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Abstract

The super-twisting differentiator, also known as the first-order robust exact differentiator, is a well known sliding mode
differentiator. In the absence of measurement noise, it achieves exact reconstruction of the time derivative of a function with
bounded second derivative. This note proposes an upper bound for its worst-case differentiation error in the presence of
bounded measurement noise, based on a novel Lipschitz continuous Lyapunov function. It is shown that the bound can be
made arbitrarily tight and never exceeds the true worst-case differentiation error by more than a factor of two. A numerical
simulation illustrates the results and also demonstrates the non-conservativeness of the proposed bound.
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1 Introduction

Differentiation of noisy signals is of importance in many
engineering applications. Examples include velocity es-
timation, fault detection, and active vibration damping.
Hence, differentiators have been studied extensively in
literature, see e.g. the special issue by Reichhartinger
et al. (2018), with linear high gain differentiators (Vasil-
jevic and Khalil, 2008; Khalil and Praly, 2014), algebraic
differentiators (Mboup et al., 2009; Mboup and Riachy,
2018), and robust exact differentiators based on sliding
modes (Levant, 2003; Levant and Livne, 2020; Moreno,
2022) being some popular approaches. The latter, in par-
ticular, have the attractive feature that they differentiate
exactly in the absence of measurement noise, and that
they can be tuned without knowledge about the noise.

All differentiators are impacted to some extent by mea-
surement noise. For linear high-gain differentiators,
Vasiljevic and Khalil (2008) derive upper bounds on
the differentiation error and show how to optimally
tune their parameters if the amplitude of the noise is
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known. For first-order differentiation, such an optimal
tuning yields a differentiation error upper bound of the
form c

√
NL with a constant c ≥ 2, cf. (Seeber and

Haimovich, 2023, Proposition 3.1), where N is a bound
for the measurement noise η, and L is a bound for the
second derivative of the function f whose first-order
derivative is to be computed from the noisy measure-
ment u = f +η. The first-order robust exact differentia-
tor by Levant (1998), also known as the super-twisting
differentiator, also exhibits a differentiation error upper
bound of the form c

√
NL with 1 c ≥ 2

√
2, cf. (Seeber

and Haimovich, 2023, Proposition 3.3), but without
requiring the knowledge of N . This is shown qualita-
tively by Levant (1998), but only very few works, by
Angulo et al. (2012a,b), tackle the quantitative com-
putation of the bound. When applied correctly, their
approach yields very conservative bounds, however. Al-
ternatively, Lyapunov functions such as in (Cruz-Zavala
and Moreno, 2019) may be used. Bounds resulting from
those are only given in examples, however, and to the
best of the author’s knowledge, no rigorous quantita-
tive upper bounds for the differentiation error of the
super-twisting differentiator exist in literature today. 2

1 Non-causal exact differentiators can achieve smaller values
for c; in that case, c ≥ 2 as shown by Levant et al. (2017).
2 Some other works, such as (Efimov and Fridman, 2011),
compute such bounds for other sliding mode differentiators.
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This note proposes a non-conservative upper bound for
the differentiation error of the super-twisting differentia-
tor in the presence of noisy measurements. In particular,
it is shown that the proposed bound can be made arbi-
trarily tight and is always within a factor of two of the
actual worst-case error. Moreover, the tuning of the dif-
ferentiator based on a tradeoff between the convergence
speed and the differentiation error is discussed.

Section 2 introduces the super-twisting differentiator
and the problem of signal differentiation from noisy
measurements. Section 3 then presents the main results:
a lower and—in main Theorem 3.2—an upper bound for
the worst-case differentiation error, along with a guide-
line for parameter tuning. Section 4 proposes a novel
Lipschitz continuous Lyapunov function that is used to
formally prove the proposed upper bound. Section 5, fi-
nally, illustrates the proposed bound in a numerical sim-
ulation. Section 6 draws conclusions, and an appendix
contains proofs of a proposition and two lemmata.

Notation: Vectors are written as boldface lowercase let-
ters, and R, R≥0, and R>0 denote the reals, nonnegative
reals, and positive reals, respectively. For y, p ∈ R, |y|
is the absolute value of y, byc is the largest integer not
greater than y, and the abbreviation byep = |y|p sign(y)

is used; in particuar, bye0 = sign(y). The convex hull of
a set A ⊆ R is denoted by coA.

2 Super-twisting differentiator

Consider the super-twisting differentiator, also known as
Levant’s first-order robust exact differentiator (Levant,
1998), given by the system

ẏ1 = λ1

√
L bu− y1e

1
2 + y2, y1(0) = u(0), (1a)

ẏ2 = λ2L bu− y1e0 , y2(0) = 0, (1b)

y = y2 (1c)

with input u, output y, and positive parameters λ1, λ2,
and L. Solutions of this system with discontinuous right-
hand side are understood in the sense of Filippov (1988).
The input u = f + η consists of a signal f : R≥0 → R
to be differentiated with second derivative bounded by
|f̈(t)| ≤ L almost everywhere, and a measurement noise
η : R≥0 → R bounded by |η(t)| ≤ N for all t ≥ 0. The
sets of admissible signal and noise functions are given by

FL = {f ∈ F : |f̈(t)| ≤ L almost everywhere on R≥0},
EN = {η ∈ E : |η(t)| ≤ N on R≥0}, (2)

whereinF denotes the set of differentiable functions with
Lipschitz continuous first derivative and E denotes the
set of Lebesgue measurable functions. It is well known

that after a finite time τ depending only on 3 ḟ(0) as well
as λ1, λ2, and L,N , the differentiation error is bounded
by |y(t)− ḟ(t)| ≤ c

√
NL for all t ≥ τ with some constant

c depending only on λ1 and λ2, cf. (Levant, 2003).

3 Main Results

This section shows lower and upper bounds for the worst-
case differentiation error of the differentiator (1).

3.1 Worst-case differentiation error lower bound

To put the results into context, a lower bound on the
worst-case differentiation error is stated first. For every
selection of parameters, existence of some worst-case sig-
nals f and η is shown that lead to an error of at least
2
√
λ2 + 1

√
NL, analogous to (Seeber and Haimovich,

2023, Proposition 3.3) but without requiring differentia-
tor convergence. The proof is given in Appendix A.1.

Proposition 3.1. Let L,N ∈ R>0. Consider differen-
tiator (1) with parameters λ1, λ2 ∈ R>0. Then, for every

τ ∈ R≥0 there exist f ∈ FL, η ∈ EN with f(0) = ḟ(0) = 0
such that a trajectory of (1) with input u = f+η satisfies

sup
t≥τ

∣∣∣y(t)− ḟ(t)
∣∣∣ ≥ 2

√
λ2 + 1

√
NL. (3)

3.2 Worst-case differentiation error upper bound

The following main theorem, proven in Section 4.3, es-
tablishes an upper bound for the differentiation error.

Theorem 3.2. Let L ∈ R>0, N ∈ R≥0, and α ∈ (1, 4].
Consider the differentiator (1) and suppose that its pa-
rameters λ1, λ2 satisfy

1 <
λ1√

8(λ2 + 1)
<

(α+ 1)λ2 + α− 1

2
√
α(λ2 + 1)

. (4)

Then, for each input u = f+η with f ∈ FL, η ∈ EN , there
exists a finite time τ depending only on the corresponding
initial values ḟ(0) and η(0), such that for all t ≥ τ∣∣∣y(t)− ḟ(t)

∣∣∣ ≤ 2
√
α(λ2 + 1)

√
NL. (5)

Remark 3.3 (Parameter range). Note that a value for
λ1 satisfying (4) exists if and only if

λ2 >
1 + 2

√
α− α

1− 2
√
α+ α

≥ 1 (6)

3 The initial condition y1(0) = u(0) ensures that the conver-
gence time τ is independent of f(0). This is useful in practice
and will become obvious from the error system (8) later on.
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with α ∈ (1, 4] as in the theorem. This condition is least
restrictive for α = 4, in which case a λ1 may be selected
for every λ2 > 1 according to

λ1√
8(λ2 + 1)

∈
(

1, 1 +
λ2 − 1

4(λ2 + 1)

)
. (7)

Remark 3.4 (Tightness of the bound). By comparing
(5) to (3), one can see that the proposed upper bound
never exceeds the actual worst-case differentiation error
by more than a factor of

√
α ≤ 2, and that it can be made

arbitrarily tight by reducing α ∈ (1, 4]. This restricts
λ2 according to Remark 3.3, however, thus possibly in-
creasing the worst-case differentiation error, which may
be undesirable in practice. Nevertheless, the simulation
results in Section 5 show that non-conservative bounds
may also be obtained for values of α as large as α = 4.

Remark 3.5 (Tuning guideline). Subject to the param-
eter condition (4) and with the initial condition as in (1),
(Seeber, 2020, Theorem 3.15) shows that, in the absence
of noise, the super-twisting differentiator’s output y con-

verges to the true derivative ḟ of f after the time |ḟ(0)|
(λ2−1)L

in the worst case. Using this expression along with (5), a
quantitative tradeoff between noise-free worst-case con-
vergence time and worst-case differentiation error in the
presence of noise may be found by noting that increasing
λ2 decreases the former and increases the latter.

4 Lyapunov Function and Proof of the Bound

To prove the worst-case error upper bound, a novel Lya-
punov function for the super-twisting differentiator is
proposed. To that end, the error states x1 = y1 − f ,
x2 = y2− ḟ are introduced and aggregated in the vector
x = [x1 x2]T. They are governed by the dynamics

ẋ1 = −λ1

√
L bx1 − ηe

1
2 + x2, x1(0) = η(0), (8a)

ẋ2 = −λ2L bx1 − ηe0 − f̈ , x2(0) = −ḟ(0). (8b)

4.1 Lyapunov function

The proposed Lyapunov function V : R2 → R is

V (x) =

{
W (x) if x2 ≥ 0

W (−x) if x2 < 0
(9)

with W : R× R≥0 → R defined as

W (x) =


W1(x) if x1 ≤ x2

2

4α(λ2+1)L

W2(x) if
x2
2

4α(λ2+1)L < x1 ≤ (2α+1)x2
2

4α(λ2+1)L

W3(x) if
(2α+1)x2

2

4α(λ2+1)L < x1,

(10)
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Fig. 1. Level curves and values of the Lyapunov function
(9)–(11) for parameter values λ2 = 1.1, L = 1, α = 4

2.1
.

wherein the abbreviations

W1(x) =
x2

2

2α(λ2 + 1)L
− x1, (11a)

W2(x) =
x2

2

4α(λ2 + 1)L
, (11b)

W3(x) = x1 −
x2

2

2(λ2 + 1)L
(11c)

are used and α ∈ (1, 4] is a constant parameter. Fig. 1
shows the level curves of this Lyapunov function for pa-
rameter values λ2 = 1.1, L = 1, α = 4

2.1 .

4.2 Auxiliary lemmata

The main result is proven by means of a differential in-
equality for the Lyapunov function V that is established
in the following lemma. It is proven in Appendix A.2.

Lemma 4.1. Let L ∈ R>0, N ∈ R≥0, α ∈ (1, 4], and
suppose that λ1, λ2 satisfy (4). Consider V : R2 → R
as defined in (9)–(11). Then, V is Lipschitz continuous
and positive definite, and there exists γ > 0 such that the
time derivative V̇ of V along the trajectories of (8) with

|f̈ | ≤ L, |η| ≤ N fulfills 4

V̇ (x) ≤ −γ
√
V (x)−N (12)

for all x ∈ R2 with V (x) > N .

Using this result, the set characterized by V (x) ≤ N is
shown to be forward invariant and attractive in finite
time. The following lemma establishes this, along with
an upper bound for |x2|. It is proven in Appendix A.3.

4 Along a trajectory x(t), (12) holds almost everywhere in
time t, cf. (Polyakov and Fridman, 2014, Section 5.4).
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Lemma 4.2. Let L ∈ R>0, N ∈ R≥0, α ∈ (1, 4], and
λ1, λ2 ∈ R>0. Consider the function V : R2 → R as
defined in (9)–(11) and define the set Ω = {x ∈ R2 :
V (x) ≤ N}. Then,

sup
x∈Ω
|x2| = 2

√
α(λ2 + 1)NL. (13)

Moreover, if λ1, λ2 satisfy (4), then for every trajectory

x : R≥0 → R2 of (8) with |f̈ | ≤ L, |η| ≤ N there exists a
finite time τ depending only on x(0) such that x(t) ∈ Ω
holds for all t ≥ τ .

Fig. 1 depicts the set Ω for N = 1 as the interior of
the level curve characterized by V (x) = 1. With the
particular parameters λ2 = 1.1, L = 1, α = 4

2.1 of
the depicted Lyapunov function, the (tight) inequality

|x2| ≤ 2
√
α(λ2 + 1)NL = 4 can be seen to hold in Ω.

4.3 Proof of Theorem 3.2

Theorem 3.2 may now be proven. Consider the error
system (8). From Lemma 4.2, there exists a finite time τ

depending on x(0) = [η(0) −ḟ(0)]T such that x(t) ∈ Ω
for all t ≥ τ . The claim follows from the fact that∣∣∣y(t)− ḟ(t)

∣∣∣ = |x2(t)| ≤ sup
x∈Ω
|x2| = 2

√
α(λ2 + 1)NL

(14)
for x(t) ∈ Ω according to (13).

5 Simulation Results

This section illustrates the obtained worst-case error up-
per bound (5) by means of a numerical simulation. To
that end, the parameters L = 1, λ2 = 1.1 are considered
and, to satisfy (4), α = 4 and λ1 = 4.1 are chosen. The
simulation is performed using an implicit discretization
of the super-twisting differentiator (1) as in Mojallizadeh
et al. (2021), with sampling time step ∆ = 5 · 10−4. The
differentiator is applied to f(t) = −Lt2/2 and

η(t) =

{
−N if t < 10c1

−N
⌊
t− c1

⌊
t
c1

⌋
− c2

⌉0

if t ≥ 10c1
(15)

with parameters N = 0.01 and c1 = 0.011, c2 = 0.00149
is used, corresponding to a high-frequency noise with
duty cycle c2/c1 ≈ 13.5 %. Fig. 2 depicts the result-
ing differentiation error along with the proposed upper
bound (5), as well as the noise signal. One can see
that the high frequency noise leads to an error close
to the proven upper bound, demonstrating the non-
conservativeness of the bound.
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Fig. 2. Differentiation error from a numerical simulation of
an implicit discretization of (1) with sampling time step
∆ = 5 · 10−4 and parameters λ1 = 4.1, λ2 = 1.1, L = 1
differentiating the signal f(t) = Lt2/2 with measurement
noise η(t) as in (15) withN = 0.01, c1 = 0.011, c2 = 0.00149.
Also shown is the proposed differentiation error upper bound
(5) with α = 4, given by 2

√
α(λ2 + 1)NL ≈ 0.58.

6 Conclusion and Outlook

Based on a novel Lyapunov function for the super-
twisting differentiator, a non-conservative upper bound
for its differentiation error in presence of noisy measure-
ments was proposed. The simple form of the proposed
bound makes it easy to use for the purpose of finding
a quantitative tradeoff between convergence speed and
differentiation error when tuning the differentiator in
practice. Moreover, the proposed bound never exceeds
the true worst-case error by more than a factor of two
and can also be made arbitrarily tight. Future work
may study possible extensions of the obtained results to
discretized variants of the super-twisting differentiator.

A Proofs

A.1 Proof of Proposition 3.1

If λ2 < 1, then choosing u = f + η with f(t) = Lt2/2,
η(t) = N in (1) yields y(t) ≤ λ2Lt, and hence the error

y(t) − ḟ(t) ≤ (λ2 − 1)Lt is unbounded. For λ2 ≥ 1, let

θ = 2
√

N
(λ2+1)L , let τ > θ without restricting generality,

and consider

f(t) =

{
0 if t < τ − θ
L(t−τ+θ)2

2 if t ≥ τ − θ,
(A.1)

η(t) = max{−N,N − (λ2 + 1)f(t)}. (A.2)

Then, y1(t) = u(t) = N−λ2f(t), y2(t) = u̇(t) is a sliding
mode trajectory of (1) for t ≤ τ , yielding

y(τ)− ḟ(τ) = −(λ2 + 1)ḟ(τ) = −2
√
λ2 + 1

√
NL,

(A.3)
thus proving the claim.
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A.2 Proof of Lemma 4.1

Lipschitz continuity is straightforward to verify. Positive
definiteness follows from the fact that W (x) < 0 yields a
contradiction in each case of (10). To show (12), the time
derivative of V is computed for each of the three cases
in (10). All computations are performed supposing that
V > N and x2 ≥ 0 hold; the results are then equally
valid for x2 < 0 due to symmetry. In doing so, it is worth
noting that (4) implies λ2 > 1 according to Remark 3.5.

In the first case in (10), V̇ = Ẇ1 holds with

Ẇ1 =
x2

α(λ2 + 1)L
(−λ2L bx1 − ηe0 − f̈)

+ λ1

√
L bx1 − ηe

1
2 − x2

≤ −λ2 bx1 − ηe0 + 1

α(λ2 + 1)
x2 + λ1

√
L bx1 − ηe

1
2 − x2.

(A.4)

For x1 − η ≤ 0, one obtains

Ẇ1 ≤ −
α− 1

α
x2 + λ1

√
L bx1 − ηe

1
2 .

If, additionally, x2 ≤
√
α(λ2 + 1)L

√
V −N , then

x1 − η =
x2

2

2α(λ2 + 1)L
− V − η ≤ −V −N

2
(A.5)

by definition of V ; hence V̇ = Ẇ1 ≤ −λ1

√
L/2
√
V −N.

Otherwise, if x2 >
√
α(λ2 + 1)L

√
V −N , then

V̇ = Ẇ1 ≤ −
α− 1

α

√
α(λ2 + 1)L

√
V −N. (A.6)

For x1 − η > 0, one obtains

Ẇ1 ≤
(
−λ2 + 1

α(λ2 + 1)
− 1

)
x2 + λ1

√
L bx1 − ηe

1
2

= − (α+ 1)λ2 + α− 1

α(λ2 + 1)
x2 + λ1

√
L bx1 − ηe

1
2

(A.7)

from (A.4). By definition of V , one moreover has

0 < x1 − η ≤
x2

2

2α(λ2 + 1)L
− V − η ≤ x2

2

2α(λ2 + 1)L
.

(A.8)

since −η < V . Substituting for x1 − η in (A.7) yields

Ẇ1 ≤ −
(α+ 1)λ2 + α− 1

α(λ2 + 1)
x2 +

λ1√
2α(λ2 + 1)

x2.

From (4), there exists ε1 > 0 such that

λ1√
2α(λ2 + 1)

=
(α+ 1)λ2 + α− 1

α(λ2 + 1)
− ε1. (A.9)

Since (A.8) implies x2
2 > 2α(λ2 +1)L(V −N), this yields

V̇ = Ẇ1 ≤ −ε1x2 ≤ −ε1

√
2α(λ2 + 1)L

√
V −N. In the

second case in (9), one has V̇ = Ẇ2, and from x1 ≥
x2
2

4α(λ2+1)L = V > N , one obtains x1 − η > 0 and

Ẇ2 =
x2

2α(λ2 + 1)L
(−λ2L bx1 − ηe0 − f̈)

≤ − λ2 − 1

2α(λ2 + 1)
x2. (A.10)

Since x2 = 2
√
α(λ2 + 1)LV , this implies

V̇ = Ẇ2 ≤ −
(λ2 − 1)

√
L√

α(λ2 + 1)

√
V −N. (A.11)

In the third case in (9), one has V̇ = Ẇ3, with

Ẇ3 = −λ1

√
L bx1 − ηe

1
2 + x2

− x2

(λ2 + 1)L
(−λ2L bx1 − ηe0 − f̈)

≤ −λ1

√
L bx1 − ηe

1
2 + 2x2. (A.12)

From (4), there exists ε2 > 0 such that λ1 may be written

as λ1 = 2
√

2(λ2 + 1) + ε2. Moreover,

x1 − η ≥
x2

2

2(λ2 + 1)L
+ V −N (A.13)

by definition of V , and consequently x1 − η ≥ x2
2

2(λ2+1)L

as well as x1 − η ≥ V −N . Hence,

V̇ = Ẇ3 ≤ −ε2

√
L
√
V −N

− 2
√

2(λ2 + 1)L
√
x1 − η + 2x2 ≤ −ε2

√
L
√
V −N.
(A.14)

Finally, computing Clarke’s generalized gradient and ap-
plying (Polyakov and Fridman, 2014, Lemma 8) yields

V̇ ∈ co{Ẇ1, Ẇ2} or V̇ ∈ co{Ẇ2, Ẇ3} on the respective
borders of the regions in (10), concluding the proof.

A.3 Proof of Lemma 4.2

Applying the comparison lemma (Khalil, 2002, Lemma
3.4) to (12) proves existence of a finite time τ , depend-
ing only on V (x(0)), such that V (x(t)) ≤ N for t ≥ τ .
To see also (13), note that this is straightforwardly ob-
tained in the second case in (10), while in the first case

5



x2
2

4α(λ2+1)L ≥ x1 =
x2
2

2α(λ2+1)L − V , and in the third case
(2α+1)x2

2

4α(λ2+1)L ≤ x1 =
x2
2

2(λ2+1)L + V each imply the inequal-

ity
x2
2

4α(λ2+1)L ≤ N due to V ≤ N .
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