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Abstract

This paper considers the distributed sparse identification problem over wireless sensor networks such that all sensors coop-
eratively estimate the unknown sparse parameter vector of stochastic dynamic systems by using the local information from
neighbors. A distributed sparse least squares algorithm is proposed by minimizing a local information criterion formulated as
a linear combination of accumulative local estimation error and L1-regularization term. The upper bounds of the estimation
error and the regret of the adaptive predictor of the proposed algorithm are presented. Furthermore, by designing a suitable
adaptive weighting coefficient based on the local observation data, the set convergence of zero elements with a finite number
of observations is obtained under a cooperative non-persistent excitation condition. It is shown that the proposed distributed
algorithm can work well in a cooperative way even though none of the individual sensors can fulfill the estimation task. Our
theoretical results are obtained without relying on the independency assumptions of regression signals that have been com-
monly used in the existing literature. Thus, our results are expected to be applied to stochastic feedback systems. Finally, the
numerical simulations are provided to demonstrate the effectiveness of our theoretical results.

Key words: Distributed sparse least squares; Stochastic dynamic system; L1-regularization; Regret; Cooperative
non-persistent excitation.

1 Introduction

In recent years, wireless sensor networks (WSNs) have
attracted increasing research attention because of their
wide application in engineering systems including smart
grids, biomedical health monitoring, target tracking and
surveillance (Sayed et al., 2013; Yick et al., 2008). Dis-
tributed observation and data analysis are ubiquitous in
WSNs, where sensors are interconnected to acquire and
process the local information from neighbors to finish
a common task. Due to various uncertainties in practi-
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cal systems, the distributed identification problem over
WSNs becomes one of the important topics where all the
sensors collaboratively estimate an unknown parameter
vector of interest by using local noisy measurements.
Unlike the centralized method with a fusion center, the
distributed scheme has the advantages of flexibility, ro-
bustness to node or link failures as well as reducing com-
munication load and calculation pressure. Consequently,
the theoretical analysis of distributed estimation or fil-
tering algorithms based on several typical distributed
strategies such as the incremental, the diffusion and the
consensus strategies have been provided (Abdolee and
Champagne, 2016; Lou et al., 2017; Battilotti et al.,
2020; Liu et al., 2020).

In practical scenarios, there exist a large number of
sparse systems (Bazerque and Giannakis, 2010; Vinga,
2021) where many elements in the parameter vector do
not contribute or contribute marginally to the systems
( i.e., these elements are zero or near-zero). How to in-
fer the zero elements and identify the nonzero elements
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in the unknown parameter vector is an important is-
sue in the investigation of sparse systems. Considerable
progress has been made on the identification of zero and
nonzero elements in an unknown sparse parameter vec-
tor (Zhao and Yu, 2006; Chiuso and Pillonetto, 2014;
Eksioglu, 2013), which allows us to obtain a more reli-
able prediction model. One direction for the estimation
of sparse signals is based on the compressed sensing
(CS) theory (Candès and Tao, 2005; Baraniuk, 2007),
and some estimation algorithms using CS are proposed
(cf., Xu et al. (2015); Xie and Guo (2020)) in which a
priori knowledge about the sparsity of the unknown
parameter and the regression vectors are required. An-
other direction is the sparse optimization based on the
regularization framework where the objective function
is formulated as a combination of the prediction error
with a penalty term. The well-known LASSO (the least
absolute shrinkage and selection operator) is one of the
classical algorithms to obtain the sparse signals (Tib-
shirani, 1996), and its variants and adaptive LASSO
(Zou, 2006) are also studied. For the stochastic dynamic
systems with a single sensor, the adaptive sparse esti-
mation or filtering algorithms are studied by combing
the recursive least squares (LS) and least mean squares
(LMS) with regularization term (Zhao et al., 2020; Chen
et al., 2009).

With the development of sensor networks, some dis-
tributed adaptive sparse estimation algorithms have
been proposed, and the corresponding stability and
convergence analysis are also investigated under some
signal conditions. For example, Di Lorenzo and Sayed
(2013) provided the convergence and mean-square per-
formance analysis for the distributed LMS algorithm
regularized by convex penalties where the assumption
of independent regressors is required. Huang and Li
(2015) presented theoretical analysis on the mean and
mean-square performance of the distributed sparse total
LS algorithm under the condition that the input sig-
nals are independent and identically distributed (i.i.d.).
Shiri et al. (2018) analyzed the mean stability of dis-
tributed quasi-sparse affine projection algorithm with
independent regression vectors. Huang et al. (2020) an-
alyzed the mean stability of the sparse diffusion LMS
algorithm for two regularization terms with indepen-
dent regression vectors. However, for the typical models
such as ARMAX (autoregressive moving-average with
exogenous input) model and Hammerstein system, the
regressors are often generated by the past input and
output signals, so it is hard for them to satisfy the
aforementioned independency assumptions.

In order to relax the independency assumption of the
regressors, some attempts are made for the distributed
adaptive estimation or filtering algorithms. For the un-
known time-invariant parameter vector, Gan and Liu
(2019) proposed a distributed stochastic gradient algo-
rithm, and established the strong consistency of the pro-
posed algorithm under a cooperative excitation condi-

tion. Xie et al. (2021) studied the convergence of the
diffusion LS algorithm. For the time-varying parame-
ter vector, Xie and Guo (2018) provided a cooperative
information condition to guarantee the stability of the
consensus-based LMS adaptive filters. Moreover, Gan
et al. (2021) introduced the collective random observ-
ability condition and provided the stability analysis of
the distributed Kalman filter algorithm. Nevertheless,
these asymptotical results are established as the num-
ber of the observation data obtained by sensors tends to
infinity, which may not be suitable for the sparse iden-
tification problem with limited observation data.

Inspired by Zhao et al. (2020) where a sparse identifi-
cation algorithm for a single sensor case is put forward
to infer the set of zero elements with finite observations,
we develop a distributed adaptive sparse LS algorithm
over sensor networks such that all sensors can coopera-
tively identify the unknown parameter vector and infer
the zero elements with a finite number of observations.
The main contributions can be summarized as follows:

• We first introduce a local information criterion for
each sensor which is formulated as a linear combina-
tion of local estimation errors with L1-regularization
term. By minimizing this criterion, a distributed adap-
tive sparse identification algorithm is proposed. The
upper bounds of the estimation error and the accumu-
lative regret of the adaptive predictor are established,
which can be degenerated to the results of the classi-
cal distributed LS algorithm (Xie et al., 2021) when
the weighting coefficients are equal to zero.

• Then, we introduce a cooperative non-persistent ex-
citation condition on the regressors, under which the
distributed sparse LS algorithm can cooperatively
identify the set of zero elements with finite observa-
tions by properly choosing the weighting coefficients.
We remark that the key difference between the pro-
posed algorithm and those in distributed sparse op-
timization framework (e.g., Di Lorenzo and Sayed
(2013)) lies in that the weighting coefficients are
generated from the local observation sequences. The
cooperative excitation condition is much weaker than
the widely used persistent excitations (cf., Chen et al.
(2014); Zhang et al. (2021); Chen et al. (2015)) and
the regularity condition (Zou, 2006).

• Different from most existing results on the distributed
sparse algorithms, our theoretical results are obtained
without relying on the independency assumptions of
regression signals, which makes it possible for applica-
tions to the stochastic feedback systems. We also re-
veal that the whole sensor network can cooperatively
accomplish the estimation task, even if any individual
sensor can not due to lack of necessary information
(Zhao et al., 2020).

The remainder of this paper is organized as follows. In
Section 2, we give the problem formulation of this paper;
Section 3 presents the main results of the paper includ-
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ing the parameter convergence of the algorithm, the re-
gret analysis, and the set convergence of the algorithm;
the proofs of the main results are given in Section 4. A
simulation example is provided in Section 5. Finally, we
conclude the paper with some remarks in Section 6.

2 Problem formulation

2.1 Basic notations

In this paper, for anm-dimensional vectorx, itsLp-norm

is defined as ‖x‖p = (
∑m
j=1 |x(j)|p)1/p (1 ≤ p < ∞) ,

where x(j) denotes the j-th element of x. For p = 1,
‖x‖1 is the sum of absolute values of all the elements in
x; and for p = 2, ‖x‖2 is the Euclidean norm, we simply
write ‖·‖2 as ‖·‖. For an m×m-dimensional real matrix
A, we use λmax(·) and λmin(·) to denote the largest and
smallest eigenvalues of the matrix. ‖A‖ denotes the Eu-

clidean norm, i.e., ‖A‖ = (λmax(AAT ))
1
2 where the no-

tation T denotes the transpose operator; ‖A‖F denotes

the Frobenius norm, i.e., ‖A‖F = (tr(ATA))
1
2 , where

the notation tr(·) denotes the trace of the corresponding
matrix. We use col(·, · · · , ·) to denote a vector stacked
by the specified vectors, and diag(·, · · · , ·) to denote a
block matrix formed in a diagonal manner of the corre-
sponding vectors or matrices. For a symmetric matrix
A, if all eigenvalues of A are positive (or nonnegative),
then it is a positive definite (semipositive) matrix, and
we denote it as A > 0 (≥ 0). If all elements of a matrix
A = {aij} ∈ Rn×n are nonnegative, then it is a nonneg-
ative matrix, and furthermore if

∑n
j=1 aij = 1 holds for

all i ∈ {1, · · · , n}, then it is called a stochastic matrix.

For any two positive scalar sequences {ak} and {bk}, by
ak = O(bk) we mean that there exists a constant C > 0
independent of k such that ak ≤ Cbk holds for all k ≥ 0,
and by ak = o(bk) we mean that limk→∞ ak/bk = 0.
For a convex function f(x), we use ∂f : x → ∂f(x) to
denote the subdifferential of f , which is a convex set. For
example,

∂|x| =


1, if x > 0;

−1, if x < 0;

[-1,1], if x = 0,

.

A necessary and sufficient condition that a given point
x belongs to the minimum set of f is 0 ∈ ∂f(x) (see
Rockafellar (1972)). We also need to introduce the sign
function sgn(x) defined as sgn(x) = 1 if x ≥ 0 and
sgn(x) = −1 if x < 0.

2.2 Graph theory

We consider a sensor network with n sensors. The com-
munication between sensors are usually modeled as an

undirected weighted graph G = (V, E , A), where V =
{1, 2, 3, · · · , n} is the set of sensors (or nodes), E ⊆ V×V
is the edge set, and A = {aij} ∈ Rn×n is the weighted
adjacency matrix. The elements of the adjacency matrix
A satisfy aij > 0 if (i, j) ∈ E and aij = 0 otherwise. Here
we assume that the matrixA is a symmetric and stochas-
tic matrix. For the sensor i, the set of its neighbors is
denoted as Ni = {j ∈ V|(i, j) ∈ E}, and the sensor i be-
longs to Ni. The sensor i can communicate information
with its neighboring sensors. A path of length ` is a se-
quence of nodes {i1, ..., i`, i`+1} such that (ih, ih+1) ∈ E
with 1 ≤ h ≤ `. The graph G is called connected if there
is a path between any two sensors. The diameter DG of
the graph G is defined as the maximum shortest path
length between any two sensors.

2.3 Observation model

In this paper, we consider the parameter identification
problem in a network consisting of n sensors labeled
1, · · · , n. Assume that the data {yt,i,ϕt,i, t = 1, 2, · · · }
collected by the sensor i obeys the following discrete-
time stochastic regression model,

yt+1,i = ϕTt,iθ + wt+1,i, t = 0, 1, 2, · · · , (1)

where yt,i is the scalar observation or output of the sen-
sor i at time t, ϕt,i is the m-dimensional stochastic re-
gression vector which may be the function of current
and past inputs and outputs, θ ∈ Rm is an unknown
m-dimensional parameter to be estimated, and {wt,i} is
the noise sequence. The above model (1) includes many
parameterized systems, such as ARX system and Ham-
merstein system. We further denote the parameter vec-
tor θ and the index set of its zero elements by

θ , (θ(1), · · · ,θ(m))T ,

H∗ , {l ∈ {1, · · · ,m}|θ(l) = 0}.
(2)

Our problem is to design a distributed adaptive estima-
tion algorithm such that all sensors cooperatively infer
the set H∗ in a finite number of steps and identify the
unknown parameter θ by using stochastic regression vec-
tors and the observation signals from its neighbors, i.e.,
{ϕk,j , yk+1,j}tk=1 (j ∈ Ni).

3 The main results

3.1 Parameter convergence

Before designing the algorithm to cooperatively estimate
the unknown parameter vector and infer the set H∗, we
first introduce the following classical distributed least
squares algorithm to estimate the unknown parameter
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θ in (2), i.e.,

θt+1,i = Pt+1,i

 n∑
j=1

t∑
k=0

a
(t+1−k)
ij ϕk,jyk+1,j

 , (3)

where Pt+1,i =
(∑n

j=1

∑t
k=0 a

(t+1−k)
ij ϕk,jϕ

T
k,j

)−1
and

a
(t+1−k)
ij is the i-th row, j-th column entry of the matrix

At+1−k. It is clear that the matrix Pt+1,i can be equiv-
alently written as the following recursive form,

P−1t+1,i =
∑
j∈Ni

aij(P
−1
t,j +ϕt,jϕ

T
t,j). (4)

Thus, the algorithm (3) can also have the following re-
cursive expression,

θt+1,i = Pt+1,i

∑
j∈Ni

aij(P
−1
t,j θt,j +ϕt,jyt+1,j). (5)

Note that in the above derivation, we assume that the

matrix
∑n
j=1

∑t
k=0 a

(t+1−k)
ij ϕk,jϕ

T
k,j is invertible which

is usually not satisfied for small t. To solve this problem,
we take the initial matrix P0,i to be positive definite. By
(4), we have

P−1t+1,i =

n∑
j=1

t∑
k=0

a
(t+1−k)
ij ϕk,jϕ

T
k,j +

n∑
j=1

a
(t+1)
ij P−10,j . (6)

This modification will not affect the analysis of the
asymptotic properties of the estimate of the distributed
least squares algorithm.

In fact, the algorithm (5) can be obtained by minimiz-
ing the following linear combination of the estimation
error σt+1,i(β) between the observation signals and the
prediction of the local neighbors,

σt+1,i(β) =
∑
j∈Ni

aij

(
σt,j(β) + [yt+1,j − βTϕt,j ]2

)
, (7)

with σ0,i(β) = 0. That is, θt+1,i , arg minβ σt+1,i(β).

Set

et+1(β) = col{(yt+1,1 − βTϕt,1)2, ..., (yt+1,n − βTϕt,n)2},
σt(β) = col{σt,1(β), ..., σt,n(β)}.

Hence by (7), we have

σt+1(β) =Aσt(β) +Aet+1(β)

=A2σt−1(β) +A2et(β) +Aet+1(β)

=

t∑
k=0

At+1−kek+1(β),

which implies that

σt+1,i(β) =

n∑
j=1

t∑
k=0

a
(t+1−k)
ij [yk+1,j − βTϕk,j ]2. (8)

It is shown by Xie et al. (2021) that the distributed least
squares algorithm (5) can generate a consistent estimate
for the unknown parameter when the number of data
tends to infinity. However, for the sparse unknown pa-
rameter vectors (i.e., there are many zero elements in
θ), it is hard to infer the zero elements in a finite step
due to the limitation of observations in practice. In or-
der to solve this issue, we introduce the following local
information criterion with L1-regularization to identify
the unknown sparse parameters and infer the set H∗,

Jt+1,i(β) = σt+1,i(β) + αt+1,i‖β‖1, (9)

where ‖ · ‖1 is the L1-norm, αt+1,i is the weighting co-

efficient chosen to satisfy αt+1,i = o(λmin(P−1t+1,i)), and

σt+1,i(β) is recursively defined by (7). For the sensor i,
we can obtain the following distributed sparse LS algo-
rithm to estimate the unknown parameter θ by mini-
mizing Jt+1,i(β), i.e.,

βt+1,i = arg min
β
Jt+1,i(β). (10)

Remark 1 For the sensor i, the coefficients αt+1,i in (9)
can be dynamically adjusted by using the local observa-
tion sequence {ϕk,j , yk+1,j , j ∈ Ni}tk=1, which makes (9)
be the adaptive LASSO (cf., Zou (2006)). We show that
by properly choosing the coefficient αt+1,i, we can iden-
tify the set of the zero elements in the unknown sparse
parameter vector θ with a finite number of observations
(see Theorem 3).

In the following, we will first investigate the upper bound
of the estimation error generated by (10), which pro-
vides the basis for the set convergence of zero elements.
For this purpose, we need to introduce the following as-
sumptions on the network topology and the observation
noise.

Assumption 1 The communication graph G is con-
nected.

Remark 2 For the weighted adjacency matrix A of the

graph G, we denote Al , (a
(l)
ij ) with l ≥ 1. By the theory

of product of stochastic matrices, we see that under As-
sumption 1, Al is a positive matrix for l ≥ DG, i.e., for

any i and j, a
(l)
ij > 0.

Assumption 2 For any i ∈ {1, · · · , n}, the noise se-
quence {wk,i,Fk} is a martingale difference, and there
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exists a constant δ > 2 such that

sup
k≥0

E[|wk+1,i|δ|Fk] <∞, a.s.,

where Ft = σ{ϕk,i, wk,i, k ≤ t, i = 1, · · · , n} is a se-
quence of nondecreasing σ-algebras andE[·|·] denotes the
conditional expectation operator.

We can verify that the i.i.d. zero-mean bounded or Gaus-
sian noise {wk,i}which are independent of the regressors
can satisfy Assumption 2.

Assume that there are d nonzero elements in the un-
known parameter vector θ. Without loss of generality,
we assume θ = (θ(1), · · · ,θ(d),θ(d + 1), · · · ,θ(m))T

with θ(l) 6= 0, l = 1, · · · , d, and θ(j) = 0, j = d +
1, · · · ,m. For the estimate βt+1,i obtained by the dis-
tributed sparse LS algorithm (10), we denote the esti-
mate error as

β̃t+1,i = βt+1,i − θ. (11)

Then we have the following result concerning the upper

bound of the estimation error β̃t,i.

Theorem 1 Let P−1t+1,i be generated by (4) with arbi-
trarily initial matrix P0,i > 0. Then under Assumptions
1 and 2, we have for all i ∈ {1, · · · , n}

‖β̃t+1,i‖ = O

(
αt+1,i

λmin(P−1t+1,i)
+

√
log rt

λmin(P−1t+1,i)

)
, a.s.

where rt = max
1≤i≤n

λmax{P−10,i }+
∑n
i=1

∑t
k=0 ‖ϕk,i‖2.

The proof of Theorem 1 is provided in Subsection 4.1.

Remark 3 By (6), we have for t ≥ DG,

λmin(P−1t+1,i) ≥ aminλ
n,t
min, (12)

where amin , mini,j∈V a
(DG)
ij > 0 and

λn,tmin = λmin


n∑
j=1

P−10,j +

n∑
j=1

t−DG+1∑
k=0

ϕk,jϕ
T
k,j

 .

From Theorem 1, if the coefficient αt+1,i is chosen to sat-

isfy αt+1,i = o(λmin(P−1t+1,i)) and the regression vectors
satisfy the weakest possible cooperative excitation condi-
tion log rt = o(λn,tmin) (cf., Xie et al. (2021)), then the
almost sure convergence of the distributed sparse LS al-
gorithm can be obtained, i.e., βt+1,i −−−→

t→∞
θ.

3.2 Analysis of the regret

Regret is one of the key metrics for evaluating the perfor-
mance of the online learning algorithms (Hosseini et al.,
2016; Shahrampour and Jadbabaie, 2018). For each sen-
sor i ∈ {1, · · · , n}, we construct an adaptive predictor
ŷt+1,i by using the estimate βt,i defined in (10) at the
time instant t,

ŷt+1,i = ϕTt,iβt,i.

The prediction error can be described by the following
loss function ρt+1,i(βt,i), i.e.,

ρt+1,i(βt,i) =E
[
(yt+1,i − ŷt+1,i)

2|Fk

]
=E

[
(yt+1,i −ϕTt,iβt,i)2|Ft

]
.

Then the cumulative regret over the whole network is
defined as

Rt =

n∑
i=1

t∑
k=0

ρk+1,i(βk,i)− min
ζ∈Rm

n∑
i=1

t∑
k=0

ρk+1,i(ζ).

The regret defined above reflects the difference between
the cumulative loss ρk+1,i(βk,i) when the unknown pa-
rameter is estimated by (10) and the optimal static value
of the cumulative loss function ρk+1,i(·). Due to exis-
tence of the noise, it is generally desired that the average
regret Rt/nt is small or even goes to zero as t→∞.

In the following, we analyze the asymptotic property of
the regret Rt over the sensor network. By Assumption 2

and the fact ϕTk,iβ̃k,i ∈ Fk, we have

Rt =

n∑
i=1

t∑
k=0

E((yk+1,i − ŷk+1,i)
2|Fk)

− min
ζ∈Rm

n∑
i=1

t∑
k=0

E((yk+1,i −ϕTk+1,iζ)2|Fk)

=

n∑
i=1

t∑
k=0

E(ϕTk,iβ̃k,i + wk+1,i)
2|Fk)

− min
ζ∈Rm

n∑
i=1

t∑
k=0

E((ϕTk,i(θ − ζ) + wk+1,i)
2|Fk)

=

n∑
i=1

t∑
k=0

(ϕTk,iβ̃k,i)
2. (13)

Theorem 2 Under Assumption 2, if ΦT
t PtΦt = O(1),

and αt,i = O
(√

λmin(P−1t,i )
)

, we have

Rt = O(log rt), a.s.

where Φt , diag{ϕt,1, ...ϕt,n},Pt , diag{Pt,1, ...,Pt,n},
and rt is defined in Theorem 1.
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The proof of Theorem 2 is given in Subsection 4.2.

Remark 4 We know that for the bounded regressors
ϕt,i, rt will be of the order O(t). Consequently, by The-
orem 2, the upper bound of the regret Rt over the sen-
sor network is sublinear with respect to nt, i.e., Rt/nt =
O(log t/t)→ 0 as t→∞. The analysis of the regret does
not require any excitation condition on the regression sig-
nals. Theorem 1 and Theorem 2 can be degenerated to
the results of the classical distributed LS algorithm in Xie
et al. (2021) when αt+1,i is equal to zero.

3.3 Set convergence

In the last two subsections, we have obtained the asymp-
totic results concerning the parameter convergence and
the regret analysis. Inspired by Zhao et al. (2020), we
propose the following distributed sparse adaptive algo-
rithm (Algorithm 1) to identify the set of zero elements
with a finite number of observations by choosing αt,i
adaptively.

Algorithm 1.
Step 1: Based on {ϕk,j , yk+1,j}tk=1 (j ∈ Ni), begin with
an initial vector θ0,i and an initial matrix P0,i > 0,

compute the matrix P−1t+1,i defined by (4) and the local

estimate θt+1,i of θ by (5), and further define

θ̂t+1,i(l)

, θt+1,i(l) + sgn(θt+1,i(l))

√√√√ log(λmax(P−1t+1,i))

λmin(P−1t+1,i)
, (14)

Step 2: Choose a positive sequence {αk,i}t+1
k=1 satisfying

αk,i = o(λmin(P−1k,i )),

λmax(P−1k,i )

√√√√ log(λmax(P−1k,i ))

λmin(P−1k,i )
= o(αk,i). (15)

Step 3: Optimize the convex objective local function,

J̄t+1,i(ξ) = σt+1,i(ξ) + αt+1,i

m∑
l=1

1

|θ̂t+1,i(l)|
|ξ(l)| (16)

with σt+1,i(ξ) defined in (7), and obtain

ξt+1,i = (ξt+1,i(1), · · · , ξt+1,i(m))T

, arg min
ξ
J̄t+1,i(ξ), (17)

Ht+1,i , {l = 1, · · · ,m|ξt+1,i(l) = 0}. (18)

In the convex objective function (16), different com-

ponents in ξ are assigned different weights, which
is an adaptive LASSO estimator since the weights

αt+1,i/θ̂t+1,i(l) are generated from the local ob-
servation sequence {ϕk,j , yk+1,j , j ∈ Ni}tk=1. The

θ̂t+1,i(l) appearing in the denominator satisfies that

|θ̂t+1,i(l)| ≥
√

log(λmax(P
−1
t+1,i

))

λmin(P
−1
t+1,i

)
> 0, which makes

(16) well defined. Moreover, if θ̂t+1,i(l) → 0 for some

l = 1, · · · ,m and hence 1/θ̂t+1,i(l) → ∞, then the cor-
responding minimizer ξt+1,i(l) should be exactly zero.
This provides an intuitive explanation for the sparse
solution of Algorithm 1 with a finite number of obser-
vations. The set Ht+1,i generated from the convex opti-
mization problem (17) serves as the estimate for the set
H∗ defined in (2). There exist some typical algorithms
such as basic pursuit and interior-point algorithms to
solve the convex optimization problem (17) in the liter-
ature (see e.g., Kim et al. (2007); Gill et al. (2011)).

We introduce the following cooperative non-persistent
excitation condition to study the convergence of the sets
of zero elements in the unknown sparse parameter vec-
tor with a finite number of observations, which is differ-
ent from the asymptotic analysis given in the last two
subsections.

Assumption 3 (Cooperative Non-Persistent Excita-
tion Condition) The following condition is satisfied,

rt

λn,tmin

√
log(rt)

λn,tmin

−−−→
t→∞

0, a.s. (19)

where rt and λn,tmin are respectively defined in Theorem 1
and Remark 3.

Remark 5 For the single sensor case with n = 1 and
DG = 1, the condition (19) reduces to the excitation con-
dition given by Zhao et al. (2020). Assumption 3 reveals
the cooperative effect of multiple sensors in the sense that
the condition (19) can make it possible for Algorithm 1
to estimate the unknown parameter θ and the sets of zero
elements by the cooperation of multiple sensors even if
any individual sensor cannot due to lack of adequate ex-
citation, which is also shown in the simulation example
given in Section 5.

For the set Ht,i obtained by (18), we get the following
finite time convergence result, which shows that the set
of zero elements in θ can be correctly identified with a
finite number of observations.

Theorem 3 (Set convergence) Under Assumptions 1-
3, if log rt = O(log rt−DG+1), then there exists a positive
integer T0 (which may depend on the sample ω) such that
for all i ∈ {1, · · · , n}

ξt+1,i(d+ 1) = · · · = ξt+1,i(m) = 0, t ≥ T0.
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That is, Ht+1,i = H∗ for t ≥ T0, where H∗ and Ht+1,i

are defined in (2) and (18).

The detailed proof of Theorem 3 is given in Subsection
4.3.

Remark 6 From Theorem 3 (also Theorem 1 and The-
orem 2 ), we see that the parameter convergence, regret
analysis, and set convergence results in this paper are de-
rived without using the independency assumption on the
regression vectors, which makes it possible to apply our
algorithm to practical feedback systems.

4 Proofs of the main results

In order to prove the main theorems of the paper, we
first give two preliminary lemmas.

Denote the estimation error of the classical distributed
LS algorithm (5) as θ̃t+1,i , θt+1,i − θ, and Θ̃t =

col{θ̃t,1, ..., θ̃t,n}.

Lemma 1 (Xie et al., 2021) Under Assumptions 1 and
2, we have the following results for the classical dis-
tributed LS algorithm (5),

1)

n∑
i=1

‖θ̃t,i‖2 = O

(
log rt

λn,tmin

)
,

2)

t∑
k=0

λmax(dkΦ
T
kPkΦk) = O(log rt),

3)

t∑
k=0

Θ̃T
kΦkdkΦ

T
k Θ̃k = O(log rt),

where Pk and Φk are defined in Theorem 2, rt ,
max
1≤i≤n

λmax{P−10,i } +
∑n
i=1

∑t
k=0 ‖ϕk,i‖2 and dt ,

diag
{

1
1+ϕT

t,1Pt,1ϕt,1
, ..., 1

1+ϕT
t,nPt,nϕt,n

}
.

The following lemma provides an upper bound for the
cumulative summation of the noises.

Lemma 2 (Gan and Liu, 2022) Under Assumptions 1
and 2, for any i ∈ {1, ..., n}, we have

∥∥∥∥∥P 1
2
t,i

 n∑
j=1

t∑
k=0

a
(t+1−k)
ij ϕk,jwk+1,j

∥∥∥∥∥ = O(
√

log(rt)).

4.1 Proof of Theorem 1

Proof. By noting that βt+1,i is the minimizer of

Jt+1,i(β), it follows that

0≥ Jt+1,i(βt+1,i)− Jt+1,i(θ)

= Jt+1,i(β̃t+1,i + θ)− Jt+1,i(θ). (20)

Since θ(j) = 0, j = d+ 1, · · · ,m, by (1), (8) and (9), we
have

Jt+1,i(β̃t+1,i + θ)

=

n∑
j=1

t∑
k=0

a
(t+1−k)
ij [wk+1,j − β̃Tt+1,iϕk,j ]

2

+αt+1,i

d∑
l=1

|β̃t+1,i(l) + θ(l)|+ αt+1,i

m∑
l=d+1

|β̃t+1,i(l)|

=

n∑
j=1

t∑
k=0

a
(t+1−k)
ij w2

k+1,j

−2β̃Tt+1,i

n∑
j=1

t∑
k=0

a
(t+1−k)
ij ϕk,jwk+1,j

+β̃Tt+1,i

t∑
k=0

a
(t+1−k)
ij ϕk,jϕ

T
k,jβ̃t+1,i

+αt+1,i

d∑
l=1

|β̃t+1,i(l) + θ(l)|+ αt+1,i

m∑
l=d+1

|β̃t+1,i(l)|.

(21)

Similarly, we have

Jt+1,i(θ)

=

n∑
j=1

t∑
k=0

a
(t+1−k)
ij [yk+1,j − θTϕk,j ]2 + αt+1,i

d∑
l=1

|θ(l)|

=

n∑
j=1

t∑
k=0

a
(t+1−k)
ij w2

k+1,j + αt+1,i

d∑
l=1

|θ(l)|. (22)

Hence by (21) and (22), we have

Jt+1,i(β̃t+1,i + θ)− Jt+1,i(θ)

≥ β̃Tt+1,i

t∑
k=0

a
(t+1−k)
ij ϕk,jϕ

T
k,jβ̃t+1,i

−2β̃Tt+1,i

n∑
j=1

t∑
k=0

a
(t+1−k)
ij ϕk,jwk+1,j

+αt+1,i

d∑
l=1

(|β̃t+1,i(l) + θ(l)| − |θ(l)|)

,M
(1)
t+1,i − 2M

(2)
t+1,i +M

(3)
t+1,i. (23)

In the following, we estimate M
(1)
t+1,i, M

(2)
t+1,i and M

(3)
t+1,i

separately. Denote Vt+1,i = P
− 1

2
t+1,iβ̃t+1,i. By Lemma 2,
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we have

|M (2)
t+1,i|

=
∣∣∣β̃Tt+1,iP

− 1
2

t+1,iP
1
2
t+1,i

n∑
j=1

t∑
k=0

a
(t+1−k)
ij ϕk,jwk+1,j

∣∣∣
=O

(√
log(rt)

)
‖Vt+1,i‖.

Hence, there exists a positive constant c1 such that for
large t,

M
(1)
t+1,i − 2M

(2)
t+1,i

≥ 1

2
‖Vt+1,i‖2 − c1

√
log(rt)‖Vt+1,i‖. (24)

By Cr-inequality, we have

|M (3)
t+1,i| ≤ αt+1,i

d∑
l=1

|β̃t+1,i(l)| ≤ αt+1,i

√
d‖β̃t+1,i‖.(25)

Hence by (20) and (23)-(25), we have for large t

0 ≥ ‖Vt+1,i‖2

2
− c1

√
log(rt)‖Vt+1,i‖ −

√
dαt+1,i‖β̃t+1,i‖,

which implies that

‖Vt+1,i‖ ≤
√
c21 log rt + 2

√
dαt+1,i‖β̃t+1,i‖+

√
c1 log rt.

(26)

Note that by the definition of Vt+1,i, we have

‖Vt+1,i‖2 ≥ λmin(P−1t+1,i)‖β̃t+1,i‖2.

Combining this with (26), we have

(
‖β̃t+1,i‖ −

2
√
dαt+1,i

λmin(P−1t+1,i)

)2

≤

(
2
√
dαt+1,i

λmin(P−1t+1,i)

)2

+
(2c21 + 2c1) log rt

λmin(P−1t+1,i)
.

Thus, we have

‖β̃t+1,i‖ = O

(
αt+1,i

λmin(P−1t+1,i)
+

√
log rt

λmin(P−1t+1,i)

)
, (27)

which completes the proof of the theorem. 2

4.2 Proof of Theorem 2

Proof. By (8), we obtain the subdifferential of (9),

∂Jt+1,i(β) =−2

n∑
j=1

t∑
k=0

a
(t+1−k)
ij ϕk,j(yk+1,j −ϕTk,jβ)

+αt+1,i∂‖β‖1,

where ∂‖β‖1 is the subdifferential of ‖β‖1. Since βt+1,i

is the minimizer of Jt+1,i(β), we have 0 ∈ ∂Jt+1,i(βt+1,i)

with 0 , (0, 0, · · · , 0︸ ︷︷ ︸
m

)T , i.e.,

0∈−2

n∑
j=1

t∑
k=0

a
(t+1−k)
ij ϕk,j(yk+1,j −ϕTk,jβt+1,i)

+αt+1,i∂‖βt+1,i‖1. (28)

Let us write (28) in a component form, i.e., for all l ∈
{1, · · · ,m},

0 ∈ −
n∑
j=1

t∑
k=0

a
(t+1−k)
ij ϕk,j(l)yk+1,j

+

n∑
j=1

t∑
k=0

a
(t+1−k)
ij ϕk,j(l)

(∑
s6=l

ϕk,j(s)βt+1,i(s)
)

+

n∑
j=1

t∑
k=0

a
(t+1−k)
ij ϕ2

k,j(l)βt+1,i(l) +
αt+1,i

2
∂|βt+1,i(l)|

,Dt+1,i(l) +

n∑
j=1

t∑
k=0

a
(t+1−k)
ij ϕ2

k,j(l)βt+1,i(l)

+
αt+1,i

2
∂|βt+1,i(l)|. (29)

Note that

∂|βt+1,i(l)| =


1, if βt+1,i(l) > 0

− 1, if βt+1,i(l) < 0

∈ [−1, 1], if βt+1,i(l) = 0

.

Set
∑n
j=1

∑t
k=0 a

(t+1−k)
ij ϕk,jϕ

T
k,j , Ψt+1,i. Combining

the above equation with (29) yields for large t

βt+1,i(l)

=



−Dt+1,i(l) +
αt+1,i

2

Ψt+1,i(l, l)
, if Dt+1,i(l) >

αt+1,i

2

−Dt+1,i(l)− αt+1,i

2

Ψt+1,i(l, l)
, if Dt+1,i(l) < −

αt+1,i

2

0, if |Dt+1,i(l)| ≤
αt+1,i

2

,
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with Ψt+1,i(l, l) being the l-th diagonal element of the
matrix Ψt+1,i. This implies that

Ψt+1,i(l, l)βt+1,i(l) = −Dt+1,i(l) + γt+1,i(l), (30)

where

γt+1,i(l) =


αt+1,i

2
, if Dt+1,i(l) >

αt+1,i

2

− αt+1,i

2
, if Dt+1,i(l) < −

αt+1,i

2

Dt+1,i(l), if |Dt+1,i(l)| ≤
αt+1,i

2

.

Then by (30) and the definition ofDt+1,i(l), we have for
all l ∈ {1, · · · ,m}

n∑
j=1

t∑
k=0

a
(t+1−k)
ij ϕk,j(l)ϕ

T
k,jβt+1,i

=

n∑
j=1

t∑
k=0

a
(t+1−k)
ij ϕk,j(l)yk+1,j + γt+1,i(l).

We rewrite the above equation into the matrix form, and
obtain the following equation by (3) for large t

βt+1,i =Pt+1,i

 n∑
j=1

t∑
k=0

a
(t+1−k)
ij ϕk,jyk+1,j + γt+1,i


= θt+1,i + Pt+1,iγt+1,i, (31)

where γt+1,i = (γt+1,i(1), · · · ,γt+1,i(m))T and θt+1,i

is defined in (3). Note that for all i ∈ {1, · · · , n} and
l ∈ {1, · · · ,m}, ‖γt+1,i(l)‖ ≤ αt+1,i

2 , hence by Lemma 1,
we obtain

t∑
k=0

γTk PkΦkdkΦ
T
kPkγk

≤
t∑

k=0

λmax(dkΦ
T
kPkΦk)γTk Pkγk

≤
t∑

k=0

[
λmax(dkΦ

T
kPkΦk)

(
n∑
i=1

λmax(Pk,i)‖γk,i‖2
)]

=O

(
t∑

k=0

[
λmax(dkΦ

T
kPkΦk)

(
n∑
i=1

α2
k,i

λmin(P−1k,i )

)])
=O(log rt), (32)

where γt+1 = col{γt+1,1, · · · ,γt+1,n}. By the definition
of dt in Lemma 1, we have In = dk + dkΦ

T
kPkΦk. By

(31), we have β̃t+1 = Θ̃t+1 + Pt+1γt+1, where β̃t =

col{β̃t,1, ..., β̃t,n}. Hence by (32), Lemma 1 and the con-

dition ΦT
t PtΦt = O(1), we have

Rt =

t∑
k=0

β̃Tk ΦkΦ
T
k β̃k

=

t∑
k=0

β̃Tk ΦkdkΦ
T
k β̃k +

t∑
k=0

β̃Tk Φk(dkΦ
T
kPkΦk)ΦT

k β̃k

=O
( t∑
k=0

β̃Tk ΦkdkΦ
T
k β̃k

)
=O

( t∑
k=0

Θ̃T
kΦkdkΦ

T
k Θ̃k +

t∑
k=0

γTk PkΦkdkΦ
T
kPkγk

)
=O(log rt).

This completes the proof of the theorem. 2

4.3 Proof of Theorem 3

Proof. Denote the estimation error between ξt+1,i ob-
tained by Algorithm 1 and θ as

ξ̃t+1,i = ξt+1,i − θ. (33)

By Assumption 3 and Lemma 1, we see that the limits of

θt+1,i(l) and θ̂t+1,i(l), l = 1, · · · , d are nonzero. Similar
to the proof of Theorem 1, we also have the following
result,

‖ξ̃t+1,i‖ = O

(
αt+1,i

λmin(P−1t+1,i)
+

√
log rt

λmin(P−1t+1,i)

)
. (34)

By the definition of ξ̃t+1,i in (33), it suffices to prove
that there exists a positive integer T0 such that for all
i ∈ {1, · · · , n}

ξ̃t+1,i(d+ 1) = · · · = ξ̃t+1,i(m) = 0, t ≥ T0.

Otherwise, if for some sl ∈ {d + 1, · · · ,m}, some
sensor i0, and some subsequence {tp}p≥1 such that

ξ̃tp+1,i0(sl) 6= 0, p ≥ 1. Thus for p ≥ 1, we have

‖ξ̃tp+1,i0‖ > 0.

Denote

ξ̃tp+1,i0 =

(
ξ̃
(1)
tp+1,i0

ξ̃
(2)
tp+1,i0

)
and ξ̄tp+1,i0 =

(
ξ̃
(1)
tp+1,i0

0

)
,

(35)

where ξ̃
(1)
tp+1,i0

∈ Rd and ξ̃
(2)
tp+1,i0

∈ Rm−d. By noting

that ξtp+1,i0 is the minimizer of J̄tp+1,i0(ξ) defined by
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(16) , it follows that

0≥ J̄tp+1,i0(ξtp+1,i0)− J̄tp+1,i0(θ + ξ̄tp+1,i0)

= J̄tp+1,i0(θ + ξ̃tp+1,i0)− J̄tp+1,i0(θ + ξ̄tp+1,i0). (36)

Denote

Ψt+1,i =

n∑
j=1

t∑
k=0

a
(t+1−k)
ij ϕk,jϕ

T
k,j ,

(
Ψ

(11)
t+1,i Ψ

(12)
t+1,i

Ψ
(21)
t+1,i Ψ

(22)
t+1,i

)
,

and ϕk,j ,

(
ϕ

(1)
k,j

ϕ
(2)
k,j

)
. (37)

Similar to (21), we have for ξ̃tp+1,i0

J̄tp+1,i0(θ + ξ̃tp+1,i0)−
n∑
j=1

tp∑
k=0

a
(tp+1−k)
i0j

w2
k+1,j

=−2ξ̃
(1)T
tp+1,i0

n∑
j=1

tp∑
k=0

a
(tp+1−k)
i0j

ϕ
(1)
k,jwk+1,j

−2ξ̃
(2)T
tp+1,i0

n∑
j=1

tp∑
k=0

a
(tp+1−k)
i0j

ϕ
(2)
k,jwk+1,j

+ξ̃
(1)T
tp+1,i0

Ψ
(11)
tp+1,i0

ξ̃
(1)
tp+1,i0

+ ξ̃
(2)T
tp+1,i0

Ψ
(21)
tp+1,i0

ξ̃
(1)
tp+1,i0

+ξ̃
(1)T
tp+1,i0

Ψ
(12)
tp+1,i0

ξ̃
(2)
tp+1,i0

+ ξ̃
(2)T
tp+1,i0

Ψ
(22)
tp+1,i0

ξ̃
(2)
tp+1,i0

+αtp+1,i0

d∑
l=1

1

θ̂tp+1,i0(l)
|ξ̃tp+1,i0(l) + θ(l)|

+αtp+1,i0

m∑
l=d+1

1

|θ̂tp+1,i0(l)|
|ξ̃tp+1,i0(l)|. (38)

For ξ̄tp+1,i0 defined in (35), we have

J̄tp+1,i0(θ + ξ̄tp+1,i0)−
n∑
j=1

tp∑
k=0

a
(tp+1−k)
i0j

w2
k+1,j

=−2ξ̃
(1)T
tp+1,i0

n∑
j=1

tp∑
k=0

a
(tp+1−k)
i0j

ϕ
(1)
k,jwk+1,j

+ξ̃
(1)T
tp+1,i0

Ψ
(11)
tp+1,i0

ξ̃
(1)
tp+1,i0

+αtp+1,i0

d∑
l=1

1

|θ̂tp+1,i0(l)|
|ξ̄tp+1,i0(l) + θ(l)|. (39)

By (38) and (39), we have

J̄tp+1,i0(θ + ξ̃tp+1,i0)− J̄tp+1,i0(θ + ξ̄tp+1,i0)

=−2ξ̃
(2)T
tp+1,i0

n∑
j=1

tp∑
k=0

a
(tp+1−k)
i0j

ϕ
(2)
k,jwk+1,j

+ξ̃
(2)T
tp+1,i0

Ψ
(22)
tp+1,i0

ξ̃
(2)
tp+1,i0

+ ξ̃
(1)T
tp+1,i0

Ψ
(12)
tp+1,i0

ξ̃
(2)
tp+1,i0

+ξ̃
(2)T
tp+1,i0

Ψ
(21)
tp+1,i0

ξ̃
(1)
tp+1,i0

+αtp+1,i0

m∑
l=d+1

1

|θ̂tp+1,i0(l)|
|ξ̃tp+1,i0(l)|

,−2I
(1)
tp+1,i0

+ I
(2)
tp+1,i0

+ I
(3)
tp+1,i0

+ I
(4)
tp+1,i0

+ I
(5)
tp+1,i0

.

(40)

In the following, we estimate I
(1)
tp+1,i0

, I
(2)
tp+1,i0

, I
(3)
tp+1,i0

,

I
(4)
tp+1,i0

, I
(5)
tp+1,i0

separately. By (6) and (37), we have

P−1t+1,i = Ψt+1,i +

n∑
j=1

a
(t+1)
ij P−10,j ,

(
Q

(11)
t+1,i Q

(12)
t+1,i

Q
(21)
t+1,i Q

(22)
t+1,i

)
.

By (37) and Lemma 2, we have

|I(1)tp+1,i0
|=

∣∣∣∣∣ξ̃(2)Ttp+1,i0
(Q

(22)
tp+1,i0

)
1
2 (Q

(22)
tp+1,i0

)−
1
2

n∑
j=1

tp∑
k=0

a
(tp+1−k)
i0j

ϕ
(2)
k,jwk+1,j

∣∣∣∣∣
= ‖(Q(22)

tp+1,i0
)‖ 1

2 ‖ξ̃(2)tp+1,i0
‖O
(√

log r
(2)
tp

)
,

where r
(2)
t , max

1≤i≤n
λmax{Q(22)

0,i }+
∑n
i=1

∑t
k=0 ‖ϕ

(2)
k,i‖2.

Note that λmax(Q
(22)
tp+1,i0

) ≤ λmax(P−1tp+1,i0
) and

λmin(Q
(22)
tp+1,i0

) ≥ λmin(P−1tp+1,i0
). Hence, we have

r
(2)
tp ≤ rtp . We obtain that for large p and some positive

constant c2

−2I
(1)
tp+1,i0

+ I
(2)
tp+1,i0

≥ λmin(Ψ
(22)
tp+1,i0

)‖ξ̃(2)tp+1,i0
‖2

−c2‖(Q(22)
tp+1,i0

)‖ 1
2 ‖ξ̃(2)tp+1,i0

‖
√

log r
(2)
tp

≥ 1

2
λmin(Q

(22)
tp+1,i0

)‖ξ̃(2)tp+1,i0
‖2

−c2‖(Q(22)
tp+1,i0

)‖ 1
2 ‖ξ̃(2)tp+1,i0

‖
√

log r
(2)
tp

≥ 1

2
λmin(P−1tp+1,i0

)‖ξ̃(2)tp+1,i0
‖2

−c2
√
λmax(P−1tp+1,i0

)‖ξ̃(2)tp+1,i0
‖
√

log rtp . (41)
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By (34) and Lemma 1, and based on the equivalence of
norms in a finite dimensional space, we have

|I(3)tp+1,i0
|= |ξ̃(1)Ttp+1,i0

Ψ
(12)
tp+1,i0

ξ̃
(2)
tp+1,i0

|

≤ ‖ξ̃(1)tp+1,i0
‖‖Ψ(12)

tp+1,i0
‖‖ξ̃(2)tp+1,i0

‖

≤ c3‖ξ̃(1)tp+1,i0
‖‖ξ̃(2)tp+1,i0

‖‖Ψ(12)
tp+1,i0

‖F
≤ c3‖ξ̃(1)tp+1,i0

‖‖ξ̃(2)tp+1,i0
‖‖Ψtp+1,i0‖F

≤ c4‖ξ̃(1)tp+1,i0
‖‖ξ̃(2)tp+1,i0

‖‖Ψtp+1,i0‖

≤ c4‖ξ̃(1)tp+1,i0
‖‖ξ̃(2)tp+1,i0

‖λmax(P−1tp+1,i0
)

=O

(
λmax(P−1tp+1,i0

)

[
αtp+1,i0

λmin(P−1tp+1,i0
)

+

√
log(rtp)

λmin(P−1tp+1,i0
)

]
‖ξ̃(2)tp+1,i0

‖

)
, (42)

where c3 and c4 are two positive constants.

Similarly, we have

|I(4)tp+1,i0
| ≤O

(
λmax(P−1tp+1,i0

)

[
αtp+1,i0

λmin(P−1tp+1,i0
)

+

√
log(rtp)

λmin(P−1tp+1,i0
)

]
‖ξ̃(2)tp+1,i0

‖

)
. (43)

Then by the definition of θ̂tp+1,i0(l) in (14), and the
condition log rt = O(log rt−DG+1), we have for l = d +
1, · · · ,m,

Ltp+1,i0 ≤ |θ̂tp+1,i0(l)| ≤ c5Ltp+1,i0 ,

where c5 > 0 is a positive constant, and

Ltp+1,i0 =

√√√√ log(λmax(P−1tp+1,i0
))

λmin(P−1tp+1,i0
)

.

Hence we have

I
(5)
tp+1,i0

≥ αtp+1,i0

1

c5Ltp+1,i0

m∑
l=d+1

|ξ̃tp+1,i0(l)|

≥ αtp+1,i0

1

c5Ltp+1,i0

‖ξ̃(2)tp+1,i0
‖. (44)

Thus, by (40)-(44), for some c6 > 0, we obtain

J̄tp+1,i0(θ + ξ̃tp+1,i0)− J̄tp+1,i0(θ + ξ̄tp+1,i0)

≥ λmin(P−1tp+1,i0
)‖ξ̃(2)tp+1,i0

‖ ·‖ξ̃(2)tp+1,i0
‖

2
− c2

√√√√λmax(P−1tp+1,i0
)

λmin(P−1tp+1,i0
)

√
log rtp

λmin(P−1tp+1,i0
)

−
c6λmax(P−1tp+1,i0

)

λmin(P−1tp+1,i0
)

[
αtp+1,i0

λmin(P−1tp+1,i0
)

+√
log(rtp)

λmin(P−1tp+1,i0
)

]
+

αtp+1,i0

c5λmin(P−1tp+1,i0
)Ltp+1,i0

)
.(45)

By (12), (15) and Assumption 3, we have

λmax(P−1tp+1,i0
)

λmin(P−1tp+1,i0
)

√
log rtp

λmin(P−1tp+1,i0
)

≤
λmax(P−1tp+1,i0

)

λmin(P−1tp+1,i0
)

√
log rtp

λ
n,tp
min

= o

(
αtp+1,i0

λmin(P−1tp+1,i0
)Ltp+1,i0

)
. (46)

By (12) and Assumption 3, we have

λmax(P−1tp+1,i0
)αtp+1,i0

λ2min(P−1tp+1,i0
)

/
αtp+1,i0

λmin(P−1tp+1,i0
)Ltp+1,i0

=Ltp+1,i0

λmax(P−1tp+1,i0
)

λmin(P−1tp+1,i0
)

=O

(
rtp

λ
n,tp
min

√
log(rtp)

λ
n,tp
min

)
= o(1). (47)

From (45)-(47), we have

J̄tp+1,i0(θ + ξ̃tp+1,i0)− J̄tp+1,i0(θ + ξ̄tp+1,i0)

≥ λmin(P−1tp+1,i0
)‖ξ̃(2)tp+1,i0

‖ ·(
‖ξ̃(2)tp+1,i0

‖
2

+
[ 1
c5

+ o(1)]αtp+1,i0

λmin(P−1tp+1,i0
)Ltp+1,i0

)
. (48)

Note that ξ̃tp+1,i0(sl) 6= 0 for some sl ∈ {d+ 1, · · · ,m}.
Hence ‖ξ̃(2)tp+1,i0

‖ > 0. Then by (48), we have Jtp+1,i0(θ+

ξ̃tp+1,i0)− J̄tp+1,i0(θ + ξ̄tp+1,i0) > 0, which contradicts

(36). This implies that ‖ξ̃(2)t+1,i‖ = 0 for all large t and all

i ∈ {1, · · · , n}. We complete the proof of the theorem.
2
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5 A simulation example

In this section, we provide an example to illustrate the
performance of the distributed sparse identification al-
gorithm (i.e., Algorithm 1) proposed in this paper.

Example 1 Consider a network composed of n = 6 sen-
sors whose dynamics obey the model (1) with the di-
mension m = 5. The noise sequence {wt,i, t ≥ 1, i =
1, · · · , n} in (1) is independent and identically distributed
with wt,i ∼ N (0, 0.1) (Gaussian distribution with zero
mean and variance 0.1). Let the regression vectors ϕt,i ∈
Rm (i = 1, · · · , n, t ≥ 1) be generated by the following
state space model,

xt,i =Aixt−1,i +Biεt,i,

ϕt,i =Cixt,i,
, (49)

where xt,i ∈ Rm is the state of the above system with
x0,i = [1, · · · , 1︸ ︷︷ ︸

m

]T , the matrices Ai, Bi and Ci (i =

1, 2, · · · , n) are chosen according to the following way
such that the regression vector ϕt,i is lack of adequate
excitation for any individual sensor,

Ai = diag{1.1, · · · , 1.1︸ ︷︷ ︸
m

},

Bi = ej ∈ Rm,
Ci = col{0, · · · , 0, ej

jth
, 0, · · · , 0} ∈ Rm×m,

where j = mod (i,m) and ej (j = 1, · · · ,m) is the jth
column of the identity matrix Im (m = 5). Let the noise
sequence {εt,i, t ≥ 1, i = 1, · · · , n} in (49) be indepen-
dent and identically distributed with εt,i ∼ N (0, 0.2). All
sensors will estimate an unknown parameter

θ = [θ(1),θ(2),θ(3),θ(4),θ(5)]T = [0.8, 1.6, 0, 0, 0]T .

The initial estimate is taken as ξ0,i = [1, 1, 1, 1, 1]T for
i = 1, 2, · · · , 6. We use the Metropolis rule (Xiao et al.,
2005) to construct the weights of the network, i.e.,

ali =

1−
∑
j 6=i

aij if l = i

1/(max{ni, nl}) if l ∈ Ni \ {i}
, (50)

where ni is the degree of the node i.

It can be verified that for each sensor i (i = 1 · · · , 6),
the regression signals ϕt,i ( generated by (49)) have no
adequate excitation to estimate the unknown parame-
ter, but they can cooperate to satisfy Assumption 3. We
repeat the simulation for s = 100 times with the same
initial states.

1) We estimate the unknown parameter θ by using the
non-cooperative sparse identification algorithm (i.e.,
the adjacency matrix is the unit matrix) and the dis-
tributed sparse identification algorithm (Algorithm
1) proposed in this paper respectively. We adopt the
Matlab CVX tools (http://cvxr.com/cvx/) to solve
the convex optimization problem (16), and take the
weight coefficient as αt,i = (λmin(P−1t+1,i))

0.75. The
average estimation error generated by these two algo-
rithms is shown in Fig. 1. We see that the estimation
error generated by distributed sparse identification
algorithm converges to zero as t increases, while the
estimation error of the non-cooperative sparse identi-
fication algorithm does not. The estimate sequences
{ξt,i(1), ξt,i(2), ξt,i(3), ξt,i(4), ξt,i(5)}200t=0 (i = 1, · · · , 6)
generated by Algorithm 1 are given in Fig. 2. We see
from these figures that the estimates can converge to
the true value θ. Therefore, the estimation task can
be fulfilled through exchanging information between
sensors even though any individual sensor can not.
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Cooperative sparse identification algorithm
Non-cooperative sparse identification algorithm

Fig. 1. The estimation errors of the distributed sparse identi-
fication algorithm and non-cooperative sparse identification
algorithm

2) We estimate the unknown parameter θ by using the
classical distributed LS algorithm studied by Xie et al.
(2021) and Algorithm 1 proposed in this paper under the
same network topology. Table 1 and Table 2 show the
estimates for θ(3), θ(4), θ(5) by these two algorithms
at different time instants t. From Table 1 and Table 2,
we can see that, compared with the distributed LS al-
gorithm in Xie et al. (2021), Algorithm 1 can generate
sparser and more accurate estimates for the unknown
parameters and thus give us valuable information in in-
ferring the zero and nonzero elements in the unknown
parameters.

6 Concluding remarks

In this paper, we first introduced a local information
criterion which is formulated as a linear combination of

12

http://cvxr.com/cvx/


0 50 100 150 200

time

0

0.5

1

Estimates  for (1) of all sensors

sensor 1
sensor 2
sensor 3
sensor 4
sensor 5
sensor 6

0 50 100 150 200

time

0

1

2

Estimates  for (2) of all sensors

sensor 1
sensor 2
sensor 3
sensor 4
sensor 5
sensor 6

0 50 100 150 200

time

0

0.5

1

1.5

2
Estimates  for (3) of all sensors

sensor 1
sensor 2
sensor 3
sensor 4
sensor 5
sensor 6

0 50 100 150 200

time

-0.5

0

0.5

1
Estimates  for (4) of all sensors

sensor 1
sensor 2
sensor 3
sensor 4
sensor 5
sensor 6

0 50 100 150 200

time

0

0.5

1

1.5

2
Estimates  for (5) of all sensors

sensor 1
sensor 2
sensor 3
sensor 4
sensor 5
sensor 6

Fig. 2. The estimate sequences {ξt,i}200t=0 of all sensors

Table 1
Estimates by the distributed LS algorithm in Xie et al. (2021) and Algorithm 1 for t = 50

sensor 1 sensor 2 sensor 3 sensor 4 sensor 5 sensor 6

Estimate for θ(3)

By distributed LS 2.5892 × 10−4 1.4805 × 10−4 3.1352 × 10−4 2.7231 × 10−4 2.9085 × 10−4 2.9085 × 10−4

By Algorithm 1 −2.8518 × 10−6 −6.3009 × 10−12 −8.3539 × 10−18 1.4030 × 10−6 −4.6969 × 10−7 −2.7547 × 10−18

Estimate for θ(4)

By distributed LS 2.7949 × 10−4 2.7949 × 10−4 2.7949 × 10−4 0.0011 2.7949 × 10−4 2.7949 × 10−4

By Algorithm 1 7.2376 × 10−18 1.6087 × 10−8 −6.2511 × 10−5 1.1212 × 10−6 −3, 6619 × 10−10 −7.8179 × 10−7

Estimate for θ(5)

By distributed LS 2.1450 × 10−4 8.1487 × 10−5 1.7771 × 10−4 1.7014 × 10−4 4.9508 × 10−5 1.7350 × 10−4

By Algorithm 1 −2.8248 × 10−6 1.3601 × 10−10 −3.8278 × 10−5 7.7698 × 10−18 −1.3398 × 10−8 −2.6207 × 10−6

Table 2
Estimates by the distributed LS algorithm in Xie et al. (2021) and Algorithm 1 for t = 100

sensor 1 sensor 2 sensor 3 sensor 4 sensor 5 sensor 6

Estimate for θ(3)

By distributed LS 3.9929 × 10−6 4.0720 × 10−6 4.5125 × 10−6 3.9929 × 10−6 3.9929 × 10−6 4.5015 × 10−6

By Algorithm 1 −4.1586 × 10−13 2.6792 × 10−12 1.7980 × 10−13 −1.6160 × 10−12 8.8066 × 10−14 6.9114 × 10−13

Estimate for θ(4)

By distributed LS 6.4080 × 10−6 3.6820 × 10−6 3.2300 × 10−6 2.5931 × 10−6 6.4080 × 10−6 3.2300 × 10−6

By Algorithm 1 −5.9666 × 10−12 −4.0833 × 10−19 −8.79535 × 10−12 −1.2865 × 10−11 −7.3473 × 10−12 −6.2931 × 10−12

Estimate for θ(5)

By distributed LS 4.5652 × 10−6 4.8154 × 10−6 4.6507 × 10−6 5.9311 × 10−6 5.5863 × 10−6 4.6507 × 10−6

By Algorithm 1 1.4196 × 10−12 1.9062 × 10−12 −1.8454 × 10−12 3.0918 × 10−12 −2.1729 × 10−15 −1.9412 × 10−12

the local estimation error with L1-regularization term.
By minimizing this criterion, we proposed a distributed
sparse identification algorithm to estimate an unknown
parameter vector of a stochastic system. The upper
bounds of the estimation error and the averaged ac-
cumulated regrets of adaptive prediction are obtained
without excitation conditions. Furthermore, we showed
that under the cooperative non-persistent excitation
conditions, the set of zero elements in the unknown pa-
rameter vector can be correctly identified with a finite

number of observations by properly choosing the weight-
ing coefficient. We remark that our theoretical results
are established without using such stringent conditions
as independency of the regression vectors, which makes
it possible to combine the distributed adaptive estima-
tion with the distributed control. For future research,
it will be interesting to consider the combination of
the distributed sparse identification algorithm with the
distributed control, and design a recursive distributed
sparse adaptive algorithm.
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