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Abstract

This paper considers the state estimation problem for nonlinear dynamic systems with unknown but bounded noises. Set
membership filter (SMF) is a popular algorithm to solve this problem. In the set membership setting, we investigate the
filter problem where the state estimation requires to be constrained by a linear or nonlinear equality. We propose a consensus
alternating direction method of multipliers (ADMM) based SMF algorithm for nonlinear dynamic systems. To deal with the
difficulty of nonlinearity, instead of linearizing the nonlinear system, a semi-infinite programming (SIP) approach is used to
transform the nonlinear system into a linear one, which allows us to obtain a more accurate estimation ellipsoid. For the solution
of the SIP, an ADMM algorithm is proposed to handle the state estimation constraints, and each iteration of the algorithm
can be solved efficiently. Finally, the proposed filter is applied to typical numerical examples to demonstrate its effectiveness.

Key words: Nonlinear dynamic systems; Set membership estimation; State estimation constraints; Alternating direction
method of multipliers.

1 Introduction

State estimation problems of dynamic systems occur in
many applications, such as robot localization [1], tar-
get tracking [2], machine learning [3], fault diagnosis [4],
navigation [5], etc. Since it is difficult to measure the
system state directly, it is crucial to estimate the state
from noisy sensor measurements, imperfect systemmod-
els, and physical constraints. In the setting of stochas-
tic noises, Bayesian filtering has been extensively re-
searched. Specifically, Kalman filter [6] is a special case
of Bayesian filtering under the linear, quadratic, and
Gaussian conditions [7], and it is the minimum-variance
recursive state estimator. For the nonlinear dynamic
systems, many modified Kalman-based filters [8,9,10]
are proposed to approximate the optimal state estima-
tion. When the statistical properties of the process and
the measurement noises can be obtained precisely, these
filters work well and are extensively applied to target
tracking, navigation, and other applications.

⋆ This work was supported in part by the NSFC under Grant
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Unlike the Bayesian strategy, the set membership
method aims to provide guaranteed enclosures for the
system state in the presence of unknown but bounded
uncertainty effects that do not require the assumption
of knowledge of its stochastic properties [11]. SMF is
first considered by Schweppe [12] in the late 1960s.
Since then, the idea of SMF has been widely studied
[13,14,15,16,17,18]. It is worth noting that most studies
on the SMF have focused on the state estimation prob-
lems for unconstrained linear dynamic systems. Since
the estimation given by SMF is generally a regular state
bounding region while a nonlinear system maps a reg-
ular set to an irregular one. In addition, the shape of
the state bounding set is further affected if there are
additional constraints on the dynamic systems. Thus,
extending SMF to nonlinear dynamic systems is diffi-
cult, especially when online usage needs to be guaran-
teed. Some studies on nonlinear dynamic systems are
presented in [15,16,19,20]. For example, in the extended
set membership filter (ESMF) [21] and nonlinear set
membership filter (NSMF) [22], the nonlinear func-
tions in the dynamic system are linearized around the
current state estimate, after which the higher-order re-
mainder terms are bounded in different ways. Thus, the
nonlinear dynamic system is transformed into a linear
dynamic system by treating the bounds of the higher-
order remainder terms as noises. The dual set member-
ship filter (DSMF) proposed in [16] is also a nonlinear
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set membership filter. Unlike ESMF and NSMF, DSMF
directly finds the bounding ellipsoid of the nonlinearly
transformed state bounding ellipsoid via dual theory
and SIP, rather than linearizing the nonlinear dynamic
system. Therefore, a tighter state bounding ellipsoid
can be obtained by DSMF, while it only considers the
unconstrained case.

In many practical scenarios, the state estimation is usu-
ally expected to be localized in some particular subspace
[23,24,25]. For example, in a blind multiuser detection
problem, it is necessary to ensure that the target value
associated with the desired user is located in the specific
searching space [23]. In navigation and localization, state
estimation of vehicles in three dimensional space is ex-
pected to be localized on the ground, while the localiza-
tion of an operating aircraft is in the air [26]. Therefore,
it is significant to consider state estimators with various
estimation constraints. Previous studies on set member-
ship filters mainly focus on state constraints, such as
[27,28,29] and the references therein. However, even if
the state constraint information is used in the filtering
process to ensure that the state bounding ellipsoids take
into account the state constraint, the state estimates
that are given by the ellipsoidal SMF (the center of the
state bounding ellipsoids) generally do not satisfy the
constraint. Motivated by this, the paper considers the
nonlinear SMF problem with estimation constraints.

In this paper, we investigate the state estimation prob-
lem for nonlinear dynamic systems with unknown but
bounded noises and state estimation constraints. The
main contributions of the paper are as follows:

• We propose a consensus-ADMM-based SMF algo-
rithm to estimate the states of nonlinear dynamic
systems with a general form equality estimation con-
straint. The centers of the state bounding ellipsoids
are guaranteed to satisfy the estimation constraint,
which makes up for the deficiency of SMF with the
state constraint.
• To deal with the difficulty of nonlinearity, we use the
SIP approach to transform the nonlinear dynamic sys-
tem into a linear one rather than linearizing the non-
linear dynamic system, which allows us to determine
a more accurate estimation ellipsoid.
• We provided a weak convergence result of the pro-
posed consensus-ADMM algorithm. When we solve
the discretized SIP problems, each iteration of the
consensus-ADMMcanbe solved efficiently. Especially,
for the linear estimation constraint, we can obtain an
analytical solution for the state update.

Two numerical examples in the simulations show the
effectiveness of the proposed filter.

The rest of this paper is organized as follows. In Section
2, the preliminaries and problem formulation are given.
A nonlinear SMF with state estimation constraints for

computing the state bounding ellipsoid is developed
in Section 3. In Section 4, A consensus-ADMM-based
method for solving the SIP problems is given. Simu-
lations and conclusions are given in Section 5 and 6,
respectively.

Notations: ⊕ represents the Minkowski sum. Gm,n is
the projection matrix from dimension n to m. A† rep-
resents the Moore-Penrose generalized inverse of matrix
A. The notation A � 0 means A is positive semidefi-
nite and A ≻ 0 means A is positive definite. The nota-
tion N (A) denotes the nullspace of A. Iθ×θ denotes the
identity matrix with dimension θ. In this paper, J(E) is
either tr(E) or log det(E).

2 Preliminaries and problem formulation

2.1 Preliminaries

The basic idea of the SMF is to obtain a feasible solution
set containing the true state according to the dynamic
system, measurements, bounded noises, and other infor-
mation about the state [11,13]. Specifically, suppose the
initial state x0 belongs to a given set Y0. The objective
of the SMF is to determine a minimum volume state
bounding set Yk+1 based on Yk, the dynamic system,
measurements, bounded noises, and other information
at time step k + 1.

The SMF is subdivided into the prediction and the mea-
surement update step. In the prediction step at time
k + 1, a predicted state bounding set Yk+1|k is deter-
mined as the minimum volume set according to the state
bounding set Yk, the state transform equation, the pro-
cess noise information, and other information. In the
measurement update step at time k + 1, a state bound-
ing set Yk+1 is determined as the minimum volume set
according to the predicted state bounding set Yk+1|k,
the measurement equation, the measurements, the mea-
surement noise information, and other information.

In general, two basic set representations are used in the
SMF: polytopes of various types (e.g., general polytopes
[30], boxes [31], zonotopes [32], parallelotopes [33], and
rectangular polytopes [34]) and ellipsoid [35]. Polytopes
can give arbitrarily close approximations to any convex
set, but the number of vertices can grow prohibitively
large [30]. The complexity of the ellipsoidal representa-
tion is quadratic in the dimension of the set since its
size, shape, and location can be determined uniquely by
its center and shape matrix. In addition, it is possible to
single out a set approximating ellipsoid that is optimal
to some given criterion or a combination of them [35].
Therefore, we focus on the ellipsoid approach in this pa-
per, and some preliminaries of the ellipsoid are provided
as follows.
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Definition 1. A set E ⊂ R
n satisfying the following

form is called an ellipsoid:

E(e, E) = {x ∈ R
n : (x− e)TE−1(x− e) ≤ 1},

where e ∈ R
n and E ≻ 0 are the center and the shape

matrix of E , respectively.

The “size” of an ellipsoid E(e, E) can be expressed as a
function J(E) of the shape matrix E [13]. In this paper,
we choose the most common ways to measure the “size”
of an ellipsoid, which are the trace function (J(E) =
tr(E), which corresponds to the sum of squares of semi-
axes lengths of E(e, E)) and logdet function (J(E) =
log det(E), which corresponds to the volume of E(e, E)),
respectively [17]. The problem of finding the smallest el-
lipsoidal outer approximation of a bounded set X ⊂ R

n

on the trace or logdet criterion can be described as:

min
e,E

J(E), s.t. E(e, E) ⊃ X .

Definition 2. The Minkowski sum of two ellipsoids E1
and E2 is defined as:

E1 ⊕ E2 = {x1 + x2 : x1 ∈ E1, x2 ∈ E2}.

Definition 3. The intersection of two ellipsoids E1 and
E2 is defined as:

E1 ∩ E2 = {x : x ∈ E1, x ∈ E2}.

Next, we briefly introduce the consensus-ADMM
method used in this paper [36,37]. Consider the problem:

min
x

ω
∑

i=1

Πi(x), (1)

where x ∈ R
n, the objective function is the sum of the

objective terms Πi(x) : Rn → R ∪ {+∞}, i = 1, ..., ω.
Problem (1) can be reformulated as a consensus form by
introducing ω auxiliary variables zi ∈ R

n, i = 1, ..., ω:

min
x,zi

ω
∑

i=1

Πi(zi), s.t. x = zi, ∀i = 1, ..., ω,

then the consensus-ADMM iterates at iteration t for this
problem are:

zt+1
i := argmin

zi

Πi(zi)− (λti)
T zi + (ρ/2)‖xt − zi‖

2,

xt+1 := argmin
x

ω
∑

i=1

((λti)
Tx+ (ρ/2)‖x− zt+1

i ‖2),

λt+1
i :=λti + ρ(xt+1 − zt+1

i ), i = 1, ..., ω,

where ρ > 0 is the penalty parameter, λi is the La-
grange multiplier, and xt and λti are the updates ob-
tained in the t-th iteration and zt+1

i , xt+1, and λt+1
i

are the updates obtained in the t + 1-th iteration, re-
spectively. In the consensus-ADMM iterates, zi, x, and
λi are updated in an alternating fashion, and the zi-
minimization step is independently for each i. More de-
tails on the consensus-ADMM method can be seen in
[36]. The consensus-ADMM algorithm is a very intuitive

algorithm with several advantages [36,37]. First, the up-
date of the variables zi can be implemented in parallel
since they are independent of each other. Next, each up-
date can be efficient for the high-dimensional but sparse
datasets by splitting the cost functions. Moreover, the
consensus-ADMM method converges if the problem is
convex.

2.2 Problem formulation

Consider the nonlinear dynamic system:

xk+1 = fk(xk) + wk, (2)

yk = hk(xk) + vk, (3)

where k denotes the time step, xk ∈ R
n is the sys-

tem state, yk ∈ R
m is the measurement, fk(xk) and

hk(xk) are nonlinear uniformly continuous and differen-
tiable process function and measurement function of xk,
respectively. The process noise wk ∈ R

n and the mea-
surement noise vk ∈ R

m are assumed to be restricted in
given ellipsoidal sets Wk = E(0, Qk) and Vk = E(0, Rk),
respectively. In many practical scenarios, the state es-
timation x̂k is expected to be localized in specific sub-
space [24]. In particular, we consider the following equal-
ity state estimation constraint:

gk(x̂k) = 0, (4)

where gk(x̂k) is a continuously differentiable function.

Suppose the initial state x0 belongs to E0(x̂0, P0). The
objective of this paper is to design a SMF that de-
termines a minimum volume state bounding ellipsoid
Ek+1(x̂k+1, Pk+1) based on Ek(x̂k, Pk), the dynamic sys-
tem, measurements, bounded noises, and constraint at
time step k + 1.

3 Nonlinear set membership filter with state es-
timation constraints

This section presents a nonlinear SMF for computing the
state bounding ellipsoid with the center satisfying the
constraint (4) at each time step, where the prediction
and the update ellipsoid can be obtained by solving SIP
problems without linearizing the nonlinear system.

3.1 Prediction step

In this subsection, we consider the prediction step
of the proposed nonlinear SMF. Let Ek(x̂k, Pk) and
Ek+1|k(x̂k+1|k, Pk+1|k) denote the state bounding el-
lipsoid of xk and the predicted ellipsoid of xk+1, re-
spectively. According to the uniform continuity of fk,
we have that Fk = {fk(xk) : xk ∈ Ek} is a bounded
compact set. Therefore, a minimum volume ellipsoid
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Efk(x̂fk , Pfk) containing Fk can be obtained by solving:

min
x̂fk

,Pfk

J(Pfk)

s.t. (x− x̂fk)
TP−1

fk
(x− x̂fk) ≤ 1, ∀x ∈ Fk. (5)

From (2), we have xk+1 ∈ Efk⊕Wk. Thus, the predicted
state bounding ellipsoid at time k + 1 can be obtained
by solving:

min
x̂k+1|k,Pk+1|k

J(Pk+1|k)

s.t. Ek+1|k(x̂k+1|k, Pk+1|k) ⊃ Efk ⊕Wk. (6)

Remark 1. Theorem 4.2 in [17] and (6) show that the
shape matrix of Ek+1|k has the following form:

Pk+1|k(τk) = (1 + τ−1
k )Pfk + (1 + τk)Qk, (7)

where τk > 0. The selection of τk determines the
property of Ek+1|k, and the problem (6) can be re-
formulated as minτk>0J(Pk+1|k(τk)). Especially, if
J(Pk+1|k) = tr(Pk+1|k), then the optimal solution to

this optimization problem is τk =
√

tr(Pfk
)

tr(Qk)
.

The following lemma shows the condition under which
the state prediction satisfies the estimation constraint.

Lemma 1. The state prediction x̂k+1|k satisfies the con-
straint (4) if and only if x̂fk satisfies (4).

Proof: See Appendix A. �

Based on the optimization problem (5) and Lemma 1,
in order to make the predicted state located in the con-
straint subspace, the problem of determining the pre-
dicted state bounding ellipsoid has been transformed
into:

min
x̂fk

,Pfk

J(Pfk)

s.t. (x− x̂fk)
TP−1

fk
(x− x̂fk) ≤ 1, ∀x ∈ Fk,

gk+1(x̂fk ) = 0. (8)

The optimization problem (8) is a SIP problem that in-
cludes two variables and infinite inequality constraints,
and it is not jointly convex in the two variables. There-
fore, the problem (8) is difficult to solve, and we provide
a consensus-ADMM-based method to handle it in Sec-
tion 4.

3.2 Measurement update step

Subsequently, we consider the measurement update step
of the proposed filter. Based on the predicted ellipsoid
and themeasurement at time k+1, we seek the minimum
volume state bounding ellipsoid Ek+1(x̂k+1, Pk+1) with
the center x̂k+1 satisfying the estimation constraint (4).

For the convenience of the analysis, we assume that there
exists a continuous inverse function h−1

k+1 for the nonlin-

ear function hk+1. Thus, the measurement function is
reformulated as:

Gm,nxk+1 = h−1
k+1(yk+1 − vk+1). (9)

Remark 2. Equation (9) uses the information about
the inverse function of the measurement function to es-
timate the state instead of linearizing the nonlinear sys-
tem, thus leading to more accurate state estimates [16].
In general, the assumption that there exists a continuous
inverse function for hk+1 can be very restrictive. Here, it
can be satisfied in some practical applications [16]. For
example, the nonlinear measurement functions in two
or three dimensional radar systems [38], which are the
foundation for the measurement systems of many sen-
sors [39]. In addition, this assumption can be relaxed in
some special and important fields [16]. For example, the
simultaneous localization and mapping (SLAM) prob-
lem in mobile robot localization [40].

Since the measurement noise vk+1 ∈ Vk+1 and the func-
tion h−1

k+1 is continuous, the set Sk+1 = {h−1
k+1(yk+1 −

vk+1) : vk+1 ∈ Vk+1} on the right-hand side of (9) is a
compact set. Thus, an ellipsoid Ehk+1

(x̂hk+1
, Phk+1

) con-
taining Gm,nxk+1 can be obtained by solving:

min
x̂hk+1

,Phk+1

J(Phk+1
)

s.t. (x− x̂hk+1
)TP−1

hk+1
(x− x̂hk+1

) ≤ 1,

∀x ∈ Sk+1, (10)

which is also a SIP problem and can be seen as a simpli-
fied form of (8).

The update step is to find a state bounding ellipsoid
Ek+1 such that Ehk+1

∩ Ek+1|k ⊆ Ek+1, where Ehk+1
is

the measurement ellipsoid and Ek+1|k is the predicted
ellipsoid. By denoting Dk+1 = {x : x ∈ Ehk+1

∩ Ek+1|k},
Ek+1 can be derived by solving:

min
x̂k+1,Pk+1

J(Pk+1)

s.t. (x− x̂k+1)
TP−1

k+1(x− x̂k+1) ≤ 1, ∀x ∈ Dk+1,

gk+1(x̂k+1) = 0. (11)

So far, the nonlinear set membership state estimation
problem with estimation constraints has been trans-
formed to solve the SIP problems (8), (10), and (11).
Notably, the nonlinear functions in the dynamic system
do not need to be linearized. In summary, the proposed
nonlinear SMF with state estimation constraints is
given in Algorithm 1.

Remark 3. The proposed method in Algorithm 1 is
subdivided into two phases: 1) A prediction step deter-
mined by the state equation (2), process noise, and con-
straint (4). 2) A measurement update step determined
by the measurement equation (3), measurements, mea-
surement noise, and constraint (4). Authors in [41] stud-
ied the pure state prediction problem (without measure-
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ment information). By using the constraint information
in the prediction step, the prediction steps can be con-
catenated if some measurements are missing [11]. Thus,
the proposed method can also be used for the state pre-
diction problem by solving the problem (8) to obtain
the predicted ellipsoid. When the predicted ellipsoid is
not required in practice, we can determine the predicted
ellipsoid by solving the problem (5). In Section 5, we
compare the performance of Algorithm 1 between the
prediction step with and without using the constraint
information.

4 Solving the SIP problems

In this section, we focus on how to solve the SIP problems
(8), (10), and (11). These problems can be unified as:

min
x̂,P

log det(P )

s.t. (r − x̂)TP−1(r − x̂) ≤ 1, ∀r ∈ T , g(x̂) = 0, (12)

where x̂ ∈ R
n, P ≻ 0, T ⊂ R

n is a compact set, and g(x̂)
is a continuously differentiable function. If the objective
function of (12) is the trace function, similar results and
algorithms can be obtained.

Algorithm 1 Set membership filter with state estima-
tion constraints
Require: The nonlinear functions fk and hk+1, the
measurement yk+1, the ellipsoidal sets Wk and Vk+1,
the estimation constraint function gk+1, the initial el-
lipsoid E0(x̂0, P0);

Ensure:
for each k=1:T do

Solve the optimization problem (8) (see Algorithm
3);

Calculate the shape matrix of the predicted ellip-
soid by (7);

Solve the optimization problem (10) to obtain
x̂hk+1

and Phk+1
(see Algorithm 3);

Calculate the measurement update ellipsoid by
solving (11) (see Algorithm 3);
end for
return x̂k+1 and Pk+1;

In general, the SIP is NP-hard [42,43]. Since it is chal-
lenging to solve the SIP, we consider approximating it by
some relaxation methods. One approach for solving the
SIP problem is to minimize its objective function subject
to only a finite subset of the infinite set of constraints
[44,45,46,47], namely the discretizationmethod. The dis-
cretizationmethod has several characteristics [48]. First,
the discretizationmethod is distributionally robust since
it works for general SIP. Next, by replacing the infinite
constraints with finitely many simple constraints, the
sample approximation technique significantly simplifies
SIP. Last but not least, solving the sample approxima-
tion problem returns a solution to the original SIP with

guaranteed performance. The discretized optimization
problem of (12) can be expressed as:

min
x̂,P

log det(P )

s.t. (ri − x̂)
TP−1(ri − x̂) ≤ 1, g(x̂) = 0, i ∈ I, (13)

where ri ∈ T , I = {1, 2, ..., s}, and s is the sampling
number.

Remark 4. The discretization method is a sample ap-
proximation scheme that randomly samples a sufficient
number of constraints from the infinite constraints. In
[49], the authors provide an efficient and explicit bound
on the measure of the original constraints that are possi-
bly violated by the randomized solution, where the vol-
ume rapidly decreases to zero as the sample number in-
creases. The authors in [16] show that it only requires
to sample from the boundary of the ellipsoid set for the
nonlinear measurement functions in two or three dimen-
sional radar systems. Thus, it can reduce a lot of re-
dundant samples so that the computational time can be
significantly decreased. Specifically, for the problems (8)
and (10), we choose fk(r̄

1
i ) and h

−1
k+1(yk+1 − r̄2i ) as the

samples ri, respectively, where r̄
1
i and r̄2i are sampled

from the ellipsoids Ek and Vk+1, respectively. For the
problem (11), the set Dk+1 is the intersection of two el-
lipsoids and the samples ri can be obtained by using the
Accept-Reject method or Monte Carlo methods [50].

To solve problem (13), we introduce the auxiliary vari-
ables zi, i = 1, ..., s, and then problem (13) can be trans-
formed into a consensus form [36]:

min
x̂,P,zi

log det(P )

s.t. (ri − zi)
TP−1(ri − zi) ≤ 1,

x̂ = zi, g(x̂) = 0, i ∈ I. (14)

The corresponding augmented Lagrangian of (14) is
given by:

Lρ(P, zi, x̂, λi) = log det(P )+
∑

i∈I

λTi (x̂− zi) +
ρ

2

∑

i∈I

‖x̂− zi‖
2. (15)

The dual problem corresponding to the primal problem
is as follows:

max
λi

min
x̂,P,zi

(ri − zi)
T P−1(ri − zi) ≤ 1,

g(x̂) = 0, i ∈ I

Lρ(P, zi, x̂, λi). (16)

By applying the consensus-ADMM method, we obtain

5



the following iterations:

zi, P ← argmin
zi,P

Lρ(P, zi, x̂, λi),

s.t. (ri − zi)
TP−1(ri − zi) ≤ 1, i ∈ I, (17)

x̂← argmin
x̂

∑

i∈I

λTi (x̂− zi) +
ρ

2

∑

i∈I

‖x̂− zi‖
2,

s.t. g(x̂) = 0, (18)

λi ←λi + ρ(x̂− zi), i ∈ I. (19)

It is well known that the ADMM algorithm converges
under mild conditions when solving convex problems
[37,51]. Unfortunately, in nonconvex problems, conver-
gence results cannot always be guaranteed.Next, we pro-
vide a weak convergence result for the proposed ADMM
iterates of the optimization problem (13).

Theorem 1. Denote P t, zti and x̂t as the updates ob-
tained in the t-th iteration of (17) - (19). Assume that
zti are well-defined for all t and i, and that:

limt→∞(zti − x̂
t) = 0, ∀i ∈ I, (20)

limt→∞(x̂t+1 − x̂t) = 0, (21)

then any limit point of {P t, x̂t} is a KKT point of (13).

Proof: See Appendix B. �

The term “well-defined” means existence and being
uniquely defined, and this is a common assumption in
convergence analysis that is rarely violated in practice
[37,52].

4.1 Update of P and zi

In this subsection, we focus on the update of P and zi.
Note that the objective function and constraints of the
problem (17) are convex in P−1 and zi, respectively.
Nevertheless, (17) is not convex in P−1 and zi jointly
because of the cross terms in the constraints. Thus, to
simplify the iterations of P and zi, the block coordinate
descent technique can be used [53]. Specifically, the first
block of the ADMM iterates can take the following form:

P ← argmin
P

log det(P )

s.t. (ri − zi)
TP−1(ri − zi) ≤ 1, i ∈ I, (22)

zi ← argmin
zi

λTi (x̂− zi) +
ρ

2
‖x̂− zi‖

2
2,

s.t. (ri − zi)
TP−1(ri − zi) ≤ 1. (23)

Note that both optimization problems (22) and (23) are
convex and the update of each variable zi are paralleliz-
able. The following theorem gives a first-order optimal
condition of (22).

Theorem 2. The optimal solution of (22) is

P ∗ = n
∑

i∈I

µ∗
i (ri − zi)(ri − zi)

T , (24)

where µ∗ = (µ∗
1, µ

∗
2, ..., µ

∗
s) is the optimal solution of the

dual problem:

max
µ

log det(
∑

i∈I

µi(ri − zi)(ri − zi)
T )

s.t.
∑

i∈I

µi = 1, µ ≥ 0. (25)

Proof: See Appendix C. �

Remark 5. A projection-free first-order method
for solving the problem (25) is the Frank-Wolfe
(FW) algorithm [54], which iterates mainly by max-
imizing the linear Taylor approximation around
the current solution µ on the unit simplex. Let
Ξ(µ) = log det(

∑

i∈I µi(ri − zi)(ri − zi)T ), the details
of the FW algorithm are shown in Algorithm 2. The
global convergence analysis of the FW method has been
given in the literature, e.g., [54,55,56], and the litera-
ture shows that the number of iterations to obtain an
ǫ-approximately optimal solution is at most O(1/ǫ).
Therefore, the maximum number of iterations K can be
determined according to the given accuracy ǫ.

Algorithm 2 FW algorithm for (25)

Require: Choose µ0 satisfies
∑

i∈I µ
0
i = 1, the maxi-

mum number of iterations K;
Ensure:
for each t = 1 : K do

Compute ̺t = argmin
∑

i∈I
̺i=1

̺T ∂Ξ(µt);

Obtain the optimal update step κt;
update µt+1 = µt + κt(̺t − µt);

end for
return µt+1;

Next, we consider the update of zi. The optimization
problem (23) is a quadratic constraint quadratic pro-
gramming (QCQP-1) problem, and its solution satisfies
the following theorem.

Theorem 3. z∗i is the optimal solution of optimization
problem (23) if and only if:

z∗i = (I + η∗i P
−1)−1(x̂− ri +

1

ρ
λi) + ri, (26)

where η∗i = max{0, φ∗i }, φ
∗
i is the largest solution of

g(φi) = 1, and g(φi) is defined as:

g(φi) = (x̂− ri+
1

ρ
λi)

T (I − φiP
−1)−1P−1

· (I − φiP
−1)−1(x̂ − ri +

1

ρ
λi).

Proof: See Appendix D. �
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Remark 6. The iteration of zi requires solving an equa-
tion g(φi) = 1. According to the proof of Theorem 3,
g(φi) is a monotonically decreasing function which can
be efficiently solved by many methods, e.g., the bisection
method and Newton’s method [57].

4.2 Update of x̂

Now we consider the update of x̂. For the optimization
problem (10), the updated x̂ can be obtained by solving:

min
x̂

∑

i∈I

λTi (x̂− zi) +
ρ

2

∑

i∈I

‖x̂− zi‖
2, (27)

where the optimal solution is x̂∗ = 1
s

∑

i∈I(zi −
1
ρ
λi).

For the optimization problems (8) and (11), the updated
x̂ can be obtained by solving:

min
x̂

∑

i∈I

λTi (x̂− zi) +
ρ

2

∑

i∈I

‖x̂− zi‖
2,

s.t. g(x̂) = 0. (28)

The necessary optimality conditions of (28) is [57]:
∑

i∈I

λTi + ρ
∑

i∈I

(x̂− zi) +∇g(x̂)u = 0, g(x̂) = 0, (29)

where u is the Lagrange multiplier vector. The nonlin-
ear equations (29) are called the Lagrangian system and
can be solved by first-order and second-order methods,
such as Lagrangian and Newton’s methods [53]. Differ-
ent algorithms to slove the problem (28) can be selected
according to the different form of the constraint func-
tion. Specifically, if g is a linear function, then (28) is a
quadratic programming (QP) problem, and we have the
following theorem.

Theorem 4. For a linear estimation constraint g(x̂) =
Cx̂ − c, the update of x̂∗ can be computed analytically
and is given by:

x̂∗ = C†c+ UU †(d− C†c), (30)

where d = 1
s

∑

i∈I(zi −
1
ρ
λi) and U = I − C†C is an

orthogonal projection matrix in N (C).

Proof: See Appendix E. �

To sum up, the detailed consensus-ADMM algorithm for
solving the problem (12) is given in Algorithm 3.

Remark 7. When the equality constraints cannot hold
exactly due to uncertainties, the perturbed equality con-
straints can be regarded as inequality constraints. By re-
placing the equality constraint in the SIP problem with
the inequality constraint and solving an inequality con-
strained problemwhen updating x̂, the proposedmethod
can be extended to the inequality constraint case. For
example, if the inequality constraint function is linear,

Algorithm 3 Consensus-ADMM algorithm for (12)

Require: The set T , the number of samples s, penalty
parameter ρ > 0, tolerance ǫ > 0; Initialize x̂, zi and
λi;

Ensure:
Generate samples r1, r2, ..., rs from set T ;
repeat

Solve optimization problem (25) to get the dual
variable µ (see Algorithm 2);

Calculate P by equation (24);
for each i = 1 : s do

Solve the QCQP-1 (23) to get zi;
end for
if g is a linear function then

Calculate x̂ by (30);
else

Solve the Lagrangian system (29) to get x̂;
end if
Calculate λi = λi + ρ(x̂− zi);

until the successive difference of x̂ is smaller than a
tolerance ǫ, or the number of iterations reaches a given
maximum;
return x̂ and P ;
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Fig. 1. The logdet and the center of the estimation ellipsoids
with different sampling number (left) and

∑s

i=1 ‖z
t
i−x̂

t‖ and

‖x̂t+1 − x̂
t‖ versus iteration number with s = 100 (right).

then the proposed SMF algorithm needs to solve the lin-
ear inequality constrained SIP problems. Moreover, the
problem of updating x̂ in the consensus-ADMM iterates
is a QP problem and can be solved by Theorem 4.

In the following example, we focus on the measurement
ellipsoids obtained by Algorithm 3 using different num-
bers of the samples.

Example 1. Let h(v̂) = [
√

v̂21 + v̂22 , arctan(v̂2/v̂1)]
T for

v̂ = [v̂1, v̂2]
T . Consider the problem (12) with g(x̂) =

[1,−1]x̂ and T = {r = h−1(v0 − v), v ∈ E(0, R̂), v0 =

h([100, 100]T )}, where R̂ = diag(202, 0.12). By generat-

ing s random vectors from the ellipsoid E(0, R̂), problem
(12) is expressed as:

min
x̂,P

log det(P )

s.t. (ri − x̂)
TP−1(ri − x̂) ≤ 1,

[1,−1]x̂ = 0, i ∈ I, (31)

where ri ∈ T , I = {1, 2, ..., s}, and x̂ = [x̂1, x̂2]
T . Fig. 1
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(left) plots the log det(P ) and the center of the bounding
ellipsoid of set T obtained by solving problem (31) via
Algorithm 3 for the different number of samples s. A to-
tal of 50 Monte Carlo runs are simulated. It shows that
the logdet and the center can quickly converge to a stable
value as the number of samples s increases. Therefore,
Algorithm 3 can get stable estimation ellipsoids with a
small number of samples. Furthermore,

∑s
i=1 ‖z

t
i − x̂

t‖
and ‖x̂t+1− x̂t‖ versus the number of iterations t for one
random problem instance with s = 100 are plotted in
Fig. 1 (right). It shows that the differences between zti
and x̂t, x̂t and x̂t+1 rapidly decrease as the number of
the algorithm iterations increases, i.e., (20)-(21) are sat-
isfied indeed. In addition, the partial stopping criterion
(the successive difference of x̂ is smaller than a given tol-
erance) is also satisfied as the number of the iterations
increases.

4.3 Consensus-ADMM method versus semidefinite
programming (SDP) method

Consider the optimization problem (13) with a linear
constraint (g is a linear function), which can be rewritten
by Schur complement [57]:

min
x̂,P

log det(P )

s.t.

[

P (ri − x̂)

(ri − x̂)T 1

]

� 0, g(x̂) = 0, i ∈ I, (32)

where g(x̂) = Cx̂− c. The solution of the linear estima-
tion constraint is x̂ = C†c+ Uγ, where U = I − C†C is
an orthogonal projection matrix in N (C) and γ ∈ R

n is
arbitrary. Then the problem (32) can be rewritten as an
SDP problem by defining H = P−1 and δ = P−1Uγ:

min
δ,H

− log det(H)

s.t.

[

H H(ri − C†c)− δ

(H(ri − C†c)− δ)T 1

]

� 0,

i ∈ I. (33)

In the problem (33), the dimension of decision variables

is M = n(n+1)
2 + n and the dimension of the constraint

matrix is N = s(n+1). By using a primal-dual interior-
point method to solve (33), the worst-case estimate re-
quires O(M2.75s1.5) arithmetic operations to solve the
problem with a given accuracy [58,59]. Nevertheless, the
consensus-ADMM method requires O(n3 + sn2) arith-
metic operations to solve the problem (13) with a lin-
ear constraint. Specific solution steps and corresponding
computational complexity are as follows:

• Update of P : Algorithm 2 is used to obtain the up-
dated µ∗. Each iteration of Algorithm 2 requires
O(n2 +(n+1)s) arithmetic operations, and calculat-
ing P ∗ by equation (24) requires O(sn2) arithmetic
operations.

• Update of zi: The arithmetic operations is O(n)
for each i at each iteration by caching the eigen-
decomposition of P and using Newton’s method
to solve the equation g(φi) = 1 [37]. The eigen-
decomposition of P requires O(n3) arithmetic opera-
tions.
• Update of x̂: Calculating x̂∗ by equation (30) requires
O(n3) arithmetic operations.

Therefore, consensus-ADMM method requires O(n3 +
sn2) arithmetic operations to solve the problem (13)
with a linear constraint, which is much lower than
O(M2.75s1.5) arithmetic operations of the SDP method.

For the problem (13) with a quadratic constraint, by sim-
ilar analysis and using the Newton’s method to calcu-
late the updated x̂∗, the consensus-ADMM method also
requires O(n3 + sn2) arithmetic operations to solve it.
For the problem (13) with a general form constraint, the
consensus-ADMM method requires O(n3 + sn2) arith-
metic operations together with the computation of the
constraint function and its gradient to solve it since the
computational complexity of updating x̂ depends on the
specific form of the constraint function, and it costs com-
putation of the constraint function and its gradient to-
gether withO(n3) arithmetic operations to obtain an up-
dated x̂∗ via a basic implementation of Newton’s method
at each iteration [53]. Nevertheless, the SDP method is
not suitable for solving the problem (13) with the non-
linear constraint.

In the following example, we compare the computing
time for solving problem (32) by using SDPT3 [60] and
the consensus-ADMM algorithm, respectively.

Example 2. Suppose there are s samples ri ∈ R
n̂ that

are generated by a random generate ellipsoid E(0, P̂ ).

C = [Ĉ,−1, 0, ..., 0] ∈ R
1×n̂, c = 0, and Ĉ is gener-

ated by the standard uniform distribution. The com-
puting time of different methods for solving problem
(32) is given in Table 1. SDP indicates that the SDP
problem (33) is solved by SDPT3, C(S)-ADMM indi-
cates sequential computation at the update of zi when
solving the problem (32) with the consensus-ADMM
algorithm, and C(P)-ADMM indicates parallel compu-
tation at the update of zi when solving the problem
(32) with the consensus-ADMM algorithm. The results
show that the consensus-ADMM algorithm takes less
computing time than the SDP method. It is consistent
with their computational complexity as O(n3+sn2) and

O((n(n+1)
2 + n)2.75s1.5), respectively. In this example,

the computation times of the consensus-ADMM algo-
rithms are on the order of 0.1∼1 sec. The alternative
approach to further reduce the computation time of the
proposed consensus-ADMMalgorithm is using the hard-
ware acceleration methods or selecting specific subprob-
lem solvers according to the structure of the optimiza-
tion problems.
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Table 1
The mean computing time of SDPT3 and consensus-ADMM
algorithms over 50 Monte Carlo runs.

n̂ s SDP C-ADMM(S) C-ADMM(P)

5 50 1.0308 0.0909 0.0702

5 100 1.6117 0.1382 0.1051

5 200 2.7122 0.2102 0.1504

5 400 5.2300 0.2823 0.1864

5 800 10.6809 0.3623 0.1918

5 1600 22.8754 0.5629 0.2400

10 50 1.3213 0.1612 0.1027

10 100 2.3113 0.3436 0.2563

10 200 4.5404 0.4967 0.3778

10 400 9.4156 0.6119 0.4334

10 800 21.0134 0.7180 0.4075

10 1600 53.0252 1.0270 0.4809

5 Simulation

In this section, we compare the performance of the
consensus-ADMM-based method in Algorithm 1 with
using the estimation constraints to both the predic-
tion step and update step, the consensus-ADMM-based
method in Algorithm 1 with only using the estimation
constraints to the update step, dual set membership
filter [16] and the set membership filter with state con-
straints [27,28] by two numerical examples. To distin-
guish these methods, we abbreviate them as C-ADMM-
SMF(EC), C-ADMM-SMF(MC), DSMF, and SMF-SC,
respectively. Since SMF-SC considers the linear dy-
namic systems, we use the method in [15] to linearize the
nonlinear measurement function by performing Taylor
expansion at the state prediction in [16].

5.1 Linear estimation constraint

In this example, we consider the problem of tracking a
target in two dimensions, and the dynamic system is
given by:

xk+1 =















1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1















xk + wk, (34)

yk =





√

(sxk − a)
2 + (syk − b)

2

arctan(
s
y

k
−b

sx
k
−a

)



+vk, (35)

where xk := (sxk, s
y
k, σ

x
k , σ

y
k) and T = 1 is the sam-

pling time. The noises are assumed to be restricted in
wk ∈ E(0, Qk) and vk ∈ E(0, Rk), respectively, where
Qk = 10I4×4 and Rk = diag(202, 0.12). The estima-
tion constraint on the above system is Cx̂k = c, where

C =

[

2 −1 0 0

0 0 2 −1

]

and c = [0, 0]T .

In the simulation, the initial state x0 = [0, 0, 25, 50]T

and a = 15000, b = 0. Assume the initial es-
timate x̂0 of the state is a random disturbance
around the initial state, P0 = 1002I4×4, and wk =
(sin(kπ/2), 2 sin(kπ/2), sin(kπ/4), 2 sin(kπ/4)). A to-
tal of 100 Monte Carlo runs are simulated. The root
mean square error (RMSE) is defined as RMSEk =
√

1
L

∑L
i=1(x̂

i
k − x

i
k)

2, where x̂ik and xik are the state

estimation and true state at the k-th time step and i-th
Monte Carlo, respectively. L is the number of the Monte
Carlo runs.
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Fig. 2 shows the trajectories of the true state, the state
estimates, and the state bounding ellipsoids obtained by
different methods. Fig. 3 plots the logdet of the shape
matrix of the state bounding ellipsoids and the state
estimation error versus time steps obtained by differ-
ent methods. Figs. 2-3 show that the size of the state
bounding ellipsoids obtained by C-ADMM-SMF(EC)
and C-ADMM-SMF(MC) is smaller than that of DSMF
and SMF-SC and the RMSE of C-ADMM-SMF(EC)
and C-ADMM-SMF(MC) is less than that of DSMF
and SMF-SC. Consistent with the results in Fig. 2, Fig.
4 shows that the state estimation provided by DSMF
and SMF-SC do not always lie on the constraint, while
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C-ADMM-SMF(EC) and C-ADMM-SMF(MC) do pro-
duce estimates that satisfy the constraint. The reason
is that DSMF does not use the constraint information
and C-ADMM-SMF(EC) and C-ADMM-SMF(MC) use
the SIP approach to transform the nonlinear system
into a linear one to obtain a more accurate estimation
ellipsoid and use the estimation constraint information
to produce the estimation that satisfies the constraint.
In addition, the performance of C-ADMM-SMF(EC)
and C-ADMM-SMF(MC) is similar. The reason may
be that C-ADMM-SMF(EC) produces a more accurate
predicted ellipsoid, so the state bounding ellipsoid de-
termined by C-ADMM-SMF(EC) is similar to that of
C-ADMM-SMF(MC).

5.2 Nonlinear estimation constraint

In the case of nonlinear estimation constraints, we con-
sider the dynamic system of the following form:

xk+1 =















1 0 sinwT
w

− 1−coswT
w

0 1 1−coswT
w

sinwT
w

0 0 coswT − sinwT

0 0 sinwT coswT















xk + wk, (36)

where xk := (sxk, s
y
k, σ

x
k , σ

y
k), the measurement function

and the settings for noises wk and vk are the same as in
the linear case. The state estimation constraints on this
dynamic system are x̂TkC1x̂k = c21 and x̂TkC2x̂k = c22,

where C1 =

[

I2×2 02×2

02×2 02×2

]

, C2 =

[

02×2 02×2

02×2 I2×2

]

, c1 = 10,

and c2 = 0.05.

In this simulation, the sampling time is T = 1,
a = −20000, b = 5000, and the initial state is
x0 = (0, 10,−0.05, 0). The settings of the initial state
bounding ellipsoid and the total Monte Carlo runs are
the same as in the linear case.

The simulation results are similar to the case of the
linear estimation constraint. Figs. 5-6 show the trajec-
tories of the true state, the state estimates, and the
state bounding ellipsoids, logdet of the shape matrix of
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Fig. 7. Satisfaction of the constraints.

the estimation ellipsoids, and the RMSE of the state es-
timation versus time steps by C-ADMM-SMF(EC), C-
ADMM-SMF(MC), DSMF, and SMF-SC, respectively.
They show that C-ADMM-SMF(EC) and C-ADMM-
SMF(MC) perform better than DSMF and SMF-SC,
and the performance of C-ADMM-SMF(EC) and C-
ADMM-SMF(MC) are similar. Fig. 7 presents the
distance between the state estimations and the center
point of the constraints. Consistent with the results in
Fig. 5, which also shows that the state estimation pro-
vided by DSMF and SMF-SC do not always satisfy the
constraint, while C-ADMM-SMF(EC) and C-ADMM-
SMF(MC) do. Similar to the linear constraint case, the
reason is also that C-ADMM-SMF(EC) and C-ADMM-
SMF(MC) use the SIP approach to transform the non-
linear system into a linear one instead of linearizing the
nonlinear system to obtain a more accurate estimation
ellipsoid.

6 Conclusion

This paper considered the problem of state estima-
tion for nonlinear dynamic systems with unknown
but bounded noises and state estimation constraints.
We developed a recursive set membership algorithm
to compute the state bounding ellipsoid that includes
the prediction and measurement update steps, with
the center of the ellipsoid satisfies the constraint. The
nonlinear dynamic system is transformed into a lin-
ear system by solving the SIP problems instead of
linearizing the nonlinear functions, which allows us to
obtain a tighter state bounding ellipsoid. In addition, a
consensus-ADMM-based algorithm is proposed to solve
the SIP problems and each iteration of the algorithm
can be solved efficiently. Finally, typical numerical ex-
amples have demonstrated the effectiveness of the pro-
posed method. Future research directions may include
the state estimation problem for more general dynamic
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systems (e.g., maintaining the state estimation perfor-
mance when the measurement function is not invertible
or the dynamic systems are nonlinear in the noises), the
investigation of the more efficient algorithms for solving
the nonconvex SIP problems (e.g., exploring algorithms
with lower computational complexity), and the general-
ization of the proposed filter to multi-sensor fusion.
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A The proof of Lemma 1

Proof: According to Theorem 4.1 in [17] and (6), the
center of the predicted ellipsoid Ek+1|k is given by
x̂k+1|k = x̂fk + 0, thus we obtain the result. �

B The proof of Theorem 1

Proof: Define H = P−1, then (13) can be rewritten as:

min
x̂,H

− log det(H)

s.t. (ri − x̂)
TH(ri − x̂) ≤ 1,

g(x̂) = 0,

i ∈ I. (B.1)
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A KKT point {H∗, x̂∗} of (B.1) and the corresponding
dual variables ς∗i and κ

∗ satisfy that:

−(H∗)−1 +
∑

i∈I

ς∗i (ri − x̂
∗)(ri − x̂

∗)T = 0,

κ
∗∇g(x̂∗)− 2

∑

i∈I

ς∗i H
∗(r − x̂∗) = 0,

ς∗i ≥ 0,

(ri − x̂
∗)TH∗(ri − x̂

∗) ≤ 1,

g(x̂∗) = 0,

ς∗i ((ri − x̂
∗)TH∗(ri − x̂

∗)− 1) = 0,

∀i ∈ I.

Let the superscript t denote the point obtained at iter-
ation t. At iteration t+1, let H = P−1 in the optimiza-
tion (17) and assume that each zti is well defined, from
(17) - (19) we have:

−(Ht+1)−1 +
∑

i∈I

̟t+1
i (ri − z

t+1
i )(ri − z

t+1
i )T = 0,

(B.2)

−λti − ρ(x̂
t − zt+1

i )− 2̟t+1
i Ht+1(ri − z

t+1
i ) = 0,

(B.3)

(ri − z
t+1
i )THt+1(ri − z

t+1
i ) ≤ 1,

(B.4)

̟t+1
i ≥ 0

(B.5)

̟t+1
i ((ri − z

t+1
i )THt+1(ri − z

t+1
i )− 1) = 0

(B.6)
∑

i∈I

λti + ρ
∑

i∈I

(x̂t+1 − zt+1
i ) + ψt+1∇g(x̂t+1) = 0,

(B.7)

g(x̂t+1) = 0,
(B.8)

∀i ∈ I,

where̟t+1
i and ψt+1 are dual variables of (17) and (18),

respectively. By adding equation (B.3) from i = 1 to
i = s, and use the fact that λt+1

i = λti + ρ(x̂t+1 − zt+1
i )

we have:

−
∑

i∈I

λt+1
i + ρs(x̂t+1 − x̂t)

− 2
∑

i∈I

̟t+1
i Ht+1(ri − z

t+1
i ) = 0. (B.9)

Furthermore, based on the assumption and (B.7), we can
get:

ψt+1∇g(x̂t+1)− 2
∑

i∈I

̟t+1
i Ht+1(ri − z

t+1
i ) = 0.

(B.10)

Let̟t+1
i = ς∗i and ψt+1 = κ

∗, then the rest of the KKT
conditions can be guaranteed by the assumptions. �

C The proof of Theorem 2

Proof: Define H = nP−1 and αi = ri − zi, (22) can be
rewritten as:

min
H

− log det(H),

s.t. αT
i Hαi ≤ n,

i ∈ I. (C.1)

The Lagrangian function of (C.1) is:

L(H,µ) = − log det(H) +
∑

i∈I

µi(α
T
i Hαi − n),

and the dual problem of (C.1) is

max
µ

min
H

L(H,µ)

s.t. µ ≥ 0. (C.2)

The inner minimum in (C.2) is achieved at H∗ if and
only if:

0 = ∇HL(H
∗, µ) = −H∗−1 +

∑

i∈I

µiαiα
T
i . (C.3)

From (C.3) we have:

L(H∗, µ) = log det(
∑

i∈I

µiαiα
T
i )− n

∑

i∈I

µi

+
∑

i∈I

µiα
T
i (

∑

i∈I

µiαiα
T
i )

−1αi,

(C.4)

where
∑

i∈I

µiα
T
i (

∑

i∈I

µiαiα
T
i )

−1αi

=
∑

i∈I

tr(µiα
T
i (

∑

i∈I

µiα
T
i )

−1αi)

=
∑

i∈I

tr((
∑

i∈I

µiαiα
T
i )

−1µiαiα
T
i )

= tr((
∑

i∈I

µiαiα
T
i )

−1(
∑

i∈I

µiαiα
T
i ))

= n.

Thus, the dual problem (C.2) is:

max
µ

log det(
∑

i∈I

µiαiα
T
i )− n

∑

i∈I

µi + n

s.t. µ ≥ 0. (C.5)

For any µ̂ can be written as tµ, where t is nonnegative
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and
∑

i∈I µi = 1, µ ≥ 0, then

log det(
∑

i∈I

µ̂iαiα
T
i )− n

∑

i∈I

µ̂i + n

= log det(t ·
∑

i∈I

µiαiα
T
i )− nt+ n

= log det(
∑

i∈I

µiαiα
T
i ) + n · logt− nt+ n, (C.6)

and this is maximized by choosing t = 1. Thus, (C.5)
becomes:

max
µ

log det(
∑

i∈I

µiαiα
T
i )

s.t.
∑

i∈I

µi = 1, µ ≥ 0. (C.7)

Thus, the optimal solution of (C.1) is

H∗ = (
∑

i∈I

µ∗
iαiα

T
i )

−1, (C.8)

where µ∗ is the optimal solution of (C.7), which means

P ∗ = n
∑

i∈I

µ∗
i (ri − zi)(ri − zi)

T (C.9)

is the optimal solution of (22). �

D The proof of Theorem 3

Proof: By defining χi = zi − ri, (23) can be written as

min
χi

‖χi − (x̂− ri +
1

ρ
λi)‖

2
2,

s.t. χT
i P

−1χi ≤ 1. (D.1)

Clearly, the optimization problem without the con-
straint χT

i P
−1χi ≤ 1 can be minimized as χi =

x̂− ri +
1
ρ
λi. Therefore if:

(x̂− ri +
1

ρ
λi)

TP−1(x̂− ri +
1

ρ
λi) ≤ 1, (D.2)

we have χ∗
i = x̂ − ri +

1
ρ
λi is the optimal solution. If

not, the optimal solution χ∗
i must satisfy χ∗

i
TP−1χi = 1.

Thus (D.1) can be reformulated as:

min
χi

‖χi − (x̂− ri +
1

ρ
λi)‖

2
2

s.t. χT
i P

−1χi = 1, (D.3)

and the Lagrangian function of (D.3) is:

L(χi, φi) = ‖χi − (x̂ − ri +
1

ρ
λi)‖

2
2

+ φi(χ
T
i P

−1χi − 1). (D.4)

Denote χ∗
i as the optimal solution of (D.3), based on the

KKT optimality conditions, we have:

∇χi
L(χ∗

i , φi) = 0, (D.5)

for some φi ≥ 0. From (D.5) we have:

χi = (I+φiP
−1)−1(x̂− ri +

1

ρ
λi). (D.6)

Let P = EΓET be the eigenvalue decomposition of P
and plugging (D.6) back into the equality constraint
χT
i P

−1χi = 1, we have:

n
∑

j=1

d2j
(φi + βj)2

= 1, (D.7)

where Γ = diag{β1, β2, ..., βn}, and d = ETP
1
2 (x̂− ri +

1
ρ
λi). Let

g(φi) =

n
∑

j=1

d2j
(φi + βj)2

, (D.8)

we have:

g
′

(φi) = −2
n
∑

j=1

d2i
(φi + βi)3

< 0. (D.9)

Because of g(0) > 1 and g(φi) monotonically decreases
to zero as φi →∞. Therefore the equation g(φi) = 1 has
exactly one nonnegative solution φ∗i , and the optimal
solution is χ∗

i = (I + φ∗iP
−1)−1(x̂− ri +

1
ρ
λi). Let z

∗
i =

χ∗
i + ri, we can obtain the final result. �

E The proof of Theorem 4

Proof: Consider the linear equality constraint Cx̂− c =
0 with the solution x̂ = C†c+Uγ, where γ ∈ R

n is arbi-
trary. Then, the optimization problem (28) of updating
x̂ is transformed into:

min
γ

∑

i∈I

λTi (C
†c+ Uγ − zi) +

ρ

2

∑

i∈I

‖C†c+ Uγ − zi‖
2,

(E.1)

which can be further simplified as:

min
γ
‖Uγ + C†c+

1

s

∑

i∈I

(
λi
ρ
− zi)‖

2
2, (E.2)

where the solution is:

γ = U †(
1

s

∑

i∈I

(zi −
λi
ρ
)− C†c). (E.3)

Substituting (E.3) into x̂ = C†c+Uγ yields the result.�
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