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ABSTRACT

The paper is concerned with elongating the shortest curvature-bounded path between two oriented

points to an expected length. The elongation of curvature-bounded paths to an expected length is

fundamentally important to plan missions for nonholonomic-constrained vehicles in many practical

applications, such as coordinating multiple nonholonomic-constrained vehicles to reach a destination

simultaneously or performing a mission with a strict time window. In the paper, the explicit conditions

for the existence of curvature-bounded paths joining two oriented points with an expected length

are established by applying the properties of the reachability set of curvature-bounded paths. These

existence conditions are numerically verifiable, allowing readily checking the existence of curvature-

bounded paths between two prescribed oriented points with a desired length. In addition, once the

existence conditions are met, elongation strategies are provided in the paper to get curvature-bounded

paths with expected lengths. Finally, some examples of minimum-time path planning for multiple

fixed-wing aerial vehicles to cooperatively achieve a triangle-shaped flight formation are presented,

illustrating and verifying the developments of the paper.

Keywords Dubins vehicle · Curvature-bounded path · Cooperative guidance · Path elongation

1 Introduction

The model of unidirectional nonholonomic vehicles, moving at a constant speed with a minimum turn radius, provides

a very good approximation to the kinematics of a large class of vehicles, such as fixed-wing aerial vehicles, autonomous

underwater vehicles, and uninhabited ground vehicles, just to name a few. Following the work by A. A. Markov [1] in

1887 and the work by L. E. Dubins [2] in 1957, such a nonholonomic vehicle has been named Markov-Dubins vehicle

(see, e.g., [19, 25]) or simply Dubins vehicle (see, e.g., [5, 6, 22]). Since the Dubins vehicle has a minimum turn radius,

it follows that the curvature of any feasible path of Dubins vehicle is bounded almost everywhere. For the sake of

simplicity, we use the term of "curvature-bounded path" to denote the feasible path of Dubins vehicle in this paper.
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Up to present, the minimum-time curvature-bounded paths with various constraints have been extensively studied in the

literature. Note that the minimum-time path is the same as the shortest path as the speed is constant. In the seminal

paper [2] by L. E. Dubins, the shortest curvature-bounded path between two oriented points in the tangent bundle of

R2 (each oriented point consists of a 2-dimenstional point and a tangent vector at the point) was studied by geometric

analysis, showing that the shortest curvature-bounded path between two oriented points can be computed within a

constant time by comparing at most 6 candidate paths. With the advent of optimal control theory, this result was proven

in an alternative way by combining Pontryagin’s maximum principle [3] and geometric techniques [4, 5]. Considering

to start from an oriented point and to reach a point instead of an oriented point (i.e., the direction of the final tangent

vector is not constrained), it was proven in [6] that the shortest curvature-bounded path must lie in a sufficient family of

4 candidate paths.

Due to the importance of using curvature-bounded paths in real-world scenarios, the shortest curvature-bounded path

with more complex environmental and boundary constraints have been widely studied. Examples include, but not

limited to, shortest curvature-bounded paths passing through multiple waypoints [12, 30, 32], passing through multiple

regions [21, 28, 42], encircling a target [29, 36], avoiding obstacles [7, 14, 18, 37], intercepting a moving target

[22, 39–41], and moving in tunnel-like environments [38] or in uniform current drift [13, 15, 19].

In addition to the above mentioned shortest curvature-bounded paths with various environmental and boundary

constraints, it is also quite important to find curvature-bounded paths with expected lengths in practical applications [31].

For instance, coordinating multiple nonholonomic vehicles from different initial conditions to the same final condition

simultaenously requires finding curvature-bounded paths with an expected length [16, 27, 34]. Another example is that

a Dubins vehicle performes a mission with a strict time window, which requires planning a curvature-bounded path

with a specific length. For this reasion, the issue of finding curvature-bounded paths with expected lengths has attracted

extensive attention in the past decades.

In order to find a curvature-bounded path with an expected length, it is common in the literture to first find the shortest

curvature-bounded path with the same boundary conditions, and then to use some elongation strategies to elongate the

shortest curvature-bounded path to the expected length. When the direction of the final tangent vector is not constrained,

by dividing the 2-dimensional plane into 5 subregions, some iterative algorithms were developed in [10] to elongate

curvature-bounded paths depending on the locations of the final point in the five subregions. Meyer, Isaiah, and Shima

[22] proposed three strategies to elongate curvature-bounded paths for intercepting a moving target at a given time.

Recently, it was proven by Ding, Xin, and Chen [31] that if the boundary conditions lie in a specific set, the shortest

curvature-bounded path cannot be elongated to arbitrary length.

In all the papers mentioned in the previous paragraph, it is assumed that the direction of the final tangent vector is free.

When the tangent vectors at both endpoints are fixed, the shortest curvature-bounded paths are composed by circular

arcs and straight line segments [2, 5]; to be specific, the geometric pattern of each shortest curvature-bounded path

between two oriented points is CCC, CSC, or their substrings, where “C” denotes a circular arc and “S” denotes a

straight line segment. It was proposed in [11] to elongate the shortest curvature-bounded path between two oriented

points by increasing the turning radius of circular arcs and a bisection method was used to find the optimal turning

radii of paths. Ortiz, Kingston, and Langbort [17] provided path elongation strategies with a strict assumption that the

2



A PREPRINT - SEPTEMBER 14, 2021

shortest curvature-bounded paths take a geometric pattern of CSC. It is worth mentioning that the Dubins paths with

clothoid arcs were used in [16] to generate curvature-bounded paths with expected lengths.

Considering that the final point lies in a manifold, a homotopy method was used to generate curvature-bounded paths

with expected lengths [27]. In addition, it was shown in [27] that, given two specific oriented points, there will be a

non-zero interval determined by the two oriented points, so that the length of any curvature-bounded path between the

two oriented points does not lie in the interval; this means that the shortest curvature-bounded path between the two

oriented points cannot be elongated to arbitrary length. Recently, without requiring the length of the curvature-bounded

path to be strictly equal to an expected value, a homotopy method was used in [33] to elongate a curvature-bounded

path to a length as close as possible to the expected length.

Topologic techniques were employed by J. Ayala et al. in [20, 23, 24, 26] to show that the curvature-bounded paths

between two prescribed oriented points lie in two homotopy classes. If the two oriented points take some specific values,

the two homotopy classes do not connect with each other. This coincides with the results obtained by W. Yao et al. in

[27, 33] that the shortest curvature-bounded path cannot be elongated to arbitrary length. All in all, it is clear according

to the cited papers [20, 23, 24, 26, 27, 33] that given two oriented points and an expected length, one may not be able to

find curvature-bounded paths between the two oriented points with the expected length.

However, to the authors’ best knowledge, given two oriented points, it is not clear in the literature how to compute the

exact intervals so that for every expected length in the intervals there exits a curvature-bounded path joining the two

oriented points. Finding such intervals is a fundamental issue for evaluating the existence of curvature-bounded paths

between two oriented points with an expected length. In this paper, the properties of the reachability set constructed by

Patsko, Pyatko, and Fedotov in the remarkable work [9] are employed to establish the exact intervals, which will further

give rise to the explicit conditions for the existence of curvature-bounded path with an expected length.

For the completeness of this paper, it is first proven that if the shortest curvature-bounded path between two oriented

points takes a geometric pattern of CCC, it can be enlongated to arbitrary length (cf. Proposition 1). In the case that the

shortest curvature-bounded path is of CSC, we devide the boundary conditions into two seperate sets O and∇O. If the

two endpoints lie in O, the shortest curvature-bounded path can be elongated to arbitrary length (cf. Proposition 2).

If the two endpoints lie in ∇O, there exists an interval so that the length of any curvature-bounded path between the

two endpoints is not in the interval (cf. Proposition 3 and Proposition 4). The boundary of the interval is explicitly

devised. As a result, given any two oriented points and any expected length, one can readily check the existence of a

curvature-bounded path joining the two oriented points with the expected length. Once it exists, an elongation strategy

is provided in the paper to elongate the shortest curvature-bounded path to the expected length.

The paper is organized as follows. Definitions and notations are presented in Section 2. Given any expected length, the

conditions for the existence of a curvature-bounded path are established in Section 3, and once the existence conditions

are met, an elongation strategy is provided. Section 4 presents some numerical examples to illustrate the developments

of the paper, and this paper concludes by Section 5.
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2 Definitions and Notations

Denote by TR2 the tangent bundle of R2. Any element in TR2 corresponds to an oriented point (x,v) where x is a

point in R2 and v is a tangent vector to R2 at x. For notational simplicity, we also use capital letters X and Y to denote

the elements in TR2 in this paper, and we set

X := (x,v) and Y := (y,w).

Definition 1 (Curvature-Bounded Path [24]) Given any two oriented points (x,v) and (y,w) in TR2, a path γ :

[0, s]→ R2 connecting the two oriented points is a curvature-bounded path if

• γ is C1 and piecewise C2;

• γ is parameterised by arc length, i.e., ‖γ′(t)‖ = 1 for all t ∈ [0, s];

• γ(0) = x, γ′(0) = v, γ(s) = y, and γ′(s) = w;

• γ′′(t) ≤ κ for all t ∈ [0, s] when defined, where κ > 0 is a constant.

Definition 2 Given any two oriented points X and Y in TR2 such that X 6= Y , we denote by Γ(X,Y ) the space of all

the curvature-bounded paths from X to Y .

Definition 3 Given any two oriented points X and Y in TR2 such that X 6= Y , for each path γ ∈ Γ(X,Y ), we denote

by `(γ) the length of γ.

Definition 4 Given any two oriented points X and Y in TR2 such that X 6= Y , we denote by γm the shortest

curvature-bounded path from X to Y , and denote by `m > 0 the arc length of γm, i.e., `m = `(γm).

Definition 5 Given any two oriented points X and Y in TR2 such that X 6= Y , a path γ ∈ Γ(X,Y ) is said to have

parallel tangents if there are two different points on γ so that the tangent vectors at the two points are parallel with

opposite directions.

It has been shown by L. E. Dubins [2] that the shortest curvature-bounded path between two oriented points lies in a

sufficiently family of six candidates. Denote by “C” a circular arc with radius of 1/κ, and denote by “S” a straight line

segment. Then, we have the following remark.

Remark 1 (Dubins path [2]) Given any two oriented points X and Y in TR2 such that X 6= Y , the shortest

curvature-bounded path from X to Y takes a geometric pattern of either CCC or CSC or their substrings where

• CCC = { RLR, LRL },

• CSC = { RSR, RSL, LSR, LSL}

where R (resp. L) means that the corresponding circular arc has a right-turning (resp. left-turning) direction.

Thanks to the geometric patterns in Remark 1, the shortest curvature-bounded path can be analytically computed by

comparing at most 6 candidate paths; see [8].
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Before proceeding, we present some useful notations. Let CrX and ClX be two tangent circles of radius 1/κ, lying on

the right and left side of the initial oriented points X , respectively, as shown by the two dashed circles in Fig. 1a. We

denote by crX and clX the centers of CrX and ClX , respectively. The same applies to CrY , ClY , crY , and clY , as shown in

Fig. 1b. Let Cη be a circular arc with radian of η ≥ 0, and denote by Sd a straight line segment with length of d ≥ 0.

With these new notations, when necessary we will represent CCC and CSC by CηCζCξ and CηSdCξ, respectively.

X

l

X
c

r

X
c

l

X
C

r

X
C

(a) crX and clX

Y

l

Y
c

r

Y
c

l

Y
C r

Y
C

(b) crY and clY

Figure 1: The geometry of CrX , ClX , CrY , and ClY with respect to X and Y .

3 Elongation of Curvature-Bounded Path

The elongation of curvature-bounded path is closely related to the existence of curvature-bounded paths with an

expected length. In this section, the conditions for the existence of curvature-bounded path with an expected length will

be established, which will further give rise to the elongationability of curvature-bounded paths.

3.1 Elongation of CCC-Path

This subsection will show how to elongate the shortest curvature-bounded path γm if its geometric pattern is of type

CCC. Before proceeding, we first show that any curvature-bounded path with parallel tangents (cf. Definition 5) can be

elongated to arbitrary length by the following lemma.

Lemma 1 (J. Ayala [26]) Given any curvature-bounded path γ ∈ Γ(X,Y ), if it has parallel tangents, then for any

s ≥ `(γ) there exists a curvature-bounded path γ̄ ∈ Γ(X,Y ) so that s = `(γ̄).

The proof of this lemma can be found in [26], and an example for elongating the curvature-bounded path with parallel

tangents is illustrated in Fig. 2.

X

Y

Figure 2: Elongation of curvature-bounded path with parallel tangents.

Proposition 1 Given any two oriented points X and Y in TR2 such that X 6= Y , if the shortest curvature-bounded

path γm takes a geometric pattern of CηCζCξ , then for any s ≥ `m there exists a curvature-bounded path γ ∈ Γ(X,Y )

such that s = `(γ).

5
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Proof. In view of [6, Lemma 3], if the shortest curvature-constrained path γm is of type CηCζCξ, we have that the

middle circular arc is a major arc, i.e., ζ ∈ (π, 2π). Note that a circular arc Cζ with ζ ≥ π admits parallel tangents.

Thus, according to Lemma 1, for every s ≥ `m there exists a curvature-bounded path γ ∈ Γ(X,Y ) so that s = `(γ),

completing the proof.�

Proposition 1 indicates that if the shortest curvature-bounded path is of type CCC, it can be elongated to arbitrary

length without breaking the constraint on culvature. An elongation strategy for a CCC-path is illustrated in Fig. 3

where the path is elongated by changing the value of λ ∈ [0,+∞). In the following subsection, we shall show the

elongationability of the shortest curvature-bounded path if its geometric pattern is of type CSC.

X
Y

l

X
c

l

Y
c

l

p

Figure 3: An elongation strategy for the shortest path of type CCC.

3.2 Elongation of CSC-Path

For notational simplicity, we define the following five sets.

O1 = {(X,Y ) ∈ (TR2)2|γm ∈ CηSdCξ with η ≥ π}

O2 = {(X,Y ) ∈ (TR2)2|γm ∈ CηSdCξ with ξ ≥ π}

O3 = {(X,Y ) ∈ (TR2)2|γm ∈ CηSdCξ with d ≥ 4

κ
}

O4 = {(X,Y ) ∈ (TR2)2|γm ∈ CηSdCξ with d(crX , c
r
Y ) ≥ 4/κ}

O5 = {(X,Y ) ∈ (TR2)2|γm ∈ CηSdCξ with d(clX , c
l
Y ) ≥ 4/κ}

where the function d : R2 × R2 → R+ denotes the Euclidean distance between two points. Let O ⊂ (TR2)2 be the

union of O1, O2, . . ., O5, i.e.,

O := O1 ∪ O2 ∪ O3 ∪ O4 ∪ O5,

and let ∇O ⊂ (TR2)2 be the complementary set of O, i.e.,

∇O :={(X,Y ) ∈ (TR2)2|γm ∈ CSC, (X,Y ) 6∈ O}.

In view of the definitions of O and ∇O, it is clear that for any (X,Y ) ∈ (TR2)2 so that the geometric pattern of γm is

CSC, we have (X,Y ) ∈ O ∪∇O. By the following lemmas and theorems, we shall establish the conditions for the

6
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existence of curvature-bounded path γ ∈ Γ(X,Y ) with expected lengths for (X,Y ) in the two seperate sets O and

∇O.

Lemma 2 Given any curvature-bounded path γ ∈ Γ(X,Y ), if it has a straight-line segment and if the length of the

straight line segment is no less than 4/κ, then for any s ≥ `(γ) there exists a curvature-bounded path γ̄ ∈ Γ(X,Y ) so

that s = `(γ̄).

Proof. Denote by d ≥ 4/κ the length of the straight line segment, as shown in Fig. 4. Denote by a and c the initial

and final points of the straight line segment. Then, we can choose a point b on the straight line segment so that the

distance between a and b is 4/κ. We can use a circular disk of radius 1/κ to deform the straight line segment from a to

b without changing the tangent vectors at a to b, as shown by Fig. 4. Thus, the path γ can be elongated to arbitrary

length without breaking the constraint on maximum curvature, completing the proof. �

X

Y

d

4/
k

p

l

a

b

c

Figure 4: Elongation of a path in Γ(X,Y ) with a straight line segment and the length of the straight line segment is no
less than 4/κ.

Proposition 2 Given any two oriented points X and Y in TR2 so that (X,Y ) ∈ O, for any s ≥ `m there exists a

curvature-bounded path γ ∈ Γ(X,Y ) such that s = `(γ).

Proof. According to the definitions of O1 and O2, as a major circular arc has parallel tangents, we have that the shortest

curvature-bounded path γm has parallel tangents if (X,Y ) ∈ O1 ∪ O2. Therefore, according to Lemma 1, the shortest

curvature-bounded path γm can be enlongated to arbitrary length. Therefore, if (X,Y ) ∈ O1 ∪ O2, for any s ≥ `m

there exists a curvature-bounded path γ ∈ Γ(X,Y ) so that s = `(γ).

From now on, we consider (X,Y ) ∈ O3. In this case, there exists a straight line segment with its length no less than

4/κ along the shortest curvature-bounded path γm. Thus, according to Lemma 2, the shortest curvature-bounded

path γm can be elongated to arbitrary length, indicating that for any s ≥ `m there exists a curvature-bounded path

γ ∈ Γ(X,Y ) so that s = `(γ).

Regarding the case that (X,Y ) ∈ O4, as shown in Fig. 5a, we are able to deform the shortest curvature-bounded path

(red solid curve) by moving a circular disk of radius 1/κ without breaking the constraint on curvature, as shown by

the blue dashed curve in Fig. 5b. Thus, in the case of (X,Y ) ∈ O4, the shortest curvature-bounded path γm can be

elongated to arbitrary length. The same strategy can be applied to elongate the shortest curvature-bounded path γm if

(X,Y ) ∈ O5. Thus, if (X,Y ) ∈ O4 ∪ O5, for any s ≥ `m there exists a curvture-bounded path γ ∈ Γ(X,Y ) so that

s = `(γ), completing the proof. �

7
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Y
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l

Y
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Figure 5: An elongation strategy for γm ∈ Γ(X,Y ) with (X,Y ) ∈ O4.

As a result of Proposition 2, it is apparent that if (X,Y ) ∈ O, the shortest curvature-bounded path γm can be enlongated

to arbitrary length without breaking the constraint on maximum curvature.

An elongation strategy for (X,Y ) ∈ O4∪O5 has been provided by Fig. 5. Regarding the case of (X,Y ) ∈ O1∪O2∪O3,

an elongation strategy is illustrated in Fig. 6.

X

Y
l

X
c

r

Y
ch

x

d

p

l

(a) CηSdCξ with η > π

X

Y

l

X
c

r

Y
c

h

x

d

p
l

(b) CηSdCξ with ξ > π

X

Y

l

X
c

r

Y
c

h

x

d

4
/k

p

l

(c) CηSdCξ with d > 4/κ

Figure 6: Elongation of shortest curvature-bounded path γm ∈ Γ(X,Y ) with (X,Y ) ∈ O1 ∪ O2 ∪ O3.

It has been shown in [20, 24] that if (X,Y ) ∈ ∇O there exists a closed region Ω, as shown in Fig. 7. Once

(X,Y ) ∈ ∇O, there exist two paths of type RLR and two paths of type LRL, as shown in Fig. 8. We denote by RLRs

and RLRl the shorter and longer RLR-paths, respectively, and the same applies to LRLs and LRLl. It is apparent that

the closed region Ω is bounded by the RLRs- and LRLs-paths.

X Y

r

X
c

l

X
c

r

Y
c

l

Y
c

W

(a) γm(X,Y ) is of RSR

r

X
c

r

Y
c

l

X
c

l

Y
c

X

Y

W

(b) γm(X,Y ) is of LSL

r

X
c r

Y
c

l

X
c l

Y
c

X Y

(c) γm(X,Y ) is of RSL

r

X
c

r

Y
c

l

X
c

l

Y
c

X

Y

W

(d) γm(X,Y ) is of LSR

Figure 7: Geometry for the closed region Ω.

Denote by `sLRL, `lLRL, `sRLR, and `lRLR the lengths of RLRs-, RLRl-, LRLs-, and LRLl-paths from X to Y ,

respectively. Accordingly, we denote by `RSR, `RSL, `LSR, and `LSL the lengths of RSR-, RSL-, LSR-, and LSL-paths

from X to Y , respectively. Once RSR-path does not exist, we set `RSR = +∞, and the same applies to `RSL, `LSR,

8
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r

X
c

r

Y
c

l

X
c

l

Y
c

X

Y

W

LRL
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Figure 8: Existene of two LRL-paths and two RLR-paths for (X,Y ) ∈ ∇O.
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(a) RηSdLξ with the existence of Ω

X Y
r
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c

l

X
c

r

Y
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l

Y
c

Wa b c d

LSR

(b) LηSdRξ with the existence of Ω

X Y
r

X
c

l

X
c

r

Y
c

l

Y
c

Wa b c d

LSL

(c) LηSdLξ with the existence of Ω

Figure 9: The CSC-paths with the existence of Ω.

`LSL, `sLRL, `lLRL, `sRLR, and `lRLR, accordingly. When (X,Y ) ∈ ∇O so that the closed region Ω exists, we set

`1 := max{`sLRL, `
s
RLR}

`2 := min

{
`m + 2π, `lLRL, `

l
RLR, {`RSR,

`RSL, `LSR, `LSL} \ {`(γm)}

}
(1)

Given any (X,Y ) ∈ ∇O, the lengths of all the CSC- and CCC-paths, once they exist, can be computed by geometric

analysis [2, 8]. Thus, both `1 and `2 in Eq. (1) can be readily obtained. According to [27, Proposition 1], we have

`m < `1. By the following lemma, we shall show that `1 < `2 when the closed region Ω exists.

Lemma 3 Given any two oriented points X and Y so that (X,Y ) ∈ ∇O, we have `1 < `2.

Proof. By definition, for every CηCξCζ-paths related to `sRLR and `sLRL, the middle circular arc is a minor arc, i.e,

ξ < π. According to [9, Lemma 2], once the closed region Ω exists, the sum of the other two circular arcs is less than

the middle circular arc, i.e., η+ ζ < ξ. Thus, we have `1 = η+ ξ + ζ < 2π, indicating `1 < `m + 2π. If `2 = `lLRL or

`lRLR, we immediately have `1 < `2 by the definitions of `sRLR, `sLRL, `lRLR, and `lLRL.

From now on, we compare `1 with the element in {`RSR, `RSL, `LSR, `LSL} \ {`(γm)}. Without loss of generality, let

us assume that `RSR 6= `m, i.e., `RSR is an element of {`RSR, `RSL, `LSR, `LSL} \ {`(γm)}. Then, we have that the

RSR-path has intersections with the boundary of Ω. As a result, we have that `RSR is greater than min{`lRLR,R
l
LRL}

according to [27, Lemma 10]. The same applies to other CSC-paths with its length in {`RSR, `RSL, `LSR, `LSL} \
{`(γm)}, completing the proof. �

9
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Lemma 4 Given any two oriented points X and Y so that (X,Y ) ∈ ∇O, each CSC-path, with its length in

{`RSR, `RSL, `LSR, `LSL} \ {`m}, has parallel tangents.

Proof. Without loss of generality, let us assume that the shortest path related to `m is of type RSR. Take the picture in

Fig. 9 as an example. The extension of the straight line segment of the RSR-path has four points intersecting with the

circles ClX and ClY , as shown by a, b, c, and d in Fig. 9. Because of the existence of the closed region Ω, we have that

the arcs āxb and c̄yd are minor arcs. Regarding the RSL-path, we have that the switching point from S to L lies on

the arc c̄yd (see Fig. 9a), indicating that the left-turn arc along the RSL-path is a major arc. As for the LSR-path, we

have that the switching point from L to S lies on the arc āxb (see Fig. 9b), indicating that the left-turn arc along the

LSR-path is a major arc. As for the LSL-path, we have that the switching point from L to S and the switching point

from S to L lie on c̄yd and āxb, respectively, as shown by Fig. 9c, indicating that the both left-turn arcs are major arcs.

Therefore, if the RSR-path is the shortest path, we have that at least one circular arc on each of the RSL-, LSR-, and

LSL-paths is a major arc, implying that all the RSL-, LSR-, and LSL-paths have parallel tangents.

Analogously, we can prove by the same way that if one of the RSL-, LSR-, and LSL-paths is the shortest path, then each

other CSC-path with its length in {`RSR, `RSL, `LSR, `LSL} \ {`m} has parallel tangents, completing the proof. �

Proposition 3 Given any two oriented points X and Y so that (X,Y ) ∈ ∇O, for any s ∈ [`m, `1] ∪ [`2,+∞) there

exists a curvature-bounded path γ ∈ Γ(X,Y ) so that `(γ) = s.

Proof. We first consider the case that s ∈ [`m, `1]. Let us consider to move a circular disk of radius 1/κ to deform the

shortest curvature-bounded path γm, as shown in Fig. 10. By changing the value of λ, we can see that the shortest

curvature-bounded path γm can be elongated continuously from `m to `1. Thus, for any s ∈ [`m, `1] there exists a

curvature-bounded path γ ∈ Γ(X,Y ) so that s = `(γ).

X Y

l

X
c

r

Y
c

l

Y
c

r

X
c

l

Figure 10: Elongation of shortest curvature-bounded path γm for (X,Y ) ∈ ∇O.

From now on, we consider the case of s ∈ [`2,+∞). If `2 ∈ {`lRLR, `
l
LRL}, then we have that the CCC-path with

length of `2 has parallel tangents according to the definitions of RLRl and LRLl in Fig. 8. Thus, if `2 ∈ {`lRLR, `
l
LRL},

the CCC-path with length of `2 can be elongated to arbitrary length. If `2 = `m + 2π, we have that the path has parallel

tangents. If `2 ∈ {`RSR, `RSL, `LSR, `LSL} \ {`m}, we have that the path related to `2 has parallel tangents, according

to Lemma 4. Therefore, the path related to `2 can be elongated to arbitrary length, completing the proof.�

Proposition 3 indicates that for any s ∈ [`m, `1] ∪ [`2,+∞) we can find a curvature-bounded path γ ∈ Γ(X,Y ) so

that s = `(γ). From now on, we will prove that for any s ∈ (`1, `2) it is impossible to find a curvature-bounded path

γ ∈ Γ(X,Y ) so that s = `(γ).
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Before proceeding, we present some useful notations. Denote byRw(s) ⊂ R2 the set that can be reached by all the

curvature-bounded paths γ of length s, starting from X and ending with the final tangent vector being w, i.e.,

Rw(s) := {z ∈ R2|`(γ) = s with γ ∈ Γ(X, (z,w))}.

As usual, we denote by ∂Rw(s) the boundary ofRw(s), and denote by IntRw(s) the interior ofRw(s). Denote by

Pw
RSR(s) ∈ R2 the set of all the points that can be reached by RSR-path of length s > 0, starting from X and ending

with the final tangent being w. The same explanation applies to Pw
RSL(s), Pw

LSR(s), Pw
LSL(s), Pw

RLR(s), and Pw
LRL(s).

Lemma 5 Given any two oriented points X and Y so that (X,Y ) ∈ ∇O, the following two statements hold:

(1) there exists a positive number δ > 0 so that y ∈ Rw(`1 − ε) for every ε ∈ (0, δ);

(2) y 6∈ Rw(`1 + ε) for any sufficiently small ε > 0.

Proof. By the definition of `1 in Eq. (1), we have y ∈ Rw(`1). According to Proposition 3, for any s ∈ [`m, `1],

there exists a curvature-bounded path from X to Y with its length being s. Thus, we have that y ∈ Rw(`1 − η) for

η ∈ [0, `1 − `m]. Since `1 − `m > 0 (cf. [27, Proposition 1]), it follows that there exists δ > 0 so that y ∈ Rw(`1 − ε)
for every ε ∈ (0, δ).

From now on, we proceed to proving y 6∈ Rw(`1 + ε) for sufficiently small ε. Without loss of generality, let us assume

that `1 = `sRLR, i.e., the CCC-path with length of `1 from X to Y is of type RLR. In this case, according to [35],

we have that the set Pw
RLR(`1) belongs to the boundary of Rw(`1), as shown by Fig. 11. Notice that y ∈ Pw

RLR(`1),

indicating y ∈ ∂Rw(`1).

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Figure 11: Illustration of y ∈ Pw
RLR(`1) ⊂ Rw(`1).

Let Nη(y) ⊂ R2 be a circular neighborhood centered at y with radius η > 0, i.e.,

Nη(y) := {z ∈ R2|‖z − y‖ ≤ η}.

As y ∈ ∂Rw(`1), we can choose a straight line segment p : [0, 2`1]→ Nη(y) so that

• p(`1) = y,

• p(t) 6∈ Rw(t) for t ∈ [0, `1), and

11
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• p(t) ∈ Rw(t) for t ∈ (`1, 2`1].

Let us consider a monotonically increasing sequence (εi)i∈N so that ε0 = 0 and εi < 2`1 for i ∈ N, and assume that

there exists a large positive integer N > 0 so that εN = `1. If η > 0 is small enough, for every εi, there exists a

δi so that p(εi) ∈ Pw
RLR(`1 + δi). Since the set Pw

RLR(`1 + δi) belongs to the boundary of Rw(`1 + δi), it follows

p(εi) ∈ ∂Rw(`1 + δi).

As the sequence (εi) is monotonically increasing, the direction of the straight line p can be chosen so that the sequence

(δi) is monotonically increasing as well. Thus, picking an integer î ∈ N, we have p(εî+1) ∈ IntRw(`1 + δî) according

to the first statement of this lemma. As p(εî) ∈ ∂Rw(`1 + δî), it follows p(εî−1) 6∈ Rw(`1 + δî). If î = N + 1, we

then have p(εN ) 6∈ Rw(`1 + δN+1). Note that εN = `1 and δN = 0, indicating y = p(εN ) 6∈ Rw(`1 + δN+1). If

εN+1 is close enough to εN , there exists δ > 0 so that δN+1 < δ, completing the proof. �

Lemma 6 Given any two oriented points X and Y so that (X,Y ) ∈ ∇O, there exists δ > 0 so that y 6∈ Rw(`2 − ε)
and y ∈ Rw(`2 + ε) for every ε ∈ (0, δ).

Proof. By the definition of `2 in Eq. (1), we have y ∈ Rw(`2). According to Proposition 3, for any s ∈ [`2,+∞) there

exists a curvature-bounded path from X to Y with its length being s. Thus, we have y ∈ Rw(`2 + η) for any η ≥ 0,

indicating that there exists δ > 0 so that y ∈ Rw(`2 + ε) for every ε ∈ (0, δ).

From now on, we proceed to proving y 6∈ Rw(`2 − ε) for sufficiently small ε > 0. By contradiction, let us assume that

there exists a sufficiently small ε > 0 so that y ∈ Rw(`2 − ε).

Let us consider an object moving along a straight line p : [0,+∞) so that at the instant `2 the object reaches the point

y, i.e., p(`2) = y. Let Nη(y) ⊂ R2 be a circular neighborhood centered at y with radius η > 0, i.e.,

Nη(y) := {z ∈ R2|‖z − y‖ ≤ η}.

Without loss of generality, we consider `2 = `RSR and `m = `RSL, i.e., the path associated with `2 is of type RSR and

the shortest path is of type RSL. Then, because the multi-valued set PLSR(t) for t > 0 is continuous (cf. [39, Lemma

6]), it follows that for any sufficiently small ε > 0 there exists η > 0 so that the lenght of LSR-path from X to a point

in Nη(y) with the final tangent being w takes values in (`LSR − ε, `LSR + ε). Without loss of generality, assume that

the speed of the moving object is constant and small enough so that p(t) ∈ Nη(y) for any t ∈ [0, `2]. Then, for every

t ∈ [0, `2], the LSR-path from X to the point p(t) with the final tangent being w has a length in (`LSR − ε, `LSR + ε).

By the definition of `2 in Eq. (1), we have `2 < `LSR. Therefore, if ε > 0 is small enough, the minimum time for a

Dubins vehicle to intercept the moving object by following an LSR-path is greater than `2. Analogously, we can prove

that the minimum time for a Dubins vehicle to intercept the moving object by following LSL-path or one of CCC-paths

is greater than `2. Therefore, the minimum time for a Dubins vehicle from X to intercept the moving object with the

final tangent being w by following a CSC- or a CCC-path is `2. This further indicates that the minimum time for a

Dubins vehicle from X to intercept the moving object with the final tangent being w by following a curvature-bounded

path is `2 (cf. [39, Theorem 7]). However, the contradicting assumption indicates that the minimum time for a Dubins

vehicle from X to intercept the moving object with the final tangent being w by following a curvature-bounded path is

less than `2. Hence, by contraposition, the proof is completed. �

12
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As a result of Lemma 5 and Lemma 6, we immediately obtain the following result.

Proposition 4 Given any two oriented points X and Y so that (X,Y ) ∈ ∇O, for every curvature-bounded path

γ ∈ Γ(X,Y ) we have `(γ) 6∈ (`1, `2).

Proof. By contradiction, let us assume that there exists a curvature-bounded path γ ∈ Γ(X,Y ) so that `(γ) ∈ (`1, `2).

Then, according to Lemmas 5 and 6, there are more than two homotopy classes, contradicting with the result in [24]

that there are two homotopy classes. Hence, by controposition, the proof is completed. �

This proposition indicates that if (X,Y ) ∈ ∇O, the shortest curvature-bounded path γm cannot be enlongated to

arbitrary length. According to Propositions 1–4, we eventually have the main result summarized in the following

theorem.

Theorem 1 Given any two oriented points X and Y so that X 6= Y , we have

(1) If (X,Y ) 6∈ O ∪ ∇O, for every s ≥ `m there exists a curvature-bounded path γ ∈ Γ(X,Y ) so that `(γ) = s.

(2) If (X,Y ) ∈ O, for every s ≥ `m there exists a curvature-bounded path γ ∈ Γ(X,Y ) so that `(γ) = s.

(3) If (X,Y ) ∈ ∇O, the following two statesment hold:

• for every s ∈ [`m, `1] ∪ [`2,+∞) there exists a curvature-bounded path γ ∈ Γ(X,Y ) so that `(γ) = s;

• for every γ ∈ Γ(X,Y ) we have `(γ) 6∈ (`1, `2).

This theorem gives the necessary and sufficient conditions for the existence of curvature-bounded path with an expected

length. Given any X and Y in TR2, the shortest curvature-bounded path γm can be analytically obtained, indicating

that the satisfications of (X,Y ) ∈ O and (X,Y ) ∈ ∇O can be readily checked. In addition, the values of `1 and `2,

once exist, can be computed analytically as well. Therefore, for any X and Y in TR2 all the conditions in Theorem 1

are numerically or analytically verifiable, allowing to predict the existance of curvature-bounded paths in Γ(X,Y ) with

an expected length.

4 Numerical Examples

In this section, some examples of minimum-time path planning for multiple fixed-wing Unmanned Aerial Vehicles

(UAVs) to simultaneously achieve a triangle-shaped flight formation will be presented to illustrate the developments of

the paper.

When considering that the fixed-wing UAVs fly in altitude hold mode with constant cruise speed, the kinematics of such

UAVs is the same as Dubins vehicle [36]. Thus, in order to realize the minimum-time operation of achieving a desired

flight formation for multiple UAVs, we should plan curvature-bounded path for each UAV so that all the UAVs can

reach their final conditions simultaneously.

13
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We consider that there are 6 UAVs, and the final position of UAV #i is denoted by yi (i = 1, 2, . . . , 6). Set the values

of yi’s as

y1 = (
√

3, 0), y2 = (0, 1), y3 = (−
√

3, 2)

y4 = (−
√

3, 0), y5 = (−
√

3,−2), y6 = (0,−1)

Let the final tangent vectors of all the UAVs are the same, and are collinear with the η axis of the Oηζ frame, as shown

in Fig. 12. It is clear from Fig. 12 that an equilateral-triangle formation will be formed if the six UAVs arrive their final

conditions simultaneously.

Denote by xi ∈ R2 the initial position of UAV #i, and let θi ∈ [0, 2π) be the angle between the initial tangent vector

and the η axis, measured counterclockwise. The values of xi’s and θi’s are generated randomly by uniform distribution

for three different cases, and are presented in Tables 1–3.

h

z

O

1
y

2
y

3
y

4
y

5
y

6
y

Figure 12: Final positions of the six UAVs on the triangle-shaped flight formation.

Table 1: Case A: the values of xi’s and θi’s.
i xi θi

1 (3.5313,−0.8619) 0.5305
2 (1.2238, 0.9698) 4.8689
3 (−3.5775, 1.3472) 1.6328
4 (1.6878, 0.9028) 2.5119
5 (2.9336, 0.0854) 5.4582
6 (1.1577,−0.0281) 5.1353

Table 2: Case B: the values of xi’s and θi’s.
i xi θi

1 (4.3627,−1.0457) 6.0141
2 (−2.3376, 0.2700) 0.2919
3 (2.1806, 3.3248) 5.0283
4 (−0.8038, 3.4410) 0.8915
5 (−4.5537,−1.3816) 2.6500
6 (1.5350,−0.2869) 5.7537

Note that the initial tangent vector for UAV #i is given by vi := (cos θi, sin θi), and the final tangent vectors for all

the six UAVs is the same as w = (1, 0). We denote by `im the length of the shortest curvature-bounded path for UAV

#i from the initial oriented point (xi,vi) to the final oriented point (yi,w). Accordingly, we denote by `i1 and `i2

14
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Table 3: Case C: the values of xi’s and θi’s.
i xi θi

1 (1.8829, 4.4956) 0.7477
2 (−0.9264, 0.0596) 3.1313
3 (−3.1202, 1.1104) 6.0302
4 (−4.4641, 1.4021) 0.5136
5 (1.6253,−3.9714) 3.9600
6 (−0.7889,−2.7028) 1.4063

the lengths corresponding to `1 and `2 defined in Eq. (1) for UAV #i, i.e., in the case of ((xi,vi), (yi,w)) ∈ ∇O,

there exists a curvature-bounded path from (xi,vi) to (yi,w)) if and only if its length lies in [`im, `
i
1] ∪ [`i2,+∞). The

values of `im’s, `i1’s, and `i2’s for cases A, B, and C are presented in Table 4.

Table 4: The values of `im’s, `i1’s, and `i2’s for cases A, B, and C.
Item Case A Case B Case C

`1m 7.3871 8.5854 8.0845
`11 +∞ +∞ +∞
`12 +∞ +∞ +∞
`2m 5.7164 2.4540 5.9104
`21 +∞ 2.7219 +∞
`22 +∞ 8.7279 +∞
`3m 7.0162 8.6103 7.8796
`31 +∞ +∞ +∞
`32 +∞ +∞ +∞
`4m 6.7435 8.4646 3.3402
`41 +∞ +∞ 3.6783
`42 +∞ +∞ 7.8609
`5m 9.7219 6.3674 6.6030
`51 +∞ +∞ +∞
`52 +∞ +∞ +∞
`6m 6.7160 7.0891 7.6161
`61 +∞ +∞ +∞
`62 +∞ +∞ +∞

Set

Φi :=

[`im, `
i
1] ∪ [`i2,+∞) if `i1 < +∞ and `i2 < +∞

[`im,+∞) if `i1 = +∞ and `i2 = +∞

Then, according to Theorem 1, we have that the minimum time for the 6 UAVs to realize the triangle-shaped flight

formation in Fig. 12 is given by

tm := min{Φ1 ∩ Φ2 ∩ Φ3 ∩ Φ4 ∩ Φ5 ∩ Φ6} (2)

Combining Eq. (2) and the data in Table 4, we have that the minimum time to realize the triangle-shaped formation is

9.7219, 8.7279, and 8.0845 for cases A, B, and C, respectively.

Regarding case A, we can see from the data in Table 4 that in order to realize the minimum-time formation, we have

to elongate the shortest paths for UAV #1, UAV #2, and UAV #3, UAV #4, and UAV #6 to the length of 9.7219.
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The elongation strategies introduced in Figs. 3, 5, 6, and 10 are used to elongate the shortest paths, accordingly. The

elongated paths for UAV #1, UAV #2, and UAV #3, UAV #4, and UAV #6 are presented by the solid curves in

Fig. 13a, where the dashed curves denote the shortest curvature-bounded paths. If each UAV follows its elongated path,

all the six UAVs will achieve a triangle-shaped flight formation in a minimum time.
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Figure 13: The cooperative paths for six UAVs to achieve a triangle-shaped flight formation.

Regarding case B, we can see from the data in Table 4 that in order to realize the minimum-time formation, we have to

elongate the shortest paths for UAV #1, UAV #3, UAV #4, UAV #5, and UAV #6 to the length of 8.7279. Note that

UAV #2 follows a CSC-path with length of `2 instead of the shortest path. The elongated path of each UAV for the

minimum-time flight formation is presented by the solid curve in Fig. 13b.

For case C, the paths of all the six UAVs have to be elongated to the length of 8.0845 in order to realize the minimum-

time operation of simultaneously achieving their final conditions, required for the triangle-shaped flight formation.
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Since `42 < 8.0845, it follows that the shortest curvature-bounded path for UAV #4 cannot be elongated to 8.0845

according to Theorem 1. We can get a curvature-bounded path of length by elongating from the CCC-path of length

`42 = 7.8609, as shown by the solid curve starting from x4 in Fig. 13c.

5 Conclusions

One of the fundamental issues in the field of cooperative guidance and path planning for mulitple nonholonomic vehicles

is to find curvature-bounded paths between two oriented points with expected lengths. As the shortest curvature-bounded

path between two oriented points can be analytically obtained, one usually elongates the shortest curvature-bounded

path to an expected length. It was shown in the paper that, if shortest curvature-bounded path between two oriented

points takes a geometric pattern of CCC, it can be elongated to arbitrary length. If the shortest curvature-bounded

path between two oriented points takes a geometric pattern of CSC, the space of initial and final oriented points was

divided into two subspaces O and ∇O. If the two oriented points lie in O, the shortest curvature-bounded path can be

elongated to arbitrary length. However, if the two oriented points lie in ∇O, there exists an interval so that between

the two oriented points there is not a curvature-bounded path with its length in the interval. In addition, the boundary

values of the non-existence interval were presented. As a result, given any two oriented points and any expected length,

it is readily to check if there exists a curvature-bounded path with the expected length; once it exists, an elongation

strategy was provided to get the curvature-bounded path with the expected length. All the developments were finally

demonstrated and verified by three examples of cooperative path planning for multiple UAVs to realize a triangle-shaped

flight formation.
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