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Abstract: In this paper, the known deterministic linear-quadratic Stackelberg game is revisited,
whose open-loop Stackelberg solution actually possesses the nature of time inconsistency. To handle
this time inconsistency, a two-tier game framework is introduced, where the upper-tier game works
according to Stackelberg’s scenario with a leader and a follower, and two lower-tier intertemporal games
give the follower’s and leader’s equilibrium response mappings that mimic the notion of time-consistent
open-loop equilibrium control in existing literature. The resulting open-loop equilibrium solution of
the two-tier game is shown to be weakly time-consistent in the sense that the adopted policies will no
longer be denied in the future only if past policies are consistent with the equilibrium policies. On the
existence and uniqueness of such a solution, necessary and sufficient conditions are obtained, which are
characterized via the solutions of several Riccati-like equations.
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1 Introduction

In its original setting, Stackelberg game is static [19], which is firstly formulated by H. von Stackelberg
in 1934 to meet the markets with some firms having dominating power over others; within the context
of two-person nonzero-sum games, the dominator first announces her policy who is called the leader,
then the other player, called the follower, reacts to minimize his cost functional, and finally the leader
makes her optimal decision under the follower’s best response. Then, the leader’s optimal policy and the
follower’s best response form the known Stackelberg equilibrium or Stackelberg solution.

The extension of Stackelberg games to their dynamic setting is traced back to the early 1970s [17,
18], where both the local and global Stackelberg solutions are introduced. Local Stackelberg solution
corresponds to the case where the leader announces her policy to the follower stagewisely, namely, the
leader has stagewise dominating power over the follower. Local Stackelberg solution is seeked via a
backward recursion as that in dynamic programming, and at each step of the recursion we are facing
a static Stackelberg game with the leader’s decision information being the state variable at that time.
Clearly, such local Stackelberg solution is of feedback nature, which is also called feedback Stackelberg
solution. Another important solution concept of dynamic Stackelberg game is the global Stackelberg
solution, where the leader has dominating power over the follower on the lifetime horizon, i.e., the
leader looks at the time horizon as a whole and announces her policy over the horizon before the game
starts. Corresponding to the underlining information structure (the whole of decision information sets),
global Stackelberg solutions are classified into several types, and open-loop Stackelberg solution is the
representative one that is firstly studied in [17] and corresponds to the open-loop information structure.
For the overview of global Stackelberg solutions, we are referred to the monograph [2] and recent work
[3].

Open-loop solution in dynamic games has a long history, which may date back early to the work [4],
and open-loop Stackelberg solution has gained much attention during the last half century; to name a few
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of the literature, see [6, 10, 16, 21, 22] besides [2, 3, 17]. In [17], linear-quadratic (LQ, for short) dynamic
Stackelberg games are formulated and solved in a Hilbert space setting, and sufficient condition on the
existence and uniqueness of open-loop Stackelberg solution is presented. In [10], dynamic Stackelberg
games with special structure (called dominant-player game there) are investigated, and the distinctions
between open-loop solution, feedback solution and closed-loop solution are clarified from the viewpoint
of economist. Sufficient conditions on the existence of open-loop solution is presented in [6] for LQ
differential games via Lyapunov-type approach. In [22], a leader-follower stochastic LQ differential game
is investigated, where the coefficients of the controlled system and cost functionals are random and the
weighting matrices are allowed to be indefinite. If two stochastic Riccati equations are solvable, the
open-loop Stackelberg solution is shown to admit feedback representation [22]. Necessary and sufficient
conditions are presented in [21] to characterize the existence and uniqueness of open-loop solution for
a deterministic LQ dynamic Stackelberg game, which resort to two discrete-time Riccati equations. A
Stackelberg stochastic differential game with asymmetric information is studied in [16], which makes
use of the stochastic maximum principle and verification theorem with partial information to derive the
open-loop equilibrium solution.

In the survey paper [11], the authors mention through a few sentences that open-loop Stackelberg
solution is not time-consistent in general, namely, “This means that given an opportunity to revise her
strategy at any future time after the initial time, the leader would benefit by choosing another strategy
than the one she chose at the initial time.” Except for two literal paragraphs, yet no more information
has been provided in [11] about the time inconsistency of open-loop Stackelberg solution. To the best
of the authors, the first that proposes the time inconsistency of open-loop Stackelberg solution is the
work [10], which checks a special case where the cost functional can be written in terms of the decision
variables (control inputs) only. By computing the first-order conditions for an optimum of the leader,
one has the difference of these first-order conditions evaluated at different time instants, and the time
inconsistency arises. Pointed out by [11], “a major drawback of the open-loop Stackelberg equilibria is
that in general they are not time consistent”. In contrast, according to [10, 11], feedback Stackelberg
solution is time consistent, i.e., the obtained solution continues to remain optimal at each time instant
after the game has begun, and this property is also known as subgame perfect as feedback Stackelberg
solution do not depend on system’s initial states.

Though the time inconsistency of open-loop Stackelberg solution has been revealed by economist
almost half century ago, such type of problems has been seldom investigated within the system control
community. This paper has the following points to argue the necessity of studying time-consistent open-
loop solution of Stackelberg games. Firstly, in the concept of feedback Stackelberg solution, the leader
has stagewise advantage over the follower, but not globally; as a constraint, “such a solution concept
requires that the players know the current state of the game in every period” [11]. Yet, open-loop control
in deterministic setting is only a function of time and system’s initial state, which are clearly known to
the players. Therefore, it is not technically restricted and is natural to announce the leader’s open-loop
control to the follower before the game begins. Furthermore, for optimal control problems, the set of
open-loop controls is the largest admissible control set provided that some constraints are also satisfied
to ensure the regularity of controlled systems and cost functionals. Hence, it is very attractive to consider
open-loop controls in a Stackelberg game which is indeed composed by two cascaded optimal control
problems. This is the case that has been largely investigated in [2, 3, 4, 6, 10, 16, 17, 21, 22].

Secondly, concerned with the time inconsistency of open-loop Stackelberg solution, [10] points out
that “Faced with this fact, one would expect a great temptation on the part of the dominant player
to change his original plan” and “The feedback solution has the desirable characteristic that the plans
are intertemporally consistent.” Namely, the work [10] argues in favour of the feedback solutions as
the appropriate solution concept due to its time consistency, where the players should have no rational
reason to deviate from the adopted policy in the future. Furthermore, according to the terminology in
[2], feedback Stackelberg solution is “strongly time consistent”, as derived by a backward recursion it is
regardless at any time instant of previous policies and initial state. Another type of time consistency,
called “weak time consistency”, is also introduced in [2] to indicate the consistency that the adopted
policies will no longer be denied in the future only if past policies are consistent with the equilibrium
policies. We are referred to Section 5.6 of [2] for more about the two kinds of time consistencies that
are compared within the realm of optimal control theory. As open-loop control depends on system’s
initial state, the time consistency of open-loop solution of Stackelberg game is likely weaker than that
of feedback Stackelberg solution, which merits further investigation.
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Thirdly, the time inconsistency of open-loop Stackelberg solution is indeed attributed to the leader’s
optimal control problem, whose controlled system is a forward-backward difference/differential equation
under the follower’s best response. In other words, the optimal control problems of forward-backward
difference/differential equations are time-inconsistent, and yet such kind of time inconsistency has not
been investigated before. Actually, the reported factors that ruin the time consistency are mainly the
non-exponential discounting [5, 20] and nonlinear terms of conditional expectations [23] in the objective
functionals. Though exponential discounting is of great importance to model people’s time preference
[15], empirical researches over the last half century have documented the non-exponential discounting [5]
that does not possess the property of group or separability any longer. Moreover, as there is no nonlinear
version of the tower property of conditional expectation, the controller at different time instants is facing
different objectives, which are not consistent with the global objective. In existing literature, there are
several different approaches that handle the time inconsistency, and a rule of selecting the preferred
solution is called a choice mechanism [1]. The first one is the precommitment choice for which the initial
policy is implemented on the lifetime horizon. This approach neglects the time inconsistency, and the
optimal policy is optimal only when viewed at the initial time. Another mechanism is sophisticated/time-
consistent choice proposed firstly by Strotz [20]. In the viewpoint of Strotz, the decision maker at different
time instants is regarded as different selves, and the time inconsistency suggests a conflict between these
different selves. At any time instant the current self takes account of future selves’ decisions, and
the equilibrium of this intertemporal game is called a sophisticated policy, or a time-consistent policy.
Inspired by the work of Strotz, many researchers pay much attention to solving practical problems in
economics and finance. Recent years have witnessed the rapid progresses on handling time-inconsistent
optimal control problems from the theoretical control community [7, 8, 12, 13, 23, 24, 25]. The study of
controlled forward-backward difference/differential equation will extend the boundary of tackling time-
inconsistent optimal control problems. Hence, it is meaningful to investigate time-consistent open-loop
solution of Stackelberg games.

In this paper, we propose an open-loop solution concept for a discrete-time deterministic LQ Stack-
elberg game, which is shown to be weakly time-consistent. The contents and contributions are listed as
follows.

1. A two-tier game framework is introduced to remedy the time inconsistency of open-loop Stackelberg
solution. The upper-tier game works according to Stackelberg’s scenario, namely, the leader knows
the response mapping of the follower but the follower may not know the response mapping of
the leader. Two lower-tier intertemporal games are introduced to characterize the follower’s and
leader’s equilibrium response mappings, respectively, which mimic the notion of time-consistent
open-loop equilibrium control [7, 8, 12, 13].

In other words, the equilibrium of the two-tier game is resorting to solving two unilaterally cou-
pled intertemporal games, by sequentially investigating the time-consistent open-loop equilibrium
controls of the cascaded optimal control problems in Stackelberg game. Under the follower’s equi-
librium response, the leader’s controlled system is a forward-backward difference equation (FB∆E,
for short), and the follower’s equilibrium response will vary if we just perturb the leader’s control
action at a single time instant. This deeply distinguishes the second intertemporal game from the
one in [12, 13], and brings new difficulty to such kind of games.

2. After perturbing the leader’s control action, another forward dynamic system is invited to charac-
terize the changed equilibrium response of the follower, besides the one as that in classic variation
analysis. Then, an additional adjoint backward equation is introduced to compensate the effect of
variation of the follower’s equilibrium response. Namely, we need two adjoint backward equations
to accomplish the variation analysis of obtaining the stationary condition of the second intertempo-
ral game; see Proposition 3.4 and Theorem 3.7 for more details of this. To the best of the authors,
the technique of introducing two adjoint backward equations in Proposition 3.4 has not been seen
in existing literature.

3. Then, the equilibrium system of the second intertemporal game includes one forward equation and
three backward equations; this differs from the ones for open-loop Stackelberg solution, where the
leader’s optimal system includes two forward equations and two backward equations. By enlarging
the backward state, a modified FB∆E is introduced. By decoupling this FB∆E and resorting to
the stationary condition, necessary and sufficient conditions are obtained on the unique existence
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of open-loop equilibrium control of the second intertemporal game. Finally, open-loop equilibrium
solution of the two-tier game is derived, which is shown to be weakly time-consistent.

The remainder of the paper is organized as follows. In Section 2, we introduce the Stackelberg game,
and investigate its time inconsistency by an approach that is different from the one of [10]. Section 3
introduces the notion of open-loop equilibrium solution of the Stackleberg game, whose full investigations
are also presented. Section 5 gives a numerical example, which indicates that the obtained open-loop
equilibrium solution is time-consistent. The conclusion is given in Section 6.

Notations. Letting N be a positive integer bigger than 2, denote T = {0, 1, . . . , N − 1},Tt =

{t, . . . , N − 1}, T̃t = {t, . . . , N} with t ∈ T. For positive integers m1,m2, let

l2(Tt;R
m) =

{
{ρk, k ∈ Tt}

∣∣ ρk ∈ R
m, |ρk|

2 < ∞, k ∈ Tt

}
, m = m1,m2. (1.1)

Throughout this paper, a process, say {ak, k ∈ Ĩ} valued in some space, may be simply denoted as a

when we mention it, where Ĩ is some index set. For example, {ρk, k ∈ Tt} of (1.1) may be denoted as ρ,
namely, ρ ∈ l2(Tt;R

m). If t is replaced by other letters such as k, τ , then Tk,Tτ , l
2(Tτ ;R

m) are similarly
defined as Tt and l2(Tt;R

m). For any k ∈ T, let

l2(k;Rm) = {ρk ∈ R
m | |ρk|

2 < ∞}, m = m1,m2.

For a process, say v ∈ l2(Tt;R
m2), v|Tk

denotes {vk, ..., vN−1} with k ∈ Tt, which is the truncation of v
on Tk; if k = t, v|Tk

will coincide with v. Similar notations such as α0(x, v)|Tτ
(the truncation of α0(x, v)

on Tτ ) appear in the following sections, which are understood from the context.

2 Stackelberg game

Consider a nonzero-sum deterministic LQ dynamic game associated with the cost functionals

Ji(t, x;u, v) =

N−1∑

k=t

(
XT

k QiXk + uT
kRiuk + vTk Wivk

)
+XT

NGiXN , i = 1, 2, (2.1)

which are subject to

{
Xk+1 = AXk +B1uk +B2vk,

Xt = x, k ∈ Tt, t ∈ T.
(2.2)

In (2.1) (2.2), {Xk ∈ R
n, k ∈ T̃t} is the state process, and u = {uk ∈ R

m1 , k ∈ Tt}, v = {vk ∈ R
m2 , k ∈

Tt} are two players’ control processes, which are valued in l2(Tt;R
m1) and l2(Tt;R

m2), respectively. All
the matrices appearing in (2.1) (2.2) are deterministic, and the weighting matrices Qi, Gi, Ri, Wi, i = 1, 2
are nonnegative definite. Corresponding to control processes u and v, the players are denoted as Player
u and Player v, which are minimizing the cost functionals J1(t, x;u, v) and J2(t, x;u, v), respectively.

Stackelberg game, also known as leader-follower game, associated with (2.1) (2.2) is formulated in
the following way. The leader, Player v, first announces her action at the beginning of the game,
and Player u (the follower) seeks his best response strategy so as to minimize J1(t, x;u, v). Then,
anticipating the follower’s best response, Player u will select her strategy to minimize J2(t, x;u, v), and
the Stackelberg solution is obtained afterwards. Mathematically, Player u wants to look for a map
αt : Rn × l2(Tt;R

m2) 7→ l2(Tt;R
m1) and then Player v seeks vs such that

J1(t, x;α
t(x, v), v) = inf

u∈l2(Tt;Rm1)
J1(t, x;u, v), (2.3)

J2(t, x;α
t(x, vs), vs) = inf

v∈l2(Tt;Rm2)
J2(t, x;α

t(x, v), v). (2.4)

Noting that (2.3) (2.4) are two cascaded optimal control problems, this exhibits an open-loop Stackelberg
solution (αt(x, vs), vs), where the leader forces the follower to play in her favor.

The work [21] studies above Stackelberg game and presents necessary and sufficient condition on the
existence and uniqueness of open-loop Stackelberg solution. For the initial pair (0, x) (t = 0) and given
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v, problem (2.3) is a standard optimal control problem, which is time-consistent, namely, for any τ ∈ T,
it holds

J1(τ,Xτ ;α
0(x, v)|Tτ

, v|Tτ
) ≤ J1(τ,Xτ ;u, v|Tτ

), u ∈ l2(Tτ ,R
m1) (2.5)

with Xτ computed via

{
Xk+1 = AXk +B1[α

0(x, v)]k +B2vk,

X0 = x, k ∈ T.

Here, α0(x, v) = ([α0(x, v)]0, ..., [α
0(x, v)]N−1) is the unique optimal control that corresponds to the

initial pair (0, x) and v. Furthermore, it is shown in [21] that

[α0(x, v)]k = Φ1,kXk +Φ2,kvk +Φ3,kζk, k ∈ T (2.6)

for some matrices Φi,k, i = 1, 2, 3; here, Xk, ζk are computed via a FB∆E, namely, the optimal closed-loop
system





Xk+1 = ĀkXk + B̄2,kvk + C̄kζk,

ζk = D̄kζk+1 + Ēkvk+1,

X0 = x, ζN = 0, k ∈ T

(2.7)

for some matrices Āk, B̄2,k, C̄k, D̄k, Ēk, k ∈ T with compatible dimensions. Computing ζk from the
backward difference equation, (2.7) is rewritten as

{
Xk+1 = ĀkXk +

∑N−1
ℓ=k F̄k,ℓvℓ,

X0 = x, k ∈ T.
(2.8)

Under the follower’s best response (2.6), the controlled system of problem (2.4) is the FB∆E (2.7)
or equivalently (2.8). Substituting v with the optimal one v̂(0,x), we denote the corresponding optimal

state of (2.7) by (X̂(0,x), ζ̂(0,x)) with X̂(0,x) the equilibrium state of this Stackelberg game. Hereafter,
the superscript (0, x) is added in order to indicate that the concerned variables are corresponding to
the initial pair (0, x), which means to differ from those for the time pair (τ, y) below. On the optimal
control v̂(0,x) and by discrete-time variation analysis, the adjoint equation of (2.7) is a backward-forward

difference equation with state (α̂(0,x), β̂(0,x)). In particular,

{
β̂
(0,x)
k+1 = U1,kβ̂

(0,x)
k + U2,kα̂

(0,x)
k + U3,kX̂

(0,x)
k + U4,kv̂

(0,x)
k + U5,kζ̂

(0,x)
k ,

β̂
(0,x)
0 = 0, k ∈ T,

(2.9)

where Up,k, p = 1, 2, . . . , 5, k ∈ T, are some deterministic matrices of compatible dimensions. Also, the
superscript (0, x) is indicating that the concerned variables are for the initial pair (0, x). Furthermore,
the unique open-loop Stackelberg solution (û(0,x), v̂(0,x)) [21] is

{
û
(0,x)
k = Hu

k ξ̂
(0,x)
k ,

v̂
(0,x)
k = Hv

k ξ̂
(0,x)
k , k ∈ T;

(2.10)

here, Hu
k , H

v
k , k ∈ T, are functions of A,B1, B2, Qi, Ri,Wi, Gi(i = 1, 2) with compatible dimensions, and

ξ̂
(0,x)
k = ((β̂

(0,x)
k )T , (X̂k)

T )
T
evolves according to

{
ξ̂
(0,x)
k+1 = Sk ξ̂

(0,x)
k ,

ξ̂
(0,x)
0 = (0T , xT )T , k ∈ T

(2.11)

for some matrices Sk, k ∈ T. It is worth mentioning that the initial value β̂
(0,x)
0 is 0.

At τ ∈ T (τ > 0), the equilibrium state is X̂
(0,x)
τ , and to this end it is denoted as y for notation

simplicity. Reconsider this Stackelberg game at the initial pair (τ, y), and the corresponding variables
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are labelled by the superscript (τ, y) to distinguish those for (0, x). In this case, the controlled system
of the leader is





Xk+1 = ĀkXk + B̄2,kvk + C̄kζk,

ζk = D̄kζk+1 + Ēkvk+1,

Xτ = y, ζN = 0, k ∈ Tτ ,

(2.12)

and the adjoint equation of optimal backward equation is

{
β̂
(τ,y)
k+1 = U1,k+1β̂

(τ,y)
k + U2,k+1α̂

(τ,y)
k + U3,k+1X̂

(τ,y)
k + U4,k+1v̂

(τ,y)
k + U5,k+1ζ̂

(τ,y)
k ,

β̂
(τ,y)
τ = 0, k ∈ T.

(2.13)

Furthermore, the leader’s equilibrium control (corresponding to the initial pair (τ, y)) is

v̂
(τ,y)
k = Hv

k ξ̂
(τ,y)
k , k ∈ Tτ

with ξ̂
(τ,y)
k = ((β̂

(τ,y)
k )T , (X̂

(τ,y)
k )T )T , which evolves according to

{
ξ
(τ,y)
k+1 = Skξ

(τ,y)
k ,

ξ
(τ,y)
τ = (0T , yT )T , k ∈ Tτ .

(2.14)

Note that the initial value β
(τ,y)
τ is 0. On the other hand, following (2.11), β

(0,x)
τ is generally nonzero

provided that x 6= 0, i.e., β
(τ,y)
τ 6= β

(0,x)
τ . Hence, ξ

(τ,y)
k 6= ξ

(0,x)
k , k ∈ Tτ , which implies

v̂
(τ,y)
k 6= v̂

(0,x)
k , k ∈ Tτ . (2.15)

Namely, the truncation of open-loop Stackelberg solution (for the initial pair (0, x)) on Tτ is not the

open-loop Stackelberg solution for the initial pair (τ, X̂
(0,x)
τ ). This phenomenon is termed the time

inconsistency of open-loop Stackelberg solution. Essentially, above derivation from (2.5) to (2.15) shows
that optimal control problem (2.4) associated with the the FB∆E (2.7) is time-inconsistent! The following
is a simple numerical example.

Example 2.1. In (2.1) (2.2), let A = B1 = B2 = Q1 = R1 = W2 = G1 = 1, R2 = W1 = 0, Q2 = 3,
G2 = 2, t = 0, N = 3, and x = 1. Check the time inconsistency of open-loop Stackelberg solution.

Solution: Simple calculations give the unique open-loop Stackelberg solution for the initial pair (0, x):

(û
(0,x)
0 , v̂

(0,x)
0 ) = (−0.4240,−0.3363), (û

(0,x)
1 , v̂

(0,x)
1 ) = (−0.1843, 0.0465),

(û
(0,x)
2 , v̂

(0,x)
2 ) = (−0.0823, 0.0626).

At time instant 1, the equilibrium state X̂
(0,x)
1 = 0.2397, which is denoted as y. Now, reconsider this

Stackelberg game for the initial pair (1, y) whose open-loop Stackelberg solution is

(û
(1,y)
1 , v̂

(1,y)
1 ) = (−0.0942,−0.0856), (û

(1,y)
2 , v̂

(1,y)
2 ) = (−0.0342, 0.0086).

Clearly,

(û
(1,y)
1 , v̂

(1,y)
1 ) 6= (û

(0,x)
1 , v̂

(0,x)
1 ), (û

(1,y)
2 , v̂

(1,y)
2 ) 6= (û

(0,x)
2 , v̂

(0,x)
2 ),

and the open-loop Stackelberg solution is time-inconsistent. �

To conclude this section, finding open-loop Stackelberg solution is indeed divided into two cascaded
optimal control problems (2.3) (2.4), and it has been shown that under the follower’s best response the
leader’s optimal control problem (2.4) is time-inconsistent. Hence, the overall cascaded optimal control
problems (2.3) (2.4) are time-inconsistent, although for a given v problem (2.3) is time-consistent. So,
if the equilibrium solution (û(0,x), v̂(0,x)) is selected once for all, then the story ends without subsequent
replanning; here, (û(0,x), v̂(0,x)) is named the precommitted solution [1]. If instead, policy choice is
sequent and made period after period, then the leader has an incentive to deviate from his initial policy
v̂(0,x) later on as it is no longer optimal! In this case, proper notion on Stackelberg equilibrium needs to
be deliberately selected in order to remedy the time inconsistency.
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3 Open-loop equilibrium solution

3.1 Definition

In this paper, we adopt Strotz’s philosophy to handle the time inconsistency of Stackelberg game. Let
us firstly say more on the one-player time-inconsistent optimal control. Facing the time inconsistency,
a sophisticated decisionmaker is unable to precommit to the strategy selected at present, and his future
selves may deviate from what he makes now. Aware of this conflict, [14, 20] propose the concept
of consistent planning, where the decisionmaker anticipates his strategy in the future and act today
accordingly; more specifically, a time-consistent solution is introduced as the equilibrium outcome of
an intertemporal game between different selves (individuals) who make decisions sequentially over time.
For the time-consistent open-loop equilibrium control, we are referred to, for instance [12], where a
time-inconsistent mean-field stochastic LQ problem is studied. In a word, Strotz’s philosophy resorts to
a (one-tier) intertemporal game to resolve the time inconsistency of the optimal control problem. Here,
the term “one-tier” is deliberately used in order to distinguish the one “two-tier” below for Stackelberg
game.

We again consider a Stackelberg scenario: Player v is the leader and Player u the follower. To remedy
the time inconsistency of (2.3) (2.4), we instead consider an open-loop control pair for which no deviation
at a single time instant let each player incurs a lower cost, that is for the follower changing his response
at a single time instant considering the strategy of the leader unchanged, and for the leader to change his
leading strategy at a single time instant considering the response of the follower. Namely, we are facing
a two-tier game: besides the upper-tier game between the leader and follower, there are two lower-tier
intertemporal games among the selves of the leader and of the follower, respectively.

Definition 3.1. Concerned with the Stackelberg game associated (2.1) (2.2), a pair (u∗, v∗) ∈
l2(Tt;R

m1) × l2(Tt;R
m2) provides the unique open-loop equilibrium solution for the initial pair (t, x),

if

i) For each v ∈ l2(Tt;R
m2), there exists a unique ū ∈ l2(Tt;R

m1) such that

J1(k,Xk; ū|Tk
, v|Tk

) ≤ J1(k,Xk; (uk, ū|Tk+1
), v|Tk

) (3.1)

holds for any k ∈ Tt and any uk ∈ l2(k;Rm1). Equivalently, there exists a unique map αt :
R

n × l2(Tt;R
m2) 7→ l2(Tt;R

m1) such that

J1(k,Xk;α
t(x, v)|Tk

, v|Tk
) ≤ J1(k,Xk; (uk, α

t(x, v)|Tk+1
), v|Tk

) (3.2)

holds for each v ∈ l2(Tt;R
m2), any k ∈ Tt and any uk ∈ l2(k;Rm1) with αt(x, v) =

([αt(x, v)]t, . . . , [α
t(x, v)]N−1). The state Xk in (3.2) is computed via

{
Xk+1 = AXk +B1[α

t(x, v)]k +B2vk,

Xt = x, k ∈ Tt.
(3.3)

ii) There exists a unique v∗ ∈ l2(Tt;R
m2) such that

J2(k,X
∗

k ;α
t(x, v∗)|Tk

, v∗|Tk
) ≤ J2(k,X

∗

k ;α
t(x, v∗−k)|Tk

, (vk, v
∗|Tk+1

)) (3.4)

holds for any k ∈ Tt and any vk ∈ l2(k;Rm2). The state X∗

k in (3.4) is computed via

{
X∗

k+1 = AX∗

k +B1[α
t(x, v∗)]k +B2v

∗

k,

X∗

t = x, k ∈ Tt,
(3.5)

and the internal state of J2(k,X
∗

k ;α
t(x, v∗−k)|Tk

, (vk, v
∗|Tk+1

)) is

{
Xℓ+1 = AXℓ +B1[α

t(x, v∗−k)]ℓ +B2v
∗−k
ℓ ,

Xk = X∗

k , ℓ ∈ Tk,
(3.6)

where

v∗−k
ℓ =

{
vk, ℓ = k,

v∗ℓ , ℓ 6= k, ℓ ∈ Tt.
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iii) u∗ = αt(x, v∗).

Remark 3.2. The three steps in Definition 3.1 describe a two-tier game. The upper-tier game works
in Stackelberg’ scenario between the leader v and follower u, namely, the leader knows the response
mapping of the follower but the follower may not know the response mapping of the leader. In the lower
tier, two intertemporal games, see (3.2) (3.4), are introduced to remedy the time inconsistency of open-
loop Stackelberg solution. For fixed v, αt(x, v) of (3.2) is the time-consistent open-loop equilibrium control
of problem (2.3), which is shown to have the form (3.10). Consider the other intertemporal game related
to (3.4). If at time instant k we select vk instead of v∗k, α

t(x, v∗−k)|Tk
will differ from αt(x, v∗)|Tk

. Due
to (3.10) below, the state of





Xℓ+1 = ÃℓXℓ + B̃ℓv
∗−k
ℓ + C̃ℓπℓ+1,

πℓ = CT
ℓ v

∗−k
ℓ + ÃT

ℓ πℓ+1,

Xt = x, πN = 0, ℓ ∈ Tt

(3.7)

is used to compute αt(x, v∗−k). Therefore, we need three dynamic systems (3.5) (3.6) (3.7) to characterize
(3.4). This makes the concerned problem much complicated, and such an intertemporal game differs
significantly from the one for time-inconsistent optimal control [12, 13].

3.2 Characterizations

We firstly characterize of the map αt of i) of Definition 3.1. The following result gives conditions on the
existence and uniqueness of αt, whose proof follows directly from Theorem III.5 of [12] and is omitted
here.

Theorem 3.3. The following statements are equivalent.

i) There exists a unique map αt such that (3.2) holds for each v ∈ l2(Tt;R
m2), any k ∈ Tt and any

uk ∈ l2(k;Rm1).

ii) The matrices

Mk = BT
1 Pk+1B1 +R1, k ∈ k ∈ Tt (3.8)

are all positive definite, where Pk+1 is computed via
{

Pk = Q1 + ATPk+1A−ATPk+1B1M
−1
k BT

1 Pk+1A,

PN = G1, k ∈ Tt.
(3.9)

In this case, the value of αt(x, v) is given by

[αt(x, v)]k = −
(
H1

kXk +H2
kvk +H3

kπk+1

)
, k ∈ Tt, (3.10)

where




H1
k = M−1

k BT
1 Pk+1A,

H2
k = M−1

k BT
1 Pk+1B2,

H3
k = M−1

k BT
1 , k ∈ Tt,

and Xk, πk, k ∈ Tt, are computed via




Xk+1 = ÃkXk + B̃kvk + C̃kπk+1,

πk = CT
k vk + ÃT

k πk+1,

Xt = x, πN = 0, k ∈ Tt

(3.11)

with




Ãk = A−B1H
1
k ,

B̃k = B2 −B1H
2
k ,

C̃k = −B1H
3
k ,

Ck = (BT
2 −BT

2 Pk+1B1M
−1
k BT

1 )Pk+1A,

k ∈ Tt.
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Under (3.10), we now characterize the control process v∗ of ii) of Definition 3.1. In this case, the
controlled system of the leader is (3.11), which is a FB∆E. The following proposition gives the expression
of perturbed cost functional, whose proof together with those of Theorem 3.7 and Theorem 3.9 are given
in Section 4.

Proposition 3.4. For v ∈ l2(Tt;R
m2), ṽk ∈ l2(k;Rm2) and ε ∈ R, let

vεℓ =

{
vk + εṽk, ℓ = k,

vℓ, ℓ 6= k, ℓ ∈ Tt,

and vε = (vεt , . . . , v
ε
N−1). Then, it holds that

J2(k,Xk;α
t(x, vε)|Tk

, (vk + εṽk, v|Tk+1
))− J2(k,Xk;α

t(x, v)|Tk
, v|Tk

)

= 2ε
[
B̃T

k Zk+1 + B̃T
k Z

(k)

k+1 +W2vk + (H2
k)

TR2(H
1
kXk +H2

kvk +H3
kπk+1)

+

k−1∑

i=t

CkÃk−1 · · · Ãi+1C̃
T
i Z

(k)

i+1

]T
v̄k + ε2Ĵ2(k, 0; ṽk). (3.12)

Here, Zk+1, Z
(k)

k+1, · · · , Z
(k)

t+1 are computed via
{

Zk = Q2Xk +ATZk+1,

ZN = G2XN , k ∈ Tt,
(3.13)

and








Z
(k)

ℓ = (H1
ℓ )

TR2(H
1
ℓXℓ +H2

ℓ vℓ +H3
ℓ πℓ+1)− (H1

ℓ )
TBT

1 Zℓ+1 + ÃT
ℓ Z

(k)

ℓ+1,

Z
(k)

i = ÃT
i Z

(k)

i+1,

Z
(k)

N = 0,

ℓ ∈ Tk, i ∈ {t, t+ 1, . . . , k − 1},

k ∈ Tt

(3.14)

with




Xk+1 = ÃkXk + B̃kvk + C̃kπk+1,

πk = CT
k vk + ÃT

k πk+1,

Xt = x, πN = 0,

k ∈ Tt.

(3.15)

Furthermore, Ĵ2(k, 0; ṽk) of (3.12) is given by

Ĵ2(k, 0; ṽk) =

N−1∑

ℓ=k

ξTℓ Q2ξℓ +

N−1∑

ℓ=k+1

(η
(k)
ℓ )T (H1

ℓ )
TR2H

1
ℓ η

(k)
ℓ + ṽTk W2ṽk

+ ξTNG2ξN + (H1
kη

(k)
k +H2

k ṽk)
TR2(H

1
kη

(k)
k +H2

k ṽk) (3.16)

with




η
(k)
ℓ+1 = Ãℓη

(k)
ℓ ,

η
(k)
k+1 = Ãkη

(k)
k + B̃kṽk,

η
(k)
i+1 = Ãiη

(k)
i + C̃iÃ

T
i+1 · · · Ã

T
k−1C

T
k ṽk,

η
(k)
t = 0,

ℓ ∈ Tk+1, i ∈ {t, t+ 1, . . . , k − 1},

(3.17)

and




ξℓ+1 = Aξℓ −B1H
1
ℓ η

(k)
ℓ ,

ξk+1 = Aξk −B1H
1
kη

(k)
k + B̃kṽk,

ξk = 0, ℓ ∈ Tk+1.

(3.18)
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In (3.17), the following notation is adopted

ÃT
i+1 · · · Ã

T
k−1 =





I, i+ 1 > k − 1,

ÃT
k−1, i+ 1 = k − 1,

ÃT
i+1 · · · Ã

T
k−1, i+ 1 < k − 1,

and Ãk−1 · · · Ãi+1 of (3.12) is the transpose of ÃT
i+1 · · · Ã

T
k−1.

Remark 3.5. Due to the expression (3.10), [αt(x, vε)]t, ..., [α
t(x, vε)]N−1 are all modified if we just

replace vk by vεk. Note that η(k) is introduced to characterize the difference between X and Xε that are
given in (3.11) and





Xε
k+1 = ÃkX

ε
k + B̃kv

ε
k + C̃kπ

ε
k+1,

πε
k = CT

k v
ε
k + ÃT

k π
ε
k+1,

Xε
t = x, πε

N = 0,

k ∈ Tt.

(3.19)

Furthermore, the backward equation on Z
(k)

is introduced to cancel the effect of η(k) (in (4.3)). To the
best of the authors, the technique of introducing two adjoint equations in Proposition 3.4 has not been
seen in existing literature.

Through (3.14), one gets

k−1∑

i=t

CkÃk−1 · · · Ãi+1C̃
T
i Z

(k)

i+1

=
k−1∑

i=t

CkÃk−1 · · · Ãi+1C̃
T
i Ã

T
i+1 · · · Ã

T
k−1Z

(k)

k

=

k−1∑

i=t

CkÃk−1 · · · Ãi+1C̃
T
i Ã

T
i+1 · · · Ã

T
k−1

[
(H1

k)
TR2(H

1
kXk +H2

kvk +H3
kπk+1)

− (H1
k )

TBT
1 Zk+1 + ÃT

kZ
(k)

k+1

]

=

k−1∑

i=t

D
(k)
i

[
(H1

k )
TR2(H

1
kXk +H2

kvk +H3
kπk+1)− (H1

k)
TBT

1 Zk+1 + ÃT
k Z

(k)

k+1

]
,

where D
(k)
i = CkÃk−1 · · · Ãi+1C̃

T
i Ã

T
i+1 · · · Ã

T
k−1, i ∈ {t, t+1, . . . k− 1}. Then, the following result holds

Lemma 3.6. The equalities

B̃T
k Zk+1 + B̃T

k Z
(k)

k+1 +W2vk + (H2
k)

TR2(H
1
kXk +H2

kvk +H3
kπk+1)

+

k−1∑

i=t

CkÃk−1 · · · Ãi+1C̃
T
i Z

(k)

i+1

=
[
(H2

k)
TR2H

1
k +

k−1∑

i=t

D
(k)
i (H1

k)
TR2H

1
k

]
Xk +

[
W2 + (H2

k)
TR2H

2
k +

k−1∑

i=t

D
(k)
i (H1

k)
TR2H

2
k

]
vk

+
[
B̃T

k −

k−1∑

i=t

D
(k)
i (H1

k)
TBT

1

]
Zk+1 + (B̃T

k +

k−1∑

i=t

D
(k)
i ÃT

k )Z
(k)

k+1

+
[
(H2

k)
TR2H

3
k +

k−1∑

i=t

D
(k)
i (H1

k)
TR2H

3
k

]
πk+1, k ∈ Tt (3.20)

are satisfied.

By Proposition 3.4 and Lemma 3.6, we can characterize the stationary condition of optimization
problem related to (3.4) that is indeed the first-order optimality condition. As the weighting matrices
Qi, Gi, Ri,Wi, i = 1, 2, are all nonnegative definite, the considered optimization problem is convex.
Hence, the stationary condition is necessary and sufficient to characterize the minimizer of (3.4).

10



Theorem 3.7. For the initial pair (t, x), the following statements are equivalent.

i) There exists a unique v∗ ∈ l2(Tt;R
m2) such that (3.4) holds for any k ∈ Tt and any vk ∈ l2(k;Rm2).

ii) There exists a unique v∗ ∈ l2(Tt;R
m2) such that the stationary condition

0 =
[
B̃T

k −

k−1∑

i=t

D
(k)
i (H1

k)
TBT

1

]
Z∗

k+1 + (B̃T
k +

k−1∑

i=t

D
(k)
i ÃT

k )Z
(k)∗

k+1 +
[
(H2

k)
TR2H

1
k

+

k−1∑

i=t

D
(k)
i (H1

k )
TR2H

1
k

]
X∗

k +
[
W2 + (H2

k)
TR2H

2
k +

k−1∑

i=t

D
(k)
i (H1

k)
TR2H

2
k

]
v∗k

+
[
(H2

k )
TR2H

3
k +

k−1∑

i=t

D
(k)
i (H1

k )
TR2H

3
k

]
π∗

k+1, k ∈ Tt (3.21)

holds. Here, Z∗

k+1 and Z
(k)∗

k+1 are computed via

{
Z∗

k = Q2X
∗

k +ATZ∗

k+1,

Z∗

N = G2X
∗

N , k ∈ Tt,
(3.22)

and








Z
(k)∗

ℓ = (H1
ℓ )

TR2(H
1
ℓX

∗

ℓ +H2
ℓ v

∗

ℓ +H3
ℓ π

∗

ℓ+1)− (H1
ℓ )

TBT
1 Z

∗

ℓ+1 + ÃT
ℓ Z

(k)∗

ℓ+1 ,

Z
(k)∗

N = 0, ℓ ∈ Tk,

k ∈ Tt

(3.23)

with




X∗

k+1 = ÃkX
∗

k + B̃kv
∗

k + C̃kπ
∗

k+1,

π∗

k = CT
k v

∗

k + ÃT
k π

∗

k+1,

X∗

t = x, π∗

N = 0,

k ∈ Tt.

(3.24)

In this case, v∗ of ii) is the one of i).

Remark 3.8. From (3.23), one has

Z
(k1)∗

ℓ = Z
(k2)∗

ℓ , ∀k1, k2 ∈ Tt, k1 < k2, ℓ ∈ Tk2
.

Hence, (3.23) is simplified to

{
Z

∗

k = (H1
k )

TR2(H
1
kX

∗

k +H2
kv

∗

k +H3
kπ

∗

k+1)− (H1
k)

TBT
1 Z

∗

k+1 + ÃT
k Z

∗

k+1,

Z
∗

N = 0, k ∈ Tt.
(3.25)

Introduce the following notations





Z∗

k =




Z∗

k

Z
∗

k

π∗

k


 ,Hk =




Q2

(H1
k)

TR2H
1
k

0


 ,Kk =




0
(H1

k)
TR2H

2
k

CT
k


 ,G =




G2

0
0


 ,

Lk =




AT 0 0

−(H1
k)

TBT
1 ÃT

k (H1
k )

TR2H
3
k

0 0 ÃT
k


 , C̃k =




0
0

C̃T
k


 ,Sk =




0
0

(H3
k )

T


 ,

Dk =




B̃k −B1H
1
k

∑k−1
i=t (D

(k)
i )T ,

B̃k + Ãk

∑k−1
i=t (D

(k)
i )T

(H3
k)

TR2H
2
k + (H3

k )
TR2H

1
k

∑k−1
i=t (D

(k)
i )T


 ,

(3.26)
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then the FB∆Es in (3.22), (3.24), (3.25) are equivalently rewritten as




X∗

k+1 = ÃkX
∗

k + B̃kv
∗

k + C̃T
kZ

∗

k+1,

Z∗

k = HkX
∗

k +Kkv
∗

k + LkZ
∗

k+1,

X∗

t = x, Z∗

N = GX∗

N , k ∈ Tt,

(3.27)

and the stationary condition (3.21) is equivalent to

0 =
[
W2 + (H2

k)
TR2H

2
k +

k−1∑

i=t

D
(k)
i (H1

k )
TR2H

2
k

]
v∗k

+
[
(H2

k)
TR2H

1
k +

k−1∑

i=t

D
(k)
i (H1

k)
TR2H

1
k

]
X∗

k +DT
k Z

∗

k+1, k ∈ Tt. (3.28)

Letting




Fk = W2 + (H2
k )

TR2H
2
k +

∑k−1
i=t D

(k)
i (H1

k)
TR2H

2
k ,

Ok = (H2
k)

TR2H
1
k +

∑k−1
i=t D

(k)
i (H1

k)
TR2H

1
k ,

k ∈ Tt,

(3.29)

then (3.28) is denoted as

0 = Fkv
∗

k +OkX
∗

k +DT
kZ

∗

k+1, k ∈ Tt. (3.30)

The following theorem characterizes the unique existence of v∗ ∈ l2(Tt;R
m2) in (3.4), by virtue of

some matrices with the nonsingularity constraint, which can be easily checked.

Theorem 3.9. The following statements are equivalent.

i) There exists a unique v∗ ∈ l2(Tt;R
m2) such that (3.4) holds for any k ∈ Tt and any vk ∈ l2(k;Rm2).

ii) Fk and I− (C̃T
k − B̃kF

−1
k DT

k )Tk+1, k ∈ Tt are invertible, where




Tk = (Lk −KkF
−1
k DT

k )Tk+1

[
I− (C̃T

k − B̃kF
−1
k DT

k )Tk+1

]−1
(Ãk − B̃kF

−1
k Ok)

+Hk −KkF
−1
k Ok,

TN = G, k ∈ Tt.

(3.31)

In this case, the FB∆E of (3.27) has the following expression




X∗

k+1 =
[
I− (C̃T

k − B̃kF
−1
k DT

k )Tk+1

]−1
(Ãk − B̃kF

−1
k Ok)X

∗

k ,

Z∗

k = TkX
∗

k ,

X∗

t = x, Z∗

N = GX∗

N , k ∈ Tt,

(3.32)

and v∗k of (3.30) and i) is computed via

v∗k = −F−1
k

{
Ok +DT

kTk+1

[
I− (C̃T

k − B̃kF
−1
k DT

k )Tk+1

]−1
(Ãk − B̃kF

−1
k Ok)

}
X∗

k , k ∈ Tt. (3.33)

We finally characterize the control process u∗ of iii) of Definition 3.1. Substituting the v of (3.10)
with (3.33) and noting (3.32), the unique u∗ ∈ l2(Tt;R

m1) is expressed as

u∗

k = [αt(x, v∗)]k = −
(
H1

kX
∗

k +H2
kv

∗

k +H3
kπ

∗

k+1

)

=
{
(H2

kF
−1
k DT

k − ST
k )Tk+1

[
I− (C̃T

k − B̃kF
−1
k DT

k )Tk+1

]−1
(Ãk − B̃kF

−1
k Ok)

−H1
k +H2

kF
−1
k Ok

}
X∗

k , k ∈ Tt. (3.34)

To conclude this section, we have the following result.

Theorem 3.10. The following statements are equivalent.

i) The Stackelberg game associated with (2.1) (2.2) admits a unique open-loop equilibrium solution
(u∗, v∗) for the initial pair (t, x).

ii) Mk, k ∈ Tt, of (3.8) are positive definite, and Fk, I− (C̃T
k − B̃kF

−1
k DT

k )Tk+1, k ∈ Tt are invertible.

In this case, the controls u∗, v∗ of i) are given by (3.34) and (3.33), respectively.
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3.3 About time consistetncy

This section is about the time consistency of open-loop equilibrium solution of Definition 3.1. Let (u∗, v∗)
be the unique open-loop equilibrium solution for the initial pair (t, x). Along the equilibrium system
(3.5), at time instant τ we reconsider the Stackelberg game, and denote its unique open-loop equilibrium
solution (for the initial pair (τ,X∗

τ )), if it exists, as (uτ∗, vτ∗), which is similarly defined as that of
Definition 3.1:

i) There exists a unique map ατ : Rn × l2(Tτ ;R
m2) 7→ l2(Tτ ;R

m1) such that

J1(k,Xk;α
τ (x, vτ )|Tk

, vτ |Tk
) ≤ J1(k,Xk; (uk, α

τ (x, vτ )|Tk+1
), vτ |Tk

)

holds for each vτ ∈ l2(Tτ ;R
m2), any k ∈ Tτ and any uk ∈ l2(k;Rm1), where the state Xk is

computed via

{
Xk+1 = AXk + B1[α

τ (x, vτ )]k +B2v
τ
k ,

Xτ = X∗

τ , k ∈ Tτ .

ii) There exists a unique vτ∗ ∈ l2(Tτ ;R
m2) such that

J2(k,X
τ∗
k ;ατ (x, vτ∗)|Tk

, vτ∗|Tk
) ≤ J2(k,X

τ∗
k ;ατ (x, vτ∗−k)|Tk

, (vk, v
τ∗|Tk+1

)) (3.35)

holds for any k ∈ Tτ and any vk ∈ l2(k;Rm2), where

vτ∗−k
ℓ =

{
vk, ℓ = k,

v∗ℓ , ℓ 6= k, ℓ ∈ Tτ .

The state Xτ∗
k in (3.35) is computed via

{
Xτ∗

k+1 = AXτ∗
k +B1[α

τ (x, vτ∗)]k +B2v
τ∗
k ,

Xτ∗
τ = X∗

τ , k ∈ Tτ ,
(3.36)

iii) uτ∗ = ατ (x, vτ∗).

By mimicing all the derivations of above section, we have a result on open-loop equilibrium solution
for the initial pair (τ,X∗

τ ) that is parallel to Theorem 3.10.

Theorem 3.11. The following statements are equivalent.

i) The Stackelberg game associated with (2.1) (2.2) admits a unique open-loop equilibrium solution
(uτ∗, vτ∗) for the initial pair (τ,X∗

τ ).

ii) Mk, k ∈ Tτ , of (3.8) are positive definite, and Fk, I−(C̃T
k −B̃kF

−1
k DT

k )Tk+1, k ∈ Tτ are invertible.

In this case, the controls uτ∗, vτ∗ of i) are given by

uτ∗
k =

{
(H2

kF
−1
k DT

k − ST
k )Tk+1

[
I− (C̃T

k − B̃kF
−1
k DT

k )Tk+1

]−1
(Ãk − B̃kF

−1
k Ok)

−H1
k +H2

kF
−1
k Ok

}
Xτ∗

k ,

vτ∗k = −F−1
k

{
Ok +DT

k Tk+1

[
I− (C̃T

k − B̃kF
−1
k DT

k )Tk+1

]−1
(Ãk − B̃kF

−1
k Ok)

}
Xτ∗

k , k ∈ Tτ

with
{

Xτ∗
k+1 =

[
I− (C̃T

k − B̃kF
−1
k DT

k )Tk+1

]−1
(Ãk − B̃kF

−1
k Ok)X

τ∗
k ,

Xτ∗
τ = X∗

τ , k ∈ Tτ ,

Comparing Theorem 3.10 and Theorem 3.11 and noticing the expressions of X∗, Xτ∗, (u∗, v∗), (uτ∗,
vτ∗), we must have the following facts.

Theorem 3.12. The following facts hold.
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i) If the Stackelberg game associated with (2.1) (2.2) admits a unique open-loop equilibrium solution
(u∗, v∗) for the initial pair (t, x), then for any equilibrium pair (τ,X∗

τ ) with τ ∈ Tt the Stackelberg
game admits a unique open-loop equilibrium solution (uτ∗, vτ∗).

ii) The open-loop equilibrium solution is time-consistent, namely, for τ ∈ Tt, u
∗|Tτ

= uτ∗, v∗|Tτ
= vτ∗

with the control inputs given in i).

Remark 3.13. The initial state of (3.36) is X∗

τ , which means that on {t, ..., τ − 1} we adopt the
equilibrium control ({u∗

t , ..., u
∗

τ−1}, {v
∗

t , ..., v
∗

τ−1}). Hence, the time consistency of open-loop equilibrium
solution is weak in the sense of [2]. We now show the reason that ensure the time consistency of open-
loop equilibrium solution. Note that under the follower’s best response the controlled system of the leader
is (3.11), which is decoupled, namely, forward state does not appear in the backward difference equation.
Then, the perturbation vε of Proposition 3.4 cannot influence the backward difference equation, though it
will influence the forward difference equation. Hence, we need not introduce a adjoint forward difference
equation for the backward difference equation; this is why in (3.27) the forward state is only X∗, i.e.,
we need not enlarge the forward state. On the other hand, in characterizing the open-loop Stackelberg

solution, we need to enlarge the equilibrium state X̂k to ξ
(0,x)
k = ((β

(0,x)
k )T , X̂T

k )
T of (2.11). As shown

in Section 2, it is the term β(0,x) that ruins the time consistency of open-loop Stackelberg solution.

4 Proofs

4.1 Proof of Proposition 3.4

Under vε, the follower’s control input is

[αt(x, vε)]k = −(H1
kX

ε
k +H2

kv
ε
k +H3

kπ
ε
k+1), k ∈ Tt (4.1)

with Xε given in (3.19). Hence, one gets





Xε

ℓ+1−Xℓ+1

ε
= Ãℓ

Xε

ℓ
−Xℓ

ε
,

Xε

k+1−Xk+1

ε
= Ãk

Xε

k
−Xk

ε
+ B̃kṽk,

Xε

k
−Xk

ε
= Ãk−1

Xε

k−1−Xk−1

ε
+ C̃k−1C

T
k ṽk,

Xε

i+1−Xi+1

ε
= Ãi

Xε

i
−Xi

ε
+ C̃iÃ

T
i+1Ã

T
i+2 . . . Ã

T
k−1C

T
k ṽk,

Xε

t
−Xt

ε
= 0,

ℓ ∈ Tk+1, i ∈ {t, t+ 1, . . . , k − 2}.

Denoting
Xε

ℓ
−Xℓ

ε
by η

(k)
ℓ , we have (3.17) and Xε

ℓ = Xℓ + εη
(k)
ℓ , ℓ ∈ Tt. It should be noted that the

internal state of J2(k,Xk;α
t(x, vε)|Tk

, (vk + εṽk, v|Tk+1
)) is

{
Xc

ℓ+1 = AXc
ℓ +B1[α

t(x, vε)]ℓ +B2v
ε
ℓ ,

Xc
k = Xk, ℓ ∈ Tk,

(4.2)

which is different from {Xε
ℓ , ℓ ∈ Tk}. Furthermore, one has





Xc

ℓ+1−Xℓ+1

ε
= A

Xc

ℓ
−Xℓ

ε
−B1H

1
ℓ

Xε

ℓ
−Xℓ

ε
,

Xc

k+1−Xk+1

ε
= A

Xc

k
−Xk

ε
−B1H

1
k
Xε

k
−Xk

ε
+ B̃kṽk,

Xc

k
−Xk

ε
= 0, ℓ ∈ Tk+1.

Denoting
Xc

ℓ
−Xℓ

ε
by ξℓ, we have (3.18) and Xc

ℓ = Xℓ + εξℓ, ℓ ∈ Tk. Noting that πℓ, ℓ ∈ Tk+1 are not
influenced by vk + εṽk, i.e., π

ε
ℓ = πℓ, ℓ ∈ Tk+1. Then, we have

J2(k,Xk;α
t(x, vε)|Tk

, (vk + εṽk, v|Tk+1
))− J2(k,Xk;α

t(x, v)|Tk
, v|Tk

)

= ε2
[N−1∑

ℓ=k

ξTℓ Q2ξℓ + ṽTk W2ṽk + ξTNG2ξN + (H1
kη

(k)
k +H2

k ṽk)
TR2(H

1
kη

(k)
k +H2

k ṽk)
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+

N−1∑

ℓ=k+1

(η
(k)
ℓ )T (H1

ℓ )
TR2H

1
ℓ η

(k)
ℓ

]
+ 2ε

{N−1∑

ℓ=k

[
XT

ℓ Q2ξℓ + (H1
ℓXℓ +H2

ℓ vℓ +H3
ℓ πℓ+1)

TR2H
1
ℓ η

(k)
ℓ

]

+ vTk W2ṽk +XT
NG2ξN + (H1

kXk +H2
kvk +H3

kπk+1)
TR2H

2
k ṽk

}
. (4.3)

As ξk = 0, η
(k)
t = 0, it holds that

N−1∑

ℓ=k

[
XT

ℓ Q2ξℓ + (H1
ℓXℓ +H2

ℓ vℓ +H3
ℓ πℓ+1)

TR2H
1
ℓ η

(k)
ℓ

]
+ vTk W2ṽk

+XT
NG2ξN + (H1

kXk +H2
kvk +H3

kπk+1)
TR2H

2
k ṽk

=
N−1∑

ℓ=k

[
XT

ℓ Q2ξℓ + (H1
ℓXℓ +H2

ℓ vℓ +H3
ℓ πℓ+1)

TR2H
1
ℓ η

(k)
ℓ + ZT

ℓ+1ξℓ+1 − ZT
ℓ ξℓ

+ (Z
(k)

ℓ+1)
T η

(k)
ℓ+1 − (Z

(k)

ℓ )T η
(k)
ℓ

]
+

k−1∑

i=t

[
(Z

(k)

i+1)
T η

(k)
i+1 − (Z

(k)

i )T η
(k)
i

]
+ vTk W2ṽk

+ (H1
kXk +H2

kvk +H3
kπk+1)

TR2H
2
k ṽk

=
N−1∑

ℓ=k

{
(Q2Xℓ +ATZℓ+1 − Zℓ)

T ξℓ +
[
(H1

ℓ )
TR2(H

1
ℓXℓ +H2

ℓ vℓ +H3
ℓ πℓ+1)

− (H1
ℓ )

TBT
1 Zℓ+1 + ÃT

ℓ Z
(k)

ℓ+1 − Z
(k)

ℓ

]T
η
(k)
ℓ

}
+

k−1∑

i=t

(ÃT
i Z

(k)

i+1 − Z
(k)

i )T η
(k)
i

+
[
B̃T

k Zk+1 + B̃T
k Z

(k)

k+1 +W2vk + (H2
k )

TR2(H
1
kXk +H2

kvk +H3
kπk+1)

+

k−1∑

i=t

CkÃk−1 · · · Ãi+1C̃
T
i Z

(k)

i+1

]T
ṽk.

This and (4.3) imply the conclusion, and the proof is completed.

4.2 Proof of Theorem 3.7

i) ⇒ ii). Combing Proposition 3.4 and Lemma 3.6, one gets

J2(k,X
∗

k ;α
t(x, v∗−k)|Tk

, (v∗k + εṽk, v
∗|Tk+1

))− J2(k,X
∗

k ;α
t(x, v∗)|Tk

, v∗|Tk
)

= 2ε
{[

B̃T
k −

k−1∑

i=t

D
(k)
i (H1

k)
TBT

1

]
Z∗

k+1 + (B̃T
k +

k−1∑

i=t

D
(k)
i ÃT

k )Z
(k)∗

k+1

+
[
(H2

k)
TR2H

1
k +

k−1∑

i=t

D
(k)
i (H1

k)
TR2H

1
k

]
X∗

k

+
[
W2 + (H2

k)
TR2H

2
k +

k−1∑

i=t

D
(k)
i (H1

k)
TR2H

2
k

]
v∗k

+
[
(H2

k)
TR2H

3
k +

k−1∑

i=t

D
(k)
i (H1

k)
TR2H

3
k

]
π∗

k+1

}T

ṽk + ε2Ĵ2(k, 0; ṽk)

≥ 0. (4.4)

It can be seen from (3.16) that Ĵ2(k, 0; ṽk) ≥ 0 always holds for any ṽk ∈ l2(k;Rm2). As (4.4) holds for
any ε ∈ R and any ṽk ∈ l2(k;Rm2), one must obtain (3.21). In fact, if for some k1 ∈ Tt,

σk1
,

[
B̃T

k1
−

k1−1∑

i=t

D
(k1)
i (H1

k1
)TBT

1

]
Z∗

k1+1 + (B̃T
k1

+

k1−1∑

i=t

D
(k1)
i ÃT

k1
)Z

(k1)∗

k1+1

+
[
(H2

k1
)TR2H

1
k1

+

k1−1∑

i=t

D
(k1)
i (H1

k1
)TR2H

1
k1

]
X∗

k1
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+
[
W2 + (H2

k1
)TR2H

2
k1

+

k1−1∑

i=t

D
(k1)
i (H1

k1
)TR2H

2
k1

]
v∗k1

+
[
(H2

k1
)TR2H

3
k1

+

k1−1∑

i=t

D
(k1)
i (H1

k1
)TR2H

3
k1

]
π∗

k1+1

6= 0,

let ṽk1
= σk1

; this and (4.4) imply that

ε2Ĵ2(k1, 0;σk1
) + 2ε|σk1

|2 ≥ 0 (4.5)

holds for any ε ∈ R. If ε is a negative number with |ε| sufficiently small, one has

ε2Ĵ2(k, 0;σk1
) + 2ε|σk1

|2 < 0,

which contradicts (4.5). Therefore, σk1
must be 0, and (3.21) holds.

ii) ⇒ i). In this case, one get

J2(k,X
∗

k ;α
t(x, v∗−k)|Tk

, (vk, v
∗|Tk+1

))− J2(k,X
∗

k ;α
t(x, v∗)|Tk

, v∗|Tk
) ≥ 0,

and the conclusion follows.

4.3 Proof of Theorem 3.9

i)⇒ii). By Theorem 3.7, let v∗ ∈ l2(Tt;R
m2) be the one such that the stationary condition (3.21)

holds. Under this v∗, equations (3.22), (3.24) and (3.25) have the unique solution Z∗

k , (π
∗

k, X
∗

k) and Z
∗

k,
respectively. Equivalently, (3.30) has a unique solution (X∗,Z∗) and (3.30) holds. It is easy to get that
Fk, k ∈ Tt in (3.30) is invertible due to the uniqueness of v∗. Hence, (3.30) is equal to

v∗k = −F−1
k (OkX

∗

k +DT
k Z

∗

k+1), k ∈ Tt.

Accordingly, the FB∆E (3.27) is rewritten as





X∗

k+1 = (Ãk − B̃kF
−1
k Ok)X

∗

k + (C̃T
k − B̃kF

−1
k DT

k )Z
∗

k+1,

Z∗

k = (Hk −KkF
−1
k Ok)X

∗

k + (Lk −KkF
−1
k DT

k )Z
∗

k+1,

X∗

t = x, Z∗

N = GX∗

N , k ∈ Tt,

(4.6)

which is uniquely solvable.

Noting the terminal condition Z∗

N = GX∗

N and the first equation of (4.6), one has

X∗

N = (ÃN−1 − B̃N−1F
−1
N−1ON−1)X

∗

N−1 + (C̃T
N−1 − B̃N−1F

−1
N−1D

T
N−1)GX∗

N ,

that is,

[
I− (C̃T

N−1 − B̃N−1F
−1
N−1D

T
N−1)G

]
X∗

N = (ÃN−1 − B̃N−1F
−1
N−1ON−1)X

∗

N−1,

Using the unique solvability of (4.6), it yields that I − (C̃T
N−1 − B̃N−1F

−1
N−1D

T
N−1)G is invertible. It

then follows that Z∗

N−1 = TN−1X
∗

N−1 with TN−1 satisfying (3.31) for k = N − 1.

Assume now that Z∗

k+1 = Tk+1X
∗

k+1 holds. Let us show Z∗

k = TkX
∗

k . By substituting Z∗

k+1 =
Tk+1X

∗

k+1 into (4.6), we have

X∗

k+1 = (Ãk − B̃kF
−1
k Ok)X

∗

k + (C̃T
k − B̃kF

−1
k DT

k )Tk+1X
∗

k+1,

namely,

[
I− (C̃T

k − B̃kF
−1
k DT

k )Tk+1

]
X∗

k+1 = (Ãk − B̃kF
−1
k Ok)X

∗

k ,

Using the unique solvability of (4.6), it yields that I− (C̃T
k − B̃kF

−1
k DT

k )Tk+1 is invertible. Combining
this with (4.6), it yields that

Z∗

k = TkX
∗

k .
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Hence, we get (3.32) and (3.33).

ii)⇒i). As a fully decoupled FB∆E, (3.32) is solvable. Under the condition, one has

X∗

k+1 = (Ãk − B̃kF
−1
k Ok)X

∗

k + (C̃T
k − B̃kF

−1
k DT

k )Tk+1X
∗

k+1, k ∈ Tt. (4.7)

Under (3.31) and by the first equation of (3.32), we have

TkX
∗

k = (Lk −KkF
−1
k DT

k )Tk+1

[
I− (C̃T

k − B̃kF
−1
k DT

k )Tk+1

]−1
(Ãk − B̃kF

−1
k Ok)X

∗

k

+ (Hk −KkF
−1
k Ok)X

∗

k

= (Lk −KkF
−1
k DT

k )Tk+1X
∗

k+1 + (Hk −KkF
−1
k Ok)X

∗

k , k ∈ Tt. (4.8)

By comparing (4.7), (4.8) and (4.6), we can see that (X∗

k ,TkX
∗

k ) is the solution to (4.6). By reversing
the proof of i)⇒ii), we have that

v∗k = −F−1
k (OkX

∗

k +DT
k Z

∗

k+1), k ∈ Tt.

satisfies the stationary condition (3.4). Due to the invertibility of Fk and the uniqueness of the solution
of (4.6), it can be seen that the above v∗ is unique. The proof is now completed.

5 Numerical Example

Example 5.1. Consider the Stackelberg game (2.1)-(2.2) with parameters:

A =

(
1 0.5
0.3 2

)
, B1 =

(
1 1
0 1.2

)
, B2 =

(
0.6 2
1 1.6

)
, Q1 =

(
1 0.5
0.5 1.5

)
,

Q2 =

(
0.6 0.2
0.2 0.8

)
, R1 =

(
0.8 0.3
0.3 1

)
, R2 =

(
0 0
0 0

)
, W1 =

(
1.25 0.5
0.5 1.4

)
,

W2 =

(
1.45 0.3
0.3 1

)
, G1 =

(
1 0.65

0.65 1

)
, G2 =

(
0.5 −0.4
−0.4 0.5

)
.

Letting t = 0, N = 3 and x = (1, 0)T , find the open-loop equilibrium solution.

Solution. By some calculations, we get the following parameters

M0 =

(
2.1841 2.6175
2.6175 9.1965

)
, M1 =

(
2.1360 2.6922
2.6922 8.5144

)
, M2 =

(
1.8000 2.0800
2.0800 5.0000

)
,

F0 =

(
1.4500 0.3000
0.3000 1.0000

)
, F1 =

(
1.4500 0.3000
0.3000 1.0000

)
, F2 =

(
1.4500 0.3000
0.3000 1.0000

)
,

I− (C̃T
0 − B̃0F

−1
0 DT

0 )T1 =

(
1.0371 −0.0969
0.0417 0.8908

)
,

I− (C̃T
1 − B̃1F

−1
1 DT

1 )T2 =

(
0.9552 0.1173
−0.0019 0.9903

)
,

I− (C̃T
2 − B̃2F

−1
2 DT

2 )T3 =

(
0.9971 0.0650
−0.0547 1.0858

)
.

It is easy to see that Mk, k = 0, 1, 2, are positive define and Fk, I− (C̃T
k − B̃kF

−1
k DT

k )Tk+1, k = 0, 1, 2,
are invertible. Hence, the problem admits a unique open-loop equilibrium solution for the initial pair
(0, x), which is given by

(u
∗(0,x)
0 , v

∗(0,x)
0 ) =

(
−0.3711 0.0053
−0.3204 −0.0057

)
, (u

∗(0,x)
1 , v

∗(0,x)
1 ) =

(
−0.1583 0.0230
−0.0632 0.0462

)
,

(u
∗(0,x)
2 , v

∗(0,x)
2 ) =

(
−0.0456 0.0254
−0.0139 0.0094

)
.
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At time instant 1, the equilibrium state X
∗(0,x)
1 = (0.3003,−0.0883)T , which is denoted as z. Now,

reconsider this Stackelberg game for the initial pair (1, z). Then, the unique open-loop equilibrium
solution for the initial pair (1, z) is

(u
∗(1,z)
1 , v

∗(1,z)
1 ) =

(
−0.1583 0.0230
−0.0632 0.0462

)
, (u

∗(1,z)
2 , v

∗(1,z)
2 ) =

(
−0.0456 0.0254
−0.0139 0.0094

)
.

Clearly,

(u
∗(1,z)
1 , v

∗(1,z)
1 ) = (u

∗(0,x)
1 , v

∗(0,x)
1 ), (u

∗(1,z)
2 , v

∗(1,z)
2 ) = (u

∗(0,x)
2 , v

∗(0,x)
2 ).

It shows that the open-loop equilibrium solution is time-consistent. �

6 Conclution

In this paper, open-loop equilibrium solution is investigated for deterministic dynamic Stackelberg game,
which is shown to be time-consistent. Necessary and sufficient condition for the existence and uniqueness
of open-loop equilibrium solution is given, and two Riccati-like equations are introduced to characterize
the open-loop equilibrium solution. For future research, we may study the open-loop equilibrium solution
for stochastic Stackelberg games.
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