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Abstract

This paper proposes a label-free controller for a second-order multi-agent system to cooperatively fence a moving target
of variational velocity into a convex hull formed by the agents whereas maintaining a rigid formation. Therein, no label is
predetermined for a specified agent. To attain a rigid formation with guaranteed collision avoidance, each controller consists
of two terms: a dynamic regulator with an internal model to drive agents towards the moving target merely by position
information feedback, and a repulsive force between each pair of adjacent agents. Significantly, sufficient conditions are derived
to guarantee the asymptotic stability of the closed-loop systems governed by the proposed fencing controller. Rigorous analysis
is provided to eliminate the strong nonlinear couplings induced by the label-free property. Finally, the effectiveness of the
controller is substantiated by numerical simulations.
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1 Introduction

Cooperative control of multi-agent systems (MASs) is
motivated by high coordination of the bird flocks, fish
schools, insect colonies and mammal herds in the natu-
ral world, which can be applicable to a large volume of
industry, engineering and social networked systems by
virtues of high efficiency, large coverage and low cost.
Emergence of high cooperation is a fascinating topic in
the MAS control research area all along. Tremendous
progress has been witnessed in recent years, including
formation regulation [1, 2], synchronization/consensus
protocols [3, 4] containment control [5, 6], and circular-
motion control [7, 8].

Along the research line of collective circular motion con-
trol, a target enclosing issue has recently attracted in-
creasing attention. Most of the pioneer efforts devoted to

1 This work was supported by in part by the National Nat-
ural Science Foundation of China under Grants 62225306,
U2141235, 51729501, in part by the National Natural Science
Foundation of Hubei Province under Grant 2019CFA005.

the MAS target enclosing problem have focused on con-
taining a target within the moving trajectories of well-
informed agents [9–11], who have access to the target’s
information. However, such a situation is not often en-
countered in real applications, and hence a more practi-
cal cooperative strategy was proposed in [12] to encircle
a target known to only a partial of agents.

Even though a target could be encircled by moving tra-
jectories in [9–12], the consistent enclosing of a target at
every moment cannot be always guaranteed. That mo-
tivates another interesting research line, namely, target-
fencing problem, which means that the target is fenced
(i.e., surrounded / enclosed) by the convex hull of all the
agents all along. Among the initial works of MAS fencing
control, all the agents are label-fixed, i.e., their labels,
neighbors and relative distribution are predetermined.
Such a target-fencing control problem has been tackled
for first-order MASs [13] and second-order MASs [14].
Afterwards, it was extended to multi-targets fencing sce-
nario for second-order nonlinear MASs in [15] and even
multiple unmanned surface vessels [16].
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Nevertheless, such kind of label-fixed fencing controllers
cannot fulfill increasingly complicated missions in unpre-
dictable environment. For instance, with the increasingly
complicated missions, label-fixed controllers need to re-
calculate the predetermined inter-agent relative distri-
bution every time, which will increase calculation burden
and thereby decrease the cooperation efficiency. As for
unpredictable environments, label-fixed controllers may
take a longer time and consume more energy to attain co-
operation in some specific situations. For instance, if the
initial position of a specific agent 1 is far behind all the
other ones whereas its predetermined relative position
is in front of all the others, then agent 1 needs to trudge
across all the others to the prescribed position. Last but
not least, if some agents break down suddenly during
the fencing process, label-fixed controllers can not form
a fencing formation any longer since all the inter-agent
relative position are predetermined in advance. This mo-
tivates the development of a more practical label-free
fencing controller, where no label is predetermined for a
specified agent [17]. To this end, a limit-cycle-based pro-
tocol was proposed in [18] to fence a stationary target. A
hierarchical structure with an output regulation method
was established in [19] to surround a stationary target. A
cooperative controller consisting of attractive, repulsive,
and rotational inter-agent forces was developed in [20]
to fence a specified stationary target. Afterwards, an in-
teresting problem to fence a target with a constant ve-
locity was addressed for first-order MASs [21], second-
order MASs [22,23] and multiple unmanned surface ves-
sels [24].

So far, most of existing works [18–20] only consid-
ered label-free fencing for first-order MASs and have
not systematically considered the formation evolution
during entire fencing processes, which is however es-
sential in practice, such as unmanned-system convey
protection, reconnaissance, patrol, etc. Although a few
recent works [21–24] studied the rigid formation with
a constant-velocity target, a more challenging scenario
of fencing a moving target with variational velocity
still remains a dilemma. Thus, it becomes an urgent
yet challenging mission to propose a label-free con-
troller for second-order MASs to achieve collision-free
rigid-formation fencing for a variational-velocity target.
Hereby, the main contribution of this paper is summa-
rized.

(1) Develop a label-free controller for a second-order
MAS to cooperatively fence a motional target
of variational velocity within their convex hull
whereas maintaining a rigid formation.

(2) Guarantee inter-agent collision avoidance and con-
vergence of a nonlinear MAS subject to complicated
dynamics, strong couplings and time-varying net-
work topologies, simultaneously.

Technically speaking, the main difficulty of this paper is
the strong nonlinear couplings induced by the label-free
property with a variational-velocity target. The novelty
of this paper is two-fold. First of all, unlike relevant prior
label-free fencing works for a static target [18–20] and

a constant-velocity target [21–24], the present study re-
gards the target as an exosystem. Thereby, it proposes
a label-free controller consisting of a dynamic regula-
tor and an inter-agent repulsion to address a more chal-
lenging fencing problem with a variational-velocity tar-
get. Secondly, by inserting an inter-agent repulsion into
the internal model, this paper achieves a rigid forma-
tion with guaranteed collision avoidance. Still worth-
mentioning is that, by utilizing a dynamic regulator with
the internal model, the present method can cope with
the previous constant-velocity target fencing problem as
a specific case.

The remainder of this paper is organized as follows. Sec-
tion II provides the preliminaries and the main problem
addressed by the paper. Section III derives the target-
fencing control law and then presents the main techni-
cal results. Numerical simulations are conducted in Sec-
tion IV to substantiate the effectiveness of the presented
scheme. Finally, conclusion is drawn in Section V.

Throughout the paper, R and R+ denote the real num-
ber and positive real number spaces, respectively. Rn

denotes n-dimensional Euclidean space, ∥v∥ is the Eu-
clidean norm of a vector v. ⊗ represents the Kronecker
product.

2 Problem Formulation

Consider an MAS consisting of n agents, of which each
agent is governed by second-order dynamics in the Carte-
sian coordinates,

ẋi(t) = vi(t)

v̇i(t) = ui(t), (1)

where xi(t), vi(t) ∈ R2 denote the position and velocity
of agent i, respectively, and ui(t) ∈ R2 the control input.
The topology of the MAS is represented by G = (V, E),
where V = {1, 2, . . . , n} is the node set and E ⊆ V × V
the edge set. Ni is defined as the sensing neighborhood
set of agent i in V, i.e.,

Ni(t) := {k ∈ V, k ̸= i | ∥xi,k(t)∥ ≤ R} (2)

with a detectable range R ∈ (r,∞) and a specified safe
distance r ∈ R+. xi,k(t) := xi(t) − xk(t), i ̸= k ∈ V
are the relative position between agents i and k. Due to
the limited and changeable relative locations ∥xi,k∥, the
neighborhood set Ni of agent i is time-varying, which
explicitly shows that the proposed topology G may keep
changing as well. It is more challenging than the scenar-
ios of fixed topologies with predetermined agent labels
(see, e.g., [13–16]).

Consider a moving target satisfying[
ẋd(t)

v̇d(t)

]
= S

[
xd(t)

vd(t)

]
(3)
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(a) Pattern 1 (b) Pattern 2

: Agent

: Target

1

3 2

4 2

4 3

1

(c) Pattern 3

2

4 3

1

Fig. 1. Example of label-free fencing for a motional target.

with the dynamic matrix

S =

[
0 1

s1 0

]
⊗ I2. (4)

Here, s1 ≤ 0 is a constant, xd ∈ R2, vd ∈ R2 are the
position and velocity of the target, respectively. If s1 = 0
in (4), the target in (3) moves with a constant velocity,
see e.g., [22]. If s1 < 0, the target moves periodically
with a variational velocity.

Define co(x) as the convex hull of all the agents x =
[x1, · · · , xn]

T, i.e.,

co(x) :=

{∑
i∈V

λixi : λi ≥ 0,∀i and
∑
i∈V

λi = 1

}
, (5)

one has that the distance from target to the convex hull
co(x) is calculated as Pxd

(x) := mins∈co(x) ∥xd−s∥ (see,
e.g. [20]).

Next, we can give the following definition.

Definition 2.1 (Label-free rigid-formation fencing) [20]:
An MAS V with dynamic (1) asymptotically fences a
target with dynamic (3) into a convex hull (5) formed
by the arbitrary labelled agents whereas maintaining a
collision-free rigid formation, if the following three claims
are fulfilled,

1) lim
t→∞

Pxd(t)(x(t)) = 0,

2) lim
t→∞

vi(t)− vd(t) = 0,∀i ∈ V,

3) ∥xi,k(t)∥ > r,∀t ≥ 0, ∀i ̸= k ∈ V. (6)

In Definition 2.1, Claim 1) indicates that the target
xd is fenced into a convex hull co(x) by arbitrary la-
belled agents xi, i ∈ V. From limt→∞ vi(t) − vd(t) =
0 in Claim 2), it can be deduced that limt→∞ xi(t) −
xd(t) = di with a constant vector di ∈ R2, which im-
plies that the maintenance of relative positions among
the agents and target, and hence the pattern of the MAS
is guaranteed fixed. Claim 3) assures that the distance
∥xi,k(t)∥ between any pair of agents is always larger
than r, i.e., inter-agent collision avoidance is guaran-
teed. From Claims 1) and 3), it only achieves the fenc-
ing. Claim 2) is an extra requirement to realize rigid-
formation fencing. Moreover, it is observed that Claims
1)-3) do not predetermine fixed labels and inter-agent

r RO

Fig. 2. Illustration of the potential function α(s) in (12).

relative positions for specific agents explicitly, which im-
plies the labels of agents in the fencing patten are flexi-
ble, i.e., label-free fencing.

To show the main problem addressed by the paper more
vividly, we illustrate an example of label-free fencing in
Fig. 1. Therein, all of the patterns 1-3 satisfy the fencing
of a motional target, which also implies that no label is
required for specified agents.

Now, it is ready to introduce the main problem addressed
by the paper as below.

Problem 1. Design a cooperative label-free controller

ui := f(xi, vi, xd, xk), i ∈ V, k ∈ Ni, (7)

for an MAS (1) with a variational-velocity target (3)
to achieve label-free rigid-formation fencing in Defini-
tion 2.1.

3 Main Results

Let the relative position between an arbitrary agent i ∈
V and the target be

ei(t) := xi(t)− xd(t). (8)

Now, design a cooperative controller with a dynamic
feedback regulation for i ∈ V as below, with (t) omitted
for conciseness,

ui =−
( [

k1 k2

]
⊗ I2

)[
xi

vi

]
−
( [

k3 k4

]
⊗ I2

)[
ϵi

ζi

]
+ k5

∑
k∈Ni

α(∥xi,k∥)
xi,k

∥xi,k∥
,

[
ϵ̇i

ζ̇i

]
=

([
0 1

s1 0

]
⊗ I2

)[
ϵi

ζi

]
+

([
0

1

]
⊗ I2

)
(
ei − k5

∑
k∈Ni

α(∥xi,k∥)
xi,k

∥xi,k∥

)
, (9)

where k1, k2, k3, k4, k5 ∈ R+ are all positive parame-
ters, and ϵi, ζi ∈ R2 the states of the internal model
in (9) for agent i, respectively. Ni is given in (2).∑

k∈Ni
{α(∥xi,k∥)xi,k/∥xi,k∥} denotes the inter-agent
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repulsion, where the continuous function α(·) (see,
e.g. [20]) satisfying

α(s) = 0,∀s ∈ [R,∞), lim
s→r+

α(s) = ∞ (10)

with the detectable range R ∈ (r,∞) in and the specified
safe distance r in (2). Throughout the paper, denote

ηi :=
∑
k∈Ni

{α(∥xi,k∥)
xi,k

∥xi,k∥
} (11)

for conciseness of presentation.

Remark 3.1 The α(s) in (10) is monotonically decreas-
ing when s ∈ (r,R], which equals 0 when s ∈ (R,∞). It
implies that α(s) is Lipschitz continuous in (r,∞). As
shown in Fig. 2, an example of α(·) satisfying (10) is
given as below,

α(s) =

{
1

s−r − 1
R−r , r < s ≤ R,

0, s > R.
(12)

Remark 3.2 From the controller (9), the position state
xd, albeit available to each agent, is not the final con-
vergent steady state, which is different from centralized
controllers (like star topology). In other words, the steady
states of agents in (9) are distributedly calculated by the
attraction domain of the target and the local interactions
of agents, which is well accepted in most label-free fencing
papers [18–22]. Moreover, when the target position xd is
only available to a small partial of the agents in real appli-
cations, the position xd could be transferred to each agent
via communication network in finite time, see, e.g., [25].

Remark 3.3 The internal model ϵi, ζi in Eq. (9) repre-
sents a dynamic compensator to compensate the varia-
tional velocity of the target vd(t) with position-only mea-
surement, which thus guarantees the solution of the aug-
mented system. Moreover, by inserting the inter-agent
repulsion k5

∑
k∈Ni

α(∥xi,k∥)xi,k/∥xi,k∥ into the inter-
nal model states ϵi, ζi, a necessary ingredient is yielded
to achieve a rigid formation with a variational-velocity
target during the fencing process, which will be proved in
Lemma 3.6. The dynamics matrices G1, G2 in Eq. (9)
can be calculated by minimal characteristic polynomial
of the dynamic matrix S in (4) according to Lemma 3.2.

Remark 3.4 The labels in the label-free controller ui (9)
are just utilized to distinguish from other agents. Since
the form of the controller (9) is identical for each agent,
there is no difference if any pair of individual controllers
exchange their labels. By contrast, however, in the label-
fixed design, each controller predetermines specific and
fixed relative positions among agents, which is thus dif-
ferent from any other controllers.

Next, we will prove that the closed-loop MAS governed
by (1), (3), (4) and (9) satisfies the following property.

P1: An MAS V achieves Claims 1)-3) in collision-free rigid-
formation fencing (see Definition 2.1).

To this end, the following conditions are required.

C1: The initial positions of the agents V satisfy ∥xi,k(0)∥ >
r, ∀i ̸= k ∈ V;

C2: The parameters k1, k2, k3, k4 ∈ R+ in (9) satisfy

k2 = k4
k1 + s1 − 1

k3
, k1 − k3 + s1 − 1 > 0. (13)

C3: The dynamic matrix S in (4) of the target is available
to all the agents.

Remark 3.5 Condition C1 is necessary for collision
avoidance design. Condition C2 simultaneously guar-
antees fencing property, collision avoidance and rigid
formation. Condition C3 is necessary to design the in-
ternal model in (9), whose reason is given below. The
matrix S is assumed to be known to each agent to calcu-
late the dynamic matrices G1,G2 of the internal model
in Lemma 3.2 later. Moreover, since the matrix S of the
target is available to the agents, the modal composition
of the target velocity vd (e.g., the structure and frequency
of the velocity variation: f = 1/

√
−s1Hz if s1 < 0, and

f = 0Hz if s1 = 0) is known to the agents as well. Then,
according to the matrix S and the available position of
the target xd(t), the real-time variational velocity vd(t)
can be calculated bleow. It follows from the dynamics of
the target in Eq. (3) that xd(t), vd(t) evolve below[

xd(t)

vd(t)

]
=Φ(t)

[
xd(0)

vd(0)

]
(14)

with the initial position and velocity xd(0), vd(0), and

Φ(t) =

 cos(
√
−s1t)

sin(
√
−s1t)√
−s1

−
√
−s1 sin(

√
−s1t) cos(

√
−s1t)

⊗ I2, if s1 < 0,

Φ(t) =

[
1 t

0 1

]
⊗ I2, if s1 = 0. (15)

Here, the structure of Φ(t) in Eq. (15) and its frequency
(f = 1/

√
−s1Hz if s1 < 0, and f = 0Hz if s1 = 0) denote

the modal composition of the target velocity vd(t). Then,
it follows from Eqs. (14) and (15) that the initial velocity
vd(0) can be calculated with Φ(t), xd(0), and xd(t), which
implies that the real-time velocity vd(t) can be calculated
by Φ(t), xd(0), vd(0) as well. By regarding the motional
target as an exosystem, the cooperative target fencing in
Problem 1 is transformed into a cooperative regulation
problem, where condition C3 is a well-accepted assump-
tion in the design of cooperative regulation works [27,28].

Before presenting the main technical results, it is neces-
sary to introduce some preliminaries.

Lemma 3.1 [29] Consider a linear time-invariant sys-
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tem governed by

ẋ = Ax+ Bu+ Eν,
e = Cx+Du+ Fν,

ν̇ = Sν,

and a dynamic state feedback controller

u =K1x+K2z, ż = G1z + G2e,

where x ∈ Rn, u ∈ Rm, e ∈ Rp, z ∈ Rnz , v ∈ Rq are
the system state, input state, regulated output, inter-
nal model state and exosystem signal, respectively, and
A ∈ Rn×n,B ∈ Rn×m, C ∈ Rp×n,D ∈ Rp×m, E ∈
Rn×q,F ∈ Rp×q,S ∈ Rq×q,K1 ∈ Rm×n,K2 ∈
Rm×nz ,G1 ∈ Rnz×nz ,G2 ∈ Rnz×p. Assume S has no
eigenvalue with negative real parts. If (G1,G2) incorpo-
rates a minimal p-copy internal model of the matrix S
and the matrix

Ac =

[
A+ BK1 BK2

G2(C +DK1) G1 + G2DK2

]

is Hurwitz, then the following Sylvester matrix equation
has a unique solution X ∈ Rn×q,Z ∈ Rnz×q as

XcS =AcXc + Bc,

0 =CcXc +Dc (16)

with

Xc =

[
X
Z

]
,Bc =

[
E

G2F

]
, Cc =

[
C D

]
,Dc =

[
F
]
.

Lemma 3.2 [29] Consider an arbitrary square matrix
S ∈ Rq×q and a regulated output e ∈ Rp, a pair of ma-
trices (G1,G2) is said to incorporate a minimal p-copy
internal model of the matrix S if the matrices G1,G2 can
be described below

G1 =block diag [β1, β2, . . . , βp] ∈ Rpq×pq,

G2 =block diag [σ1, σ2, . . . , σp] ∈ Rpq,

where p refers to the dimension of the regulated out-
put e, “block diag” represents a block diagonal matrix,
βi ∈ Rq×q is a constant square matrix and σi ∈ Rq is a
constant column vector such that the following two con-
ditions are satisfied.

(1) (βi, σi) are controllable;

(2) The minimal characteristic polynomial of S divides
the characteristic polynomial of βi.

Moreover, let the minimal characteristic polynomial of S
be

S(λ) := λnm + α1λ
nm−1 + · · ·+ αnm−1λ+ αnm

,

one has that βi, σi, i = 1, 2, . . . , p can be designed as fol-
lows,

βi =



0 1 · · · 0

0 0 · · · 1
...

...
...

...

0 0 · · · 1

−αnm
−αnm−1 · · · −α1


, σi =



0

0

. . .

0

1


,

which satisfy the aforementioned conditions (1), (2) of
the p-copy internal model.

Remark 3.6 As illustrated in Lemma 3.2, the matrix G1

contains all the eigenvalues of the matrix S, and the
matrix G2 makes the pair matrices (G1,G2) controllable,
which thus can guarantee the solution of the Sylvester
matrix equation in Eq. (16) of Lemma 3.1.

Lemma 3.3 (Schur Complement [30]). The linear ma-
trix inequality [

T (p) W (p)

W T(p) R(p)

]
> 0

with T (p) = T T(p) and R(p) = RT(p), is equivalent to
either of the following statement:

1. T (p) > 0, R(p)−W T(p)T−1(p)W (p) > 0,

2. R(p) > 0, T (p)−W (p)R−1(p)W T(p) > 0.

For convenience of the readers, we divide the main tech-
nical results into three steps, i.e., the fencing, inter-agent
collision avoidance and rigid formation. First, a lemma
concerning fencing property in Step 1 is provided.

Lemma 3.4 Under condition C3, an MAS V governed
by (1), (9) is able to collectively fence a motional target
governed by (3) i.e., Claim 1) in Eq. (6) if and only if
(iff) the control gains k1, k2, k3, k4 ∈ R+ in (9) satisfy

k4 − s1k2 −
k22(k3 − s1k1)

k1k2 − k4
> 0,

k1k2 − k4
k2

> 0. (17)

Proof. Let x̄, v̄, be the position, velocity center of the
agent set V as

x̄ :=
1

n

n∑
i=1

xi, v̄ :=
1

n

n∑
i=1

vi. (18)

From the definitions of xi, vi in Eq. (1), the dynamics
of x̄, v̄ in (18) are given in the Cartesian coordinates as
follows,

˙̄x(t) =v̄(t), ˙̄v(t) = ū(t), (19)

5



where ū = 1/n
∑n

i=1 ui is the acceleration of center of
all the agents. By the definition of ηi in Eq. (11), one
has

∑n
i=1 ηi = 0, which leads to that

ū =−
( [

k1 k2

]
⊗ I2

)[
x̄

v̄

]
−
( [

k3 k4

]
⊗ I2

)[
ϵ̄

ζ̄

]
(20)

with ϵ̄ := 1/n
∑n

i=1 ϵi, ζ̄ := 1/n
∑n

i=1 ζi being the states
of the internal model for the center of agents. Denoting
ς := [x̄T, v̄T]T and χ := [ϵ̄T, ζ̄T]T, the dynamic of the cen-
ter of agents has the following structure by substituting
Eq. (20) into Eq. (19)

ς̇ =Aς +BK2χ, (21)

with K2 = [−k3 − k4]⊗ I2, B = [0 1]T ⊗ I2

A =

[
0 1

−k1 −k2

]
⊗ I2. (22)

Combining with the fact k5
∑n

i=1 ηi = 0 and χ =
[ϵ̄T, ζ̄T]T in Eq. (21), it then follows from (20) and inter-
nal model in (9) that the dynamics of χ are calculated as

χ̇ =G1χ+G2ē (23)

with ē := 1/n
∑n

i=1 ei being the center of the relative
position error and

G1 =

[
0 1

s1 0

]
⊗ I2, G2 =

[
0

1

]
⊗ I2. (24)

Denote σ := [xT
d, v

T
d ]

T, and the dynamic of the target
(see Eq. (3)) can be rewritten in a compact form as

σ̇ = Sσ. (25)

Recalling the definitions of ei := xi − xd and ς :=
[x̄T, v̄T]T, one has

ē = x̄− xd = Cς +Dσ (26)

with

C =
[
1 0

]
⊗ I2, D =

[
−1 0

]
⊗ I2. (27)

Denoting Φ := [ςT, χT]T, it follows from Eqs. (21), (23),
(25), (26) that the augmented system of the center states
is

Φ̇ =AcΦ+Bcσ, σ̇ = Sσ, ē = CcΦ+Dσ (28)

with

Ac =

[
A BK2

G2C G1

]
, Bc =

[
0

G2D

]
, Cc =

[
C 0

]
.

From the definitions of matrices A,B,K2, C,D,G1, G2

in (21), (24), (27), one has

Ac =


0 1 0 0

−k1 −k2 −k3 −k4

0 0 0 1

1 0 s1 0

⊗ I2, Bc =


0 0

0 0

0 0

−1 0

⊗ I2.

(29)

Then, the characteristic polynomial of matrix Ac is λ4+
k2λ

3
2 + (k1 − s1)λ

2 + (k4 − s1k2)λ + k3 − s1k1 = 0.
Since s1 ≤ 0, one has all coefficients of the polynomial
satisfying k2 > 0, k1−s1 > 0, k4−s1k2 > 0, k3−s1k1 >
0, which implies that Ac is Hurwitz iff

k4 − s1k2 −
k22(k3 − s1k1)

k1k2 − k4
> 0,

k1k2 − k4
k2

> 0

with Routh stability criterion [31]. Recalling the dy-
namic matrixS in Eq. (4), one has that the minimal char-
acteristic polynomial of S(λ) is calculated as λ2−s1 = 0.
Since the regulated output ē := x̄− xd in (23), one has
that p = 1. Moreover, by Lemma 3.2, one has that

β1 =

[
0 1

s1 0

]
, σ1 =

[
0

1

]
,

which satisfies the conditions (1) and (2) of the minimal
p-copy internal model in Lemma 3.2. Since x̄ ∈ R2, xd ∈
R2, the matrices G1, G2 of the internal model are thus
expanded by Kronecker product as follows

G1 =

[
0 1

s1 0

]
⊗ I2, G2 =

[
0

1

]
⊗ I2,

which is consistent with Eq. (24). It implies that G1, G2

in (24) incorporate a minimal p-copy internal model of
the matrix S [29]. Then, by Lemma 3.1, the closed-
loop system in (28) satisfies a Sylvester equation with a
unique matrix Xc ∈ R4×4 below

XcS = AcXc +Bc, 0 = CcXc +D (30)

with Ac, Bc, Cc, D given in (28). Let Φ̃ := Φ − Xcσ be
the errors between the center states Φ and the solu-
tion states Xcσ, it follows from Eqs. (28) and (30) that
˙̃
Φ = AcΦ̃, ē = CcΦ̃, which implies that limt→∞ Φ̃(t) =
0, limt→∞ ē(t) = 0 because of Ac is Hurwitz.

Bearing in mind of (18) and (26), one has limt→∞ x̄(t)−
xd(t) = 1/n

∑n
i=1 xi(t) − xd(t) = ē(t) = 0, which thus

proves that limt→∞ Pxd(t)(x(t)) = 0, i.e., the fencing
property in P1.

Remark 3.7 The condition in (17) only guarantees the
fencing property of an MAS V. Moreover, this condi-
tion (17) can be satisfied with the condition C2, which
will be proved in Theorem 3.1.
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Lemma 3.5 Under conditions C1, C2, an MAS governed
by (1), (9) guarantees inter-agent collision avoidance,
i.e., ∥xi,k(t)∥ > r,∀t ≥ 0, ∀i ̸= k ∈ V.

Proof. Define Φi := [xT
i , v

T
i , ϵ

T
i , ζ

T
i ]

T, and it follows from
Eqs. (1), (3), (9), (11), (28) that the derivative of Φi

becomes

Φ̇i =AcΦi +Bcσ + k5Eηi (31)

with E = [0, 1, 0,−1]T ⊗ I2 ∈ R8×2, Ac, Bc in (29) and
ηi given in (11). Let Φ̃i := [x̃T

i , ṽ
T
i , ϵ̃

T
i , ζ̃

T
i ]

T be the fencing
error as Φ̃i := Φi −Xcσ, the time derivative of Φ̃i along
the dynamics (28) and (31) is

˙̃
Φi = AcΦ̃i + (AcXc +Bc −XcS)σ + k5Eηi,

which follows from Eq. (30) that

˙̃
Φi =AcΦ̃i + k5Eηi. (32)

It is observed from Eq. (32) that the inter-agent repul-
sion ηi of agent i exists in the dynamic of Φ̃i, which
influences the convergence of the closed-loop error sys-
tem (32).

Moreover, the integration of inter-agent repulsion∑
i∈V

∑
k∈Ni

∫ R

∥xi,k∥ α(τ)dτ is introduced as a potential
function in a Lyapunov candidate to guarantee inter-
agent collision avoidance. Denoting

Vp :=
∑
i∈V

∑
k∈Ni

∫ R

∥xi,k∥
α(τ)dτ (33)

as the integration of inter-agent repulsion for concise-
ness, one has that the derivative of Vp wirtes

dVp

dt
=−

∑
i∈V

∑
k∈Ni

α(∥xi,k∥)
d∥xi,k∥

dt

=−
∑
i∈V

∑
k∈Ni

α(∥xi,k∥)
xT
i,k

∥xi,k∥
(
∂xi,k

∂xi
ẋi +

∂xi,k

∂xi
ẋk)

=− 2
∑
i∈V

∑
k∈Ni

α(∥xi,k∥)
xT
i,k

∥xi,k∥
ẋi. (34)

Using the definition of ηi in Eq. (11), one has that∑
i∈V ηT

i vd = vT
d

∑
i∈V ηi = 0. Then it follows from

Eq. (34) that

dVp

dt
=− 2

∑
i∈V

ηT
i ẋi = −2

∑
i∈V

ηT
i (ẋi − vd) = −2

∑
i∈V

ηT
i ṽi

(35)

with ẋi = vi and ṽi := vi − vd. It can be deduced that
ηi is coupled with error state ṽi in Eq. (35).

Construct a Lyapunov candidate consisting of the error
states Φ̃i and the potential function Vp as follows,

V1(Φ̃i, xi,k) =
∑
i∈V

{
Φ̃T

i P Φ̃i

}
+ γk5Vp, (36)

where P ∈ R8×8 is a positive-definite symmetrical ma-
trix, and γ is the parameter associated with the ma-
trix P . Then, from the derivative of Vp in (35), the time
derivative of V1(Φ̃i, xi,k), along the trajectories of (32)
becomes

dV1(Φ̃i, xi,k)

dt
=
∑
i∈V

{
Φ̃T

i (PAc +AT
cP )Φ̃i

+ k5

(
Φ̃T

i PEηi + ηT
i E

TP Φ̃i

)}
− 2γk5

∑
i∈V

ηT
i ṽi. (37)

In order to rewrite the term of Φ̃T
i PEηi+ηT

i E
TP Φ̃i in the

right-hand side of Eq. (37) into the form of ηT
i ṽi which

can be eliminated by the derivative of Vp in Eq. (35), the
matrix P is designed below,

P =


p1 p6 p7 p6

p6 p2 p5 p4

p7 p5 p3 p5

p6 p4 p5 p4

⊗ I2 (38)

with parameters pi, i = 1, · · · , 7, to be designed later.
Comparing matrices E,P in Eqs. (31) and (38) yields

k5

(
Φ̃T

i PEηi + ηT
i E

TP Φ̃i

)
= 2k5(p2 − p4)ṽiηi, (39)

which implies that the parameter γ in Eq. (36) can be
designed to be γ = p2 − p4.

Accordingly, it follows from Eqs. (37), (35), (39) that

dV1(Φ̃i, xi,k)

dt
=
∑
i∈V

{
Φ̃T

iQΦ̃i

}
(40)

with

Q =


q1 q5 q6 q7

q5 q2 q8 q9

q6 q8 q3 q10

q7 q9 q10 q4

⊗ I2, (41)

q1 = −2k1p6 + 2p6, q2 = 2p6 − 2k2p2, q3 = −2k3p5 +
2s1p5, q4 = −2k4p4 + 2p5, q5 = p1 − k2p6 − k1p2 +
p4, q6 = −k3p6+ s1p6− k1p5+ p5, q7 = p4+ p7− k4p6−
k1p4, q8 = −k3p2 + s1p4 + p7 − k2p5, q9 = −k4p2 + p5 +
p6 − k2p4, q10 = −k4p5 + p3 − k3p4 + s1p4.
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To prove the convergence of ṽi and ζ̃i in Eq. (40), qi, i =
1, 3, 5, 6, 7, 8, 10, in (41) can be set as 0, which implies
that p5 = 0, p6 = 0, p1− k1p2+ p4 = 0, p4+ p7− k1p4 =
0,−k3p2+s1p4+p7 = 0 and p3−k3p4+s1p4 = 0. Then
it derives that

p1 =
k21 + (s1 − 1)k1 − k3

k3
p4, p2 =

k1 + s1 − 1

k3
p4,

p3 =(k3 − s1)p4, p7 = (k1 − 1)p4 = (k3 − s1)p2, (42)

which implies that

P =


k2
1+(s1−1)k1−k3

k3
0 k1 − 1 0

0 k1+s1−1
k3

0 1

k1 − 1 0 k3 − s1 0

0 1 0 1

 p4 ⊗ I2.

(43)

It follows from k3 > 0, s1 ≤ 0, p4 > 0 that the last two
diagonal term of P satisfy k3 − s1 > 0 and 1 > 0. Then,
in accordance to Lemma 3.3, one has[

k2
1+(s1−1)k1−k3

k3
0

0 k1+s1−1
k3

]
−

[
(k1−1)2

k3−s1
0

0 1

]
> 0 (44)

if P > 0. Direct calculation of (44) gives[
ξ1 0

0 ξ2

]
> 0 (45)

with ξ1 :=
{
(s1 + 1)k1k3 − k23 − s1k

2
1 − (s1 − 1)s1k1 +

(s1−1)k3)
}
/(k23 −k3s1) and ξ2 := (k1−k3+s1−1)/k3.

As k3 > 0, k3 − s1 > 0, we only consider the numerators
of ξ1, ξ2 to determine P > 0.

Case 1: If s1 = 0, it is derived that (k1−k3+s1−1)/k3 >
0 for P > 0.

Case 2: If s1 < 0, rewrite the numerator of ξ1 in (45) in
descending k1 order as f(k1) = −s1k

2
1 +

(
(s1 + 1)k3 −

(s1−1)s1
)
k1−k23 +(s1−1)k3, which implies that f(k1)

is a quadratic function of k1. From the fact that

k3 + 1− s1 −
(s1 + 1)k3 − (s1 − 1)s1

2s1

=
(s1 − 1)(k3 − s1)

2s1
> 0,

one has that f(k1) monotonically increases when k1 >
k3 + 1 − s1. Substituting k1 = k3 + 1 − s1 into f(k1)
yields that f(k1) = −s1(k3 + 1 − s1)

2 +
(
(s1 + 1)k3 −

(s1 − 1)s1
)
(k3 + 1 − s1) − k23 + (s1 − 1)k3 = 0, which

implies that f(k1) > 0 (i.e., P > 0) if k1 > k3 + 1− s1.

Accordingly, it concludes that ξ1 > 0, ξ2 > 0 (i.e.,P > 0)
if (k1−k3+s1−1)/k3 > 0. Note that k21+(s1−1)k1−k3 =

k1(k1+s1−1)−k3 > 0with k1 > 1 and k1−1−k3+s1 > 0
in (43). Moreover, the condition k1+s1−1 > k3 implies
p2 − p4 > 0 with (42), which guarantees V1 in Eq. (36)
is positive definite.

Next, it follows from the fact p5 = 0, p6 = 0 and Eq. (42)
that

dV1(Φ̃i, xi,k)

dt
=
∑
i∈V

{[
ṽi

ζ̃i

]T

Q̄

[
ṽi

ζ̃i

]}
(46)

with

Q̄ =

[
−2k2p2 −k4p2 − k2p4

−k4p2 − k2p4 −2k4p4

]
⊗ I2.

Due to the fact that the leading principal minors of Q̄
fulfilling −2k2p2 < 0 and −2k2p2 ×−2k4p4 − (−k4p2 −
k2p4)

2 = −(k4p2 − k2p4)
2. It follows from Eq. (42) that

k4p2 − k2p4 = 0 if

k4
k1 + s1 − 1

k3
= k2, (47)

which then implies that the matrix Q̄ is negative semidef-
inite. Combining the condition k1 > k3 + 1 − s1 and
Eq. (47) together gives C2. Moreover, one has that

dV1(Φ̃i, xi,k)

dt
=−

∑
i∈V

2p4
k4

∥(k2ṽi + k4ζ̃i)∥2 ≤ 0. (48)

Denoting V1(t) := V1(Φ̃i(t), xi,k(t)),∀t ≥ 0 as the func-
tion of V1 at time t for conciseness, it then follows from
Eq. (48) that

V1(T ) =V1(0) +

∫ T

0

dV1(Φ̃i, xi,k)

dt
dt ≤ V1(0) (49)

for an arbitrary constant time T > 0. Combining with
the definition of V1 in Eq. (36), one has that

k5(p2 − p4)
∑
i∈V

∑
k∈Ni

∫ R

∥xi,k(T )∥
α(s)ds

≤V1(T ) ≤ V1(0). (50)

Under condition C1, one has that V1(0) is bounded, so
is

∑
i∈V

∑
k∈Ni

∫ R

∥xi,k(T )∥ α(s)ds,∀ T ≥ 0 in Eq. (50).
However, using the fact

lim
∥xi,k(T )∥→r+

∑
i∈V

∑
k∈Ni

∫ R

∥xi,k(T )∥
α(s)ds = ∞, (51)

with α given in (12) and r+ the right limit of r, we
conclude that ∥xi,k(T )∥ > r,∀i ∈ V, i, k ∈ V, T > 0.
Collision avoidance is thus proved.
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Remark 3.8 Lemma 3.5 is to prove inter-agent collision
avoidance via the boundness of the Lyaponov function V1

in (36), which consists of two terms. The first term con-
cerns the error states Φ̃i between the agent i and the
target, whereas the second term the integration of inter-
agent repulsion Vp. Essentially, the aforementioned two
terms in V1 can not converge to zero, but only to an invari-
ant set of partial states k2ṽi + k4ζ̃i = 0 because of (48).
Moreover, if the above two terms converge to zeros, it
implies that the positions of all the agents will coincide
together and thus V1 = ∞, which then contradicts the
condition of dV1(t)/dt ≤ 0 in (48). It is still worth men-
tioning that the selected function V1 and the invariant set
k2ṽi + k4ζ̃i = 0 also contribute to the rigid formation in
Lemma 3.6.

Lemma 3.6 Under conditions C1-C3, an MAS governed
by (1), (9) achieves a rigid formation moving with the
target (3), i.e., limt→∞ vi(t)− vd(t) = 0.

Proof. Recalling Eq. (48) in the proof of Lemma 3.5,
dV1/dt = 0 only if k2ṽi + k4ζ̃i = 0, which implies that
the largest invariant set {x̃i, ṽi, ϵ̃i, ζ̃i | dV1/dt = 0} only
contains a line set {k2ṽi + k4ζ̃i = 0}. Since the line
segment of any two nodes from the line set is still in
the line set, the line invariant set is thus compact. In
accordance to the Lasalle invariant set theorem [26], the
trajectories of x̃i, ṽi, ϵ̃i, ζ̃i converge to

lim
t→∞

k2ṽi(t) + k4ζ̃i(t) = 0. (52)

Next, we will prove the statement that

If k2ṽi + k4ζ̃i = 0, then vi(t)− vd(t) = 0,∀i ∈ V. (53)

According to the dynamics of ˙̃vi,
˙̃
ζi in (32), one has ˙̃

ζi =

x̃i + s1ϵ̃i − k5ηi. Taking the derivative of ˙̃vi yields that

¨̃vi =− (k2 ˙̃vi + k4
˙̃
ζi)−

(
k1 − 1− (k3 − s1)k2

k4

)
ṽi

− (k3 − s1)

(
k2
k4

ṽi + ζ̃i

)
− ¨̃
ζi. (54)

Subtracting k2/k4¨̃vi at both sides of (54), it then follows
from Eq. (47) that

¨̃vi =s1ṽi +
k4

k2 − k4
(k2 ˙̃vi + k4

˙̃
ζi) +

(k3 − s1)

k2 − k4

(k2ṽi + k4ζ̃i) +
1

k2 − k4
(k2¨̃vi + k4

¨̃
ζi). (55)

By the virtue of uniformly continuous ˙̃vi,
˙̃
ζi,

¨̃vi,
¨̃
ζi, it can

be deduced from (53) that

k2 ˙̃vi + k4
˙̃
ζi = 0, k2¨̃vi + k4

¨̃
ζi = 0. (56)

Comparing (53), (55), (56) gives

¨̃vi =s1ṽi, (57)

which implies that ¨̃ζi = s1ζ̃i. Since ˙̃ϵi = ζ̃i, one has that

˙̃
ζi(t) = s1ϵ̃i(t)−mi (58)

with a proper constant vector mi ∈ R2. It, together with
the fact ˙̃

ζi = s1ϵ̃i(t) + x̃i − k5ηi in (32), gives

x̃i(t)− k5
∑
k∈Ni

{
α(∥xi,k∥)

xi,k

∥xi,k∥

}
= mi,∀i ∈ V. (59)

Case 1: If s1 = 0, the present problem reduces to a fenc-
ing one with a constant-velocity target (see, e.g., [22]).
It follows from Eq. (57) that limt→∞ ¨̃vi(t) = 0. Then, it
suffices to prove that limt→∞ ˙̃vi(t) = 0, limt→∞ ṽi(t) = 0
by contradiction, which is similar to [22]. Hence, it con-
cludes that limt→∞ ṽi(t) = vi(t)− vd(t) = 0,∀i ∈ V.

Case 2: If s1 < 0, it follows from Eq. (57) and differential
equation [32] that the solution of ṽi is calculated as

ṽi(t) = ci,1 cos(
√
−s1t) + ci,2 sin(

√
−s1t) (60)

for ci,1, ci,2 being the parameters designed by initial
states. Next, we will prove ci,1 = 0, ci,2 = 0 by contra-
diction. It follows from Eqs. (32), (60) that x̃i

x̃i(t) =
ci,1√
−s1

sin(
√
−s1t)−

ci,2√
−s1

cos(
√
−s1t) + di

(61)

with a constant vector di ∈ R2. It can be deduced that
x̃i in (61) is a periodic function if ci,1 ̸= 0 or ci,2 ̸= 0,
which contradicts with the condition of (59). Then, it
derives that ci,1 = 0, ci,2 = 0,∀i ∈ V, which implies that
ṽi(t) = vi(t)−vd(t) = 0 with (60) (i.e., the proof of (53)
is thus completed).

As the term k2ṽi + k4ζ̃i is uniformly continuous, due
to (53), for any δ1 > 0, there exists δ2 > 0, such that∥∥k2ṽi + k4ζ̃i

∥∥ < δ2, ∀i ∈ V,

which leads to the fact that∥∥vi − vd
∥∥ < δ1,∀i ∈ V.

Since limt→∞ k2ṽi(t) + k4ζ̃i(t) = 0 in (52), there exists
a constant T > 0 such that ∀t ≥ T , ∥k2ṽi + k4ζ̃i∥ <
δ2, ∀i ∈ V, which implies that ∥vi − vd∥ < δ1, ∀i ∈ V.
It thus concludes limt→∞ vi(t)− vd(t) = 0, ∀i ∈ V, i.e.,
a rigid formation, which completes the proof.

With Lemmas 3.4-3.6, it is ready to present the main
technical results.
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Theorem 3.1 An MAS V composed of (1), (9), and a
motional target (3) achieves the property P1, under the
conditions C1, C2 and C3, i.e., Problem 1 is solved.

Proof. On one hand, it follows from Lemma 3.4 that
the fencing property is achieved if the control gains
k1, k2, k3, k4 satisfy (17).

On the other hand, in view of collision avoidance and
rigid-formation property in Lemmas 3.5 and 3.6, the con-
trol gains k1, k2, k3, k4 are required to satisfy another C2
in (13). Substituting Eq. (13) into Eq. (17) in Lemma 3.4
yields

k4 − s1k2 −
k22(k3 − s1k1)

k1k2 − k4
=

(
k1 + s1 − 1− k3

)
k24

k3(k1k2 − k4)
>0,

k1k2 − k4
k2

=
k1 + s1 − 1− k3

k1 + s1 − 1
>0,

which implies that the condition C2 suffices to satisfy
Eq. (17) (i.e., Remark 3.7). It thus concludes Problem 1
is solved with C1-C3. The proof is thus completed.

Remark 3.9 Compared with the label-fixed strategies, the
label-free design in (9) can be utilized directly without
extra calculation or design upon increasing number of
agents. Moreover, the label-free design is more flexible in
variational environments and some specific situations,
which can take a shortcut to achieve fencing formation.
Last but not least, the label-free design is more robust upon
breaking down of some agents. An illustrative example
will be given in the next session.

4 Numerical Simulation

Consider an MAS governed by (1), (9) with n = 4 and a
moving target (3) of a variational velocity. The sensing
range and safe distance are set to be R = 10, r = 2,
respectively, which implies that the potential function
α(·) in (12) is set to be r = 2, R = 10.

Set s1 = −0.1 to assure that the target moves period-
ically with the initial position xd(0) = [2, 8]T and the
initial velocity vd(0) = [0.5, 0.5]T, whose moving trajec-
tories are presented by red dashed curves in Fig. 3. The
condition C2 is satisfied by picking the parameters in
(9) as k1 = 2.2, k2 = 6, k3 = 0.1, k4 = 3, and k5 in (9) is
set as k5 = 20. Figs. 3 (a)-(d) demonstrate the temporal
evolution of agents from different initial states (blue cir-
cles) fulfilling condition C1 to the final rigid-formation
fencing states (yellow circles) with the motional target
(green square) satisfying Pxd

(x) = 0. It is observed that
the fencing formation of agents from any initial states is
achieved with distinct labels. To show the advantages of
the label-free approach, the corresponding fencing simu-
lations with a label-fixed strategy are conducted in Fig. 4
with the same initial position setting in Fig. 3, where
the desired relative positions between each agent and
the target are specified to be [−7,−7]T, [7,−7]T, [7, 7]T,
[−7, 7]T in advance. It is observed in Figs. 4 (a)-(d) that

(a)
Target

(b)
Target

Target
(c) (d)

Target

(a)
Target

(b)
Target

(c)
Target

(d)
Target

Fig. 3. (a)-(d) Trajectories of the agents from random initial
positions and velocities to collision-free rigid-formation tar-
get fencing with the proposed label-free controller (9) (Here,
the blue and yellow circles denote the initial and final states
of the agents, respectively, whereas the green square the tar-
get).

(a)
Target

(b)
Target

Target
(c) (d)

Target

(a)
Target

(b)
Target

(c)
Target

(d)
Target

Fig. 4. (a)-(d) Trajectories of the agents from the same ini-
tial positions and velocities in Fig. 3 to collision-free rigid–
formation target fencing with a label-fixed strategy (Here,
the blue and yellow circles denote the initial and final states
of the agents, respectively, whereas the green square the tar-
get).

the rigid-formation fencing of agents from initial states
(blue circles) fulfilling condition C1 is achieved with the
same labels and relative positions (yellow circles). Com-
paring Figs. 3 (a)-(d) with Figs. 4 (a)-(d), there exist
more oscillations in label-fixed fencing in Fig. 4, which
verifies the flexibility and high efficiency of the label-
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(a)
Target

(b)
Target

Fig. 5. A special case when agent 4 suddenly breaks down at
t = 20s. Trajectory comparison of the agents and the target
between the proposed label-free fencing controller (9) (see
subfigure (a)) and a label-fixed strategy (see subfigure (b))
(Here, the blue and yellow circles denote the initial and final
states of the agents, respectively whereas the green square
the target).

Fig. 6. Temporal evolution of the fencing error ē (see
Eq. (26)) and the relative distances ∥xi −xj∥, i ̸= k, i, k ∈ V
among agents in Fig. 3 (b) for example.

Fig. 7. Temporal evolution of the fencing error ē (see
Eq. (26)) and the relative distances ∥xi −xj∥, i ̸= k, i, k ∈ V
among agents in Fig. 4 (b) for example.

free fencing method in terms of shrinking the moving
distance. Fig. 5 (a) shows the robustness of the present
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Fig. 8. Temporal evolution of the position error xi − xd and
velocity error vi − vd, i = 1, 2, 3, 4, in Fig. 3 (b) for example.

label-free fencing controller (9), where agent 4 breaks
down at t = 20s, and agents 1, 2, 3 can still form a trian-
gular formation to fence the moving target. By contrast,
the fencing mission is failed by the label-fixed strategy
in Fig. 5 (b). The robustness of the label-free design is
thus verified when experiencing agent breakdown.

As for the states evolution during the label-free fencing
simulation, we take Fig. 3 (b) as an example. Fig. 6 de-
scribes the states evolution of simulation in Fig. 3 (b),
where limt→∞ ē(t) = 0 achieves Pxd

(x) = 0 implic-
itly in P1. The pairwise distances among the agents
keep ∥xi − xk∥ > 2, i ̸= k, i, k ∈ V, which verifies the
inter-agent collision avoidance with r = 2. To quantita-
tively show the improvement of the label-free approach,
Fig. 7 illustrates the corresponding states evolution of
Fig. 4 (b) with the label-fixed strategy. More precisely,
the fencing errors between the proposed label-free fenc-
ing controller (9) (see Fig. 6 (a)) and the label-fixed strat-
egy (see Fig. 7 (a)) both converge to zeros in less than
110 seconds, which implies that the fencing efficiencies
of these two approaches are almost the same. However,
comparing the pairwise distances among the agents in
Figs. 6 (b) and 7 (b), the highest amplitude oscillation
of ∥xi − xj∥, i ̸= k, i, k ∈ V governed by the label-fixed
strategy in Fig. 7 (b) is 60% larger than such oscillation
with the label-free approach in Fig. 6 (b). Moreover, the
convergence time of ∥xi−xj∥, i ̸= k, i, k ∈ V in Fig. 7 (b)
is 50 seconds longer than the corresponding time in
Fig. 6 (b). Both of them verify the superiority of the
label-free fencing controller in terms of the substantially
shrinked moving distance and forming time to a rigid for-
mation. Fig. 8 exhibits that limt→∞ xi(t)−xd(t) = di ̸=
0, limt→∞ vi(t) − vd(t) = 0 of the simulation in Fig. 3
(b), which implies the forming of the rigid formation ful-
filling Definition 2.1. The feasibility of Theorem 3.1 is
thus verified.

5 Conclusion

In this paper, we propose a label-free control scheme such
that second-order MASs are capable of cooperatively
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fencing a moving target of variational velocity within
a convex hull. Moreover, inter-agent collision avoidance
and rigid formation are both guaranteed without prede-
terminingly labeling any specified agents. The developed
cooperative control protocol has been substantiated by
numerical simulations. The future work may include ex-
tension of the proposed method for higher-dimensional
systems and a more general target such as 3D label-free
fencing with general S matrix.
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