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Abstract

In adaptive sliding mode control methods, an updating gain strategy associated with finite-time convergence to the sliding set
is essential to deal with matched bounded perturbations with unknown upper-bound. However, the estimation of the finite
time of any adaptive design is a complicated task since it depends not only on the upper-bound of unknown perturbation
but also on the size of initial conditions. This brief proposes a uniform adaptive reaching phase strategy (ARPS) within a
predefined reaching-time. Moreover, as a case of study, the barrier function approach is extended for perturbed MIMO systems
with uncertain control matrix. The usage of proposed ARPS in the MIMO case solves simultaneously two issues: giving a
uniform reaching phase with a predefined reaching-time and adapting to the perturbation norm while in a predefined vicinity
of the sliding manifold.
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1 Introduction

Adaptive sliding mode control (ASMC) is an efficient
technique for compensating matched perturbations:
uncertainties and disturbances without knowing their
upper-bound [1,7,8,12,13,15,16,19]. ASMC should si-
multaneously solve two issues:

(i) Reaching phase (RP). The controller’s gain increases
to a value confining the system’s trajectories inside
some neighborhood of a sliding set (NSS) in a finite
reaching-time (RT).

(ii) Adaptive phase (ASP). Once in the NSS, the con-
troller’s gain is updated at the RT moment to maintain
the system’s trajectories following sliding dynamics.

Whether all approaches above accomplish (ii) by keep-

? The material in this paper was not presented at any con-
ference.
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ing some NSS while fixing [12,8] or reducing [17,16] the
gains; or by ensuring a predefined NSS that will never
be exceeded via barrier [13,14,11] and monitoring [7,15]
functions based gains. Their common characteristic re-
lies on (monotonically) increasing the controller’s gain
to solve (i). However, even when RP theoretically oc-
curs in a finite-time, a dichotomy exists between the es-
timated RT and the size of initial conditions with the
unknown upper bound of perturbations. Therefore RT
is unpredictable since the perturbation might not attain
its upper-bound at the end of the RP as initial condi-
tions could take any value. The next example illustrates
the compromise between the initial conditions and the
perturbations’ upper-bound with the RT.

1.1 Motivating example

Consider a system of the form σ̇(t) = H(t, σ(t))ν(t) +
f(t, σ(t), ρ), σ(0) = b√

2
(10n − 10n)T , with

f(t, σ, ρ)=ρ

(
a1 + 0.4 sin(ω1t) + 0.01 cos(20t+ σ2)

b1 + 0.2 sin(ω2t) + 0.02 cos(15t+ σ2)

)
,

H(t, σ)=

(
1 + 1

2 cos(σ1) 13
30 cos(σ1)− 1

30 sin(5t+ σ2)

0 1 + 1
5 cos(σ1) + 1

10 sin(5t+ σ2)

)
,
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where H and f denote the input matrix and a matched
disturbance, respectively. Let ρ, b, a1, b1, ω1, ω2 ∈ R+

and n ∈ N denote constant values parametrizing the
perturbation and initial conditions of the system. Con-

sider the control input ν(t) = k̂(t, σ)σ/‖σ‖ during RP.
Adopting an ASMC strategy (cf. with [13,16]) of the

form
˙̂
k = K̄‖σ‖, k̂(0) = k̂0, it can be ensured that

for any ε > 0 and K̄ ∈ R+ there exist t̄(σ0, ρ) such
that ‖σ(t)‖ = ε

2 at t = t̄. For simulation purposes, set

a1 = 1, b1 = 1.2, ω1 = 3, ω2 = 2, K̄ = 100, ε = 0.05,

k̂0 = 0 and take fixed parameters ρ ∈ [0, 1000], n ∈ [1, 4],
b ∈ [1, 9] increasing the upper-bound of the matched dis-
turbance ‖f(t, ρ)‖2 ≤ 2.63ρ and the norm of initial con-
dition ‖σ0‖ = b× 10n in different simulations scenarios.
Fig. 1 illustrates that even though RT t̄(σ0, ρ) to a set
{‖σ‖ = ε/2} is finite, it is not uniform with respect to
the initial conditions and the size of perturbation.

Fig. 1. Non-uniform RT under increasing norm of initial
conditions and size of perturbations

Moreover, if an expression for t̄(σ0, ρ) is available, it is
impossible to estimate it since t̄ depends not only on the
initial conditions but on a priori unknown upper-bound
of the perturbation. An adaptive controller design based
on the latter methods is unreliable since RT t̄ to some
NSS cannot be a priori known nor to be estimated.

1.2 Contribution of the paper

The paper presents a uniform adaptive reaching phase
strategy (ARPS) ensuring a predefined convergence time
to the predefined NSS, which can be useful for different
ASMC algorithms [12,13,16] dealing with bounded per-
turbations with unknown upper-bound. Similarly with
[2,3,5,6,9,18], the gain of proposed controller is growing
when the trajectories are tending to the sliding set. But
in contrast with a method [2,3,6,9,18] the proposed con-
trollers’ gain is updating its value to the size of pertur-
bation and kept bounded because the proposed method
just requires the system’s trajectories to reach first time
NSS but not the sliding set. Therefore, the RT for the

system’s trajectories, starting from any initial conditions
to reach NSS, is uniformly bounded by a predefined time
constant despite of the presence of perturbations with
unknown upper-bound. At the first time moment when
the trajectories are reaching the subset {||σ|| = ε/2}, one
of the ASMC from [12,13,16] should be switched on.

To show the efficiency of proposed APRS the barrier
function (BF) approach is generalized covering two im-
portant classes of systems: MIMO systems and systems
with uncertain control matrix with unknown upper-
bound. Then it is shown that a combination of proposed
ARPS with BF adaptation ensure that: convergence
to NSS is given in a predefined-time; the APRS gain
reflects the value of perturbations; the control gain is
bounded even when the upper bounds of the norms of
perturbations and initial conditions are unknown.

Notation. For σ ∈ Rm, ‖σ‖ denotes the Euclidean
norm. The set R+ denotes the set of non-negative real
numbers. For any square matrix A, λmin(A) denotes the
smallest eigenvalue of A. Euler method is employed in
numerical simulations with sampling step ∆τ = 1×10−6.

2 Problem statement and main result

Consider a multivariable first order uncertain system

σ̇(t)=G(t,σ(t))[I+∆g(t,σ(t))]u(t)+f(t,σ(t)), σ(0)=σ0,
(1)

where σ ∈ Rm is the output, u ∈ Rm is the control input,
G ∈ Rm×m is a known function, f ∈ Rm, ∆g ∈ Rm×m
are unknown measurable functions in t, for all σ ∈ Rm,
and continuous functions in σ, for almost all t ≥ 0.

Assumption 1 For all (t, σ) ∈ R+ ×Rm, rankG = m.

Assumption 2 For all (t, σ) ∈ R+ × Rm, there exist
unknown positive constants d, q > 0 such that ‖f(t, σ)‖ ≤
d and ‖G(t, σ)∆g(t, σ)G(t, σ)−1‖∞ ≤ q < 1.

Consider a control input of the form

u(t) = G(t, σ)−1ν(t), ν(t) = −Λ(t, σ) σ
‖σ‖ , (2)

where Λ(t, σ) : R+ × Rm → R+ is the controller’s gain.
Since (2) is discontinuous, the solutions of the closed-
loop system (1)-(2) are understood in the sense of Filip-
pov [4]. Under Assumption 2, any solution of the system
(1)-(2) with all control components with the same upper-
bound |νi(t)| ≤ C, C > 0 satisfies the differential inclu-
sion σ̇i(t) ∈ [−d, d]+[−q, q]C+νi(t), σ = 0, i = 1, . . . ,m.
From this relation it is clear that a sliding mode will be
enforced for any sufficiently large gain C since q < 1.

Assumption 3 For all (t, x) ∈ R+ × Rm,

q1 := λmin

(
1
2 (G(t, σ)∆g(t, σ)G(t, σ)−1

+G(t, σ)−T∆gT (t, σ)G(t, σ)T )
)
> −1.
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Remark 4 Assumption 3 assures that the uncertain
control matrix ∆g(t, σ) could reduce the control effort
whenever the eigenvalue q1 takes positive values.

This paper proposes a solution for the predefined-time
RP problem for ASMC still missing to be solved. In par-
ticular, the design of an adaptive gain during RP is pre-
sented, ensuring that the RT to a real sliding mode is
upper-bounded with a predefined upper-bound.

2.1 Main result

Since upper-bound of perturbations are unknown, con-
sider the controller’s gain of form

Λ(t, σ) = β̂(t) + κ(t)‖σ‖, κ(t) = 1
α(Tc−t) ,

˙̂
β(t) = ‖σ‖, β̂(0) = β̂0,

(3)

with known positive constants α ∈ (0, 1), and Tc > 0
as a prescribed RT upper-bound. During RP, the gain
increases until the value allowing the compensation of
the perturbations, such that the system’s trajectories
reach the set

{
‖σ(t)‖ = ε

2

}
in predefined time, i.e., at

a time t = t̄ < Tc where κ(t) < ∞ if ‖σ‖ ≥ ε/2 and
κ(t) → ∞ as σ → 0. The next lemma resume the main
result of the paper, i.e., the predefined RT upper-bound
during RP is ensured. Its proof is given in Appendix A.

Lemma 5 Given any Tc > 0 and ε > 0, ‖σ0‖ > ε/2.
Consider the closed loop system (1)-(2) with adaptive
gain (3). If Assumptions 1-3 are fulfilled, then ‖σ(t̄)‖ =
ε/2 at t = t̄ < Tc.

Remark 6 The proposed gain in (3) is composed of two
parts. The proportional term (cf. with [5,6]) ensures that
the norm of the output reaches zero at the prescribed time
Tc with unbounded gain. The second part increases more
the gain from the beginning, allowing the output to reach
the value ‖σ(t̄)‖ = ε/2 in a time moment t̄ < Tc, than
only using the first part. As a result the control objective
is ensured with a bounded gain and input.

2.2 Motivating example revisited

Under the same simulation scenario as in the example
in subsection 1.1, consider system (1)-(3) with an ar-

bitrary RT upper-bound Tc = 0.1, α = 0.4, β̂0 = 0,

σ0 = b√
2

(10n − 10n)
T
, G(t, σ) =

(
2 −3

0 3

)
,

∆g(t, σ) =

(
1
2 cos(σ1) 0.2 cos(σ1) + 0.1 sin(5t+ σ2)

0 0.2 cos(σ1) + 0.1 sin(5t+ σ2)

)

where ρ ∈ [0, 1000], n ∈ [1, 4], b ∈ [1, 9]. Figure 2 illus-
trates that under the presence of perturbation different
size of perturbation and initial conditions, the trajecto-
ries of closed loop system in Lemma 5 will converge to

Fig. 2. Uniform upper-bound of RT under increasing norm
of initial conditions and size of perturbations

{‖σ‖ = ε/2} at time t = t̄ < Tc = 0.1. This situation en-
able us to cope the uniform RP strategy to an adaptive
design guaranteeing desired properties (i) and (ii).

3 Case of study: BF based adaptation of SMC

A remarkable approach in ASMC consist in the use of
BFs to ensure that a real sliding mode will never be
lost without big-overestimation of the perturbation in
the ASP. In this approach, and in order to switch the
adaptive gain to a BF, it is required the knowledge of
the RT when RP ended. Adopting the RP strategy in
Lemma 5, it is now possible to know when to switch to
a BF once the system’s trajectories converge into the
interior of the ε-vicinity of the sliding manifold at a RT
smaller than a priori given predefined time. First, we
generalize the class of BFs to the multivariable case and
then present the complete BF based ASMC approach.

3.1 Multivariable barrier functions

Definition 7 Given ε > 0, σ ∈ Rm such that
‖σ‖ < ε, the multi-variable barrier functions KBF(‖σ‖) :
[0, ε) → [β̄,∞) are defined as the class of strictly in-
creasing functions in [0, ε), with vertical asymptote
lim‖σ‖→ε− KBF(‖σ‖) = +∞, and a unique global mini-

mum at zero, i.e., KBF(0) = β̄ ≥ 0.

The class of barrier functions in this paper are those that
satisfy the following property. For any positive constant
β∗ ∈ R+, s := s(ε, β̄, β∗) is a root of KBF(s) − β∗ = 0
such that s < ε. Within this class, in the spirit of [13],
we consider the two types of multi-variable BFs:

• Positive definite BF KBF(‖σ‖) = Kpd(‖σ‖) with

Kpd(‖σ‖) = β̄ε
ε−‖σ‖ , s =

ε
(

1− β̄
β∗

)
if β̄ < β∗

0 if β̄ ≥ β∗

(4)
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• Positive semi-definite BF KBF(σ) = kpsd(σ) with

Kpsd(‖σ‖) = ‖σ‖
ε−‖σ‖ , β̄ = 0, s = εβ∗

1+β∗ (5)

Remark 8 The barrier functions (4) and (5) coincide
with the ones in [13] for m = 1.

3.2 Refinement of BF based ASMC

Consider the system (1)-(2) with adaptive gain

Λ(t, σ) =

β̂(t) + κ(t)‖σ‖, ˙̂
β(t) = ‖σ‖ if 0 ≤ t < t̄,

KBF(‖σ‖) if t ≥ t̄,
(6)

where t̄ < Tc, κ(t) := 1/(α(Tc−t)), with known positive
constants α, and Tc. In the first stage, termed RP, the
gain increases such that the system’s trajectories con-
verge into the manifold

{
‖σ(t)‖ = ε

2

}
at t = t̄ < Tc de-

spite the size of the upper-bound of perturbation and the
initial condition. During the second stage, termed ASP,
the gain is switched to a barrier function that adapts to
follow the perturbations variations while ensuring that
the trajectories will be contained in an ε−NSS for all fu-
ture times t ≥ t̄. The following result holds whose proof
is given in Appendix B.

Theorem 9 Given Tc > 0 and ε > 0. Consider the
closed loop system (1)-(2) with adaptive gain (6) If As-
sumptions 2-3 are fulfilled, then ‖σ(t)‖ < s < ε for all
t ≥ t̄, t̄ ≤ Tc and any σ0 ∈ Rm.

Remark 10 Notice that the adaptive gain k(t, x) in (6)
switches only once at a time smaller than Tc, without
letting that function κ(t) grows unbounded.

3.3 Numerical simulation

Consider again the motivating example in Section 2.2
and the positive-semidefinte BF in (5). Fix Tc = 0.1,

α = 0.4, β̂0 = 0, ε = 0.05. Two simulation scenarios
are illustrated in the presence of bounded disturbances
fρ1 := f(t, σ, ρ1) and fρ2 := f(t, σ, ρ2) with

ρ1 =


80 if 0 ≤ t < 0.2

50 if 0.2 ≤ t < 0.4

10 if t ≥ 0.4

, ρ2 =


10 if 0 ≤ t < 3

100 if 3 ≤ t < 6

200 if t ≥ 6

.

The first scenario is a closer look at ARPS of Theorem
9 by illustrating in Fig. 3 the norm of the output, input,
and control gain when a disturbance ‖fρ1‖ abruptly de-
creases its value at times t = 0.2 and t = 0.4. Parameters
were taken as ‖σ0‖ ∈ {1, 5, 10}, a = 1/ρ1, b = 1.2/ρ1,
ω1 = 30, ω2 = 20. As seen in top inset in Fig. 3, the out-
put norm attains the value of ε/2 (horizontal dashed line
in top-right inset) before time reaches the value of Tc = 1

Fig. 3. ARPS+BF scenario 1. (Top-left) Output norm during
RP. (Top-right) Zoomed in output norm at value ε/2. (Bot-
tom-left) adaptive gain (solid curves) vs. Decreasing norm of
disturbance (dashed curve). (Bottom-right) Input’s norm.

(vertical asymptote in top-left inset) with bounded con-
trol gain and input (see bottom insets in Fig. 3). For each
initial condition, the solution is continued by switching
the control input to the BF at different time instants
t̄ where Tc > t̄ ∈ {0.60182, 0.80938, 0.85879}. Before
swiching occurs, the solution does not follow perturba-
tion variations. After switching occurs, the gain becomes
lower and then follow perturbation variations with a
value less than the norm of the perturbation.

The second scenario consists on the complete illustra-
tion of the BF+ARPS approach for a bounded distur-
bance f(t, σ, ρ) with a = 1/ρ2, b = 1/ρ2, ω1 = 2, ω2 = 3.
Consider ‖σ0‖ = 1 with n = 0 and b = 1 for the sym-
metric initial conditions in previous examples. Taking
initial conditions outside the barrier width (BW) [0, ε),
the norm of the system trajectories during RP in Fig. 4
(top) attains the ε/2 neighbourhood of the sliding set by
increasing its gain to reach the disturbance norm before
the predefined time convergence (see middle plot in Fig.
4 ). Then, during ASP, the adaptive gain is switched to
a positive semi-definite BF keeping the norm of trajec-
tories at lower value than ε despite that disturbance in-
creases its value at times t = 3, 6. Notice that the gain
is bounded and updating according to disturbance vari-
ations while kept at a lower value than the norm of per-
turbation as illustrated in Fig. 4 (middle). The control
signal in Fig. 4 (bottom) is also bounded and continuous
(except at the time of switching gain and disturbance),
the latter is a consequence of using positive semi-definite
BF that decreases towards zero at the same rate than
the system trajectories’ norm. The behaviour of positive
definite BF during ASP can be seen in [13] for m = 1.

4 Conclusion

The ARPS is proposed completing ASMC concept:

• Controller’s gain is adaptive. The controller gain is
adapted in both RP and ASP. Moreover, the upper
bound of RT can be predefined in advance.

4



Fig. 4. BF+ARPS scenario 2. Trajectories initialized outside
of BW (top), adaptive gain and norm of disturbance (mid-
dle), control signals with corresponding disturbances (bot-
tom). Horizontal dashed asymptotes denote constant values
of ε = 0.05 and ε/2 = 0.025, vertical dashed asymptote de-
notes the prescribed time constant Tc = 1, dashed curves
denote disturbance norm or signals

• Adaptive gain is finite. ASMC+ARPS just require the
convergence to the subset {‖σ‖ = ε/2} that is why it
converges in predefined time whose upper-bound is a
prescribed time moment.
• To show the efficiency of the proposed APRS the BF

method is generalized covering two important classes
of systems: MIMO systems and systems with uncer-
tain control matrix with unknown upper-bound. It is
shown that a combination of proposed ARPS with
BF adaptation ensure a predefined time convergence
to NSS; the APRS gain reflects the value of pertur-
bations; the control gain is bounded even when the
upper bounds of the norms of perturbations and ini-
tial conditions are unknown. APRS can be extended
after the moment when a solution will reach the set
{‖σ‖ = ε/2} if the gain is switched to any other ASMC
algorithm, not restricted directly to other discontinu-
ous sliding mode algorithms or continuous ones with
appropriate modifications.
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[5] D. Gómez-Gutiérrez. On the design of nonautonomous fixed-
time controllers with a predefined upper bound of the settling
time. International Journal of Robust and Nonlinear Control,
30(10):3871–3885, 2020.

[6] J. Holloway and M. Krstic. Prescribed-time output feedback
for linear systems in controllable canonical form. Automatica,
107:77–85, 2019.

[7] L. Hsu, T. R. Oliveira, J. P. VS Cunha, and L. Yan. Adaptive
unit vector control of multivariable systems using monitoring
functions. International Journal of Robust and Nonlinear
Control, 29(3):583–600, 2019.

[8] G. P. Incremona, M. Cucuzzella, and A. Ferrara. Adaptive
suboptimal second-order sliding mode control for microgrids.
International Journal of Control, 89(9):1849–1867, 2016.

[9] E. Jimenez-Rodriguez, A. J. M Vázquez, J. D. Sánchez-
Torres, M. Defoort, and A. G. Loukianov. A lyapunov-
like characterization of predefined-time stability. IEEE
Transactions on Automatic Control, 65(11):4922–4927, 2020.

[10] Hassan K. Khalil. Nonlinear Systems. Prentice Hall, New
Jersey, 2002.

[11] S. Laghrouche, M. Harmouche, Y. Chitour, H. Obeid, and
L. Fridman. Barrier function-based adaptive higher order
sliding mode controllers. Automatica, 123:109355, 2021.

[12] D. Y. Negrete-Chávez and J. A. Moreno. Second-order
sliding mode output feedback controller with adaptation.
International Journal of Adaptive Control and Signal
Processing, 30(8-10):1523–1543, 2016.

[13] H. Obeid, L. Fridman, S. Laghrouche, and M. Harmouche.
Barrier function-based adaptive sliding mode control.
Automatica, 93:540–544, 2018.

[14] H. Obeid, S. Laghrouche, L. Fridman, Y. Chitour, and
M. Harmouche. Barrier function-based adaptive super-
twisting controller. IEEE Transactions on Automatic
Control, 65(11):4928–4933, 2020.

[15] T. R. Oliveira, G. T. Melo, L. Hsu, and J. P. VS
Cunha. Monitoring functions applied to adaptive sliding
mode control for disturbance rejection. IFAC-PapersOnLine,
50(1):2684–2689, 2017.

[16] F. Plestan, Y. Shtessel, and V. Bregeault. New methodologies
for adaptive sliding mode control. International journal of
control, 83(9):1907–1919, 2010.

[17] Y. Shtessel, M. Taleb, and F. Plestan. A novel adaptive-
gain supertwisting sliding mode controller: Methodology and
application. Automatica, 48(5):759–769, 2012.

[18] Y.D. Song, Y.J. Wang, J. Holloway, and M. Krstic. Time-
varying feedback for regulation of normal-form nonlinear
systems in prescribed finite time. Automatica, 83:243–251,
2017.

5



[19] X. Xiong, S. Kamal, and S. Jin. Adaptive gains to super-
twisting technique for sliding mode design. Asian Journal of
Control, 23(1):362–373, 2021.

A Proof of Lemma 5

By using a time scale transformation, it is shown that
RP ends before a prescribed convergence time Tc (uni-
formly in the initial conditions and upper-bound of per-
turbations). Consider the uncertain system (1) and the
time scale transformation given in [5]

t = Tc
(
1− e−ατ

)
⇔ τ = −α−1 ln

(
1− t

Tc

)
(A.1)

with α, Tc > 0, the resulting time scaled system is

y
′
(τ) = [(I + ∆G(τ, y))κ̄(τ)−1ν(τ) + f̄(τ, y(τ))],

(A.2)
where y(τ) := σ(t)|(A.1) is the state, ν(τ) := u(t)|(A.1)

is the input, ∆G(τ, y) := G(t, σ)∆g(t, σ)G(t, σ)−1|(A.1)

satisfies Assumption 3 and y
′

:=
dy

dτ
. The time scal-

ing makes the perturbation to vanish with κ̄(τ)−1 :=
κ(t)−1|(A.1) = αTc e−ατ , i.e,

f̄(τ, y(τ)) := κ̄(τ)−1f(t, x(t))|(A.1) (A.3)

as time τ grows unbounded. From (1), (2) and (3) the
control law is given as follows

ν(τ) = − ˆ̃
β(τ) y

‖y‖ − y,
ˆ̃
β
′
(τ) = κ̄(τ)−1‖y‖ (A.4)

where
ˆ̃
β(τ) := β̂(t)|(A.1). Next we prove that y(τ) con-

verges to the manifold ‖y(τ)‖ = 0 as τ grows unbounded,
this means that σ(t) converges to ‖σ(t)‖ = 0 as t→ Tc.
Consider the Lyapunov function V (τ) = V1(τ) + V2(τ),

V1(τ) = ‖y‖2, V2(τ) = b0(
ˆ̃
β(τ)− β∗)2, (A.5)

where β∗ := d/b0 and b0 := (1 + q1) are unknown pos-
itive constants, q1 > −1 as in Assumption 3. The time
derivative of V (τ) gives V

′
(τ) = V

′

1 (τ) + V
′

2 (τ):

• For V
′

1 (τ), by using (A.2) and (A.4) it holds that

V
′

1 (τ) = 2yT (− ˆ̃
β(τ)κ̄−1(τ) y

‖y‖ − y) + 2yT f̄(τ, y)

+ 2yT∆G(τ, y)(− ˆ̃
β(τ)κ̄(τ)−1 y

‖y‖ − y)

By using the fact that yT∆Gy = yT∆G
T
y and

Cauchy-Schwartz inequality, it holds that

V
′

1 ≤ −2
ˆ̃
β(τ)κ̄(τ)−1‖y‖ − 2‖y‖2 + 2‖y‖‖f̄(τ, y)‖

− 2
ˆ̃
β(τ)κ̄(τ)−1yT ( 1

2 (∆G(t, y) + ∆G
T

(t, y))) y
‖y‖

− 2yT ( 1
2 (∆G(t, y) + ∆G

T
(t, y)))y

It follows from (A.3) and Assumption 2 that ‖f̄‖ ≤
κ̄(τ)−1d, hence

V
′

1 (τ) ≤ −2
ˆ̃
β(τ)κ̄(τ)−1‖y‖ − 2‖y‖2 + 2dκ̄(τ)−1‖y‖

− 2q1
ˆ̃
β(τ)κ̄(τ)−1‖y‖ − 2q1‖y‖2

= −2b0κ̄(τ)−1(
ˆ̃
β(τ)− β∗)‖y‖ − 2b0‖y‖2

(A.6)
where we used the Rayleigh-Ritz inequality.

• For V
′

2 (τ), taking into account (A.4)-(A.5), it holds

V
′

2 (τ)=2b0(
ˆ̃
β(τ)−β∗) ˆ̃

β
′
(τ)=2b0κ̄(τ)−1(

ˆ̃
β(τ)−β∗)‖y‖

(A.7)

By settingW (y) := −2b0‖y‖2 and using (A.6) and (A.7)

it holds that V
′
(τ) ≤ −W (y) ≤ 0. This implies that

V (τ) ≤ V (0) and y,
ˆ̃
β are bounded. On the one hand∫∞

0
W (y)ds ≤ V0 − V (t) < ∞. Moreover, W (y) is con-

tinuous and since y(τ) is bounded and uniformly contin-
uous (its derivative is bounded from Assumption 2 and
(A.2)), then W (y) is also uniformly continuous. From
Barbalat’s Lemma [10], then W (y) → 0 as τ → ∞,
which implies that y(τ) converges to the set {‖y‖ = 0}
as τ grows unbounded. Since y converges asymptotically
to zero, there exist a function η ∈ KL such that for τ ≥ 0

‖y‖ ≤ η(‖y0‖, τ) ≤ η(c, τ), (A.8)

due to y is bounded with c > 0. Finally, since η(c, τ)→ 0
as τ grows unbounded, given ε > 0 there exists τ0 > 0
such that η(c, τ) < ε/2, whenever τ ≥ τ0. Then, take
τ̄ ≥ τ0 and from (A.8) it follows that ‖y(τ)‖ < ε/2 for all
τ ≥ τ̄ . Equivalently, by means of the time-scaling (A.1),
‖σ(t)‖ = ε/2 in a time t̄ = limτ→τ̄ t := limτ→τ̄ Tc(1 −
e−ατ ) < Tc, where Tc is an arbitrary a priori given con-
stant independent of the initial condition and the upper-
bound of perturbations.

B Proof of Theorem 9

Following the proof of Lemma 5, it is ensured that the
system’s trajectories reach the value ‖σ(t)‖ ≤ ε/2 at
time t = t̄ < Tc. Then, it is left to prove that system’s
trajectories will be contained in a region ‖σ(t)‖ < ε for
all future times t ≥ t̄.

Let t = t̄ denote the first time such that ‖σ(t)‖ ≤ ε/2 and
consider the barrier functions given in (4)-(5). The result
follows from using the next auxiliary lemma, which is
the generalization to the multivariable case of the barrier
function based ASMC.

Lemma 11 Consider that Assumptions 1-3 are fulfilled.
Given the uncertain system (1) controlled by (2) with
k(t, σ) = KBF(‖σ‖). Then, for all t ≥ t̄ and for all
‖σ(t)‖ > s, the sliding variable σ(t) converges in finite
time to a region {‖σ(t)‖ ≤ s < ε}.
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PROOF. Consider the closed loop system (1)-(2) and
adaptive gains as a barrier function,

σ̇(t) = −(I + ∆G(t, σ))KBF(‖σ‖) σ
‖σ‖ + f(t, σ) (B.1)

where ∆G(t, σ) := G(t, σ)∆g(t, σ)G(t, σ)−1. Notice

K̇BF(‖σ‖) = θε
(ε−‖σ‖)2

σT σ̇
‖σ‖ (B.2)

with the convention that θ = 1 if KBF = Kpsd or θ = β̄
if KBF = Kpd. Consider the Lyapunov function V (t) =
1
2‖σ‖

2 + 1
2 (KBF(‖σ‖) − KBF(0))2. The time derivative

of V (t) along the trajectories of (B.1)-(B.2) is given by

V̇ (t)=−KBF(‖σ‖)‖σ‖ −KBF(‖σ‖)σT∆G(t, σ) σ
‖σ‖

+ σT f(t, σ)−KBF(‖σ‖)ζ(KBF(‖σ‖)−KBF(0))

−KBF(‖σ‖)ζ(KBF(‖σ‖)−KBF(0))σ
T

‖σ‖∆G(t, σ) σ
‖σ‖

+ ζ(KBF(‖σ‖)−KBF(0)) σ
T

‖σ‖f(t, σ),

where ζ := θε/(ε − ‖σ‖)2, θ ∈
{

1, β̄
}

. By using the
Cauchy-Schwarz inequality, Rayleigh-Ritz inequality
and Assumption 2, the following upper bound holds

V̇ (t) ≤ −b0(KBF(‖σ‖)−β∗)‖σ‖
−b0ζ(KBF(‖σ‖)−β∗)|KBF(‖σ‖)−KBF(0)|
= −b0βs‖σ‖ − b0ζβs|KBF(‖σ‖)−KBF(0)|,

(B.3)
where βs := KBF(‖σ‖)−β∗, β∗ = d/b0, b0 := 1+q1 and
we used the fact that σT∆G(t, σ)σ = σT∆G(t, σ)Tσ.
Following similar arguments as in [13], the following
three cases are considered:

(i) Let β̄ < β∗ when ‖σ‖ > s with s defined as in (4)
or (5). Since barrier functions are strictly incresing
functions in ‖σ‖, then KBF(‖σ‖) > KBF(s) = β∗ on
s < ‖σ‖ < ε. Hence βs > 0 and

V̇ ≤ −b0βs min {1, ζ} (‖σ‖√
2

+ |KBF(‖σ‖)−KBF(0)|√
2

)

≤ −β0V
1
2 , β0 := b0βs min {1, ζ} .

(ii) Let β̄ ≥ β∗ when ‖σ‖ > s as in (4). Then,
KBF > KBF(0) = β̄ ≥ β∗. From (B.3), it holds that

V̇ ≤ −β0V
1/2.

(iii) For ‖σ‖ < s, (B.3) would be sign indefinite until the

solution σ(t) reaches the set {‖σ‖ = s} and V̇ ≤ 0
as βs = 0. Hence, V remains constant or decreasing.
This implies that ‖σ‖ ≤ s for all times.

Let Ω1 = {‖σ‖ ≤ s} and Ω2 = {s < ‖σ‖ < ε}. Items (i)
and (ii) ensure finite time convergence to the domain Ω
for all t ≥ t̄ + T if the solution starts in Ω2. Finally, by
construction s < ε (see (4) and (5)), and it follows from
(iii) that ‖σ‖ ≤ s < ε holds for all time t ≥ t̄+ T . If the
solution starts in Ω1, the same result follows from (iii)
with T = 0. �
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