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Abstract

In the contest of optimal control problems, regularity results for optima are known when addressing fiber-strictly convex La-
grangian. For infinite time horizons, or for settings with infinite dimensional dynamics, the equivalence betweenminima/maxima
and extremals could break down. Commonly, this is due to a loss of convexity/concavity of the cost functional or to a presence
of state constraints, in which further controllability assumptions are needed. For many science applications, this a trend is
not required, as in energy saving problems. In the present paper, we deal with the set of a functional’s extremals subject to
end-point restrictions. We consider an affine control system and a cost functional associated to an autonomous Lagrangian.
The dynamics is smooth, satisfying the Lie bracket condition, and the functional is assumed merely Fréchet differentiable.
Here we provide a regularity result for controls in the context of constrained extremization problems, under weaker conditions
on Lagrangian than the not met classical ones. More precisely, we show a characterization for the Lipschitz regularity of con-
trols associated with the extremal trajectories steering two fixed points, assuming the absence of singular controls. As main
application, we construct a locally Lipschitz inversion mapping from the ambient space to the set of constrained extremals.

Key words: Extremization Problems; Lie Algebra of Vector Fields; Singularities.

1 Introduction

Classical control theory takes into account minimiza-
tion – or maximization – problems of functionals along
trajectories given by a dynamical system (cfr. [3], [16],
[19]). These optimization problems are generally well de-
fined in the presence of convex – or concave – data or
for non-negative Lagrangians. For many science appli-
cations, this a trend is not required for energy saving
problems, where non-convex energy functionals and the
presence of singularities are commonly an indication of
instabilities, so that the direct methods in classical op-
timization cannot be applied (see e.g. [11],[12],[15]). In
this case, it is required that a system evolves along a
trajectory that makes the functional action stationary,
i.e. its first variation is zero. Since any critical point of
a smooth convex – or concave – function is a minimum
– or a maximum, the extremization problems reduce so
to classical optimization problems when the functional
meets these requirements and the constraints are lin-
ear. Hence, the seek of extremals – or stationary points
– rather than minima – or maxima – reveal to be nec-
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essary, the concept of extremization is a natural gener-
alization of optimization to the non-convex case. This
formulation of control problems in terms of stationary
optimization has recently proved in [5] to be very useful
for the investigation of boundary constrained problems.

The point of view of extremization problems appears
useful in engineering applications, where the effects of
small perturbations are not negligible. As in the case of
classical optimization problems, a fundamental role for
regularity investigations of feedback controls is played
by the absence of singularity (see Section 2 below). Sin-
gular points may occur in control problems: the impor-
tance of singular paths – namely associated to a singu-
lar control – of affine control system was investigated
since a long time in the in calculus of variations (cfr.
[6],[7],[8]). Singular paths are candidates as minimizers
for time optimal control problems (cfr. [3],[18]) and they
are strictly related to the singularities of the end-point
map. It is a well known fact that for control uncon-
strained optimization problems associated to running
cost functional, the solutions of the abnormal maximum
principle projects onto the set of singular trajectories.
However, such set and the solutions of the normal maxi-
mum principle does not trivially intersect generally: this
could happen when considering degenerate affine control
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systems with end-point constraints (e.g., the geodesics
of the manifold spanned by the three-dimensional Mar-
tinet distribution).

The optimal synthesis of control problems is quite chal-
lenging while continuity of the cost functional, sufficient
and necessary conditions, and sensitivity relations in ab-
sence of singular paths are known (cfr. [1],[3],[19],[4],[9])
and duality connections, involving the Legendre trans-
form, are investigated (see [13]). The classical theory on
the regularity of controls in the absence of singularities
has been exhaustively invested for Lagrangian two times
differentiable and strictly convex in the control variable
([6] and the literature therein). Nevertheless, the ab-
sence of singularity does not fit for the optimal synthe-
sis in many investigations in applied science. To deal
with it, in the case of optimization problems, well known
and succesfull results have been developed by using con-
tinuation arguments for indirect algorithms methods or
convergently probability-one homotopy techniques (cfr.
[20],[2]).

Although the assumption of absence of singular trajec-
tories could be strong, results to ensure regularity of
feedback controls under less restrictive assumptions on
the Lagrangian are needed when addressing extremiza-
tion under end-point constraints. We emphasize, in op-
timization context, singular time optimal paths imply
the failure of the Lipschitz continuity of feedback con-
trols. This can be see by [4, Proposition 5.3- (ii)] which
implies, along a singular time optimal paths, the hori-
zontal proximal gradient of time minimal function con-
taining a non-zero vector. A necessary condition for the
Lipschitz continuity of feedback controls at a given end-
point is the triviality of horizontal proximal gradient of
time minimal function at such point. So, without mak-
ing additional assumptions – such as the absence of sin-
gular minimizing controls like in [4] – one cannot hope
for a Lipschitz regularity.

In this paper we relax the classical assumptions, requir-
ing at most the well definition of the problem. The main
concern is to provide a regularity characterization for
controls associated with extremal trajectories of a given
cost functional. More exactly, we show that the set of
controls related to end-point constrained extremals is
equi-Lipschitz continuous, in absence of singular paths.
The trajectories are assumed to solve an affine dynam-
ics and the Lagrangian is possibly unbounded and not
strictly convex in the fiber. We provide further an appli-
cation of this result constructing a Lipschitz inversion
mapping for constrained extremals.

The outline of this paper is as follows. In Section 2 we
give some basic definitions, notations, and the general
background. Section 3 indicates the problem statement
and the main assumptions. In Section 4 we state the
main result of this paper showing a regularity characteri-
zation for controls associated with constrained extremal

trajectories. The Section 5 is devoted to an application
case.

2 Background

For any u,w ∈ IRn we denote by |u| and u · w the Eu-
clidean norm of u and the scalar product between u and
w, respectively. IBδ(x) is the closed ball in IRm centered
at x of radius δ > 0, and IB := IB1(0), IBδ := IBδ(0).
For any p ≥ 1, L p(a, b; IRm) denotes the space of all
Lebesgue measurable functions on [a, b] that are p-

integrable, endowed with the norm ‖u‖pp =
∫ b

a
|u(s)|pds.

The Hilbert space L 2(a, b; IRm) is equipped with the

scalar product defined by 〈u,w〉 =
∫ b

a
u(s) ·w(s)ds. For

any subset A ⊂ L 2(a, b; IRm), we denote by clwA the
weak closure of A. Consider (V, ‖.‖V ) and (B, ‖.‖B) be
two Banach spaces and let V ⊂ V be an open subset.
Consider a mapping Φ : V → B. If Φ is linear, we
denote by Φ⋆ the adjoint (or transpose) operator. We
denote by dΦ the Fréchet derivative of Φ (whenever it
exists). High order Fréchet derivatives (whenever they

exist) of Φ at u shall written djΦ(u) or djuΦ(u). If d
jΦ is

a continuous map on V (wrt the operator norm topol-
ogy) we say that Φ is of class Cj . Let F be a family of
smooth vector fields on IRn. We denote by LieF(x) the
Lie algebra of vector fields generated by F at x ∈ IRn

constructed as follows. Let Lie1
F
(x) the set defined

by span {X(x) |X ∈ F and define recursively, for all
i ∈ IN+, the set Liei+1

F
(x) defined by the spanning of

Liei
F
(x) ∪ {[X,Y ](x) |X ∈ Lie1

F
(x), Y ∈ Liei

F
(x)}

where [X,Y ](x) := dY (x)(X(x)) − dX(x)(Y (x)) is
the Lie bracket. Then the Lie algebra is defined by
LieF(x) =

⋃

i∈IN Liei+1
F

(x).

2.1 Extremization problems

LetX be an Hilbert space and consider a family of subset
{V (x)}x ⊂ X ×X× IR. We denote by

δV (x) = 0

the problem of determining all couples (u, z) ∈ X × IR
such that

(u, 0, z) ∈ V (x). (1)

The set of all z ∈ X such that there exists u ∈ X ,
called extremal, satisfying (1) is denoted by {δV (x) = 0}
and we refer to it as the extremization (or staticization)
problem associated to V (x). It occurs e.g. when V (x)
is the Lagrangian sub-manifold associated with some
function Φ : X → IR that is C1 (in the Fréchet sense)
V (x) = {(u, dΦ(u),Φ(u)) | u ∈ X} and dΦ stands for
the Fréchet derivative. In that case (1) becomes dΦ(u) =
0 and z = Φ(u), so that {δV (x) = 0} is simply the un-
constrained smooth extremization problem of determin-
ing the critical points and values of Φ. We consider the
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particular case when {V (x)}x∈IRn is the family of man-
ifolds

{ (u, λ0dΦ(u)−
n
∑

j=1

λjduCj(u;x),Φ(u)) such that

C(u;x) = 0, (λ0, λ) ∈ IR1+n − {0} }

where C(x) = (Cj(.;x))j and f, Cj(.;x) : X → IR are C1

functions for any x. If {duCj(u;x), 1 ≤ j ≤ n} is a set of
linearly independent vectors for any

u ∈ S(x) := {C(.;x) = 0}

it follows that u ∈ {δV (x) = 0} iff u is a critical point
of Φ|S(x), the restriction of Φ to S(x). In that case, we

write δV (x) = 0 as

δS(x)Φ = 0 (2)

and call it a constrained smooth extremization problem.
Whenever the set {δS(x)Φ = 0} is non-empty, we define
the set-valued function

x 7→ 〈δ〉S(x)Φ := {Φ(u) |u ∈ {δS(x)Φ = 0}}.

If S(x) is the whole space, we shall write 〈δ〉uΦ in place
of 〈δ〉S(x)Φ.

2.2 Lack of convexity: a motivational example

It is of great interest to consider extremization problems
rather that minima/maxima for a large family of func-
tional as those expressed by energy-driven (or saving)
systems. Such class of functionals are represented by

Φ(u) =

∫

I

V (ω, u) +W (ω,∇u)dω, I ⊂ IRn

where V and W are continuous function and possi-
bly non-convex. As example consider the family of
Ginzburg–Landau type energy functionals

ΦGL(u) =

∫

I

|u2 − α|2 + q2||∇u|2 − β|dω, α, β, q ≥ 0

arising in many frameworks, including convective pat-
tern formation and magnetic thin films. It is straing-
forward to show that end-point constraints reduce the
functional ΦGL to be generally non-convex. To see that,
consider the one-dimentional case I = [−1, 1] with pa-
rameters α = β = q = 1, control law

u′ = v, v ∈ L
2(−1, 1; IR)

and subject to end-points constraints

u(−1) = u(1) = 0.

We have, ΦGL(0) = 4 and ΦGL(ξ±) = 16/15 where
ξ±(ω) = ±(1− |ω|).

2.3 Singular points

ConsiderX1, ..., Xm smooth vector fields on IRn and the
solution ξ(.) associated with u ∈ L 2(0, T ; IRm) of the
affine control system

ξ′(s) =

m
∑

i=1

ui(s)Xi(ξ(s)), s ∈ [0, T ] a.e.

ξ(0) = x0 ∈ IRn

(3)

with the end-point constraints

C(u;x) = ξ(T )− x. (4)

A point u ∈ S(x) is said to be a singular point for S(x) if

duC(u;x) is not surjective.

We denote by S′(x) the set of all singular points of S(x).
Singular points may occurs in the set of extremization
problem δS(x)Φ = 0, e.g., in sub-Riemannian structures.
The importance of singular paths (namely associated to
a singular control, i.e. a singular point of S(x)) of the
above affine control system was investigated since a long
time in the in calculus of variations (cfr. [6],[7],[8]). The
singular paths are candidates as minimizers for time op-
timal control problems (cfr. [3],[18] and the literature
therein) and they are strictly related to the singulari-
ties of the end-point map (cfr. Section 2). Indeed, for
control problems minimizing a running cost functional
associated to L, bounded from below in the state, such
trajectories are solutions of the abnormal (λ0 = 0, see
below) maximum principle corresponding to the associ-
ated Hamiltonian

sup
u∈IRm

(

m
∑

i=1

uip ·Xi(x) + λ0L(x, u)).

Whenm = n, as known, extremals are not abnormal, i.e.
λ0 6= 0. The optimal synthesis of such control problems
is quite challenging although continuity of the cost func-
tional, necessary conditions, and sensitivity relations in
absence of singular paths are known (cfr. [1],[3],[19]) and
duality connections, involving the Legendre transform,
are investigated (see [13]).

Nevertheless, in the case m < n, there exist extremals
that are normal but singular (cfr. [6]). Indeed, in this
setting, there are privileged and prohibited paths, and
the singular trajectories turn out to be the singularities
of the set of curves satisfying the constraint (4). In par-
ticular, when final end-point conditions are imposed, the
sub-Riemannian manifold generated by the vector fields

3



Xi may have points for which there are not curves steer-
ing them. To deal with it, Hörmander in [14] introduced
a condition on the Lie algebra associated to the distri-
bution spanned by Xi’s (see Section 2).

3 Problem statement and main assumptions

Let T > 0 and X1, ..., Xm a set of vector fields on IRn.
We consider the following

Assumption 1 Xi’s are smooth (C∞ or analytic)
bounded vector fields, linearly independent any x ∈ IRn,
and Lie{X1,...,Xm}(x) = IRn for all x ∈ IRn.

Remark 1 The mapping x 7→ span {X1(x), ..., Xm(x)}
is called a smooth distribution of rank m on IRn and the
condition on the Lie algebra in Assumption 1 is called
Hörmander’s condition. From the Chow-Rashevsky The-
orem (see [10],[17]), for any x, y ∈ IRn there exists an
absolutely continuous arc ξ : [0, T ] → IRn, with square
integrable derivative, such that

ξ′(s) ∈ span {Xi(ξ(s))}i s ∈ [0, T ] a.e.

ξ(0) = x, ξ(T ) = y.

Furthermore, for any arc ξ(.) steering x ∈ IRn to y ∈
IRn in time T , there exists a unique uξ ∈ L 2(0, T ; IRm)
satisfying

ξ′(s) =

m
∑

i=1

(uξ(s))iXi(ξ(s)), s ∈ [0, T ] a.e.

For any x0 ∈ IRn consider V T,x0 ⊂ L 2(0, T ; IRm) be
such that for every control u ∈ V T,x0 the associated
solution ξx0,u(.) of the affine system (3), with starting
point ξx0,u(0) = x0, is well defined on [0, T ]. Since Xi’s
are smooth, then V T,x0 can be chosen to be open (see
[6,16]). The end-point map ET,x0 : V T,x0 → IRn is de-
fined by

ET,x0(u) = ξx0,u(T ).

Notice that, under assumptions Assumption 1, for any
x0 ∈ IRn we can choose

V
T,x0 = L

2(0, T ; IRm).

Let L : IRn × IRm → IR be a two time continuously
differentiable Lagrangian. In the following, we fix T > 0,
x0, x ∈ IRn, and denote by Φ : L 2(0, T ; IRm) → IR the
functional defined by

Φ(u) =

∫ T

0

L(ξx0,u(s), u(s)) ds

and by C : L 2(0, T ; IRm) → IRn the map

C(u) = ET,x0(u)− x.

Throught this paper, in order to carrying out our anal-
ysis, we consider the basic conditions

Φ ∈ C1 & {δS(x)Φ = 0} 6= ∅ (5)

and the further assumptions

Assumption 2 for any x ∈ IRn, duL(x, .) is a C1-
diffeomorphism, i.e. bijective with continuously differen-
tiable inverse.

Assumption 3 ∃θ, ψ, ϕ : IR+ → IR+ continuous sat-
isfying

lim inf
|u|→∞

θ(|u|)
|u|2 > 0

lim sup
|x|→∞

ψ(|x|)
|x|2 < +∞

such that

L(x, u) ≥ θ(|u|)− ψ(|x|), ∀x ∈ IRn ∀u ∈ IRm

|dxL(x, u)| 6 ϕ(r)
(

|u|2 + 1
)

, ∀x ∈ IBr ∀u ∈ IRm.

Assumption 4 S(x)′ ∩ {δS(x)Φ = 0} = ∅.

It follows some remarks.

Remark 2

(a) It is well known that, under the Assumption 1,ET,x0

turn out to be of class C1 and dET,x0 is weakly
continuous (see [6]). The Hörmander’s condition
on the vector fields Xi’s needs to be imposed to
consider controllability for end-point constraints. If
span {Xi(x)}i is the whole space, e.g. as in mass-
spring configurations systems, then it is satisfied.

(b) From the regularity of (Φ, C), Remark 2-(a), and the
definition of extremal given in the previous section,
it straightforward to show that the set {δS(x)Φ = 0}
is weakly closed wrt the L 2 topology. Furthermore,
(5), Assumption 4, and Lagrange’s Multiplier The-
orem leads to consider such set be non-empty.

(c) Applying the Inverse Mapping Theorem, Assump-
tion 2 is satisfied for the class of strictly convex La-
grangian in the control, i.e. d2uL > 0. In such a
setting, the condition (5) is naturally met for min-
imizing control problems. Moreover, under the As-
sumption 2 and 4, and by using the Pontryagin’s
maximum principle, the regularity characterization
of minimizing controls are known (cfr. [7],[8]).

(d) FromAssumption 4, we would like to remark that the
set of Lagrange multipliers (λ0, λ) 6= (0, 0) reduces
to consider λ0 6= 0.
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4 Regularity of constrained extremals

Next, we state and prove the main result of this paper
under the Assumptions 1-4. We provide a characteriza-
tion of regularity of controls associated with constrained
extremals in the space of uniformly Lipschitz continuous
functions, under the assumption of absence of singular
controls.

Theorem 5 (Regularity characterization) Consider
Assumptions 1-4. Then the following statements are
equivalent:

(i) Φ|{δS(x)Φ=0} < +∞.

(ii) there exists K > 0 such that

|u(s)| ≤ K ∀s ∈ [0, T ] ∀u ∈ {δS(x)Φ = 0}.

(iii) there exists K > 0 such that

|u(T )| ≤ K, |u(s)− u(t)| ≤ K|s− t|
∀s, t ∈ [0, T ] ∀u ∈ {δS(x)Φ = 0}.

4.1 Some preparatory results

In the following we define the set-valued Hamiltonian
H : IRn × IRn ⊸ IR by

H(x, p) = 〈δ〉u(
m
∑

i=1

uip ·Xi(x) − L(x, u) )

and, for all x, p ∈ IRn and u ∈ IRm, we put

h(x, p, u) :=

m
∑

i=1

uip ·Xi(x)− L(x, u)

Z(x, p) := (p ·X1(x), ..., p ·Xm(x))⋆.

Furthermore, for any u ∈ {δS(x)Φ}, we define the (non-
empty) set

Λ(u;x) := {λ ∈ IRn | dΦ(u) = λduC(u;x)}.

Lemma 6 The set-valued Hamiltonian is single-valued
and there exists a locally Lipschitz continuous function
w : IRn× IRm → IRm, with w(x, .) a C1-diffeomorphism
for any x ∈ IRn, satisfying:

(i) w(x, .) = (duL(x, .))
−1 for all x ∈ IRn.

(ii) H(x, p) = w(x, Z(x, p))·Z(x, p)−L(x,w(x, Z(x, p)))
for all x, p ∈ IRn.

PROOF. From Assumption 2 and the regularity of L,
there exists a locally Lipschitz map w : IRn × IRm →

IRm such that w(x, .) is a C1-diffeomorphism for all x ∈
IRn and satisfying the statement (i). Moreover, for all
(x, p, u) ∈ IRn × IRn × IRm







dxh(x, p, u) =
∑m

i=1 uidXi(x)
⋆p− dxL(x, u)

dph(x, p, u) =
∑m

i=1 uiXi(x)

dui
h(x, p, u) = p ·Xi(x)− dui

L(x, u), ∀i = 1, ...,m

(6)

which implies that, for any (x, p) ∈ IRn × IRn,
duh(x, p, u) = 0 if and only if

duL(x, u) = (p ·X1(x), ..., p ·Xm(x))⋆.

So, for any (x, p, u) ∈ IRn × IRn × IRm, we have that
duh(x, p, u) = 0 if and only if u = w(x, Z(x, p)). Hence,
the Hmiltonian is single-valued and for all x, p ∈ IRn

H(x, p)

= h(x, p, w(x, Z(x, p))

= w(x, Z(x, p)) · Z(x, p)− L(x,w(x, Z(x, p)))

(7)

and the statement (ii) follows.

Proposition 7 Let u ∈ {δS(x)Φ}.

Then, for any λ ∈ Λ(u;x), there exists an absolutely con-
tinuous arc p = pu : [0, T ] → IRn solving the Hamilto-
nian system

{

ξ′(s) = dpH(ξ(s), p(s))

−p′(s) = dxH(ξ(s), p(s))
s ∈ [0, T ] a.e. (8)

with final condition

p(T ) = λ (9)

which satisfies the relation

Z(ξ(s), p(s)) = duL(ξ(s), p(s)) ∀s ∈ [0, T ]. (10)

In particular, the control u(.) satisfies

u(s) = w (ξ(s), Z (ξ(s), p(s))) ∀s ∈ [0, T ]. (11)

PROOF. Let v ∈ L 2 (0, T ; IRm) and consider λ ∈
Λ(u;x). We have

〈dΦ(u), v〉

=

∫ T

0

dxL(ξ(s), u(s)) · dEs,x0(u)(v)

+ duL (ξ(s), u(s)) · v(s) ds.

Let us denote by Ψ(.) the fundamental solution of

{

Ψ′(s) = A(s)Ψ(s) s ∈ [0, T ] a.e.

Ψ(0) = I

5



where for all s ≥ 0

A(s) :=

m
∑

i=1

ui(s)dXi(ξ(s))

B(s) := (X1(ξ(s)), ..., Xm(ξ(s))).

Then, by the known expression of dEs,x0(u) (cfr. [18,
Proposition 1.8]),

∫ T

0

dxL(ξ(s), u(s)) · dEs,x0(u)(v)ds

=

∫ T

0

(dxL(ξ(s), u(s)) ·
∫ s

0

Ψ(s)Ψ(r)−1B(r)v(r)dr)ds

=

∫ T

0

∫ s

0

dxL(ξ(s), u(s)) ·Ψ(s)Ψ(r)−1B(r)v(r)drds.

Using the Fubini theorem, we have

∫ T

0

∫ s

0

dxL(ξ(s), u(s)) ·Ψ(s)Ψ(r)−1B(r)v(r)drds

=

∫ T

0

∫ T

r

dxL(ξ(s), u(s)) ·Ψ(s)Ψ(r)−1B(r)v(r)dsdr.

Hence,

∫ T

0

dxL(ξ(s), u(s)) · dEs,x0(u)(v)ds

=

∫ T

0

(

∫ T

s

(

Ψ(r)Ψ(s)−1B(s)
)⋆

· dxL(ξ(r), u(r))dr · v(s))ds

=

∫ T

0

(B(s)⋆
(

Ψ(s)−1
)⋆

·
∫ T

s

Ψ(r)⋆dxL(ξ(r), u(r))dr · v(s))ds.

Furthermore, for all v ∈ L 2 (0, T ; IRm)

λ · dET,x0(u)(v)

= λ ·
∫ T

0

Ψ(T )Ψ(s)−1B(s)v(s)ds

=

∫ T

0

λ ·Ψ(T )Ψ(s)−1B(s)v(s)ds

=

∫ T

0

B(s)⋆
(

Ψ(s)−1
)⋆

Ψ(T )⋆λ · v(s)ds.

Let us set for every s ∈ [0, T ]

p(s) :=
(

Ψ(s)−1
)⋆

Ψ(T )⋆λ−
(

Ψ(s)−1
)⋆

·
∫ T

s

Ψ(r)⋆dxL(ξ(r), u(r))dr.

Then, since v is arbitrary, it follows that

B(s)⋆p(s) = duL (ξ(s), u(s)) ∀s ∈ [0, T ]

and so (10) holds. Now, the relation in (11) follows from
(10) and Lemma 6-(i). Also,

−p′(s) = A(s)⋆p(s)− dxL(ξ(s), u(s)) s ∈ [0, T ] a.e.

So, recalling (7) and from (11), we have for a.e. s ∈ [0, T ]

{

dxH(ξ(s), p(s)) = dxh [s]

dpH(ξ(s), p(s)) = dph [s],

where we put [s] := (ξ(s), p(s), w(ξ(s), Z(ξ(s), p(s))))
for all s ∈ [0, T ]. Then, recalling (6), the pair (ξ(.), p(.))
solves the Hamiltonian system (8) with final condition
(9).

4.2 Proof of Theorem 5

The implication (ii)=⇒(i) immeditely follows from the
equibounded property of trajectories and from the
continuity of the Lagrangian. We need only to show
(ii)=⇒(iii) and (i)=⇒(ii).

(ii)=⇒(iii): From the embedding L 2(0, T ; IRm) ⊂
L 1(0, T ; IRm) and applying the Gronwall Lemma, we

can choose K̂ > 0 such that

‖u‖1 + ‖u‖2 ≤ K̂, ξx0,u(.) ⊂ IBK̂

∀u ∈ {δS(x)Φ = 0}. (12)

First, we claim that the family of co-states pu solving (8)

{ pu : [0, T ] → IRn | pu(T ) = λ ∈ Λ(u;x),

u ∈ {δS(x)Φ = 0} } (13)

is equibounded. We have that

∃c > 0 : |λ| 6 c ∀λ ∈ Λ(u;x)∀u ∈ {δS(x)Φ = 0}.

Otherwise, suppose, by contradiction, that there exist
two sequences {uk}k ⊂ {δS(x)Φ = 0} and λk ∈ Λ(uk;x)
such that limk |λk| = +∞. We may assume that λk 6=
0 for all k ∈ IN . Thus, for every k ∈ IN and v ∈
L 2(0, T ; IRm)

λk
|λk|

· duC (uk;x) (v) =
1

|λk|
〈dΦ (uk) , v〉. (14)

Passing to subsequences and keeping the same nota-
tion, we may assume that there exist λ ∈ IRn and u ∈
clw {δS(x)Φ = 0}, with |λ| = 1, such that λk

|λk|
→ λ and
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uk → u weakly. Recalling Remark 2 and passing to the
limit as k → ∞ in (14) we have

λ · duC(u;x) = 0

and, from our assumptions, a contradiction follows. Now,
from the smoothness of the vector fields Xi, let M > 0
be such that |dXi(x)

⋆ξ| 6M |ξ| for all ξ ∈ IRn, x ∈ IBK̂ ,
and all i = 1, . . . ,m. Applying Proposition 7, we have
that for any u ∈ {δS(x)Φ = 0} and any λ ∈ Λ(u;x) there
is an absolutely continuous arc pu : [0, T ] → IRn such
that for a.e. s ∈ [0, T ]







p′u(s) =
∑m

i=1 ui(s)dXi (ξx0,u(s))
⋆
pu(s)

−dxL (ξx0,u(s), u(s))

pu(T ) = λ.

By Assumption 3, we can find a constant K̃ = ϕ(K̂) > 0
such that for every u ∈ {δS(x)Φ = 0} and for a.e. s ∈
[0, T ]

|p′u(s)| 6M
√
m|u(s)| |pu(s)|+ K̃

(

|u(s)|2 + 1
)

.

Thus, for all u ∈ {δS(x)Φ = 0} and all s ∈ [0, T ]

|pu(s)|

≤ |pu(T )|+
∫ T

s

K̃
(

|u(r)|2 + 1
)

dr

+

∫ T

s

M
√
m|u(r)| |pu(r)| dr

≤ (c+ K̃(K̂2 + T )) +

∫ T

s

M
√
m|u(r)| |pu(r)| dr.

Applying Gronwall’s Lemma and recalling (12), it fol-
lows the claim (13). Thus, from the claim and the Gron-
wall’s Lemma again, we have that there exists R ≥ K
such that for any u ∈ {δS(x)Φ = 0} and any co-states
pu(.) in (13)

ξx0,u(.) ⊂ IBR, pu(.) ⊂ IBR. (15)

Hence, using (11) and the locally Lipschitz continuity of
u(., .), we get (iii).

(i)=⇒(ii): Fix u ∈ {δS(x)Φ = 0} and, from Assumpation

4, let C > 0 and α > 0, α̂ > 0 such that θ(r) ≥ αr2 and
ψ(r) ≤ α̂r2 for all r > C. For all t ∈ [0, T ], we have

∫ t

0

|u(s)|2 ds =
∫

[0,t]∩{s:|u(s)|>C}

|u(s)|2 ds

+

∫

[0,t]∩{s:|u(s)|≤C}

|u(s)|2 ds

≤
∫

[0,t]∩{s:|u(s)|>C}

|u(s)|2 ds+ C2T.

(16)

Now, from (i) and Assumption 3, there exists M̂ > 0,
not depending on u(.), such that

∫

[0,t]∩{s:|u(s)|>C}

|u(s)|2 ds

≤ α−1

∫

[0,t]∩{s:|u(s)|>C}

θ(|u(s)|) ds

≤ α−1

∫ t

0

θ(|u(s)|) ds

≤ α−1

∫ t

0

L(ξx0,u(s), u(s)) ds

+ α−1

∫ t

0

ψ(|ξx0,u(s)|) ds

≤ α−1M̂ + α−1

∫ t

0

ψ(|ξx0,u(s)|) ds.

(17)

Putting M = maxi supx∈IRn |Xi(x)| < ∞, we have for
all s ∈ [0, T ]

|ξx0,u(s)| ≤ |x0|+
∫ s

0

m
∑

i=1

|Xi(ξx0,u(τ))||ui(τ)|dτ

≤ |x0|+mM

∫ s

0

m
∑

i=1

|ui(τ)|dτ.

Since ψ(|ξx0,u(s)|) ≤ α̂|ξx0,u(s)|2 for all s ∈ [0, T ] and
using thatL 2(0, T ; IRm) ⊂ L 1(0, T ; IRm), we have that
there exists a constant ĉ > 1, not depending on u(.),
such that for all s ∈ [0, T ]

ψ(|ξx0,u(s)|)

≤ ĉ (

∫ s

0

|u(τ)|2dτ + |x0|(
∫ s

0

|u(τ)|2dτ )1/2 + |x0|2).

Hence, for all t ∈ [0, T ]

∫ t

0

ψ(|ξx0,u(s)|)ds

≤ 2ĉT |x0|2 + 2ĉ

∫ t

0

(

∫ s

0

|u(τ)|2dτ)ds.
(18)

Now, from (16)-(18), the Gronwall’s Lemma, and since
all the involved constants does not depends on u ∈
{δS(x)Φ = 0}, we conclude that there exists k > 0 such

that ‖u‖2 ≤ k for all u ∈ {δS(x)Φ = 0}. Consequently,
applying again Gronwall’s Lemma, we have that all tra-
jectories ξx0,u(.) associated with controls u ∈ {δS(x)Φ =

0} are uniformly bounded, that is, there exists K̃ > 0
such that for every u ∈ {δS(x)Φ = 0}

ξx0,u(.) ⊂ IBK̃ . (19)
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From Proposition 7 and replacing K̃ > 0 with a suitable
greater constant, we have that for any u ∈ {δS(x)Φ = 0}
and any co-states pu(.) in (13) satisfies

pu(.) ⊂ IBK̃ . (20)

Hence, from the continuity of H(., .), we get

N := sup
(s,u)∈[0,T ]×{δS(x)Φ=0}

|H(ξx0,u(s), pu(s))| <∞.

Now, notice that, from Proposition 7, for all u ∈
{δS(x)Φ = 0} and all s ∈ [0, T ] we have

w (ξx0,u(s), Z (ξx0,u(s), p(s))) · Z(ξx0,u(s), p(s))

= u(s) · duL(ξx0,u(s), p(s)).

Hence, applying Lemma 6-(ii), for all u ∈ {δS(x)Φ = 0}
and all s ∈ [0, T ]

H(ξx0,u(s), pu(s))

= u(s) · duL(ξx0,u(s), u(s))− L(ξx0,u(s), u(s))).
(21)

Now, fix R > 0 and consider N̂ > 0 be such that
|L(x, u)| 6 N̂ for all x ∈ IBR, u ∈ IB. Since L is smooth,
for any x ∈ IBR and any r > 0 the function L(x, .) +
c(x, r)| . |2 is convex on IBr for a suitable c(x, r) ≥ 0 (cfr.
[3]). Moreover, fix r = r(R) > 0 such that

θ(|u|) > ψ(|x|) + 2N̂ +N, ∀|u| > r ∀x ∈ IBR. (22)

Consider x ∈ IBR, u ∈ IRm\{0}, and put v := u/|u|.
Denote by g = gv : IR → IR the function g(s) :=
duL(x, sv) · sv − L(x, sv). Then, from Assumption 2,
the function g is continuously differentiable. So, g(s) =
g(1) +

∫ s

1
g′(τ)dτ for all s ≥ 1. Now, for any τ ≥ 1, we

have g′(τ) = τd2
uL(x, τv)v · v. Hence, for all s ≥ 1, ap-

plying the Fundamental Theorem of Calculus we have

duL(x, sv) · sv − L(x, sv)

≥ duL(x, v) · v − L(x, v) +

∫ s

1

d2uL(x, τv)v · v dτ

= duL(x, v) · v − L(x, v) + τduL(x, τv) · v|s=τ
1=τ

−
∫ s

1

d2uL(x, τv)v · vdτ

= duL(x, sv) · (sv − v) + duL(x, v)− L(x, v).

(23)

Hence, since |v| = 1, for any σ > r

duL(x, sv) · (sv − v)

≥ L(x, sv)− L(x, v) + c(x, σ)(s − 1), ∀s ∈ [1, σ].
(24)

From (23) and (24), we have

duL(x, sv) · sv − L(x, sv)

≥ L(x, sv) + c(x, σ)(s− 1)− 2N̂, ∀s ∈ [1, σ].

So, for any σ > r and putting s = |u|

duL(x, u) · u− L(x, u)

≥ θ(|u|)− ψ(|x|) + c(x, σ)(|u| − 1)− 2N̂, ∀|u| ∈ [1, σ].

Notice that supx∈IBR
c(x, σ) < +∞ for any σ > r. Sum-

ming up and recalling (22), we can conclude that there

exists a constant K > 0 (depending only on K̃) satisfy-
ing

duL(x, u) · u− L(x, u) > N, ∀x ∈ IBK̃ ∀|u| > K.

By (21), we deduce that |u(s)| 6 K for all s ∈ [0, T ] and
all u ∈ {δS(x)Φ = 0}. The proof of Theorem 5 is now
complete.

5 Application to Existence of Lipschitz Inver-
sion Mappings

As main application of the Characterization Theorem 5,
in this section we provide an existence results of Lips-
chitz inversion mapping. In the following we denote by
L T

k the class of all IRm-valued k-Lipschitz continuous
functions on the time interval [0, T ].

The proof of the following two lemmata are omitted since
straightforward and well known.

Lemma 5.1 Let X be a separable normed space and
Φ : X → IRn be a linear, continuous, and surjective oper-
ator. Consider {xi}i dense inX. Then there exist linearly
independent vectors x1, ..., xn such that Φ : W → IRn is
an isomorphism, where W = span {x1, ..., xn}.

Lemma 5.2 ([4],[18]) Let τ > 0. Then the map

[0, τ ]× L2(0, τ ; IRm) ∋ (s, u) 7→ dEs,x0(u)

is continuous.

Theorem 8 (Inversion mapping) If Φ|{δS(x)Φ=0} <
+∞, then there exist k > 0, r > 0, and ℓ ≥ 0 such that
for any (t, u) ∈ [0, T ]× {δS(x)Φ = 0} we can find a map

ut,u : Br(t)×Br(xx0,u(t)) → {k-Lip. func. on [0, T ]}

satisfying:

(i) ut,u ∈ C1.
(ii) Es,x0(ut,u(s, β)) = β for all (s, β) ∈ IBr(t) ×

IBr(xx0,u(t)).
(iii) dut,u is ℓ-Lipschitz.

PROOF. Let (t0, u0) ∈ [0, T ] × {δS(x)Φ = 0}. We

know that dEt0,x0(u0)(·) is surjective on L 2(0, T ; IRm).
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Let V ⊂ C1(0, T ; IRm) be a countable subset such that

spanV = L 2(0, T ; IRm). Applying Lemma 5.1, there ex-
ist n linearly independent vectors

{

v01 , ..., v
0
n

}

⊂ V such
that the map

(αi)i 7→
n
∑

i=1

αidEt0,x0(u0)(v
0
i )

is an isomorphism on IRn. Define for any (t, u) ∈
(0, T ) × L 2(0, T ; IRm) the map ϕ0

t,u : IRn → IRn

by ϕ0
t,u((αi)i) =

∑n
i=1 αidEt,x0(u)(v

0
i ). By Lemma

5.2, there exist ̺0 > 0, µ0 > 0 such that for any
(t, u) ∈ J0 := [t0 − ρ0, t0 + ρ0] × BL 2(u0, ̺0) the map
E 0
t,u : (0, T )× IRn → (0, T )× IRn, defined by

E
0
t,u(s, (αi)i) = (s, Es,x0(u +

m
∑

i=1

αiv
0
i ))

satisfies for all (t, u) ∈ J0

| det
(

dE
0
t,u(t, 0)

)

| =
∣

∣detϕ0
t,u

∣

∣ ≥ µ0

where BL 2(u, r) stands for the closed ball in L 2 cen-
tered at u of radius r. Now, from the Ascoli-Arzelà the-
orem, the set [0, T ] × {δS(x)Φ = 0} is compact. Then

there exists N ∈ IN+ such that, for all j = 1, ..., N , we
can find ρj > 0, µj > 0, (tj , uj) ∈ [0, T ]×{δS(x)Φ = 0},
and linearly independent {vj1, ..., vjn} ⊂ V , such that

[0, T ]× {δS(x)Φ = 0}
⊂

⋃

j=1,...,N

[tj − ̺j , tj + ̺j ]×BL 2(uj , ̺j)

=:
⋃

j=1,...,N

Jj .

Defining for any (t, u) ∈ Jj the maps E
j
t,u : (0, T ) ×

IRn → (0, T )× IRn and ϕj
t,u : IRn → IRn by

E
j
t,u(s, (αi)i) = (s, Es,x0(u +

m
∑

i=1

αiv
j
i ))

ϕj
t,u((αi)i) =

n
∑

i=1

αidEt,x0(u)(v
j
i )

we deduce that for all (t, u) ∈ Jj and j = 1, ..., N

| det
(

dE
j
t,u(t, 0)

)

|

=
∣

∣

∣
detϕj

t,u

∣

∣

∣
≥ µj ≥ min {µ1, ..., µN} > 0.

(25)

Applying the Inverse Mapping Theorem to the map
E

j
t,u and using a compactness argument, we conclude

that for each j there exists rj > 0 such that the
set Vj(t, u) := (t − rj , t + rj) × IBrj (Et(u)) is iso-

morph to (E j
t,u)

−1 (Vj(t, u)) for any (t, u) ∈ Jj . Put
r = min {r1, ..., rN} and define for any (t, u) ∈ Jj

ut,u(t
′, β) = u+

m
∑

i=1

αi(t
′, β)vji

∀(t′, β) ∈ Vj(t, u)

where (E j
t,u)

−1(t′, β) =: (t′, α(t′, β)). Notice that, since
the coefficients αi are bounded by a suitable constant
M ≥ 0 and vji ∈ C1(0, T ; IRm), there exists a constant
k ≥ 0 such that ut,u take values in L T

k . Hence, (i) and
(ii) follow. Moreover, from (25) and the regularity of the
end-point map, there exists a constant ℓ ≥ 0, depending
only on k, such that dut,u is ℓ-Lipschitz for all (t, u) ∈
[0, T ]× {δS(x)Φ = 0}. So, we get (iii).

6 Conclusions

In this paper, we have addressed a class of extremiza-
tion problems wrt end-point constraints qualifications.
We assumed the functional generating the Lagrange sub-
manifold merely Fréchet differentiable and the associ-
ated Lagrangian possibly unbounded and not strictly
convex in the fiber. In this paper, with the use of recently
investigated techniques for extremization problems, we
show that the controls associated with constrained ex-
tremals enjoy of Lipschitz regularity whenever singu-
lar trajectory are absent. Hörmander’s condition on the
affine dynamics cannot be skipped in order to the well-
posedness of the problem. As main implication, we con-
struct a locally Lipschitz inversion mapping from the
ambient space to the set of constrained extremals, that
turns out to be useful for the well definition of value
functions associated to extremization problems.
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