
∣∣∣
t=kγ

, zk ≈ z(t)
∣∣∣
t=kγ

,

in which the discrete time k is obtained by setting k := t/γ
with t being the continuous time. For any fixed t, by choosing
an arbitrarily small stepsize γ, we can consider the following
approximations

x(t) ≈ xt/γ = xk, x(t+ γ) ≈ x(t+γ)/γ = xk+1.

The same clearly holds also for the sequence zk. With these
approximations in mind, we can write the following Taylor
expansions

xk+1=x(t)
∣∣∣
t=(k+1)γ

=x(t)
∣∣∣
t=kγ

+γẋ(t)
∣∣∣
t=kγ

+o(γ) (6a)

zk+1=z(t)
∣∣∣
t=(k+1)γ

=z(t)
∣∣∣
t=kγ

+γż(t)
∣∣∣
t=kγ

+o(γ), (6b)

where o(γ) collects the higher order terms of the expansions.
As γ goes to zero, the higher order terms in (6) can be
neglected, leading to

ẋ(t)= 1
γ (xk+1 − xk)=

W−INd

γ x(t)−z(t)−∇f(x(t))

ż(t)= 1
γ (zk+1 − zk)=

W−INd

γ z(t)−W−INd

γ ∇f(x(t)),

which can be rewritten as

ẋ(t) = −Lγx(t)− z(t)−∇f(x(t)) (7a)
ż(t) = −Lγz(t)− Lγ∇f(x(t)), (7b)

where Lγ := (INd −W )/γ.

B. Algorithm Definition and Convergence

The Ordinary Differential Equation (ODE) in (7) involves
matrices whose structure depends on the preceding derivation.
However, one may consider any weighted Laplacian matrix
L associated to G. Therefore, we define the CONTINUOUS
GRADIENT TRACKING as[

ẋ(t)
ż(t)

]
=

[
−L −INd

0 −L

] [
x(t)
z(t)

]
−

[
INd

L

]
∇f(x(t)), (8)
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[
ẋ(t)
ż(t)

]
=

[
−L −I
0 −L

] [
x(t)
z(t)

]
+

[
I
L

]
u(t)

u(t) = −∇f(x(t))

xu

Fig. 2. Block diagram representation of system (8).

where L ∈ RNd×Nd is given by L := L ⊗ Id.
It is useful to also provide a local view of algorithm (8),

i.e., from the perspective of a generic agent i. The i-th block-
components of x(t) and z(t) corresponds, respectively, to
the local states xi(t) and zi(t) of agent i. The state xi(t)
represents the local estimate at time t of the optimal solution
of problem (1) while zi(t) ∈ Rd is an auxiliary state. Set
W := D − L (with D being the degree matrix of G) and let
wij be its (i, j)-th entry. Exploiting the sparsity in W , the i-th
block-components of (8) can be then written as

ẋi(t)=−
∑
j∈Ni

wij

(
xi(t)−xj(t)

)
−zi(t)−∇fi(xi(t)) (9a)

żi(t)=−
∑
j∈Ni

wij

(
zi(t)−zj(t)

)
−
∑
j∈Ni

wij

(
∇fi(xi(t))−∇fj(xj(t))

)
.

(9b)

The following theorem establishes the convergence proper-
ties of CONTINUOUS GRADIENT TRACKING.

Theorem 3.1: Consider the CONTINUOUS GRADIENT
TRACKING distributed algorithm described by (8). Let As-
sumptions 2.1, 2.2, 2.3 hold and pick any col(x(0), z(0)) such
that 1⊤z(0) = 0. Then, there exist a1 > 0 and a2 > 0 such
that

∥xi(t)− x⋆∥ ≤ a1 exp(−a2t), ∀i ∈ {1, . . . , N}. □

See Appendix A for the proof.
We underline that both a1 and a2 in Theorem 3.1 depend

on (i) the distance between the initial conditions and the
system equilibrium and (ii) the problem properties as, e.g.,
the network connectivity, the strong convexity parameter of
the cost and the Lipschitz constants of the cost gradients.
The same observation consistently applies to the subsequent
results.

We point out that the initialization 1⊤z(0) = 0 can be
obtained in a fully distributed way by simply setting each
zi(0) = 0, for all i ∈ {1, . . . , N}. The proof of Theorem 3.1 is
based on a Lyapunov analysis relying on the feedback structure
of (8) as represented in Figure 2.

Specifically, noticing that col(1x⋆,−∇f(1x⋆)) is the unique
equilibrium point for system (8) and by exploiting the initial-
ization, we perform a sequence of coordinate changes to obtain
an equivalent, reduced system formulation. The equivalent
system is characterized by a (marginally stable) linear part,
associated to the consensus mechanism, which is perturbed
by a nonlinear (feedback) term depending on the gradient ∇f .
We then prove the exponential stability of the equilibrium by

designing a quadratic Lyapunov function based on the linear
part only and bounding the nonlinear gradient term using the
strong convexity and the Lipschitz continuity.

Remark 3.2: The expression of the discrete-time dynamics
as in (5) turns out to be crucial in the derivation of its
continuous-time version. In fact, one can check that

∇f(xk+1) = ∇f

(
x(t)

∣∣∣
t=(k+1)γ

)
= ∇f

(
x(t)

∣∣∣
t=kγ

+ γẋ(t)
∣∣∣
t=kγ

+ o(γ)

)
= ∇f

(
x(t)

∣∣∣
t=kγ

)
+γ∇2f

(
x(t)

∣∣∣
t=kγ

)
ẋ(t)

∣∣∣
t=kγ

+o(γ).

Thus, the arguments presented in Section III-A applied to the
algorithm in its original coordinates (3) results in[
ẋ(t)
ṡ(t)

]
=

[
−Lγ −INd

−∇2f(x(t))Lγ −(Lγ +∇2f(x(t)))

] [
x(t)
s(t)

]
,

where s(t) is the continuous counterpart of sk while
∇2f(x(t)) := blkdiag(∇2f1(x1(t)), . . . ,∇2fN (xN (t))) ∈
RNd×Nd. Notice that these coordinates involve the second-
order matrix ∇2f(·) which usually requires a non-negligible
computational complexity and, in certain applications, is not
even known. □

IV. TRIGGERED GRADIENT TRACKING

The CONTINUOUS GRADIENT TRACKING would require
communication among agents at all t ≥ 0. Clearly, this
prevents its practical implementation on real devices that
require time-slotted communication. This issue is addressed
next by proposing two alternative schemes in which inter-
agent communication is triggered synchronously and asyn-
chronously, respectively.

Let {tki
i }ki∈N, be the sequence of time instants at which

agent i sends its states (xi, zi) and ∇fi to its neighbors
j ∈ Ni. Consistently, at time tkj

j , agent i receives the updated
variables from its neighbor j ∈ Ni. Let {t̃k}k≥0 be the
ordered sequence of all the triggering times that occurred in
the network. Then, given any t ∈ [t̃k, t̃k+1), let us introduce,
for all i ∈ {1, . . . , N}, the shorthands

x̂ki := xi(t)
∣∣∣
t= inf

ki∈N

{
t
ki
i ≥t̃k

}
ẑki := zi(t)

∣∣∣
t= inf

ki∈N

{
t
ki
i ≥t̃k

}
∇fki := ∇fi(xi(t))

∣∣∣
t= inf

ki∈N

{
t
ki
i ≥t̃k

}.
(10)

Quantities in (10) represent the most updated values in the
network within the considered time interval. Under the de-
scribed communication paradigm, we propose to modify the
local dynamics in (9) as follows

ẋi(t)=−
∑
j∈Ni

wij

(
x̂ki − x̂kj

)
− zi(t)−∇fi(xi(t)) (11a)

żi(t)=−
∑
j∈Ni

wij

(
ẑki −ẑkj

)
−
∑
j∈Ni

wij

(
∇fki −∇fkj

)
, (11b)
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for all t ∈ [t̃k, t̃k+1). Within the k-th period, the variable zi
behaves as an integrator. As for the variable xi, it is a local
gradient flow compensated with an integral action zi and a
constant consensus-error-like term. Agent i does not use its
own variables xi(t), zi(t), and ∇fi(xi(t)) in the consensus
mixing terms, but it rather uses their sampled version. This
fact allows one to preserve the theoretical consensus properties
of the original scheme (9).

As one can expect, the specific rule to choose the triggering
time tki

i will play a crucial role in the convergence properties
of the resulting algorithms.

A. SYNCHRONOUS TRIGGERED GRADIENT TRACKING

We start by presenting SYNCHRONOUS TRIGGERED GRA-
DIENT TRACKING, obtained by imposing a synchronous com-
munication among agents. Specifically, in this protocol each
agent i ∈ {1, . . . , N} sends its local variables to its neighbors
at common instants of time chosen according to

tki+1
i := tki

i +∆, (12)

for some common ∆ > 0 and with t0i = t0 for all i ∈
{1, . . . , N}. Intuitively, the greater ∆, the more inter-agent
communication reduces. On the other hand, the greater ∆, the
more the triggered algorithmic evolution moves away from
the behavior of CONTINUOUS GRADIENT TRACKING. The
next theorem gives theoretical guarantees about the maximum
admissible value for ∆.

Theorem 4.1: Consider the algorithm in (11) with the
synchronous communication protocol given by (12). Let As-
sumptions 2.1, 2.2, 2.3 hold and pick any col(x(0), z(0)) such
that 1⊤z(0) = 0. Then, there exist ∆⋆ > 0, a3 > 0, and
a4 > 0 such that for any ∆ ∈ (0,∆⋆), it holds

∥xi(t)− x⋆∥ ≤ a3 exp(−a4t), ∀i ∈ {1, . . . , N}. □

See Appendix A for the proof.
For all t ∈ [t̃k, t̃k+1), the aggregate form of (11) reads as[
ẋ(t)
ż(t)

]
= H

[
x(t)
z(t)

]
+B1∇f(x(t)) +B2

 x̂k

ẑk

∇fk

 , (13)

where x̂k := col(x̂k1 , . . . , x̂
k
N ), ẑk := col(ẑk1 , . . . , ẑ

k
N ), ∇fk :=

col(∇fk1 , . . . ,∇fkN ), and

H :=

[
0 −I
0 0

]
, B1 :=

[
−I
0

]
, B2 :=

[
−L 0 0
0 −L −L

]
.

The proof of Theorem 4.1 relies on a proper reformulation of
the dynamics (13) as a perturbed instance of the CONTINUOUS
GRADIENT TRACKING system (8). In particular, we show that
the periodic triggering law (12) gives rise to a perturbation
term that vanishes at the equilibrium point (see, e.g., [41,
Chapter 9] for the notion of vanishing perturbation) and that
can be arbitrarily bounded through the parameter ∆. Thus, we
can consider the same Lyapunov function V used in the proof
of Theorem 3.1 and pick a sufficiently small ∆ to show that
the perturbation does not alter the sign of the derivative of V
to conclude the proof.

B. ASYNCHRONOUS TRIGGERED GRADIENT TRACKING

We now investigate the case in which the agents choose their
triggering time tki

i in a fully asynchronous way giving rise to
an algorithm termed ASYNCHRONOUS TRIGGERED GRADI-
ENT TRACKING. This scheme is motivated by the fact that
the synchronous communication executed according to (12)
is rather conservative with a consequent non-efficient usage
of the available resources. An asynchronous communication
protocol allows agents to exchange information only when
really needed. This requires a modification of the synchronous
scheme. In particular, each agent has to check a local triggering
condition and to maintain an additional auxiliary variable. The
latter is important to take into account the so-called Zeno
behavior. Specifically, an infinite number of triggerings over a
finite interval of time must be avoided. Indeed, for agent i, a
triggering law suffers from the Zeno effect if

lim
ki→∞

tki
i =

∞∑
ki=0

(tki+1
i − tki

i ) = t∞i ,

for some (finite) t∞i > 0 termed the Zeno time.
The local dynamics is again described by (11). But, in order

to perform communication only when needed, each agent i
chooses the next triggering time instant tki+1

i according to
a locally verifiable condition. A possible choice for such a
condition may be

tki+1
i := inf

t>t
ki
i

{∥ei(t)∥ > λ ∥hi(t)∥} , (14)

with ei(t) := col(xi(t) − x̂ki , zi(t) − ẑki ,∇fi(xi(t)) − ∇fki ),
hi(t) := zi(t)+∇fi(xi(t)), and λ > 0 a constant to be prop-
erly specified later. The rationale for the triggering mechanism
is to (i) keep the triggered scheme close to the original dynam-
ics (8), and (ii) avoid the Zeno behavior. To this end, the right-
hand side of the inequality within (14) must be asymptotically
vanishing when the algorithm approaches a steady state. This,
in turn, gives rise to a vanishing quantity on the left term of
the inequality. Indeed, looking also to the discrete-time ver-
sion (2), the (local) quantity zi(t)+∇fi(xi(t)) can be seen as
a proxy for

∑N
i=1 ∇fi(xi(t)), i.e., a quantity that vanishes at

a consensual optimal solution. However, ∥hi(t)∥ vanishes not
only when the algorithm approaches the equilibrium, but also
if (xi(t), zi(t)) ∈ Si := {(xi, zi) ∈ R2d | zi = −∇fi(xi)},
possibly giving rise to the Zeno behavior. Thus, in order to
exclude this situation, the triggering condition (14) is further
modified as

tki+1
i := inf

t>t
ki
i

{
∥ei(t)∥ > λ ∥hi(t)∥+ |ξi(t)|

}
, (15)

where ξi ∈ R is a local, auxiliary variable maintained by each
agent i evolving as

ξ̇i(t) = −νξi(t), (16)

where ν > 0 is a parameter ruling the decay of ξi(t).
As formally shown next, if the ξi are initialized to nonzero

values, then algorithm (11) with triggering law (15) does not
incur in the Zeno behavior.

Theorem 4.2: Consider the algorithm described by (11)
with the asynchronous communication protocol given
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by (15). Let Assumptions 2.1, 2.2, 2.3 hold and pick any
col(x(0), z(0), ξ(0)) such that 1⊤z(0) = 0 and with ξ(0) =
col(ξ1(0), . . . , ξN (0)) ̸= 0. Then, there exist λ⋆ > 0, ν⋆ > 0,
a5 > 0, and a6 > 0 such that for any λ ∈ (0, λ⋆) in (15) and
any ν > ν⋆, it holds

∥xi(t)− x⋆∥ ≤ a5 exp(−a6t), ∀i ∈ {1, . . . , N}.
Moreover, system (11) does not exhibit the Zeno behavior. □
See Appendix A for the proof.

As for Theorem 4.1, also this proof is based on a proper re-
formulation of the aggregate form of ASYNCHRONOUS TRIG-
GERED GRADIENT TRACKING (which is still given by (13))
as a perturbed instance of the CONTINUOUS GRADIENT
TRACKING dynamics (8) with a vanishing perturbation. For
this asynchronous triggering law, (15), an upper bound on the
perturbation magnitude is provided. It is proportional to (i)
the term λ ∥z(t) +∇f(x(t))∥, which, as already stated, rep-
resents a surrogate for the distance from the equilibrium point
col(1x⋆,−∇f(1x⋆)), and (ii) to the exponentially decaying
term ∥ξ∥. Thus, considering a Lyapunov function derived from
the one used in Theorem 3.1, it is possible to show that, by
picking suitable λ and ν, the perturbation does not affect the
sign of the Lyapunov derivative. A specific choice for λ⋆ and
ν⋆ can be obtained by exploiting the bounds derived in the
proof.

V. ROBUSTNESS AGAINST INEXACT COMPUTATION

Let us consider a more general scenario in which agents
can access only inexact evaluations of their local state (xi, zi)
and/or of the local gradients ∇fi. Let vi,∇(t) ∈ Rd represents
the mismatch between the exact value of ∇fi(xi(t)) and the
one available to agent i for the local updates. The presence
of this mismatch may be due to several reasons as, e.g.,
quantization errors of the computing unit, measurement errors
in the sensor providing ∇fi(xi(t)), or model uncertainties
affecting the available gradient. Similarly, also mismatches
affecting the states xi and zi can be considered. Thus, we
consistently introduce vi,x(t) ∈ Rd and vi,z(t) ∈ Rd to
model such uncertainties. This framework can be formalized
by writing[
ẋ(t)
ż(t)

]
=

[
−L −I
0 −L

] [
x(t)
z(t)

]
−
[
I
L

]
∇f(x(t))

+ δ1B2e(t) +B3v(t), (17)

where e(t) := col(x̂k − x(t), ẑk − z(t),∇fk − ∇f(x(t)))
collects (possible) mismatches due to discrete-time commu-
nication and v(t) := col(v∇(t), vx(t), vz(t)) collects the men-
tioned local mismatches between the gradients, the solution
estimates and the auxiliary variables, the matrix B2 has the
same meaning as in (13), and B3 is defined as

B3 :=

[
−L −I −I
0 −L −L

]
. (18)

Finally, δ1 is equal to 0 for CONTINUOUS GRADIENT TRACK-
ING and equal to 1 for both the SYNCHRONOUS and ASYN-
CHRONOUS TRIGGERED GRADIENT TRACKING. Similarly,
we denote as δ2 is equal to 0 for both CONTINUOUS GRADI-
ENT TRACKING and SYNCHRONOUS TRIGGERED GRADIENT

TRACKING and equal to 1 for ASYNCHRONOUS TRIGGERED
GRADIENT TRACKING.

Next, the robustness of the algorithm in terms of input-to-
state stability is studied.

Proposition 5.1: Consider the algorithm described
by (17). Let Assumptions 2.1, 2.2, 2.3 hold and
pick any col(x(0), z(0)) such that 1⊤z(0) = 0.
Then, there exist a KL function g1(·) and a K∞
function g2(·) such that for any x(0) ∈ RNd it holds
∥x(t)− 1x⋆∥ ≤ g1(∥χ(0)∥ , t) + g2(∥v(·)∥∞), with
χ(0) := col(x(0) − 1x⋆, z(0) + ∇f(1x⋆), δ2ξ(0)) and
for any v(·) ∈ L3Nd

∞ .2 □
See Appendix A for the proof.

Proposition 5.1 guarantees that within the framework mod-
eled by (17), the proposed algorithms behave as input-to-
state stable systems. Therefore, in presence of mismatches
on variables and gradients, the distance between the solution
of problem (1) and the computed estimates stay bounded
according to the error magnitude.

VI. NUMERICAL SIMULATIONS

We next present numerical simulations to confirm and
support the theoretical findings. The simulations are done
using Matlab with its numerical solver “ode45” to integrate
the CONTINUOUS GRADIENT TRACKING.

We consider a network of agents that want to cooperatively
solve a data analytics problem in which a linear classifier must
be trained. Each agent i is equipped with mi ∈ N points
pi,1, . . . , pi,mi

∈ Rd with binary labels li,h ∈ {−1, 1} for all
h ∈ {1, . . . ,mi}. We consider a logistic regression problem
given by

min
w,b

N∑
i=1

mi∑
h=1

log
(
1+exp(−li,h(w⊤pi,h + b))

)
+ C(∥w∥2+b2)

2 ,

where the optimization variables w ∈ Rd−1 and b ∈ R
define the separating hyperplane, while C > 0 is the so-
called regularization parameter. Notice that the presence of the
regularization makes the cost function strongly convex. In our
simulations, we pick d = 3, mi = 10 for all i ∈ {1, . . . , N},
and C = 0.1.

A. CONTINUOUS GRADIENT TRACKING

In this subsection, the effectiveness of CONTINUOUS GRA-
DIENT TRACKING is shown on a network of N = 50 agents
communicating according to an undirected and connected
Erdős-Rényi graph with parameter 0.4. In Figure 3 the conver-
gence performances of CONTINUOUS GRADIENT TRACKING
algorithm are shown. Specifically, the distance of the local
estimates x(t) := col(x1(t), . . . , xN (t)) from the optimum
∥x(t)− 1x⋆∥, converges to zero exponentially fast as expected
from Theorem 3.1.

2See [41, Chapter 4] for the function classes’ definitions.
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Fig. 3. Evolution of the distance from the optimum of local estimates
generated by CONTINUOUS GRADIENT TRACKING.

B. SYNCHRONOUS AND ASYNCHRONOUS TRIGGERED
GRADIENT TRACKING

In this subsection, the effectiveness of the triggered al-
gorithms is shown for a network of N = 10 agents com-
municating according to an undirected and connected Erdős-
Rényi graph with parameter 0.4. We tested SYNCHRONOUS
TRIGGERED GRADIENT TRACKING and ASYNCHRONOUS
TRIGGERED GRADIENT TRACKING for different values of
their key parameters ∆ and λ, respectively. Moreover, we
experimentally tuned the stepsize for the discrete graident
tracking as γ = 0.1 in order to optimize its convergence rate.
Finally, we set ν = 5 for the dynamics of ξi in (16). For
the simulation of ASYNCHRONOUS TRIGGERED GRADIENT
TRACKING, the triggering condition (cf. (15)) is checked
every 0.001 seconds. Figure 4 compares the evolution of
the optimality error obtained with different ∆ and λ, for
SYNCHRONOUS TRIGGERED GRADIENT TRACKING, ASYN-
CHRONOUS TRIGGERED GRADIENT TRACKING, and the dis-
crete gradient tracking. Specifically, the comparison is done
in terms of communication rounds. The plot considers the
performances of the most efficient agent, say i⋆, that per-
forms the smallest number of neighboring communications
in ASYNCHRONOUS TRIGGERED GRADIENT TRACKING. As
for the discrete gradient tracking, we denote, with a slight
of abuse of notation, xi⋆(t

ki⋆
i⋆

) = xki⋆ , with the sequence
{xki⋆}k≥0 generated by (5). As Figure 4 clearly highlights,
the communication rounds decrease as λ increases. The same
applies to ∆. In particular, we underline that ASYNCHRONOUS
TRIGGERED GRADIENT TRACKING results more efficient
in finding the optimal solution with respect to both SYN-
CHRONOUS TRIGGERED GRADIENT TRACKING and discrete
gradient tracking.

Finally, in Figure 5 each cross represents when the trig-
gering condition occurred for each agent while running the
ASYNCHRONOUS TRIGGERED GRADIENT TRACKING with
λ = 0.1. The plots demonstrate how event-triggered commu-
nication effectively reduces inter-agents communication.

VII. CONCLUSIONS

In this paper, we addressed consensus optimization by
proposing three novel distributed optimization algorithms.
First, CONTINUOUS GRADIENT TRACKING is derived as
the continuous-time counterpart of the existing discrete-time

0 20 40 60 80 10010−14
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101

Communication rounds ki
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i ?

( tk
i
?
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x
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Fig. 4. Comparison among ASYNCHRONOUS TRIGGERED GRADIENT
TRACKING (ATGT), SYNCHRONOUS TRIGGERED GRADIENT TRACKING
(STGT) and the discrete gradient tracking (DGT) in terms of evolution of
the optimality error.
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Fig. 5. Occurrence of the triggering conditions in the ASYNCHRONOUS
TRIGGERED GRADIENT TRACKING.

gradient tracking algorithm. Then, by specifying proper inter-
agent communication protocols, two triggered algorithms are
derived and analyzed, a synchronous and an asynchronous
one, with an algorithmic structure inspired by the continuous
version. The convergence analysis of all algorithms exploited
a system-theoretical approach based on a suitably defined
quadratic Lyapunov function. The theoretical findings have
been supported through numerical simulations.
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APPENDIX

We first observe that, in light of Assumption 2.2, the ODE
in (8) is well posed for any t ≥ 0 and admits a unique solution,
see [41, Theorem 3.2]. By inspecting system (8), we can assert
that it has a unique equilibrium point at[

xeq
zeq

]
:=

[
1x⋆

−∇f(1x⋆)

]
,

which represents the situation in which the N agents have a
consensual solution estimate equal to the optimal solution x⋆

of the optimization problem (1). In order to use a Lyapunov
approach, we put the system in error coordinates. Let[

x
z

]
7−→

[
x̃
z̃

]
:=

[
x
z

]
−

[
xeq
zeq

]
. (A.19)

Then, system (8) can be rewritten as[
˙̃x
˙̃z

]
=

[
−L −I
0 −L

] [
x̃
z̃

]
+

[
I
L

]
u(x̃), (A.20)

where the role played by the “input” term u(x̃) := ∇f(1x⋆)−
∇f(x̃+1x⋆) has been highlighted. Indeed, it can be interpreted
as a nonlinear feedback of the output ỹ = x̃ and suggests to
introduce a further change of coordinates given by[

x̃
z̃

]
7−→

[
ỹ
η̃

]
:=

[
I 0
L −I

]
︸ ︷︷ ︸

T1

[
x̃
z̃

]
. (A.21)

Since T1 is an involutory matrix (i.e., it coincides with its
inverse), the change of coordinates (A.21) transforms (A.20)
in [

˙̃y
˙̃η

]
=

[
−2L I
−L2 0

] [
ỹ
η̃

]
+

[
I
0

]
u(ỹ). (A.22)

Before studying the stability of the origin for (A.22), the
effect of the initialization 1⊤z(0) = 0 in the new coordinates
(ỹ, η̃) is investigated. We observe that the subspace

S := {(ỹ, η̃) | 1⊤η̃ = 0}
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is invariant for (A.22). In light of (A.21), it holds

0 = 1⊤η̃ = 1⊤(Lx̃− z̃) = 1⊤z,

where the last equality holds in light of (A.19) and since
1⊤∇f(1x⋆) = 0 and 1⊤L = 0 (cf. Assumption 2.3).
Therefore the initialization of z(0) guarantees that η̃(0) ∈ S .
Hence, we can perform a final change of coordinates to isolate
the invariant state to further restrict the dynamics. Let[

ỹ
η̃

]
7−→

 ỹ

ψ̃
η̃avg

 := T2

[
ỹ
η̃

]
, (A.23)

in which

T2 :=

[
Tỹ
Tη̃

]
, Tỹ :=

[
I 0
0 R⊤

]
, Tη̃ :=

[
0 1√

N
1⊤

]
,

(A.24)

with R ∈ RNd×(N−1)d such that R⊤R = I , R⊤1 = 0 and
∥R∥ = 1. The following useful relations holds true

RR⊤ = I − 1
N 11⊤. (A.25)

It is easy to check that T−1
2 = T⊤

2 , thus (A.22) can be rewritten
as ˙̃y

˙̃
ψ
˙̃ηavg

=

 −2L R 1√
N

−R⊤L2 0 0
0 0 0

 ỹ

ψ̃
η̃avg

+
I0
0

u(ỹ). (A.26)

In light of the invariance of S, it holds η̃avg(t) ≡ 0. Then we
can consider only ζ := col(ỹ, ψ̃) ∈ Rn, with n := (2N − 1)d.
The dynamics (A.26) can be written as

ζ̇ = Aζ +Bu(ỹ), (A.27a)

with

A :=

[
−2L R

−R⊤L2 0

]
, B :=

[
I
0

]
. (A.28)

Next, consider a quadratic, candidate Lyapunov function V :
Rn → R given by

V (ζ) := ζ⊤Pζ, (A.29)

with P ∈ Rn×n such that P = P⊤ > 0 and arranged in
blocks as

P :=

[
P1 P2

P⊤
2 P3

]
, (A.30)

where P1 ∈ RNd×Nd, P2 ∈ RNd×d, and P3 ∈
R(Nd−d)×(Nd−d). Next, it is shown how to choose P in order
to prove global exponential stability of the origin of (A.27).
Let m > 0 and set

P1 = mI, P2 = −R, P3 = mR⊤(L2)†R, (A.31)

where (·)† denotes the Moore-Penrose pseudoinverse. By the
Schur complement lemma, P > 0 imposes that m must satisfy{
mI > 0

mR⊤(L2)†R− 1
mI > 0

=⇒ m > 1√
min{σ(R⊤(L2)†R)}

.

(A.32)

The time-derivative of V along trajectories of (A.27) is

V̇ (ζ) = ζ⊤ (A⊤P + PA)︸ ︷︷ ︸
−Q

ζ + 2ζ⊤PBu. (A.33)

The choices (A.31) yield to

Q =

[
4mL− 2L2 2LR

2R⊤L 2I

]
, PB =

[
mI
−R⊤

]
. (A.34)

We separately study the quadratic term −ζ⊤Qζ and the cross
term 2ζ⊤PBu as a function of m to show that V̇ (ζ) can be
made negative definite for a sufficiently large m.

As for the first term in (A.33), we observe that Q is a
solution to a Lyapunov equation associated to a marginally
stable matrix. Therefore, it can only be positive semidefinite.
Indeed, the upper-left block within the expression (A.34) has
the kernel spanned by 1 for any choice of m. By the Schur
complement lemma, imposing Q ≥ 0 is equivalent to

4mL− 2L2 − 2LRR⊤L ≥ 0. (A.35)

In light of (A.25) and since L1 = 0, condition (A.35) reduces
to 4mL−4L2 ≥ 0. Since L and L2 have the same kernel, the
latter condition is fulfilled by any m such that

m ≥ max{σ(L2)}
min{σ(L) \ {0}} . (A.36)

Moreover, L positive semidefinite, condition (A.36) can be
satisfied with m > 0.

Next, the second term in (A.33) is considered to show V̇ <
0. In light of (A.34), it holds

2ζ⊤PBu = 2mỹ⊤u− 2ψ̃⊤R⊤u
(a)

≤ −2mα ∥ỹ∥2 − 2ψ̃⊤R⊤u, (A.37)

where in (a) we use the strong convexity of the cost functions
(cf. Assumption 2.1). Using the Cauchy-Schwarz inequality,
condition (A.37) can be manipulated as

2ζ⊤PBu ≤ −2mα ∥ỹ∥2 + 2 ∥R∥
∥∥∥ψ̃∥∥∥ ∥u∥

(a)

≤ −2mα ∥ỹ∥2 + 2β
∥∥∥ψ̃∥∥∥ ∥ỹ∥

(b)

≤ −2mα ∥ỹ∥2 + β

ϵ
∥ỹ∥2 + βϵ

∥∥∥ψ̃∥∥∥2
(c)
= ζ⊤

[(
− 2mα+ β

ϵ

)
I 0

0 βϵI

]
︸ ︷︷ ︸

Q0

ζ, (A.38)

where in (a) we use the Lipschitz continuity of the gradient
of the cost functions (cf. Assumption 2.2) and the fact that
∥R∥ = 1, while in (b) we use the Young’s inequality with
ϵ > 0, and in (c) we introduce the matrix Q0. Indeed, we want
to show that the zero eigenvalues of Q can be moved inside
the open left-half plane through Q0. Thus, by plugging (A.38)
in (A.33), it holds

V̇ (ζ) ≤ −ζ⊤Q̃ζ, (A.39)
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where Q̃ := Q−Q0, i.e., it holds

Q̃ :=

[
4mL− 2L2 +

(
2mα− β

ϵ

)
I 2LR

2R⊤L (2− βϵ)I

]
. (A.40)

By the Schur complement lemma, Q̃ > 0 is equivalent to{
2− βϵ > 0

4mL− 2
(

2
2−βϵ + 1

)
L2+ 2mαϵ−β

ϵ I > 0,

which is verified for every ϵ < 2
β and

m > max

{
(1+ 1

2−βϵ )max{σ(L2)}
2min{σ(L)\{0}} , β

2αϵ

}
. (A.41)

Therefore, we can conclude that V̇ (ζ) < −min{σ(Q̃)} ∥ζ∥2
which implies that the origin is globally exponentially stable
for system (A.27) (cf. [41, Theorem 4.10]). Specifically, there
exist a7, a2 > 0 such that

∥ζ(t)∥ ≤ a7 ∥ζ(0)∥ exp(−a2t), (A.42)

for any ζ(0) ∈ Rn. By noticing that ∥xi(t)− x⋆∥ ≤
∥x(t)− 1x⋆∥ = ∥y(t)∥ ≤ ∥ζ(t)∥ , the proof follows by (A.42)
by setting a1 = a7 ∥ζ(0)∥.

The dynamics (11) of SYNCHRONOUS TRIGGERED GRA-
DIENT TRACKING can be reformulated as a perturbed in-
stance of the nominal dynamics of CONTINUOUS GRADI-
ENT TRACKING described by (8). Clearly, the perturbation
expresses the impact of the triggering mechanism on the
algorithmic evolution. Thus, by adding and subtracting the
term B2 col(x(t), z(t),∇f(x(t))) in the dynamics (13), we get[

ẋ
ż

]
=

[
−L −I
0 −L

] [
x
z

]
+

[
−I
−L

]
∇f(x) +B2e, (A.43)

where e has the same meaning as in (17). By performing
the same changes of coordinates defined in (A.19), (A.21),
and (A.23), the dynamics (A.43) can be equivalently reformu-
lated as the following (restricted) dynamics

ζ̇ = Aζ +Bu+ Eeζ,∇, (A.44)

where the vectors ζ ∈ Rn, u ∈ RNd and the matrices A ∈
Rn×n and B ∈ Rn×Nd are as in (A.27), while the quantities
associated to the perturbation are

E := T⊤
ỹ T1B2T1Tỹ =

[
−L 0 0
0 −R⊤LR R⊤L

]
,

(A.45a)

eζ,∇ := col(ˆ̃y − ỹ,
ˆ̃
ψ − ψ̃, e∇)

:= col(ˆ̃y − ỹ,
ˆ̃
ψ − ψ̃,∇fk −∇f(ỹ + x⋆)) (A.45b)

with T1 and Tỹ defined in (A.21) and (A.24), respectively. Let
us consider a quadratic, candidate Lyapunov function V (ζ) =
ζ⊤Pζ as in (A.29) with the blocks of P set as in (A.31). The
time-derivative of V along the trajectories of (A.43) satisfies

V̇ (ζ) = ζ⊤(A⊤P + PA)ζ + 2ζ⊤PBu+ 2ζ⊤PEeζ,∇

≤ −ζ⊤Q̃ζ + 2ζ⊤PEeζ,∇, (A.46)

where Q̃ is as in (A.40) so that the inequality holds in light
the previous proof of Theorem 3.1 (cf. (A.39)). By using

the Young’s inequality with ϵ > 0, we can further upper
bound (A.46) as

V̇ (ζ) ≤ −ζ⊤Q̃ζ + ϵζ⊤PPζ + 1
ϵ e

⊤
ζ,∇E

⊤Eeζ,∇
(a)
= −ζ⊤

(
Q̃− ϵP 2

)
ζ + 1

ϵ e
⊤
ζ,∇E

⊤Eeζ,∇, (A.47)

where in (a) the terms in ζ have been grouped. In light of the
sufficient condition in (A.41) to get a positive definite Q̃, we
can always take ϵ such that

0 < ϵ <
min{σ(Q̃)}
max{σ(P 2)}

in order to impose also Q̃ − ϵP 2 positive definite. Thus, by
denoting as q > 0 the smallest eigenvalue of the matrix Q̃−
ϵP 2 and by applying the Cauchy-Schwarz inequality to the
quadratic term in eζ,∇ of (A.47), we bound (A.47) as

V̇ (ζ) ≤ −q ∥ζ∥2 + 1
ϵ

∥∥E⊤E
∥∥ ∥eζ,∇∥2

(a)
= −q ∥ζ∥2 + 1

ϵ

∥∥E⊤E
∥∥ (∥eζ∥2 + ∥e∇∥2)

(b)

≤ −q ∥ζ∥2 + 1
ϵ

∥∥E⊤E
∥∥( ∥eζ∥2 + β2

∥∥∥ˆ̃y − ỹ
∥∥∥2 )

(c)

≤ −q ∥ζ∥2 + 1
ϵ

∥∥E⊤E
∥∥ (1 + β2)︸ ︷︷ ︸
c1

∥eζ∥2 , (A.48)

where in (a) we introduce eζ := col(ˆ̃y − ỹ,
ˆ̃
ψ − ψ̃) to write

∥eζ,∇∥2 = ∥eζ∥2+∥e∇∥2, in (b) we use the Lipschitz continu-
ity of the gradients of the cost functions (cf. Assumption 2.2)
to bound ∥e∇∥2 ≤ β2∥ˆ̃y− ỹ∥2, and in (c) we rely on the fact
that ˆ̃y − ỹ is a component of eζ .

The proof continues by deriving an upper bound for ∥eζ∥2
in (A.48). We start by defining

r :=
∥eζ∥
∥ζ∥ . (A.49)

Moreover, recall that in each interval [t̃k, t̃k+1), the error eζ
is set to zero at t̃k and grows until t̃k+1 when it is reset again
to zero. Hence, the goal is to establish a lower bound on the
needed time for r(t) to reach

√
q/c1. By computing the time

derivative of (A.49), it follows

ṙ =
e⊤ζ ėζ

∥eζ∥ ∥ζ∥
− ∥eζ∥ ζ⊤ζ̇

∥ζ∥3
. (A.50)

Using the Cauchy-Schwarz inequality, we bound ṙ as

ṙ ≤ ∥eζ∥ ∥ėζ∥
∥eζ∥ ∥ζ∥

+
∥eζ∥ ∥ζ∥ ∥ζ̇∥

∥ζ∥3
(a)

≤ ∥ζ̇∥
∥ζ∥ +

∥eζ∥ ∥ζ̇∥
∥ζ∥2

(b)
= (1 + r)

∥ζ̇∥
∥ζ∥ (A.51)

where in (a) we use the identity ėζ = −ζ̇ while in (b) we
exploit the definition of r in (A.49). Then, in light of the
dynamics of ζ in (A.44), it holds

ṙ ≤ (1 + r)
∥Aζ +Bu+ Eeζ,∇∥

∥ζ∥
(a)

≤ (1 + r)
∥A∥ ∥ζ∥+ ∥u∥+ ∥E∥ ∥eζ∥+ ∥E∥ ∥e∇∥

∥ζ∥ ,

(A.52)
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where in (a) we use the triangle and the Cauchy-Schwarz
inequalities combined with ∥Bu∥ = ∥u∥. Next, by using the
Lipschitz continuity of the gradients of the cost functions (cf.
Assumption 2.2), we have ∥u∥ ≤ β ∥ζ∥ and ∥e∇∥ ≤ β ∥eζ∥.
Thus, (A.52) becomes

ṙ ≤ (1 + r)
(∥A∥+ β) ∥ζ∥+ (1 + β) ∥E∥ ∥eζ∥

∥ζ∥
(a)
= (1 + r)

β ∥ζ∥
∥ζ∥ + (1 + r)

∥A∥ ∥ζ∥+ (1 + β) ∥E∥ ∥eζ∥
∥ζ∥

(b)
= β(1 + r) + (1 + r)

c2 ∥ζ∥+ c2 ∥eζ∥
∥ζ∥

(c)
= β(1 + r) + c2(1 + r)2, (A.53)

where in (a) we simply rearrange the terms, in (b) we
introduce c2 := max{∥A∥ , (1 + β) ∥E∥}, and in (c) we use
the definition of r in (A.49).

Using the Comparison Lemma (see [41, Lemma 3.4]) the
bound (A.53) translates in the following inequality

r(t, r(t̃k)) ≤ r̄(t, r̄(t̃k)), (A.54)

where r(t, r(t̃k)) denotes the solution of (A.50) with initial
condition at t = tk given by r(tk) while r̄(t, r̄(t̃k)) denotes
the solution of

˙̄r(t) = β(1 + r̄(t)) + c2(1 + r̄(t))2, (A.55)

for some initial condition initial condition at t = t̃k given by
r̄(t̃k) such that r(t̃k) ≤ r̄(t̃k). Recalling that the protocol (12)
imposes r(t̃k) = 0 at the beginning of each time interval
[t̃k, t̃k+1), then we select r̄(t̃k) = 0. The solution of (A.55)
can be shown to be (cf. [18])

r̄(t, 0) =
(β + c2)(exp(β(t− t̃k))− 1)

−c2 exp(β(t− t̃k)) + β + c2
. (A.56)

Notice that r̄(t, 0) starts from 0 at t = t̃k and monotonically
increases within the interval

[
0, tk + ln

(
β+c2
c2

)
/β

)
. Thus,

we can always find a triggering value t = ∆⋆ > 0 such that
r̄(∆⋆, 0) =

√
q/c1. Hence, by choosing any ∆ ∈ (0,∆⋆)

in (12), the inequality (A.54) ensures

|r(t)| = r(t) <

√
q

c1
, (A.57)

for all t ∈ [t̃k, t̃k+1), where the equality holds because r is
always positive, see its definition in (A.49). With this result
in mind, the inequality (A.48) can be rewritten as

V̇ (ζ) ≤ −
(
q − |r|2

c1

)
∥ζ∥2 ,

which allows us to use (A.57) to conclude that the origin
is globally exponentially stable for system (A.44) (cf. [41,
Th. 4.10]). Specifically, there exist a4, a8 > 0 such that

∥ζ(t)∥ ≤ a8 ∥ζ(0)∥ exp(−a4t), (A.58)

for any ζ(0) ∈ Rn. By noticing that ∥xi(t)− x⋆∥ ≤
∥x(t)− 1x⋆∥ = ∥y(t)∥ ≤ ∥ζ(t)∥ , the proof follows by (A.58)
by setting a3 = a8 ∥ζ(0)∥.

The proof of Theorem 4.2 traces the same initial steps in
Section A. Specifically, we reformulate the ASYNCHRONOUS
TRIGGERED GRADIENT TRACKING as a perturbed, extended
version of CONTINUOUS GRADIENT TRACKING in which the
perturbation is due to the event-triggered communication. By
exploiting the steps leading to (A.44), the aggregate form
of (11) and (16) reads

ζ̇ = Aζ +Bu+De (A.59a)

ξ̇ = −νξ, (A.59b)

where the vectors ζ ∈ Rn, u ∈ RNd and the matrices A ∈
Rn×n and B ∈ Rn×Nd are as in (A.27), e ∈ R3Nd has the
same meaning as in (17), ξ := col(ξ1, . . . , ξN ) ∈ RN , while
the matrix D is given by

D := T⊤
ỹ T1B2 =

[
−L 0 0

−R⊤L2 R⊤L R⊤L

]
, (A.60)

where the matrices T1, Tỹ and B2 are as in (A.21), (A.24),
and (13), respectively. We underline that the dynamics of ζ
and ξ are decoupled while both quantities affect the triggering
law (15).

Next, we show how to properly choose the value for ν
in (16) and for λ in the triggering law (15) to guarantee
that the perturbation term De and the auxiliary variable ξ do
not alter the stability property associated the nominal system
ζ̇ = Aζ + Bu (cf. Theorem 3.1). To this end, an upper
bound for ∥De∥, proportional to ∥ζ∥ and ∥ξ∥, is derived.
We start by using the Cauchy-Schwarz inequality to write
∥De∥ ≤ ∥D∥ ∥e∥ ≤ c3

∑N
i=1 ∥ei∥, with c3 := ∥D∥. In light

of the triggering law (15), the latter inequality can be upper
bounded as

∥De∥ ≤ λc3

N∑
i=1

∥zi +∇fi(xi)∥+ c3

N∑
i=1

|ξi|

(a)

≤ λc3
√
N ∥z +∇f(x)∥+ c3

√
N ∥ξ∥

(b)
= λc4 ∥z̃+∇f(x̃+ 1x⋆)−∇f(1x⋆)∥+c4 ∥ξ∥
(c)

≤ λc4 ∥z̃∥+ λc4β ∥x̃∥+ c4 ∥ξ∥ , (A.61)

where in (a) we apply the basic algebraic relation∑N
i=1 ∥θi∥ ≤

√
N ∥θ∥ for a vector θ = col(θ1, . . . , θN ), in

(b) we perform the change of coordinates given in (A.19) and
introduce the constant c4 := c3

√
N , and in (c) we use the

triangle inequality and the Lipschitz continuity of the gradients
of the cost functions (cf. Assumption 2.2). According to (A.21)
and (A.23), it holds[

x̃
z̃

]
= T1T

⊤
2

[
ζ
η̃avg

]
= T1T

⊤
2

[
ζ
0

]
, (A.62)

where we use the fact that the initialization z(0) leads to
η̃avg(t) ≡ 0. We rearrange the inequality (A.61) to reconstruct
the term ∥col(x̃, z̃)∥ as

∥De∥ ≤ λc4 max{1, β}
√
2 ∥col(x̃, z̃)∥+ c4 ∥ξ∥

(a)

≤ λc5 ∥ζ∥+ c4 ∥ξ∥ , (A.63)
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where in (a) we combine (A.62) with the Cauchy-Schwarz
inequality and set c5 := c4 max{1, β}

√
2
∥∥T1T⊤

2

∥∥. Given the
linear bound in (A.63), we can pursue a Lyapunov approach to
conclude the global exponential stability of the origin. Let us
consider a quadratic, candidate Lyapunov function Ṽ (ζ, ξ) =
ζ⊤Pζ+ 1

2ξ
⊤ξ. derived from the one considered in (A.29) with

the blocks of P set as in (A.31). Using similar arguments
leading to (A.48), the time-derivative of Ṽ along trajectories
of (A.59) can be upper bounded as

˙̃V (ζ, ξ) ≤ −q̃ ∥ζ∥2 + 2ζ⊤PDe− ν ∥ξ∥2 . (A.64)

By using the Cauchy-Schwarz inequality, we can plug (A.63)
in (A.64) to obtain

˙̃V (ζ, ξ) ≤ −q̃ ∥ζ∥2 + 2 ∥ζ∥ ∥P∥ ∥De∥
≤ −q̃λ ∥ζ∥2 + 2c4 ∥P∥ ∥ζ∥ ∥ξ∥ − ν ∥ξ∥2 , (A.65)

where we introduce q̃λ := (q̃ − 2λc5 ∥P∥). Then, for any λ <
q̃

2c5
∥P∥ =: λ⋆, it holds q̃λ > 0. Setting c6 := c4 ∥P∥, the

inequality (A.65) can be arranged in a matrix form as

˙̃V (ζ, ξ) ≤ −
[
∥ζ∥
∥ξ∥

]⊤ [
q̃λ −c6
−c6 ν

]
︸ ︷︷ ︸

U

[
∥ζ∥
∥ξ∥

]
. (A.66)

Being U ∈ R2×2 symmetric, by the Sylvester criterion U > 0
if and only if q̃λν > c26. Therefore, by taking any ν > ν⋆ :=
c26
q̃λ

, the matrix U is positive definite. Thus the inequality (A.66)
guarantees that the origin is globally exponentially stable for
system (A.59) (cf. [41, Lemma 4.10]). Specifically, there exist
a6, a9 > 0 such that

∥col(ζ(t), ξ(t))∥≤a9∥col(ζ(0), ξ(0))∥︸ ︷︷ ︸
a5

exp(−a6t), (A.67)

for any col(ζ(0), ξ(0)) ∈ RN+n. By noticing that

∥xi(t)− x⋆∥ ≤ ∥x(t)− 1x⋆∥=∥y(t)∥≤∥col(ζ(t), ξ(t))∥,

the proof of the first part of the theorem follows by (A.67).
Next, we prove by contradction that (11) does not exhibit

the Zeno behavior. Suppose, without loss of generality, that an
agent i exhibits the Zeno behavior, namely

lim
ki→∞

tki
i = t∞i . (A.68)

For any t ≥ 0, we have

d
dt ∥ei(t)∥ =

e⊤i ėi
∥ei(t)∥

(a)

≤ ∥ėi(t)∥
(b)
=

∥∥col(ẋi(t), żi(t),∇2fi(xi(t))ẋi(t))
∥∥

(c)
=

∥∥col( ˙̃xi(t), ˙̃zi(t),∇2fi(x̃i(t) + x⋆) ˙̃xi(t))
∥∥ , (A.69)

where in (a) we use the Cauchy-Schwarz inequality, in (b)
we use the definition of ei(t), and in (c) we locally perform
the change of variables given in (A.19). Combining the latter
change of variables with (11), it holds

˙̃xi(t)=−
∑
j∈Ni

wij(ˆ̃x
k
i − ˆ̃xkj )−z̃i(t) + ui(x̃i(t)) (A.70a)

˙̃zi(t)=−
∑
j∈Ni

wij(ˆ̃z
k
i − ˆ̃zkj )−

∑
j∈Ni

wij(∇fki −∇fkj ), (A.70b)

where we use ui(x̃i(t)) := (∇fi(x̃i(t) + x⋆) − ∇fi(x⋆))
and the local components of the shorthands given in (10).
By (A.67), the variables x̃i(t) and z̃i(t) are bounded for all i ∈
{1, . . . , N} and t ≥ 0. Then, by defining c7 := maxi,t ∥x̃i(t)∥
and c8 := maxi,t ∥z̃i(t)∥, (A.70a) and the triangle inequality
can be combined to get∥∥ ˙̃xi(t)∥∥≤∑

j∈Ni

wij2c7+c8+∥ui(x̃i(t))∥
(a)

≤ (2c9+β)c7+c8,

where in (a) we introduce c9 :=
∑

j∈Ni
wij and we use

the Lipschitz continuity of the gradients of the cost functions
(cf. Assumption 2.2). Using again the boundedness of the
quantities, and by adding and subtracting ∇fi(x⋆) within the
second sum of (A.70b), it holds∥∥ ˙̃zi(t)∥∥ ≤ 2c9(c8 + βc7).

Moreover, the Lipschitz continuity of the gradients of the cost
functions (cf. Assumption 2.2) also ensures that

∥∥∇2fi(v)
∥∥ ≤

β, for all v ∈ Rd and all i ∈ {1, . . . , N}. By combining the
latter with the two previous equations, the inequality (A.69)
can be upper bounded as

d
dt ∥ei(t)∥ ≤ c10, (A.71)

with c10 := (1 + β)(2c9 + β)c7 + c8 + 2c9(c8 + βc7).
Since the protocol (15) imposes ei(t) = 0 at the beginning

of each time interval [tki
i , t

ki+1
i ), then by also using (A.71),

we can write

ei(t)=ei(t
ki
i ) +

∫ t

t
ki
i

d ∥ei(τ)∥
dτ

dτ ≤ c10(t− tki
i ). (A.72)

By (16), it holds ξi(t) = ξi(0) exp(−νt) for all t ≥ 0. Thus,
being λ ∥hi(t)∥ ≥ 0 for any t ≥ 0, the bound in (A.72)
imposes, as a necessary condition to satisfy the triggering
in (15), that

c10(t
ki+1
i − tki

i ) ≥ |ξi(0)| exp(−νtki+1
i ) (A.73)

From (A.68), for all ϵ > 0 there exists ki,ϵ ∈ N such that

tki
i ∈ [t∞i − ϵ, t∞i ], ∀ki ≥ ki,ϵ. (A.74)

Set

ϵ :=
|ξi(0)|
2c10

exp(−νt∞i ), (A.75)

and suppose that the ki,ϵ-th triggering time of agent i, namely
t
ki,ϵ

i , has occurred. Let tki,ϵ+1
i be the next triggering time de-

termined by (15). Then, using the necessary condition (A.73)
we can write

t
ki,ϵ+1
i − t

ki,ϵ

i ≥ |ξi(0)|
c10

exp(−νtki,ϵ+1
i )

(a)

≥ |ξi(0)|
c10

exp(−νt∞i )
(b)
= 2ϵ, (A.76)

where in (a) we use t∞i ≥ t
ki,ϵ+1
i , while in (b) we use (A.75).

However (A.76) implies

t
ki,ϵ

i ≤ t
ki,ϵ+1
i − 2ϵ ≤ t∞i − 2ϵ,
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which contradicts (A.74) and concludes the proof.
The proof of Proposition 5.1 traces the same initial steps

in Section A and Section A. Using the change of coordinates
in (A.19), (A.21), (A.23), system (17) can be recast as

ζ̇ = Aζ +Bu+ δ1Eeζ,∇ + T⊤
ỹ T1B3vxz∇, (A.77)

with ζ ∈ Rn, u ∈ RNd, where A ∈ Rn×n and B ∈ Rn×Nd

are as in (A.27), E and eζ,∇ are as in (A.45a) and (A.45b),
B3, Tỹ , and T1 are as in (18), (A.21), and (A.24), while
vxz∇ := col(vx, vz, v∇). We remark that eζ,∇ changes accord-
ing to the implemented communication protocol. Moreover,
when ASYNCHRONOUS TRIGGERED GRADIENT TRACKING
is considered, also dynamics (16) has to be taken into account.
However, when v∇ ≡ vxz ≡ 0, then vxz∇ ≡ 0 and
system (A.77) reduces to

ζ̇ = Aζ +Bu+ δ1Eeζ,∇. (A.78)

Theorems 3.1, 4.1, and 4.2 ensure that the origin is globally
exponentially stable for (A.78) for both δ1, δ2 ∈ {0, 1} and
for both communication protocols (12) and (15). In light
of [41, Lemma 4.6], this condition is sufficient to assert that
system (A.77) is input-to-state stable and the proof follows
(cf. [42, Section 2.9]).
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