Analysis of Sliding-Mode Control Systems with
Relative Degree Altering Disturbances *

Tobias Posielek *, Kai Wulff, Johann Reger "

& Institute of System Dynamics and Control, German Aerospace Center (DLR), Minchner Str. 20, D-82234 Wessling, Germany

> Control Engineering Group, Technische Universitit Ilmenau, P.O. Boz 10 05 65, D-98684, Ilmenau, Germany

Abstract

We consider sliding-mode control systems subject to unmatched disturbances. Classical first-order sliding-mode techniques
are capable to compensate unmatched disturbances if differentiations of the output of sufficiently high order are included in
the sliding variable. For such disturbances it is commonly assumed that they do not affect the relative degree of the system. In
this contribution we consider disturbances that alter the relative degree of the process and study their impact on the closed-
loop control system with a classical first-order sliding-mode design. We analyse the reaching and sliding phase of the resulting
closed-loop system and analyse its stability properties. It turns out that the sliding-manifold is not of reduced dimension and
the uniqueness of the solution may be lost. Also attractivity of the sliding-manifold and global stability of the origin may be
lost whereas the disturbance rejection properties of the sliding-mode control are not impaired. We present a necessary and
sufficient condition for the existence of unique solutions for the closed-loop system. The second-order case is studied in great
detail and allows to parametrically specify the conditions obtained before. We derive a necessary condition for the global
asymptotic stability of the closed-loop system. Further we present a constructive condition for the global asymptotic stability
of the closed-loop system using a piece-wise linear Lyapunov function. Each of the prominent results is illustrated by an

numerical example.

Key words: Sliding-mode control, Unmatched disturbances, Relative degree

1 Introduction

This paper is dedicated to systems that are affected by
model uncertainties that reduce the relative degree of the
process. Such uncertainties may be due to model sim-
plifications where minor physical effects are chosen to
be disregarded, e.g. see [19] for an example. But relative
degree-altering uncertainties may also be induced by a
standard input-output linearisation where the transfor-
mation depends on an uncertain model, see e.g. [11] or
the example in Section 2.2.

In this manuscript we consider the standard first-order
sliding-mode controller (SMC) in particular. Sliding-
mode control techniques are well-known for their ro-
bustness properties with regard to model uncertainties
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and external disturbances. In particular disturbances
that enter the system via the same input-space as the
control signal, so-called matched disturbances, may be
completely rejected on the sliding manifold. Moreover,
if the sliding-manifold includes derivatives of the output
(of sufficiently high order) also unmatched disturbances
may be compensated. There are several propositions
that exploit this approach, see e.g. [2, 3, 8, 9, 22]. All
these methods consider system structures ensuring that
the relative degree of the system is not changed by the
disturbance. However, model uncertainties may change
the relative degree of the system as demonstrated
e.g. by [11].

Systems with uncertain relative degree have been sub-
ject to various research in the recent past. The concept
of ill-defined relative degree has been studied e.g. in [5,
6, 7, 17, 18]. Basically, a system with ill-defined relative
degree has states x for which the relative degree is larger
than at some nominal point xg, i.e. Egﬁ}flh(x) =0,
where r denotes the relative degree at xg. Another line of
research assumes that an upper bound of the uncertain
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relative degree is known. These kind of systems are anal-
ysed in various works such as [10, 13, 14, 21, 23]. In [13]
a direct adaptive tracking and disturbance rejection al-
gorithm for single-input, single-output minimum-phase
linear systems is developed. [23] use a state observer to
define a linear control law to reject disturbances on an
integrator chain system. Conditions are given for which
the stability of the closed loop is ensured.

In this contribution we analyse systems subject to dis-
turbances that alter the relative degree by exactly one
and study its impact on a closed-loop system with clas-
sically designed first-order sliding-mode controller. It
turns out that global attractivity of the sliding-manifold
may be lost in some cases while disturbance compensa-
tion in sliding-mode is retained. More severely, the un-
certainty may render the system unstable and unique-
ness of the solution may be lost. We shall study a generic
second-order system in great detail and analyse attrac-
tivity properties, existence of equilibria as well as their
stability properties. In particular, we derive construc-
tive stability conditions for the disturbed system using
a piece-wise linear Lyapunov function.

The paper is structured as follows. The next section in-
troduces the system class considered and defines the con-
cept of relative degree altering disturbances. We show
how such disturbance may naturally occur in a standard
transformation into Byrnes-Isidori form and give an il-
lustrating example. Section 3 gives a precise problem
definition for this contribution where we consider a clas-
sical first-order sliding-mode controller. Section 4 con-
tains the formal analysis of the resulting closed-loop sys-
tem in reaching and sliding-phase. In Section 5 we study
the second-order case in full detail. We derive paramet-
ric conditions for the existence of a relative degree alter-
ing disturbance as well as the loss of a unique solution.
In case of the existence of a unique solution we analyse
in particular the existence and location of equilibria in
the reaching phase and develop a constructive condition
for the global asymptotic stability of the closed-loop sys-
tem. Several numerical examples illustrate the effects of
the relative-degree altering disturbance as well as the
construction of the Lyapunov function in Section 6.

This manuscript is based on the previously published
work [19] on the effects of relative-degree altering dis-
turbances in the context of sliding-mode control. For
completeness of exposition the analysis in Section 4 is
included in this manuscript.

Alongside with the common mathematical notation, we
shall use Lyh(x) for the Lie derivative of h with respect

to the vector field f, i.e. Lyh(z) = ag—f)f(x). The Lie
derivative of h with respect to the sum of vector fields

f(z) + ¢(x) shall be denoted by

Lyioh(e) = 22 (f(2) + ¢(x)).

The k-th Lie derivative is denoted by

oL T h(x)
LEh(x) = =5 f(x).

We denote with e; the i-th unitvector and with I and 0
the identity and zero matrix of appropriate dimension.

2 System Class

We consider process dynamics of the form

&= f(z) +g(x)u+ ¢(z) (la)
Y= h(.’t) ) (1b)

where z(t) € R™ denotes the state, u(t) € R the control
input and y(t) € R the output of interest. The vector
fields f and g are sufficiently smooth and of matching
dimensions, where f(0) = 0 and g(z) # 0 for all «. The
output function A is uniformly continuous and the state
vector x as well as the output y and its derivatives with
respect to time are assumed to be known. The function ¢
is an unknown bounded disturbance. Without loss of
generality but for ease of exposition we restrain our anal-
ysis to time-invariant disturbances. Note however that
the results in Section 4 can be expanded to time-varying
disturbances.

The disturbance can be divided into a matched and an
unmatched disturbance, ¢, and ¢,, respectively, with

)g" ()¢(x) (2a)
H(2)g T (2)(2), (2b)

where g+ (z) is a full-rank left annihilator of g(x),
i.e. a matrix with independent columns that spans
the null space of g(x). It satisfies g-(z)g'(z) =
0 and tk(gt) =n—1. Moreover, we denote with
g‘:gx) the left pseudo-inverse of g(z), ie. g¥(x) =
(97 (x)g(x))" g " ().

We denote system (1) without disturbance, i.e. ¢ = 0,
as the nominal system. Accordingly, we denote by r the
relative degree of the nominal system. More precisely, for
¢ = 0, the relative degree of the output y = h(z) with
respect to the input u at the point x € R"™ is identical
tor,ie.

LyLhh(z) =
L,L7 " h(x) #

0, for ke{0,...r—2} (3a)
0, (3b)

where £ denotes the Lie-derivative. Note that the rela-
tive degree is a local property. If not stated otherwise,
we consider the relative degree at the origin « = 0.



2.1 Relative degree altering disturbance

The disturbance ¢ may have an impact on the relative
degree of system (1). Therefore, we shall distinguish dis-
turbances that retain the nominal relative degree from
disturbances that change the relative degree with respect
to the nominal case.

Definition 1 Consider system (1) with nominal relative
degree r. The disturbance ¢ is called (relative degree)
preserving if

Lok 4h(x) =0, for ke{0,...r—2}  (4a)
LyL uh(x) #0. (4b)

Otherwise ¢ is called (relative degree) altering.

Note that any matched uncertainty is relative degree
preserving. Typically, this property is also required for
unmatched disturbances as many common control tech-
niques for non-linear systems, such as input-output lin-
earisation or sliding mode control, rely on the knowledge
of the relative degree to divide the states into a set of
(controlled) external states and a set of (uncontrolled)
internal states. This is achieved using the transforma-
tion into Byrnes-Isidori Form. In this context it is worth
noting that the property of a relative degree preserving
(altering) disturbance is invariant with respect to regu-
lar state transformations if the input and output remain
the same.

2.2 Transformation into Byrnes-Isidori Form

Consider the state transformation [15]

T(:c):[h(x) Lih(x)... C;_lh(x) Trp1(2) ... 7'n(:n)}T (5)

where 7;(x) is chosen such that 7 is a diffeomorphism
and L47j(z) = 0 for j € {r +1,...,n}. This is the
state transformation for the nominal system into Byrnes-
Isidori Form. The dynamics of the external states of the
nominal system & = [r1(z) ... 7.(x)]T have the form

. |or 0
§=[ 1§+
00

u+
Ly L% h(x)

+07(&m)  (6)

[ 0
+
L:h(x)

where z is evaluated at = 771(¢,n) and the distur-
bance acting on the external dynamics is given by

Qz)ext(é"’n) = £¢h(l‘) £¢[,fh(l') £¢£;_1h(x):|—r

If the first r—1 entries of the disturbance vector ¢*** (¢, n)
are identical to zero then ¢°**(£, i), and therefore also ¢,
is a relative degree preserving disturbance as introduced
in Definition 1. This would allow to employ standard
control laws v for integrator systems.

In general, however, ¢ may not be relative degree pre-
serving as illustrated by the following example. In such
case, £ in (6) does not represent the external dynamics.

2.8 FEzample

We consider a single link manipulator with a flexible
joint and neglected damping as discussed in [20]. The
system has the form (1) with the vector fields

X2 0
—Mal in()) — £ (21 — x3) 0
fl@)y=| " Je ;o g(e) =
Ty 0
T (331 - 373) i

h(z) =21,

where M, J, denote the mass and inertia of the effector
with centre of gravity at distance L from the point of
attack. k denotes the spring constant and J, the inertia
of the actuator.

If we consider the neglected damping as model uncer-
tainty, the disturbance takes the form

.
6(2) = [0~ (s —24) 0 (s — )]

with d as unknown small damping constant.

The output y of the nominal system has full relative
degree n with respect to the input u. This allows the
transformation (5) to yield only external states . The
transformation (5) into these nominal external states
takes the form

T(x) = 2 . 7
(@) MJgL sin(x1) — ]%(:vl —x3) ™

—@ cos(zq)xe — Jﬁ(xg —1y4)

Then the transformed system has the form (6) with the
disturbance ¢t = [¢$*t ¢$¥t #*t ¢$¥*]T having the

form 67 (€) = 65 (€) = 0 and
MgLd
55O = T+ I ol

MgL k
z%):—( oE coslen) + 25, ) 05°(©).

e



The disturbance ¢$**(£) impairs the integrator structure
of the transformed system and counteracts the benefits
of the transformation 7 for the design of a control law.

Remark 2 Note that for this example the relative degree
altering uncertainty is introduced by a parameter uncer-
tainty. A more involved example where the uncertainty
does not depend on a parameter approximation can be
found in [11].

As an expedient of this situation the transformation (5)
may be adapted to contain the disturbances in addition
to the nominal dynamics. While these are naturally not
explicitly available, information about them is contained
in the derivatives of the output which are used in com-
mon sliding mode control laws.

3 Problem definition

In this paper we consider system (1) with full relative
degree and unmatched disturbances that reduce the rel-
ative degree of the nominal system by exactly one, i.e.

LoLh sh(z) =0, for ke{0,...n—3} (8a)
LyL% 2h(x) #0. (8b)

Thus the disturbed system (1) has relative degree n — 1,
whereas the nominal system has relative degree r = n.

We shall consider the Byrnes-Isidori form of the dis-
turbed system, where the state-space is decomposed into
external £ and internal states n. In contrast to Sec-
tion 2.2, the external states are defined using the exact
derivative of the output including the disturbance

§ii=m(z)=y = h(z), (9a)
Go=mi(x)=y" V=L h(x), i=2..n-2, (9b)
fn1:=Tn_1(x)=y" = E?;ih(w) . (9¢)

The remaining component

1= Ta(2), (10)

is scalar and chosen such that 7 is a diffeomorphism and
L47,(x) = 0. The resulting dynamics are given by

i |97y 0 N
= U
00 Lo L% 2h(x)

0= £f+¢7n($)|z:7—1(g,n) . (11b)

0
1la
c?;wml .

Compare these dynamics with (6) of the previous sec-
tion, where the transformation (5) is based on the nom-
inal system dynamics. Note that, strictly speaking, the

system (6) is not in Byrnes-Isidori form if ¢*** is rela-
tive degree altering. Due to the full relative degree of the
nominal system, the dimension of these nominal exter-
nal dynamics is n and there are no internal dynamics.
However, the external dynamics (11) resulting from the
transformation (7) of the disturbed system, are of dimen-
sion n — 1 with first-order internal dynamics. Assuming
that the external dynamics are locally asymptotically
stable by design, we require that the so-called zero dy-
namics, i.e. (11b) with £ = 0, are locally asymptotically
stable. Since 7(t) € R, local asymptotic stability of the
zero dynamics is ensured if and only if

N LT ()|=r—1(6,m) <0 (12)
for all nn # 0 within the considered neighbourhood.

The disturbance ¢*** in (6) is an unmatched disturbance
and affects the desired integrator chain of the system.
This makes the analysis as well as the control design dif-
ficult. In comparison to that, the external dynamics (11)
form an integrator chain of length n— 1. The disturbance
E?I_;h(m) acting on the n — 1st state is matched and can
be compensated using conventional sliding mode tech-
niques. The term Lgﬁgﬁ;ih(m), however, is much less be-
nign. As ¢ is relative degree altering, Egﬁ?;ih(x) de-
pendents on the disturbance ¢, c.f. (8b), and acts as an
unmatched disturbance. Note if ¢ is relative degree pre-
serving, this term is identical to zero, c.f. (4a), and the
internal dynamics vanish producing an additional inte-
grator state. This would render all uncertainties matched
and would allow to compensate them by a classical first-
order sliding-mode control considered in the following.

3.1 First-order sliding-mode control law

We apply a standard first-order sliding-mode control,
incorporating derivatives of the output, which compen-
sates matched as well as unmatched, relative degree pre-
serving uncertainties. We choose the switching function
based on the nominal relative degree as

o -y ) =y =y (g, 9,y D) (13)
with the function v designed such that the system
v =~ (g9, 9" Y) (14)

is asymptotically stable at 0. Since the system (1) has
relative degree n — 1, Equation (13) can be written as a
function of the state x and the input u

o(,u) = s54(x) + g4 ()u (15)



with the non-trivial functions

Sp(z) == Egﬁ?lih(x) (16)
se(x) = E?;éh(m)

— v (h(z), £}+¢h(:c), . ﬁ?;ih(m)) (17)

These incorporate the influence of the unknown distur-
bance ¢. Note that (13) is the implemented switching
function, while (15) is usually unknown and is used for
analysis purposes only. We write o(y,9,...y™ ) to
emphasise that the derivatives are obtained by differen-
tiating the output signal y, and we write o (x, u) if these
derivatives are substituted by their analytical expres-
sions from the right-hand side of (9).

We conclude this section by stating the standard first-
order sliding-mode control law with L > 0:

_*Cst(x) + LSgl’l (U(yvyv cee y(r)))

u= Z,50() (18a)
= a(z) — q(x) sgn (s¢(x) + §¢(m)u) (18b)
with sy meaning s with ¢ = 0, and
B _Efso(x) 2) = L
a(z) = Zo5o(@) q(x) = La50(@) (19)

4 Analysis of the closed loop system
4.1 Reaching phase and sliding phase

Commonly the state space can be divided into subspaces
for the reaching phase and a sliding manifold. The reach-
ing phase is defined by all  that fulfil o(x) # 0 while the
sliding phase is defined by o(z) = 0. In our case the slid-
ing variable o(x, u) may also depend on u, and therefore
this unique division may no longer be possible. In the
following we use the sliding variable to define subsets of
the state space for which the system can be in reaching
or sliding phase, respectively. In case o(z,u) > 0, Equa-
tion (15) yields s¢(x) + sp(x)u > 0. Substituting v from
(18) yields the set

X1 = {2 € R | s4(2) + so(@)(a(2) — q(x)) > 0} (20)

describing all points in R™ for which ¢ > 0. Similarly,
for o(x,u) < 0 we obtain the set

Xy = {z € R" [ 54(z) + op(2)(a(z) + ¢(2)) <0} (21)

and for o(x,u) = 0 we have

o egr | _5e@)
Xs : { R S T

Note that when eliminating u from (18) by substituting
(15) we have an implication (and no equivalence) and
thus 4 may not be uniquely defined by the state x.

Indeed, it turns out that X7, X5 and X3 are not neces-
sarily disjoint. Thus, for every point « with o(z,u) =0
holds # € X3, but under certain conditions for every
point in X5 may also hold o(x,u) # 0 depending on u
subject to (18).

For our analysis we shall distinguish the boundary and
the inner of the set X3. In this context, we consider the
set

o [ e 0l@) |, se(@)
X3{ e T e

€ (1,1)}. (23)

Obviously X§ is a subset of the inner of X3. If any inner
point of X3 is part of the set X§ then X3 is the inner of
X3. The boundary of X3 is then described by

g 2@, o)
an—{ eR |q(m)+<¢(x)q(x)

€ {—1,1}}. (24)

Before we discuss various cases for which the three sets
take different configurations in the state space, we shall
note that the three sets always cover the full state space.

Lemma 3 It is X7 UXo U X3 =R".

PROOF. We rearrange (20), (21) and (22) and obtain
for any x; € X; with ¢ € {1,2,3} that

s¢(21)+o(z1)a(z1) >S4 (21)g(21) (25a)
8¢(T2) s (w2)a(x2) < —S4(22)q(22) (25b)
s¢(@3)+<o(z3)a(w3) € [—[p @a)qls)|, [<p @s)qlws)|] (25¢)
We can see that every z € R™ fulfils at least one of these

three conditions. O

For our analysis we shall distinguish three configurations
of the sets X, X5, X3, see also Fig. 1:

Case 1: XiNXo=0 A X5#0,
Case 2: XiNXo=0 A X5=0,
Case 3: XiNXo#0 N X5 #0.

Note Case 2 is the classical first-order sliding-mode con-
trol, whereas Case 1 and 3 occur when altering distur-
bances are present.

First we consider the cases where the three sets are dis-
joint and thus reaching and sliding phase may be defined
via regions in the state-space. The following lemma gives
a necessary and sufficient condition for such case.



Lemma 4 (Case 1 and 2) The sets X; and X3 have
an empty intersection, i.e. X1 N Xo = 0 if and only if

q(x)sp(x) >0 forallx. (26)

Then Lemma 3 yields X5 = R™ \ (X1 U X3).

PROOF. Condition (25a) and (25b) ensure that X
and X are disjoint if and only if ¢(x)ss(x) > 0 for all z.
Further, ¢(x)ss(xz) > 0 with condition (25¢) gives that
for every point in X3 holds

54(w3) + Sp(r3)a(x3) € [—<p(23)q(23), S (23)q(23)] -

This makes X3 by definition of X; and X, and with
(25a) and (25b) the complement of the union of X
and Xo. O

Note that the dimension of X3 may be n. However,
for the special case of preserving disturbances, we have
S¢(z) = 0 and obtain a conventional sliding manifold of
dimension n — 1. This finding is summarised in the fol-
lowing corollary.

Corollary 5 (Case 2) If¢y(z) =0, it is X1 N Xy =0
and X5 = {x € R" | sy(z) =0} and X3 = 0.

PROOF. For ¢4(z) = 0 the disjointness of X; and X,
follows directly from its definition in (20) and (21). The
set X3 is directly obtained using Equation (25c). The
set X3 is calculated analogously. O

The following lemma characterises Case 3.

Lemma 6 (Case 3) The sets Xy and X5 have a non-
empty intersection, i.e. X1 N Xo # 0, if and only if

q(x)sg(z) <0
forallx € X1 NXy. Then X1 N Xy = X3 .

PROOF. With (25a) and (25b) for every point in X1 N
X5 holds

so(2)q(w) < sp(x) — a(r)q(z) < —sy(x)q(z).  (27)

This is equivalent to s, (x)g(x) < 0. Then the set (23) is
defined by all x that fulfil

$6(2) + sp(x)a(@) € (s4(2)q(@), —s4(2)a(@)).

This is an equivalent notation for points fulfilling (27).
Thus, it is XlﬁXQ :X§ O

Case 1 Case 2 Case 3

g g

Fig. 1. Three possible configurations of the sets X;.

In Case 3, X3 is the intersection of X; and X5. Then, for
states x € X3 all three phases are possible, depending on
the choice of the control u or equivalently o > 0, 0 < 0
or 0 = 0. This shows that it is not sufficient, to define
the sliding phase and reaching phase solely via the state
sets X1, X9 and X3. Thus, we say that the system is
in sliding phase if o(z,u) = 0 and in reaching phase if

o(x,u) # 0.
4.2 Control signal and its continuity

The control law is the solution of the implicit equa-
tion (18b) which takes one of the three forms

u(r) € {u™,ut,u’} (28)
with
u” = a(z) — q(x) (29a)
ut = a(z) + q(x) (29b)
we = _ijg; . s £0. (29¢)

Remark 7 The introduced control law is uniquely de-
fined by x if and only if X1 N Xy N X3 =0, i.e. in Case
1 and 2; equivalently condition (26) holds.

For the case of preserving disturbances (Case 2) we ob-
tain the conventional first-order sliding-mode control

law.

Theorem 8 For ¢y = 0 the control given by (18) yields

U~ r e Xy,
u(z) = S ut r € X, (30)
Lrsyp(x)—Lypse(x)
— T rewm o vEXs,

resembling the conventional first-order sliding-mode con-
trol law. Notably, for ¢ = 0 it isu(z) = a(x) forxz € X3.



PROOF. The equality for z € X; and x € X5 is clear.
The control law for x € X3 is the equivalent control law
resulting of (15) by having

6 =Lys(x) + Lysg(x)u’ + Losg(x) -
Requiring ¢ = 0 leads to

wo = Lrse() — Losy(@)
Lgsy(x) .

Remark 9 For preserving disturbances the control u is
discontinuous.

For relative degree altering disturbances ¢, i.e. ¢4 # 0,
the sets X7, X2, X3 can take the configuration of Case
1 or Case 3. As we show in the following, in Case 1 the
control signal is continuous in sliding-mode, whereas in
Case 3 neither the sliding-variable nor the control signal
is guaranteed continuous.

Theorem 10 If X; N Xy =0 and X5 # 0, i.e. Case 1,
the control law u is continuous in x.

PROOF. Continuity of v~, ut and u is ensured by
the continuity of «, ¢, s4 and 4. We show continuity at
the transitions of u within the set (28). Note for Case 1,
we only have transitions at the boundary of X; and Xs.
For & € 0X3 N 0X; holds, (c.f. (20))

56(2) + 64(2)(a(2) — ¢(2)) = 0.

For any sequence (x,) with only elements in X; and
lim,, o T, = & we have

lim u™ (z,) = lim a(z,)—q(z,) = a(&) — q(Z) (3la)

n—oo n—oo

= ool 20lTn) oy (a1

Continuity at the boundary of X5 can be shown
analogously. O

If the sets take the configuration of Case 3, the control
law is not uniquely defined. While the following impli-
cations always hold:

ulz) =u" =z e X, (32)
uz)=ut =z € Xy, (33)
uz) =u" =z € X3, (34)

whereas the opposite implication does not hold in gen-
eral. In fact, for Case 3 where the sets overlap, the control
signal may take any value in {u~,u",u°} for z € X3.

Lemma 11 If XN X5 # 0, i.e. Case 3, w and o are not
unique in X3 and thus may be discontinuous in x.

PROOF. For Case 3 we have g(z) # 0. For & € X,
also holds # € X5 N X3 and thus we may choose
w(@) =ut =a(2) +q(2). But for 2 € X3 we may
choose u(%) = u® = *iig; = a(2) — q(2) # u™. The
first choice of u yields o(Z,u") # 0 while the second
gives o(&,u°) = 0.

Remark 12 Note that the continuity of u can be retained
if the sliding variable o is continuous. Considering (15)
yields the control law as a function of o

u(z,0) = _7=2(@) .

so()
This function is unique and continuous in o, in partic-
uwlar at 0 = 0. This remarkable property for a sliding-
mode control is obtained for both cases with altering dis-
turbance, i.e. Case 1 and 3.

4.8 Closed loop system

For the system (1) with sliding-variable (15) and
control (28) obtained from the sliding-mode control
law (18), the closed-loop dynamics may take the form:

i = f(@)+ g(@)(a(2) — qla) + ¢, (35)
i = f(z) + g(x)(a(x) + g(x)) + ¢,  (35b)
or = f(x)— ms¢(x) c

For the cases of non-overlapping sets X; (Case 1 and 2)
we obtain the following closed-loop dynamics.

Theorem 13 If X; N X5 = 0 then the closed-loop sys-
tem (1) and (18) takes the form

&= forxz e Xy

x=<zT forze Xy (36a)
z°  forxz € X3
y = h(z) (36b)

with 2=, &7 ,4° given in (35).

Note that for Case 2 we have the typical Fillipov solu-
tions on the sliding manifold, whereas in Case 1 we ob-
tain classical Caratheodory solutions. For overlapping
sets X, i.e. Case 3, uniqueness of the solution is lost.



Theorem 14 If X1 N Xy # 0 then the closed loop sys-
tem (1) and (18) has the form

T=a e Xy (37a)
i=a" z € X» (37b)
e {i7,3° 2"} z € X3 (37¢)

with 2=, &7 ,2° given in (35).

In this case the dynamics on X3 are given by a differen-
tial inclusion and the solution on X3 is not well-defined
(not even in the sense of Fillipov, since there is no guid-
ing manifold available).

u

oc=0 1

| X1 Xs  0Xy

Fig. 2. Possible composition for control laws in Case 3.

Figure 2 illustrates a possible scenario in Case 3. For the
set X, the possible input w is displayed. It can be seen
that for x € X3 three different u and o are possible.
Further, the continuity of u for ¢ > 0 and ¢ = 0 at the
boundary of X7 is illustrated.

For the displayed scenario the state = is moving towards
the boundary of X; for ¢ > 0. For ¢ < 0 it moves to
the boundary of X5. For 0 = 0 the vector fields point
to the boundary of X3 as well. Thus, choosing ¢ = 0
whenever x € X3 leads to a chattering of the solution at
the boundary of X3.

However, depending on the choice v and o on X3 various
solutions are possible. Arbitrary switching between the
three different values of the sliding variable in the inte-
rior of X3 may lead to a complex manifold of solutions.
While this manifold might include all possible paths in
the one-dimensional case, its structure is more complex
for higher dimensional systems.

4.4 Sliding-mode dynamics and disturbance compensa-
tion

In this section we study the internal dynamics induced
by the sliding-mode and the relative-degree altering dis-
turbance. In the spirit of [22] we shall distinguish the
states in Byrnes-Isidori form as external states £, de-
signed internal states ¢ of the dynamics in sliding-mode
and inherited internal states 7 of the open-loop system.

For the nominal design with no altering disturbance, we
choose the state transformation

&i=0 (38a)
¢1:=m11(x) = h(x), (38b)
Gii=mi(r) =Ly h(z), ie{2,...,n—2}, (38)
Cno1:=Tn-1(z) = E}l_zh(a:) (38d)

and obtain the reduced dynamics for o = 0, i.e.

G =0, (39a)
G =Gy, for i€{2,....,n—2}, (39b)
no1 =7(C1s 1 Cnm) (39¢)

which are stable by design.

In the case of a relative degree altering disturbance, we
cannot choose o(x,u) as the external state &1, because
o(x,u) depends on the input. Instead, we use the trans-
formation (38b)-(38d) and the internal state n := 7, (z)
as diffeomorphism and with £,7,(z) = 0. For ¢ = 0 we
obtain the closed-loop sliding-mode dynamics

(=20, (40a)
(i=Cipr, for i€{2,....,n—2}, (40D)
én—l = 7((17 e 7<n—1) (40C)
0= LeTn(@)|e=r-1(¢,) - (40d)

First we note that the zero-dynamics (40) in sliding-
mode with disturbance are not reduced in dimension
as we observe in the nominal case (39). However, the
dynamics described by ¢, which represent the designed
nominal sliding mode are not affected by the distur-
bance. Hence, matched and unmatched disturbances are
compensated on ¢ and thus are invisible at the output y.

Still, the relative degree altering disturbances ¢ intro-
duce additional internal dynamics (40d) and may even
render them unstable as we shall illustrate in Section 6.
In such case, the unbounded internal state will render
the control signal unbounded, a scenario that cannot oc-
cur for relative degree preserving disturbances.

In order to analyse the stability properties and obtain
constructive results we need to narrow the system class.
In the next section we shall study a linear system that
may be obtained generically from a feedback lineari-
sation. We analyse the resulting dynamics, existence
of equilibria and derive sufficient conditions for which
global asymptotic stability is retained in the presence of
relative-degree altering disturbances.



5 Second-order Case

In this section we shall study the following class of sys-
tems in detail:

t=Ax+ Bu+¢ (41a)
y=Cx (41b)
with
0
A a1l ai2 . B= 7 02{10}. (42)
a1 Ga22 by

The nominal system shall have the relative degree r = 2,
i.e. aj2,by # 0. Note that except for the structure of B
and C this represents the most general parametrisation
for the system class.

In order to alter the relative degree in the second-order
case the disturbance has to act on the input. Thus we

consider ¢ = [bl O]Tu and define the input matrix of
the disturbed system as

It is readily checked that Egﬁ(])ch(;v) = b; # 0 and thus
the disturbed system has a relative degree of 1.

A canonical choice of o in (13) satisfying (14) is

c=y+ky=Crt+kCAz+kCBu, ki >0. (43)

Then the variables from (16) (17), and (19) take the form

¢s(z) = k1CB s¢(x) = Cx + k1C Az
a(z) = _(C+kCAAz () = L
T CrmoaB YT (CTkmCcAB”

The first-order control law (18) becomes

1

m ((C + k1CA) Az + Lsgn(a)), (44)

u =

with L > 0.

Substituting (44) into (41) we can write the closed-loop
dynamics in the reaching phase (36a) for x € X; U X5 as

&= Azx + E,sgn(o) (45)
with the matrices

B(C + k1CA)A —LB

A=A Ep=
(C+kCA)B (C+kCA)B

(46)

and equilibria
TR = (-1)'AJ'E, (47)

if A, regular. Existence and location of these equilibria
are discussed in Section 5.4.1.

5.1 Zero dynamics with respect to y introduced by the
uncertainty

Note that the nominal system with ¢ = 0 has relative
degree 2. The disturbed system has relative degree 1 and
thus exhibits internal dynamics.

Define the orthogonal complement Bt = [ —by bl]T

such that B+B = 0. Choosing £ := Cz and 7 := Btz
we obtain the following internal and external dynamics

biu
£ L
n 0
Thus, the zero dynamics introduced by the altering dis-
turbance ¢ take the form

= | —a127— + a2 |n.
U by

For stable zero dynamics we require, c.f. (12),

¢

n by

b b
ap1by— g2 —an g —ai2gEtazn

b
] _ [ ai+arzy? G2

C

. pl
77—B EJ‘

b
—aub—z Fas <0. (48)
1

5.2  Control law and state sets

To characterise the sets X; in (20)-(22), we define

C+kCA

w' = C 4k CA— legm/L (49)
d:=kCB C+ kaA)B - ailb2L’ (50)
and obtain
56(2) + p(@)a) = vz
Sp(z)g(x) =d.

Then, the conditions (25) describing the sets X; take the
form

w'e >d for x € X3 (51a)
w'z < —d for x € Xy (51b)
lw' x| < |d| for z € X3. (51c)



Thus, the boundary 0 .X3 of the set X3 is given by the par-
allel lines +w " 2, whose minimal distance is 2|d|. More-
over, with Lemma 4 and 6 we can determine the occuring
cases based on this d as

d>0 & X; N Xy =10 (Case 1),
d=0 & X3 =0 (Case 2),
d<0 & X1 N X, #0 (Case 3).

Thus with Lemma 6 we have multiple solutions for the
closed-loop system if d < 0. Accordingly, with ky, L > 0
we obtain Case 3 with (50) for

by
a12b2

<0, (52)

otherwise the control (44) is uniquely defined.

In view of the internal dynamics (48) we observe that a
disturbance that yields Case 3 tends to destabilise the
internal dynamics while the disturbance in Case 1 tends
to stabilise the internal dynamics.

5.8  Sliding-mode dynamics of the closed loop system

As discussed in Section 4.4 the stability of the sliding-
mode dynamics is not guaranteed by design due to the
impact of the altering disturbance (Case 1 and 3). For
o(x,u) = 0 the control u given by (29¢) has the form

1
u® =— —(Cx + k1CAx).
kiCB

This yields the sliding-mode dynamics

T =Ax (53)
with
B
Ay = A— —=(C+kCA) (54)
k1 CB
1
- T 0
azibr = a12%—a11b2+a22b2 —a12g* +ax

Thus the sliding-mode dynamics are stable if and only
if k&1 > 0 and the zero dynamics of the original system
with respect to y and uncertainty ¢ are stable as ensured
by condition (48).

Remark 15 Note that asymptotic stability of (53) does
not imply the global asymptotic stability of the closed-loop
system (41),(44) as the analysis in the following section
reveals.
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5.4 Analysis of the unique solution (Case 1)

In order to analysis the system properties in full detail,
we resort to Case 1, i.e. d > 0, for which a unique solution
exists. The complete closed-loop dynamics of (41) with
control law (44) are given by

Az +E,, w'z>d
=4 Asx, lw'z| <d (55)
A:Ex - Ez, waE < _d

We shall assume that A, has real, semi-simple eigenval-
ues. The eigenvalues and eigenvectors of A, are real as
can be seen in Equation (54).

Note that according to Theorem 10 the system dynamics
are continuous at the set boundaries, i.e.

Az + E, = Ayx
Ayx—E, = Az

forz € {x |w'z = d}

for z € {x |w'z = —d}.

(56a)
(56b)

In order to analyse the effect of the disturbance with re-
spect to attractivity and stability of the overall system
we first consider the dynamics in the reaching phase.
These are governed by the affine dynamics & = A x+F,.
We first discuss the existence and possible location of
equilibria. Then we consider the location of the equi-
libria with respect to the sets X; and their attractivity
properties to formulate conditions for the global asymp-
totic stability of the closed-loop system (55).

5.4.1 Existence and location of equilibria in the reaching
phase

In this section we examine the existence of equilibria for
the affine dynamics in the reaching phase, © = A,x + E,
with regard to the disturbance b;. Therefore it is conve-
nient to write A, (1), E;(b1) w(by) in order to to make
the dependence on b; explicit.

Throughout this section we assume that any disturbance
b1 # 0 leads to Case 1., i. e. b~ .

a12b2

We shall also denote the system matrices in the nominal
case by = 0 by A, := A,(0), E, := E,(0). The nomi-
nal switching function is denoted by o(x) = w'x with
w = w(0). Using (42) and (46) it can be readily verified

that
_ ail aiz i~ —-L 10
s = —(tkiaii)ais —(1+k1a11)] » Bo= kiay2 |;l
k1a12 kl
(57a)
’lI)T — |:1+k1a11 k1a12:| , J: 0 (57b)



The closed loop dynamics of the reaching phase can be
written as

i=A,(b)x+ (1) Ey(by) =€ Xiyi€{1,2}.
In order to determine the equilibria (47), we recall with
Equation (57) that F,(b1) is not identical to zero if
L # 0. Further, to obtain the inverse of A, written

as Ajl = %, we consider the determinant for

A, (b1), which has the form

aink: +1

det(A,(b =-b
(Az(b1)) b

det(4)  (58)

and is non-zero for by # 0 and a11k; # —1. Then there
exist two equilibria xr;(b1),7 € {1, 2}, given by

ICRi(b1) = (_l)i

N madj(Am(bl))Ez(bl), (59)

For small disturbances by — 0, zr;(b1) converges to-

wards the asymptote given by the vector adj(A,)E, € R2.

The following proposition presents a condition for which
this asymptote does not coincide with the sliding sur-
face o(z) = 0 for the nominal case and, in particular,
ZRr4(b1) lies outside of X3(b1) for small disturbances.

Proposition 16 If
W' adj(Ay)E, #0, (60)

then there exists a disturbance I~)1 € R such that the equi-
libria are for all smaller disturbances by € B(0,b1) not
part of the sliding manifold, i.e.

JﬁRi(bl) ¢ Xg(bl), 1 E {1,2}. (61)

PROOF. Due to the convergence of d and det(A,) to
zero and wTN(bl) adj(Az(b1))E.(b1) to a non-zero value,

there exists by € R such that
w " (br) adj(Aq (b1)) Ex (b1)| > [det (A, (b1))d(b1)| (62)

for all by € B(0,b;). Consequently, we obtain for
ie{l,2}

59) |w (b1) adj( Az (b1)) Ex (b))
lw" (by)wri(b1)] = det(Ay (b1))] (63)

(62)
> |d(by)] (64)

which leads with Equation (51) to 2r;(b1) ¢ X5(b1).

Typically, the SMC is designed to reach the sliding sur-
face o(z) = 0 in finite time. Thus we expect that (60)

a

holds for the nominal case. Indeed using (57) for L, ky #
0 leads to the condition

w' adj A By = — #£0.

Remark 17 Symbolic calculations utilising computer
algebra have also shown that Equation (60) holds up
to order 4 if the relative degree condition CA*"'B = 0
for i < n is fulfilled. No analytic proof has been found
to the knowledge of the authors up to this point for the
identities of higher order.

We conclude that for small b, the equilibria in the reach-
ing phase can be in either of the two sets X1, X5 but not
in X3. We say that the equilibria are on the same sides
if zr; € X; for i = j and that they are on the opposite
sides if xg; € X, for ¢ # j. For symmetry reasons, the
equilibria are on the same side if and only if

w'zp >d. (65)

This allows us to investigate the global asymptotic sta-
bility of the closed loop system.

5.4.2  Global asymptotic stability of the closed loop sys-
tem

In this section, we analyse global asymptotic stability
of the closed loop system. We start by providing a suffi-
cient condition for global stability and then continue to
develop sufficient conditions which ensure the stability.
We start with the sufficient condition for global stability.

Proposition 18 If system (55) is globally asymptotic
stable at the origin then A, is asymptotically stable and
the equilibria are on the opposing sides, i. e.

—w'AYE, <d.

PROOF. Proof per contradiction. If A, is asymptoti-
cally stable and the equilibria (47) are on the same sides,
then there exist initial conditions that converge directly
into the respective equilibria and thus never enter X3
that contains the origin. Hence the closed-loop system
is not globally asymptotically stable. Similar reasoning
yields that the system is not globally asymptotically sta-
ble if A, is unstable and the equilibria are on either
side. O

For the remainder of this section we shall study systems
with asymptotically stable A, and equilibria on the op-
posing sides.



We consider the piecewise linear Lyapunov function, e.g.
[16], of the form

V(z) = max (\l]—:c|,...,|l;x|) (66)
with {; € R™ for ¢ € {1,...,p} defining faces of a
polygon-shaped level set. We define the set of all indices
denoting the active faces for the Lyapunov function for
a given point z:

Iv(z):={ie(,....,p) | V(z) =|l] 2|} .

Note if « is in the inner of a polygon face, the set Iy (z)
consists of exactly one element. Otherwise z is on some
edge of the polygon and the number of elements of Iy (z)
corresponds to the number of adjacent faces to the edge.

As V is a non-differential function, we shall use the Dini-
derivative as in [1] given by

Vie(t+A)) = V(x(t)
A .

D*(V(z(t))) = limsupa_,o+

Simply speaking, the Dini-derivative takes the value of
the limit of the difference quotient defined by the tra-
jectory x. At the edges of the piecewise linear Lyapunov
function (66), the Dini-derivative takes a value given by
one of the adjacent faces. More precisely:

Lemma 19 Let x be a differentiable trajectory and V be
defined by (66). Then, for allt > 0 exists i € Iy (x(t))
such that

i (67)

PROOF. It is clear for any sequence z(tx) that the
Lyapunov function V' can only take one of the values
|lTz(ty)| for i € {1,...,p}. Therefore we obtain with
the continuity of = at least one j € {1,...,p} such that
V(x(tr)) = ljz(tx). Then the claim follows with the def-
inition of the Dini-derivative and the lim sup. O

Consequently, if the vector fields are pointing inwards
with respect to every active face, then
DT (V(x(t))) <0 (68)

and V(z) is a Lyapunov function for the system gener-
ating the trajectory x.

Consider the piecewise affine system (55). Since the vec-
tor field is continuous along the set boundaries we can
show the following.
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Proposition 20 Let V' be a candidate Lyapunov func-
tion of the form (66) with n = 2 for system (55) and let
for all states v € X' U X§! hold

I (Apx + E,) <0, Viely(z). (69)
Then, for all states x € X3\ {x | w'x = 0} it holds
I A,2 <0, Viely(z). (70)

PROOF. With Equation (69) and the fact that the
vector field is continuous at the boundary as in (56b),
we have at the boundary for all x € 0X3 that

Il Agx <0, Viely(z).

We can describe every point of X3\ {z |w'z =0}
using a point from the boundary, i.e for all points
y € X3\ {z|w'z =0} thereis pu € (0,1] and = € 9X3,
such that y = pa. This leads to the claim as

1T Agy = 1] App = pl] Apz <0, Vie Iy(x).

d

Remark 21 Proposition 20 can be easily extended to
systems (55) with n > 2.

Remark 22 The result also holds in a similar fashion
for homogeneous Lyapunov functions. An extension to
non-linear system dynamics can be achieved with homo-
geneity of the vector fields and convexity of the set X3.

With Lemma 19 we conclude that (69) and (70) imply
that (68) holds globally for z € R" \ {z | w'x = 0}.

We shall now construct a Lyapunov function of the
reaching phase. Denote the eigenvalues and left eigen-
vectors of A, by A, 2 < 0 and vy, v2 € R2, respec-
tively, such that v, A, = A\;v,', and consider the state
transformation & = T~ 'z with T~ = [v; vy] .

Proposition 23 Given the system (55) such that

w' Teww, B, <0 forie{1,2}, (71)

T
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and the Lyapunov function (66) with 1] =w'Tewv
i =1,2, such that
DY (V(z)) <0 forzec{zecR?|w z=0}. (72)

Then the origin of (55) is globally asymptotically stable.



PROOF. We consider the state transformation
¥ = T~z that brings the dynamics of (55) into diago-
nal form:

D,i+E, w'i>d,
T={T'A,Ti, —d<w'z<d, (73)
D,z —FE,, ©'%<—d,

where D, = T~ 'A,T = diag(\1, \2), Bz = T~ 'E, and
W =w'T.

Note that for the i-th element of @ we have @ = w ' Te,;.
Thus the Lyapunov function (66) in transformed coor-
dinates is diagonal and reads

V(Tz) = max(|[] 21|, |13 221), (74)
where [] = [@; 0] and Ij = [0 ;). Certainly, if
V(T%) is a Lyapunov function for (73) then V(z) is a
Lyapunov function for (55).

In the transformed coordinates condition (71) using the
identities w; = w' Te; and UIEE = eIEz reads:

wie] B, <0 forie {1,2}. (75)

The derivative of V' along the faces of the level set are

given by
lTx _ |0 (Dag + Ey) 76)
lh#| |l3 (D% + Ey)

In the reaching phase X! we have w' % > d. Expanding
the scalar product yields

(77)

W1T1 > d — Woly > —Wals .

Let & be a point on the level set of (74) such that
[0171] > a3, i.e. the face defined by I] is active. With
(77) it is readily verified that @wyZ; > 0. Using the first
component of (76) we obtain

V(.’E) = q([)a;.i' + Eaj) = \wi1%1 + wleIE$ .
With (75) and \; < 0 we find V() < 0.

The same result is obtained for points Z on the other
level set defined by the face l~2T . For symmetry reasons
we obtain the same result for the reaching phase X§' and
with Lemma 19 we have

DY (V(z)) <0 forze X i=1,2.
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For the sliding phase we employ Proposition 20 and the
condition in (72) and obtain for ¢ € {1,2}

DY (V(z)) <0forz € X3.

Note that the Lyapunov function is chosen such that two
of the four corners are always in the sliding manifold (see
Fig. 7), i.e. it is

wlrx=0 Vze {x € R? | w! Teyvix = —’LUTT€2’U2I} .

Note further that the condition in (71) is equivalent to

w' Tesv A E, >0 (78)
which makes evident that this is an additional constraint
on the location of the equilibria of the reaching phase
dynamics. In transformed coordinates %, the equilibria
must lie in one of the four quadrants. Which quadrant
depends on the vector w whose entries as well as the en-
tries of @ might be negative. It guarantees in particular,
however, that the equilibria are on the opposing sides
because we obtain with Condition (78) that

0> wTTelvlTEw + wTTQQU;EI (79)
=w' (Teyv] + Teqvy VA, E, (80)
= waRg . (81)

Therefore, we have given in this section a constructive
way to design a Lyapunov function for a subset of all
systems with stable A, and equilibria on the opposite
sides.

6 Numerical Examples

We illustrate the phenomena and results obtained in the
previous sections. We start by studying some phenom-
ena that can occur if the system is in Case 3. We continue
by discussing the potential loss of global stability even
in Case 1 and end with an example for a global asymp-
totically stable system despite relative degree altering
disturbance using the proposed Lyapunov function.

6.1 Oscillations and induced sliding-mode (Case 3)

In Case 3 the reaching phases overlap with the sliding
phase and the control as well as the closed-loop dynam-
ics (37) are not well-defined. In this section, we illustrate
two possible solutions by a simulation example.



Consider the second-order system (41), (42) with

aj]p = 100, a12 =
ago = 0.1, bl =

_17
—0.01,

az1 =1,
by =1.

For these parameters, d < 0 in (52) and thus we have in
Case 3, where the control law (44) is not well-defined.

Figure 3 shows the phase plane of the system. The red
and dark blue solid lines are the boundaries of the reach-
ing sets X5 and X7, respectively. Note that the reaching
phases overlap and thus the boundaries are on opposing
sides of the sliding phase X3. Two possible solutions x for
the identical initial value x(0) in X3 are depicted. The
green solution is obtained by choosing u = u° in (29)
within X3. The resulting trajectory tends towards the
boundary of X3. As the dynamics in the reaching phase
X just outside of X3 point towards X3, the solution is
constructed in the Filippov sense and results in a sliding
motion along the boundary of X5. Note however that this
is not the designed sliding-mode ¢ = 0. Figures 4 and
5 show the evolution of the control signal and sliding-
variable o, respectively. The control signal in sliding
mode shows discretisation chattering (due to discrete-
time simulation) with a non-zero average as might be
expected for non-vanishing disturbances. However, the
sliding-variable also shows discretisation chattering. In
a continuous-time analysis we may expect the sliding-
variable to converge to a non-zero constant. Thus the
originally intended control goal 0 = 0 is not achieved.

The purple line depicts the solution for which u in (29)
is chosen as u™ or u~ only. We switch the control sig-
nal between those values at the boundaries 0.X1,0Xs,
respectively. The result is a solution that oscillates in
the inner of X3 between its boundaries as can be seen in
Fig. 3. The sliding variable of this solution in Fig. 5 is
piecewise continuous. In each segment the sliding vari-
able converges to zero. After reaching zero, i.e. reach-
ing the boundary of X3, the sliding variable jumps to
a non-zero value. This is due to the change of the dy-
namics outside of X3. This behaviour can be repeatedly
observed. Of course any other choice of switching the
control signal (29) yields another valid solution for the
same initial state.

6.2 Loss of global stability (Case 1)

This section illustrates an example where global stability
is lost due to the relative degree altering uncertainty. We
consider the second-order system (41),(42) with

az1 =1,
by = 0.1.

a2 =1,
by = 0.02,

a1 =3,
age = 2,

The sliding-variable is chosen according to (43) with
k1 = 0.05 and L = 1 is the sliding-mode gain in
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—0X;
H—0X,
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Fig. 3. Two solutions for an initial condition in state-space
of Example 6.1.
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Fig. 4. Evolution of the control signal for the solutions of
Example 6.1.
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Fig. 5. Evolution of the sliding variable for the solutions of
Example 6.1.

(44). With (50) and (49) it is readily verified that
d = 0.2 > 0 such that the resulting system is in Case 1
and w' = [0.45 — 0.2]. The dynamics in the reaching



—0X;
—0X,
........ Eigenvec. X
........ Eigenvec. X,
........ Eigenvec. X3

Z1

Fig. 6. Solutions for various initial state of Example 6.2.
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The equilibria are obtained by (59) and for the reaching
phase X; we have x}l = [0.5217 — 2.4348] . It is readily
verified that w'zp; > d and thus the equilibria are
within the reaching phase (same side). The eigenvalues

of A, are \;y = 0.6635 and A\ = —34.6635, thus the
equilibria are unstable.

phase (55) with (46) are given by

—-11 -4
—69 —23

A, =

] and F, =

The plot of the phase plane in Figure 6 shows the bound-
aries of the sets X; and X5 as solid red and blue line,
respectively. The sliding-phase X3 is in-between these
lines. Note that in Case 1 the reaching phases do not
overlap. The eigenvectors in each set X; are depicted as
dashed lines. It can be seen that the equilibria of each
reaching-set dynamics are within the respective set, i.e.
we have the case same side. A number of solutions of
the closed-loop system are depicted as solid lines with
initial states chosen just outside the sliding-phase, or-
ange and light-blue respectively. It can be seen that the
resulting solutions are continuous, in particular at the
boundary of X; and X as stated in (56b). We observe
that the sliding-phase is still attractive for some initial
states close to the origin. However, trajectories starting
east of the blue eigenvectors or west of the red eigenvec-
tors diverge.

6.3 Global stability and Lyapunov function (Case 1)

We consider system (41) with the parameters

ag1 =1,
by =1.

az =1,
by = 0.02,

air =3,
azz =0,

Again the sliding-variable is chosen according to (43)
with k1 = 0.05and L = 1. With (50) and (49) it is readily
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Fig. 7. Solutions in transformed coordinates & with level sets
of the Lyapunov function for a globally asymptotically stable
system, Example 6.3

verified that d = 0.02 > 0 such that the resulting system
is in Case 1 and w' = [1.08 0.027]. The dynamics in

the reaching phase (55) with (46) are given by

-04

20"

with stable eigenvalues Ay = —0.0215 and s =
—21.3785. Note that —w ' A;1E, < 0 and thus the equi-
libria in the reaching phase are on the opposing sides,

respectively. Hence xip = 0 is the unique equilibrium for
the closed-loop system.

1.6 0.54
A= [

and FE, =
—69 —23

We employ Proposition 23 to establish global asymp-
totic stability of xgp = 0. We construct the transfor-

mation matrix 7-! = [vl vg]T with the left eigen-
vectors of A, are given by v{ = [0.9997 0.0235] and
vy = [0.9488 0.3160], and verify condition (71) and
(72) using (67) at the point = [~wy wq]'. Thus the
equilibrium is asymptotically stable with piecewise lin-
ear Lyapunov function (66).

Figure 7 shows the phase plane in transformed coordi-
nates # = T~ 'z. Note that the eigenvectors in reaching
phase (dotted lines) in these coordinates are aligned with
the coordinate axis. The remaining two eigenvectors are
far outside the displayed range. Multiple level sets of V'
for V(%) = 0.0011 4 0.044k, k € {1,...,6}, are shown
in green. A number of trajectories with initial state on
the most outer set V(Z) = 0.0275 are displayed, whose
colours correspond to the set of the initial state (light
blue: X1, orange X5, purple X3). It can be seen that the
trajectories point inwards at the level sets confirming
that V is indeed a Lyapunov function for the closed-loop
system. Note that the points close to the south eastern
corners are almost parallel to the eastern edge but still
point inside the level set. We can also illustrate that the



Lyapunov function is constructed such that two corners
are on the originally designed sliding manifold @z = 0
(purple straight line).

7 Conclusion

Disturbances that change the relative degree of the sys-
tem may have a strong impact on the closed-loop con-
trol system even if a sliding-mode controller is applied.
Well-definedness and stability of the solution as well as
attractivity of the sliding-manifold may be lost. We de-
rive necessary and sufficient conditions for which such
scenario is avoided and that ensure stability and dis-
turbance compensation of unmatched uncertainties. For
the second-order case we give a thorough analysis of all
cases and we obtain a readily checked condition to dis-
tinguish the cases of uniquely and non-uniquely defined
solutions. For the former case we present a simple con-
structive condition for the global asymptotic stability
of the closed-loop system using a piecewise linear Lya-
punov function.
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