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Abstract

We consider distributed consensus in networks where the agents have integrator dynamics of order two or higher (n ≥ 2).
We assume all feedback to be localized in the sense that each agent has a bounded number of neighbors and consider a
scaling of the network through the addition of agents in a modular manner, i.e., without re-tuning controller gains upon
addition. We show that standard consensus algorithms, which rely on relative state feedback, are subject to what we
term scale fragilities, meaning that stability is lost as the network scales. For high-order agents (n ≥ 3), we prove that
no consensus algorithm with fixed gains can achieve consensus in networks of any size. That is, while a given algorithm
may allow a small network to converge, it causes instability if the network grows beyond a certain finite size. This
holds in families of network graphs whose algebraic connectivity, that is, the smallest non-zero Laplacian eigenvalue, is
decreasing towards zero in network size (e.g. all planar graphs). For second-order consensus (n = 2) we prove that the
same scale fragility applies to directed graphs that have a complex Laplacian eigenvalue approaching the origin (e.g.
directed ring graphs). The proofs for both results rely on Routh-Hurwitz criteria for complex-valued polynomials and
hold true for general directed network graphs. We survey classes of graphs subject to these scale fragilities, discuss their
scaling constants, and finally prove that a sub-linear scaling of nodal neighborhoods can suffice to overcome the issue.

Keywords: Multi-Agent Networks, Large-Scale Systems, Fundamental Limitations

1. Introduction

Characterizing the dynamic behaviors of networked or
multi-agent systems has been an active research area for
many years. In particular, since the works by Fax and
Murray (2004), Olfati-Saber and Murray (2004), and Jad-
babaie et al. (2003), the prototypical sub-problem of dis-
tributed consensus has been the subject of significant re-
search efforts. While the particular modeling aspects
vary, the consensus objective is to coordinate agents in
a network to a common state of agreement. Applications
range from distributed computing and sensing to power
grid synchronization and coordination of unmanned vehi-
cles (Olfati-Saber et al., 2007).

The most traditional consensus problem is of first or-
der, meaning that agents are modeled as single integrators
with a state that develops according to a weighted sum
of differences between states of neighboring agents, that
is, relative state feedback. Second-order consensus can
model coordination of agents with mass and is used to
study formation control in multi-vehicle networks. The
corresponding higher-order problem, to which most re-
sults in this paper pertain, has also received significant
attention, as in Jiang et al. (2009); Ni and Cheng (2010);
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Radmanesh et al. (2017); Ren et al. (2007); Rezaee and
Abdollahi (2015); Zuo et al. (2018). Here, each agent is
modeled as an nth order integrator, and the control signal
is a weighted sum of relative feedback terms. This can be
viewed as an important theoretical generalization of the
first- and second-order algorithms (Jiang et al., 2009), but
also has practical relevance. For example, position, veloc-
ity, as well as acceleration feedback play a role in flocking
behaviors, resulting in a model where n = 3 (Ren et al.,
2007).

Existing literature has typically focused on deriving con-
ditions for convergence of a given set of agents to consen-
sus, and how such conditions depend on various properties
of the network. For example, directed communication, a
switching or random topology (Ni and Cheng, 2010), or
a leader-follower structure (Zuo et al., 2018). This pa-
per takes a different perspective and concerns the scala-
bility of given consensus algorithms to large networks un-
der a modular design principle. That is, we assume that
the interaction rules between agents are fixed, (i.e., pre-
designed) and localized, and grow the network through the
addition of more and more agents. It has previously been
observed that this type of modular scaling can lead to
poor dynamic behaviors in first- and second-order consen-
sus problems, such as a lack of network coherence (Bamieh
et al., 2012; Patterson and Bamieh, 2014; Siami and Mo-
tee, 2016; Tegling et al., 2019). These behaviors are a
question of control performance. In this paper, we show
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that the question of scalability in high-order consensus is
more fundamental: can stability be maintained as the net-
work grows?

This paper shows that both second- and higher-order
consensus (n ≥ 2) are subject to scale fragilities in certain
classes of network graphs. These imply that stability (and
thereby convergence to consensus) is lost if the network
grows beyond some finite size. For n ≥ 3, our result is
particularly clear-cut: the consensus algorithm treated in,
for example, Ren et al. (2007) does not scale stably in any
family of graphs whose algebraic connectivity decreases
towards zero in network size.

The algebraic connectivity, that is, the smallest non-zero
eigenvalue of the graph Laplacian, decreases towards zero
in families of graphs where nodal neighborhoods are local-
ized in the sense that they are bounded in size and reach
(the formal definition is given through the graph’s isoperi-
metric, or Cheeger, constant). Here, we review this prop-
erty for graphs such as lattices, trees, and planar graphs,
and derive the rates at which their respective algebraic
connectivity decreases. In leader-follower consensus of or-
der n ≥ 3, the scale fragility arises in any undirected graph
family where the neighborhood size is bounded. This lat-
ter result was observed in the context of vehicular strings
by Yadlapalli et al. (2006) and Barooah and Hespanha
(2005). Here, we generalize that result to leaderless con-
sensus and general directed, weighted graphs.

For second-order consensus (n = 2), the scale fragility
applies only to particular classes of directed graphs. These
are characterized by a complex Laplacian eigenvalue that
approaches the origin as the network size grows. This ap-
plies, for example, to directed ring graphs. The particular
result for ring graphs has previously been reported in Can-
tos et al. (2016); Herman (2016); Stüdli et al. (2017), but
our work provides a significant generalization. The re-
sult implies that ring-shaped vehicular formations, such
as those where adaptive cruise control is used to regulate
spacing and velocity to the preceding vehicle, see Gunter
et al. (2021), are at risk of becoming unstable.

We remark that the phenomenon we describe in this pa-
per is distinct from the issue of string stability in vehicular
strings. String instability, see e.g. Seiler et al. (2004); Yad-
lapalli et al. (2006), implies that disturbances are ampli-
fied along the string of vehicles, though the overall system
dynamics can be stable. It is therefore a notion of perfor-
mance rather than stability, see also Besselink and Knorn
(2018). Here, we describe a loss of closed-loop stability,
subject to a modular scaling of the network.

The fact that consensus may fail to scale stably to large
networks has, to the best of our knowledge, not been ob-
served in literature apart from the aforementioned works.
While it is noted in Jiang et al. (2009); Ren et al. (2007)
that controller gains in high-order consensus must be cho-
sen with care to ensure stability, we point out that no such
choice can guarantee stability in a network that grows.
For so-called open multi-agent systems (Franceschelli and
Frasca, 2021; Hendrickx and Martin, 2017), where agents

may come and leave while adhering to, e.g., a consensus
protocol, our results imply limitations on the allowable
size of the overall system (depending on the agent dynam-
ics and the degree of locality).

The scale fragilities we describe can in principle be at-
tributed to the relative state feedback upon which the con-
sensus algorithm is based. It is known that a restriction
to relative feedback imposes performance and design limi-
tations; an issue that was analyzed formally in Jensen and
Bamieh (2022). In this paper, we also discuss how the
scalability can be achieved if the controller has access to
absolute feedback.

The locality property, that is, bounded nodal neighbor-
hoods, is also key for our results. A natural question is
therefore how nodal neighborhoods would need to scale to
alleviate the scale fragility. Interestingly, we prove using a
ring graph topology that it can suffice to grow neighbor-
hoods as N2/3, where N is the network size. We note that
this only holds for leaderless consensus; leader-follower
consensus requires neighborhoods proportional to N .

The present paper extends our preliminary work
in Tegling et al. (2019a), where the result on high-order
(n ≥ 3) consensus was first reported. The corresponding
result herein is improved in its formalism and generalized
to all directed graphs families. Our characterization of
graphs with decreasing algebraic connectivity has been ex-
panded with a general analytic criterion. All other results
are new.

The remainder of this paper is organized as follows. We
next introduce the nth order consensus algorithm along
with important definitions and assumptions. In Section 3
we give the result for high-order consensus. We also dis-
cuss classes of graphs where the result applies and give
numerical examples. Section 4 then presents correspond-
ing results for second-order consensus. In Section 5 we
discuss ways to retrieve scalable stability, e.g. by scaling
nodal neighborhoods, and we conclude with a discussion
in Section 6.

2. Problem setup

We now introduce the network model along with the nth

order consensus algorithm. This algorithm is a straightfor-
ward extension to standard first- and second-order consen-
sus and has previously been considered in Ni and Cheng
(2010); Ren et al. (2007); Rezaee and Abdollahi (2015).

2.1. Network model and definitions

Consider a network modeled by the graph GN =
{VN , EN} with N = |VN | nodes. The set EN ⊂ VN × VN
contains the edges, each of which has an associated non-
negative weight wij . We generally let the graph GN be
directed, so the edge (i, j) ∈ EN points from node i (the
tail) to node j (the head). The neighbor set Ni of node i
is the set of nodes j to which there is an edge (i, j) ∈ E .

The outdegree of node i is defined as d+
i =

∑N
j=1 wij and

its indegree is d−i =
∑N
j=1 wji (wij = 0 if (i, j) /∈ E).
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The graph GN is balanced if d+
i = d−i for all i ∈ VN and

undirected if (i, j) ∈ EN ⇒ (j, i) ∈ E for all i, j ∈ VN
and wij = wji. It has a connected spanning tree if
there is a path from some node i ∈ VN to any other
node j ∈ VN\{i}. The r-fuzz of a graph GN is the graph
obtained from GN by adding an edge (u, v) for all v that
are at most r steps away from u.

Going forward, we will model networks with an increas-
ing numbers of agents. We therefore consider GN as a
member of a sequence, or a family, of graphs {GN} in
which the network size N is increasing. We remark that
GN need not be a subgraph of GN+1 for our results to hold.

The graph Laplacian L of GN is defined as follows:

[L]ij =


−wij if j 6= i and j ∈ Ni∑
k∈Ni

wik if j = i

0 otherwise.

(1)

Denote by λl (or λl(GN ) where explicitness is needed) with
l = 1, . . . , N the eigenvalues of L. Zero is a simple eigen-
value of L if and only if the graph has a connected span-
ning tree, which will be the scenario of interest through-
out. Remaining eigenvalues are in the complex right half
plane (RHP), and numbered so that 0 = λ1 < Re{λ2} ≤
. . . ≤ Re{λN}. The graph Laplacian L is called normal if
LTL = LLT . If the graph is undirected, L is symmetric
and thereby normal. For a directed graph, normality of L
implies that GN is balanced.

2.2. nth order consensus

The local dynamics of each agent i ∈ VN is modeled as
a chain of n integrators:

d

dt
x

(0)
i (t) = x

(1)
i (t)

...

d

dt
x

(n−2)
i (t) = x

(n−1)
i (t)

d

dt
x

(n−1)
i (t) = ui(t)

where we assume a scalar state xi(t) ∈ R (see Remark 1),
collected in the vector x = [x1, x2, . . . , xN ]T ∈ RN . The

notation for time derivatives is such that x
(0)
i (t) = xi(t),

x
(1)
i (t) = d

dtxi(t) = ẋi(t) etc. until x
(n)
i (t) = dn

dtnxi(t).
Going forward, we will often drop the time dependence in
the notation.

We consider the following nth order consensus algo-
rithm:

ui = −
n−1∑
k=0

ak
∑
j∈Ni

wij(x
(k)
i − x

(k)
j ) (2)

where the ak > 0 are fixed gains. The feedback in (2)
is termed relative as it only based on differences between
states of neighboring agents. The impact of absolute feed-
back, where the controllers have access to measurements
of the absolute local state, is treated in Section 5.

Defining the full state vector
ξ = [x(0), x(1), . . . , x(n−1)]T ∈ RNn, we can write the
system’s closed-loop dynamics as

d

dt
ξ =


0 IN 0 · · · 0

0 0 IN · · ·
...

0 0 0
. . .

...
0 0 0 · · · IN
−a0L −a1L −a2L · · · −an−1L


︸ ︷︷ ︸

A

ξ, (3)

where the graph Laplacian L was defined in (1) and IN
denotes the N ×N identity matrix.

Remark 1. We limit the analysis to a scalar information
state, though an extension to xi(t) ∈ Rm is straightforward
if the same consensus algorithm is applied in all coordinate
directions. In this case, the system dynamics can be writ-
ten ξ̇ = (A ⊗ Im)ξ, where ⊗ denotes the Kronecker prod-
uct. Our results, which concern the stability of A, would
not change.

2.2.1. Leader-follower consensus

It will also be relevant to consider leader-follower con-
sensus, where the state of one agent (the leader) is fixed at
a desired setpoint and remaining agents converge to that
same state (assuming there is a directed path to each of
them from the leader node). Without loss of generality,
take Agent 1 to be the leader and set x1 = ẋ1 = . . . =

x
(n)
1 ≡ 0. The closed-loop dynamics for remaining agents

can then be written

d

dt
ξ̄ =


0 IN−1 0 · · · 0

0 0 IN−1 · · ·
...

0 0 0
. . .

...
0 0 0 · · · IN−1

−a0L̄ −a1L̄ −a2L̄ · · · −an−1L̄


︸ ︷︷ ︸

Ā

ξ̄, (4)

where L̄ is the grounded graph Laplacian obtained by
deleting the first row and column of L, and ξ̄ is obtained
by removing the states of Agent 1. Note that L̄ unlike L
has all of its eigenvalues in the right half plane (Xia and
Cao, 2017).

2.3. Conditions for consensus and scalable stability

The network of agents is said to be achieving consensus

if x
(k)
i → x

(k)
j for all i, j ∈ VN , all k = 0, 1, . . . , n− 1, and

for any initial state. It is known that the algorithm (2)
achieves consensus if the eigenvalues of A are in the left
half plane, apart from exactly n zero eigenvalues that are
associated with the drift of the network average. This con-
dition is in line with standard results for first- and second-
order consensus, and is shown in Ren et al. (2007) for
n = 3:
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Lemma 2.1 (Ren et al. (2007), Theorem 3.1). In the case
of n = 3, the algorithm (2) achieves consensus exponen-
tially if and only if A has exactly three zero eigenvalues
and all of the other eigenvalues have negative real parts.

We also require the following lemma:

Lemma 2.2 (Ren et al. (2007), Lemma 3.1). In the case
of n = 3, the matrix A has exactly three zero eigenvalues
if and only if L has a simple zero eigenvalue.

The proofs in Ren et al. (2007) extend straightforwardly
to n > 3. This means that it suffices to verify that the
(N − 1) · n non-zero eigenvalues of A have negative real
parts.

In this work, we describe systems where these conditions
may hold for small network sizes N , but where one or more
eigenvalues leaves the left half plane and causes instability
when the network grows beyond some N̄ . In these cases,
we say the control algorithm lacks scalable stability.

Definition 2.1 (Scalable stability). A consensus control
design is scalably stable if the resulting closed-loop system
achieves consensus over any graph in the family {GN}.

2.4. Underlying assumptions: modularity and locality

The notion of scalable stability of a controller presumes
a modular design principle. This means that new agents
are added to the network with the pre-designed controller
gains, which are not re-tuned as the network grows. This
means that the following important assumptions will un-
derlie our analysis of the control u in (2):

Assumption A1 (Fixed and finite gains). The gains ak
for all k = 0, 1, . . . , n− 1 satisfy ak ≤ amax <∞ and they
do not change if the underlying graph changes. That is,
the gains are fixed with respect to the graph family {GN}.
In particular, they are independent of N .

When it comes to the network graph, our main result
will rely on the property that the algebraic connectivity de-
creases in network size. When discussing families of graphs
where this property holds, we will impose the following as-
sumptions, unless otherwise stated:

Assumption A2 (Bounded neighborhoods). All nodes
in the graph family {GN} have a neighborhood of size at
most q, where q is fixed and independent of N . That is,

|Ni| ≤ q ∀i ∈ VN . (5)

Assumption A3 (Finite weights). The edge weights
in {GN} are finite, that is, wij ≤ wmax < ∞ for all
(i, j) ∈ EN , where wmax is fixed and independent of N .

Assumptions A2–A3 imply that we consider networks
with bounded nodal degrees.

3. Scale fragility in high-order consensus

This section is devoted to our first important result.
We prove that the high-order consensus algorithm (n ≥ 3)
lacks scalable stability in graph families with what we term
a decreasing algebraic connectivity. This applies to all
graphs where connections are, in a sense, localized.

3.1. Main result

This section’s main result can be stated as follows.

Theorem 3.1. If n ≥ 3, no control on the form (2) sub-
ject to Assumption A1, is scalably stable in graph families
where the sequence Re{λ2(GN )} → 0 as N →∞.

Proof. The first step of the proof is a (generalized) block-
diagonalization of the system matrix A. Let T be an in-
vertible N × N matrix such that Λ = T−1LT is on Jor-
dan normal form. That is, Λ = diag{Λ1, · · · ,Λk}, where
Λl, l = 1, . . . , k are rl × rl Jordan blocks, in which the
Laplacian eigenvalue λl is repeated along the main diago-
nal and ones appear on the superdiagonal (see Horn and
Johnson (1985, Chapter 3) for details). The number k
of Jordan blocks is the number of linearly independent
eigenvectors of L, which may be less than or equal to its
number of distinct eigenvalues. If the graph GN is undi-
rected, then L is symmetric and thus diagonalizable. In
this case, ri = 1 for i = 1, . . . , k = N . Otherwise, we
only impose that the eigenvalue λ1 = 0 is simple, which
is equivalent to the graph having a connected spanning
tree. If this is not the case, the graph is disconnected,
λ2(GN ) = 0, and the conditions in Section 2.3 do not hold.
The system is then by definition not scalably stable. By
pre- and post-multiplying A by the (Nn × Nn) matrix
T = diag{T, T, . . . , T}, we get

T−1AT =


0 IN 0 · · · 0

0 0 IN · · ·
...

...
. . .

...
0 0 0 · · · IN
−a0Λ −a1Λ −a2Λ · · · −an−1Λ


︸ ︷︷ ︸

Â

. (6)

By pre- and post-multiplying by a suitable permutation
matrix, the rows and columns of Â can be rearranged into
the system matrix diag{Â1, . . . , Âk} with

Âl =


0 Irl 0 · · · 0

0 0 Irl · · ·
...

...
. . .

...
0 0 0 · · · Irl

−a0Λl −a1Λ1 −a2Λl · · · −an−1Λl


for l = 1, . . . , k. The eigenvalues of A, equivalently Â,
are the union of the eigenvalues of all Âl since these are
decoupled from each other. Clearly, the n zero eigenvalues
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of A are obtained from Â1 since Λ1 = λ1 = 0. Therefore,
to ensure scalable stability, we must require all eigenvalues
of all Âl, l = 2, . . . , k to have negative real parts for any N .

The characteristic polynomial of each Âl is

Pl(s) = (sn + an−1λls
n−1 + . . .+ a1λls+ a0λl︸ ︷︷ ︸

pl(s)

)rl , (7)

whose roots are given by the roots of pl(s). In general,
the eigenvalue λl appearing in pl(s) is complex-valued. We
therefore apply the Routh-Hurwitz criteria for polynomials
with complex coefficients. As these criteria do not appear
frequently in literature, we re-state them in Appendix A.

The first Routh-Hurwitz criterion applied to pl(s) reads

an−1Re{λl} > 0. (8)

Since Re{λl} > 0 for l = 2, . . . , k this is always satisfied
when an−1 > 0. The second criterion, given in (A.4), can
after some manipulation be written as

an−1(Re{λl})2(an−1an−2Re{λl} − an−3)

+ an−2(Im{λl})2(a2
n−1Re{λl} − an−2) > 0, (9)

which must hold for all l = 2, . . . , k. While the factors
in front of the brackets remain positive for all λl (recall,
ak > 0), the brackets themselves are negative if Re{λl}
is sufficiently small. In particular, the condition (9) is
violated if Re{λ2} = minl Re{λl} is sufficiently small.

This means that if the criterion (9) is evaluated for a
graph family {GN} in which Re{λ2(GN )} → 0 as N →∞,
it will eventually (for a sufficiently large, but finite, N) be
violated.

We can conclude that at least one root of the character-
istic polynomial p2(s) will have a nonnegative real part for
sufficiently large N . Lemma 2.1 is then not satisfied and
the control is not scalably stable for n ≥ 3.

Remark 2. If the graph is undirected, then the polyno-
mial (7) has real-valued coefficients. The result can then
be derived using the standard Routh-Hurwitz criteria. This
gives the simpler condition

an−1an−2λ2(GN )− an−3 > 0, (10)

which cannot remain satisfied if {λ2(GN )} → 0 as N →∞.

Theorem 3.1 implies that high-order consensus does not
scale in certain graph families. Instability will occur at the
smallest size N for which the Routh-Hurwitz criteria are
violated, and at least one eigenvalue crosses to the right
half plane. We will denote this critical network size N̄ .
In Figure 1 we display N̄ for n = 3, 4, 5 in an unweighted
path graph.

3.1.1. High-order leader-follower consensus

Leader-follower consensus (4) in undirected graphs lacks
scalable stability under a weaker condition, namely, under
bounded nodal degrees. This was also observed in Yadla-
palli et al. (2006).

We first require the following Lemma:

Lemma 3.2. Consider the grounded Laplacian matrix L̄
of an undirected graph GN and let Assumptions A2–A3
hold. The smallest eigenvalue λ̄1 of L̄ then satisfies

λ̄1(GN ) ≤ q

N − 1
wmax. (11)

Proof. By the Rayleigh-Ritz theorem (Horn and Johnson,
1985, Theorem 4.2.2) it holds

λ̄1 ≤
v∗L̄v

v∗v
, ∀v ∈ CN−1\{0}.

This implies in particular that

λ̄1 ≤
1TN−1L̄1N−1

1TN−11N−1
=

∑
k∈N1

w1k

N − 1
≤ qwmax

N − 1
,

where 1TN−1L̄1N−1 =
∑
k∈N1

w1k is the weight sum of all
edges leading to the leader node 1. The equality holds
since each row k of the grounded Laplacian L̄ sums to
zero if the corresponding node k has no connection to the
leader, and otherwise to w1k ≤ wmax.

Clearly, λ̄1(GN ) → 0 as N → ∞. The next theorem
therefore follows.

Theorem 3.3. If n ≥ 3, no leader-follower consensus
algorithm on the form (4) is scalably stable in undirected
graph families {GN} under Assumptions A1–A3.

Proof. The arguments in the proof of Theorem 3.1 apply.
In this case, N − 1 real-valued characteristic polynomials
pl(s) as in (7) are obtained. We can use the condition (10),
which in this case reads an−1an−2λ̄l − an−3 > 0 for l =
1, . . . , N − 1. By Lemma 3.2, that requires

an−1an−2 >
1

qwmax
an−3(N − 1), (12)

which will be violated for sufficiently large N , preventing
scalable stability.

Remark 3. Assumption A2 of bounded neighborhoods
can be relaxed. As seen from (12), Theorem 3.3 holds if
q/N → 0 as N →∞. That is, if nodal neighborhoods have
sublinear growth in N .

3.2. Affected classes of graphs

We proved that high-order consensus lacks scalable sta-
bility in any network where the underlying graph family
is such that Re{λ2(GN )} is decreasing towards zero as N
increases. For undirected graphs, the smallest non-zero
Laplacian eigenvalue λ2 is real-valued and known as the
algebraic connectivity of the graph. For directed graphs,
the notion of algebraic connectivity is not clear-cut, see
e.g. Chung (2005). We can, however, make the following
statement:

Lemma 3.4. If L is normal, then Re{λ2} = λs2, where λs2
is the smallest non-zero eigenvalue of Ls = (L+ LT )/2,
that is, the symmetric part of L.

5



10 20 30 40
0

200

400

Neighborhood size q

C
ri

ti
ca

l
n
et

w
o
rk

si
ze
N̄

n = 3

n = 4

n = 5

Figure 1: Critical network size N̄ at which the stability condi-
tions are violated for an nth order consensus algorithm. The
graph is an undirected path graph where each node is con-
nected to its q nearest neighbors. Increasing the neighborhood
size q here increases N̄ faster than linearly – Theorem 5.1 pre-
dicts N̄ = O(q3/2), indicated by dashed lines in the plot. Also
note that for higher model order n, the stability conditions are
violated at smaller N̄ .

Proof. With v an eigenvector, Lv = λ2v, and since L is
normal LT v = λ∗2v, where ∗ denotes complex conjugate.
Then, 1

2 (L+LT )v = 1
2 (λ2+λ∗2)v = 1

2 (2Re{λ2})v.

For any balanced graph, the matrix Ls is the graph
Laplacian corresponding to the mirror graph ĜN of GN .
The mirror graph (of any directed graph) is the undirected

graph obtained as ĜN = {VN , EN ∪ ÊN}, where ÊN is the
set of all edges in EN , but reversed, and whose edge weights
are ŵij = ŵji = (wij+wji)/2 (Olfati-Saber and Murray,
2004). Clearly, the mirror graph of an undirected graph is
the graph itself. Lemma 3.4 implies that when L is nor-
mal, Re{λ2(GN )} is obtained as the algebraic connectivity

of the mirror graph ĜN .
We conclude that the result in Theorem 3.1 will apply

to graph families whose Laplacians are normal and where
the corresponding mirror graph family has a decreasing al-
gebraic connectivity. That is, where {λ2(ĜN )} → 0 as
N → ∞. It is therefore meaningful to identify this prop-
erty in undirected graph families, which is what the re-
mainder of this section is devoted to. We first state a
general condition, and then survey particular classes of
graphs.

Remark 4. For directed graph families with non-
normal Laplacians, a conclusion regarding the sequence
Re{λ2(GN )} cannot in general be drawn from the mir-
ror graphs. A notable counter-example is the directed path
graph on N nodes with the edge set EN = {(i, i + 1) | i =
1, . . . , N − 1}. Here, Re{λ2(GN )} = 1 for any N , while

λ2(ĜN ) = 1− cos π
N . For general directed graphs, the se-

quence Re{λ2(GN )} must therefore be checked case by case.

3.2.1. Condition on the Cheeger constant

In general, the algebraic connectivity decreases in N in
any undirected graph family that is not an expander fam-
ily. To define expander families, we require the Cheeger
constant (also called isoperimetric constant), which for

non-regular weighted graphs can be defined as (Chung,
1997, Chapter 2):

h(G) = inf
X⊂V

|∂X|d
min{|X|d, |X̄|d}

. (13)

Here, X̄ = V\X and ∂X = {j ∈ X̄ | (i, j) ∈ E , i ∈
X} is called the the boundary set of X. Sets of nodes
are measured here as |W |d :=

∑
i∈W di, where the nodal

degree di =
∑
j∈Ni

wij . Loosely speaking, a large Cheeger
constant implies that any subset of nodes is well connected
to the rest of the graph, and it is not possible to find
a “bottleneck” that separates two graph partitions from
each other as they grow. See Tegling et al. (2019b) for an
elaboration and an algebraic condition. Now, consider the
following definition.

Definition 3.1 (Expander family). Let {GN} be a graph
family in which N → ∞. If the sequence {h(GN )} is
bounded away from zero, {GN} is an expander family.

The following well-established result relates expander
families to our problem:

Lemma 3.5. The sequence {λ2(GN )} is bounded away
from zero as N → ∞ if and only if {GN} is an expander
family.

See e.g. Krebs and Shaheen (2011, Chapter 1) for a
proof. Lemma 3.5 implies that a bounded-degree graph
family can have an algebraic connectivity that does not de-
crease towards zero, if the same holds for the Cheeger con-
stant. The equation (13) reveals that this requires edges
to connect across the entire network. In other words, that
feedback is non-localized.

Expander graphs with bounded degrees are difficult to
construct explicitly, but they may arise through random
processes. For example, the regular random graph fam-
ily constructed by assigning edges through equally likely
permutations of the node set VN , will almost surely be an
expander family (Friedman, 1991).

Next, we turn our attention to typical graph families
that are non-expanding and thus have a decreasing alge-
braic connectivity.

Remark 5. It is noteworthy that Theorem 3.3 for leader-
follower consensus applies even though {GN} is an ex-
pander family. This means that leaderless consensus, de-
spite being scalably stable in expander graphs, will be desta-
bilized if one agent becomes a leader (”is grounded”). This
fragility is described in detail in Tegling et al. (2019b).

3.2.2. Lattices, fuzzes and their embedded graphs

Consider a graph over the d-dimensional periodic lat-
tice ZdM with N = Md nodes, and let each node be con-
nected to its r neighbors in each lattice direction. We term
this graph, which is the Cartesian product of d r-fuzzes of
ring graphs, a d-dimensional r-fuzz lattice. This graph is
regular and the neighborhood size is q = 2rd.
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(c) N = 35

Figure 2: Simulation of 3rd order consensus over graph depicted in (a) subject to random initial accelerations. In (b) the network’s
34 agents converge to an equilibrium. In (c) a 35th node has been added, indicated by red color in the graph. This addition leads
to instability. The plots (b) and (c) show position trajectories relative to Agent no. 1.

Lemma 3.6 (Algebraic connectivity of r-fuzz lattices).
For undirected d-dimensional r-fuzz lattices

λ2(GN ) = O
(

1

N2/d

)
(14)

Proof. See Tegling et al. (2019).

The decay rate (14) also holds for any subgraph of the r-
fuzz lattice, that is, any graph that is embeddable in it. In
particular, lattices without periodic boundary conditions.
This follows from the following important lemma:

Lemma 3.7. Adding an edge to an undirected graph GN ,
or increasing the weight of an edge, can only increase (or
leave unchanged) λ2(GN ), and vice versa.

Proof. Adding an edge: See Mohar (1991, Theorem 3.2).
Increasing edge weight: If the weight of the edge (i′, j′) is
increased by ∆w, the new graph Laplacian can be written
L′ = L + ∆L, where ∆L is also a positive semidefinite
graph Laplacian (of a disconnected graph). By Brouwer
and Haemers (2012, Theorem 2.8.1) this implies that λ′l ≥
λl for each l = 1, . . . , N , and in particular λ′2 ≥ λ2.

3.2.3. Planar graphs

Planar graphs are embeddable in two-dimensional lat-
tices, so Lemma 3.6 applies. For this important case, how-
ever, a more precise bound is available:

Lemma 3.8 (Algebraic connectivity of planar graphs).
For undirected planar graphs,

λ2(GN ) ≤ 8qwmax

N
, (15)

Proof. See Spielman and Teng (2007, Theorem 6).

3.2.4. Tree graphs with growing diameter

The diameter diam{G} of a graph G is defined as the
longest distance between any two nodes in the graph. If
we let G be a tree graph, then, by Grone et al. (1990,

Corollary 4.4) it holds λ2 ≤ 2wmax

(
1− cos

(
π

diam(G)+1

))
.

This allows us to show the following lemma.

Lemma 3.9 (Algebraic connectivity of tree graphs). For
undirected tree graphs,

λ2(GN ) ≤ π2wmax

(diam(GN ) + 1)2
. (16)

Proof. Follows from the relation above and the fact that

1− cosx ≤ x2

2 for any x.

In our case, the tree diameter will always increase
in N as a consequence of Assumption A2. Therefore,
{λ2(GN )} → 0 as N →∞.

3.3. Numerical examples

We next provide two numerical examples to illustrate
the issue of scalable stability in high-order consensus.

3.3.1. Critical network size, locality and model order

Consider a family of undirected path graphs where each
node is connected to its q/2 nearest neighbors in each di-
rection (i.e., a q/2-fuzz of a path graph). For any given N ,
the graph’s connectivity is greater, the greater q is. In-
creasing q thus delays the violation of the stability criteria
in Theorem 3.1.

In Figure 1, we depict the critical network size N̄ as
a function of the neighborhood size q. Here, we have se-
lected a consensus algorithm where a0 = 0.1, a1 = 0.8,
a2, a3, a4 = 1, and all edge weights wij = 1. The plot
shows that increasing q increases the critical network size,
faster than linearly. In Section 5 we discuss the precise
scaling of q in N required to defer instability completely.

We also note that as the model order n increases, the
system becomes unstable at smaller N̄ . This is because
the higher-order Routh-Hurwitz conditions in (A.2) are
violated before the lower-order ones. It is also in line with
common control-theoretic intuition.

3.3.2. Instability through node addition

Our second example illustrates the phase transition –
from consensus to instability – that the system experiences
as the critical network size is reached. Figure 2a shows a
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planar graph that has been randomly generated by means
of triangulation. Here, the maximum neighborhood size is
q = 8 and the median is 5. All edge weights are set to 1.

We consider a third-order consensus algorithm:

x
(3)
i = −

∑
j∈Ni

[0.5(xi − xj) + (ẋi − ẋj) + (ẍi − ẍj)] ,

which by Lemma 2.1 will achieve consensus if λ2 > 0.5.
With 34 nodes, the graph in Figure 2a has λ2(G34) = 0.536
and the system achieves consensus, as seen from the simu-
lation in Figure 2b. We then add a 35th node along with 4
connecting edges, as indicated in red color in the graph in
Figure 2a. Now, λ2(G35) = 0.493 and the system becomes
unstable.1 Figure 2c shows how the agents’ positions x
oscillate at an increasing amplitude.

4. Scale fragility in second-order consensus

Next, we turn our attention to consensus in second-
order integrator networks (n = 2). This case is partic-
ularly relevant as this model is used in formation control
problems (Olfati-Saber, 2006). Scalable stability is eas-
ily satisfied in second-order consensus if the underlying
graph family is undirected2 (though performance issues
like string instability (Swaroop and Hedrick, 1996) and
lack of coherence (Bamieh et al., 2012) may still be a con-
cern). We show here, however, that it fails to scale stably
in certain families of directed graphs with complex eigen-
values. More precisely, graph families where the real part
of one or more Laplacian eigenvalues approaches zero as N
grows and at least one of these eigenvalues has a relatively
large imaginary part. The precise condition, which is il-
lustrated in Figure 3, is stated in Theorem 4.1. First, we
remind the reader that the Laplacian eigenvalues are or-
dered as 0 = λ1(GN ) < Re{λ2(GN )} ≤ . . . ≤ Re{λN (GN )}.

Theorem 4.1. If n ≥ 2, no control on the form (2), sub-
ject to Assumption A1, is scalably stable in graph families
where, for a fixed index l̄ ∈ {2, 3 . . . , N},

1. Re{λl̄(GN )} → 0 as N →∞, and

2. for each N and at least one l ∈ {2, 3, ..., l̄} it holds
arg{λl(GN )} > ψ, where ψ ∈ (0, π/2) is a constant
angle independent of N .

Proof. For n ≥ 3 the result follows immediately from The-
orem 3.1 (note, Re{λl̄(GN )} → 0 ⇒ Re{λ2(GN )} → 0).
For n = 2, we proceed as in the proof of Theorem 3.1 to
obtain the characteristic polynomials

pl(s) = s2 + a1λls+ a0λl, (17)

1This particular value for λ2(G35) depends on the placement of
the 35th node. Other placements can allow the critial N̄ > 35, but
instability occurs eventually.

2This is evident from the upcoming proof of Theorem 4.1. Con-
sider (17) and note that if GN is undirected, λl(GN ) are real-valued
and positive. Since a1, a0 > 0, all roots of pl(s) are then in the left
half plane for any N .

Figure 3: Illustration of the conditions in Theorem 4.1. If a
Laplacian eigenvalue approaches the origin at an angle greater
than some ψ as the network grows, then second-order consensus
lacks scalable stability. The example trajectory illustrates λ2

of a family of directed ring graphs.

for l = 2, . . . , N . The Routh-Hurwitz criterion derived
from ∆4 > 0 in (A.2) with fn−3 = gn−3 = 0 becomes

a2
1Re{λl}[(Re{λl})2 + (Im{λl})2]− a0(Im{λl})2 > 0.

If Im{λl} = 0, this is clearly satisfied since Re{λl} > 0.
For all l ∈ {2, . . . , N} where Im{λl} 6= 0 we can re-
formulate the condition as

a2
1Re{λl}

[(
Re{λl}
Im{λl}

)2

+ 1

]
− a0 > 0. (18)

If the expression in brackets is upper bounded by some
constant, this condition will be violated whenever Re{λl}
is sufficiently small. Therefore, if the condition (18) is
evaluated for a graph family {GN} in which there are
eigenvalues for which Re{λl(GN )} → 0 as N → ∞, and

it holds
(

Re{λl(GN )}
Im{λl(GN )}

)2

≤ const. for at least one of them,

then the condition is eventually violated, and stability is
lost. In our case, Re{λl̄(GN )} → 0 for some index l̄ im-
plies Re{λl(GN )} → 0 for 2 ≤ l ≤ l̄, so we must check all
eigenvalues 2 ≤ l ≤ l̄.

Now,
(

Re{λl(GN )}
Im{λl(GN )}

)2

≤ const. is equivalent to having

an upper bound on Re{λl(GN )}
Im{λl(GN )} for an eigenvalue in the

first quadrant (recall, the Laplacian eigenvalues appear in
conjugate pairs in the RHP). This, in turn, is equivalent
to having the argument arg{λl(GN )} bounded away from
zero. In other words, arg{λl(GN ) > ψ for some fixed ψ ∈
(0, π/2), and the theorem statement follows.

A simpler statement pertaining to the special case of λ2

can be stated as follows:

Corollary 4.2. If n ≥ 2, no control on the form (2),
subject to Assumption A1, is scalably stable in graph
families where Re{λ2(GN )} → 0 as N → ∞ while
arg{λ2(GN )} > ψ for some constant ψ ∈ (0, π/2) that is
independent of N .

4.1. Affected classes of graphs

Theorem 4.1 states that if at least one Laplacian eigen-
value is complex valued and approaches the origin at a
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non-zero angle as N →∞, then second-order consensus
fails to be scalably stable. See also Figure 3. A particular
graph family where this applies is directed ring graphs3

with uniform edge weights, as already observed by Cantos
et al. (2016); Herman (2016); Stüdli et al. (2017). Here,
we demonstrate that it applies to the more general family
of directed lattices with periodic boundary conditions.

4.1.1. Directed periodic lattices

Consider again the d-dimensional r-fuzz lattice from
Section 3.2. We impose location-invariant edge weights
in the sense that, if d = 1, wi,i+k = wk for all i ∈ ZM ,
k = ±{1, . . . , r}. This means that the corresponding graph
Laplacian for d = 1 is a M ×M circulant matrix. In the
higher-dimensional case, the Laplacian is the Kronecker
sum of d such matrices (since the graph is the Cartesian
product of d one-dimensional lattices) and N = Md. Here,
we assume the Laplacian is asymmetric:

Assumption A4. The edge weight wk 6= w−k for at least
one k ∈ ±{1, . . . , r}.

Lemma 4.3. For the d-dimensional r-fuzz lattice under
Assumption A4,

Re{λ2(GN )} = O
(

1

N2/d

)
, Im{λ2(GN )} = O

(
1

N1/d

)
.

Proof. The smallest (in real part) non-zero eigenvalue of
the r-fuzz lattice is given by

λ2 =

r∑
k=−r
k 6=0

wi(1− cos

(
2πk

M

)
)− j

r∑
k=−r
k 6=0

wi sin

(
2πk

M

)
, (19)

where M = N1/d is the lattice size (Tegling et al., 2019).
The expression (19) is easily obtained from the case d = 1,
since the Laplacian eigenvalues of a Cartesian product of
any two graphs are given by every possible sum of their
respective Laplacian eigenvalues (see e.g. Mohar (1991)),
and one eigenvalue is zero in each. Next, note that since
sin(−x) = − sin(x), it is only under Assumption A4 that
Im{λ2} 6= 0. Finally, recalling that r is bounded by As-
sumption A2, the lemma follows from Maclaurin series ex-
pansions of the real and imaginary parts.

Lemma 4.3 implies that arg{λ2(GN )} → π/2 as N →∞,
so the conditions in Theorem 4.1 clearly hold.

Remark 6. In fact, (19) will be an eigenvalue (though not
necessarily λ2) of a graph that results from a Cartesian
product of any graph with a r-fuzz lattice. This follows
from the proof of Lemma 4.3. Such product graphs would
thus also be affected by Theorem 4.1.

3More precisely, a ring graph that is not undirected.

…

…

(a) Scalably stable

…

…

(b) Not scalably sta-
ble

Figure 4: Theorem 4.1 reveals a scale fragility in the vehicle
formation dynamics ẍi = −a0(xi−xi−1)−a1(ẋi− ẋi−1), where
xi is vehicle i’s displacement. These dynamics can model adap-
tive cruise control in commercial vehicles (Gunter et al., 2021).
If the vehicles drive in a circle (let x−1 = xN ), the formation
is destabilized at some size N̄ . The same issue does not apply
to the line formation.

4.1.2. General necessary condition – cyclicity

Characterizing the Laplacian spectra of general directed
graph families is a difficult and largely unsolved problem.
Even determining the properties of graphs that have a real-
valued spectrum, and which are therefore certainly not
affected by Theorem 4.1, is an open problem.

A necessary condition, however, for GN having at least
one complex eigenvalue is that GN has a directed cycle.
This is, however, not sufficient. The term essentially cyclic
graphs has been proposed for graphs with non-real spectra,
and properties of such graphs are examined in Agaev and
Chebotarev (2010). To determine the eigenvalue behav-
ior in N for families of such graphs, and thereby whether
they are affected by Theorem 4.1, is an graph-theoretical
endeavor that is outside the scope of the present paper.

4.2. Implications and numerical example

These results have interesting implications. First, that
circular formations based on the consensus algorithm (2)
are scale fragile. For example, vehicles driving with adap-
tive cruise controllers available in modern commercial ve-
hicles can indeed be modeled as our second-order con-
sensus with unidirectional nearest-neighbor connections,
see Gunter et al. (2021, §II-A) (a constant reference spac-
ing term can be eliminated by translating the state). If
they drive in a circle, as on a ring road or as in many ex-
perimental set-ups (see e.g. Stern et al. (2018)), our results
show that the formation may be destabilized if too many
vehicles join. See also Figure 4. In such settings, however,
it can be possible to recover scalable stability by including
absolute feedback.

Second, we can note that even if the feedback in a ring
formation is bidirectional, that is, if the graph is undi-
rected, it can be destabilized if a slight change in the
weights renders the graph directed. Therefore, formations
on undirected ring graphs are also fragile. We note that
the same issues do not apply to formations on a line. The
two therefore have fundamentally different scalability and
robustness properties.

Figure 5 shows a simulation of a growing circular ve-
hicle formation to illustrate this section’s results. Here,
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(b) N = 14

Figure 5: Simulation of a circular vehicle formation with unidi-
rectional feedback and random edge weights. Each line repre-
sents a vehicle’s position relative to vehicle 1, which has a step
change in its velocity at time t = 0. The formation is stable
with N = 13, but the addition of a 14th vehicle destabilizes it.

each vehicle’s displacement xi is controlled with respect
to the preceding vehicle so that ẍi = −wi,i−1(xi−xi−1)−
3wi,i−1(ẋi− ẋi−1) for i = 1, . . . , N . Let x−1 = xN . We re-
lax the assumption of location-invariant edge weights wij
used for Lemma 4.3. Instead, as vehicles are added, the
edge weights take random values in the interval (0, 1). In
this example, the formation is destabilized at N̄ = 14 and
the vehicles collide.

5. Retrieving scalable stability

Having been presented with fundamental limitations to
the scalability of modular, localized consensus, an obvious
question is how to change the algorithm, or relax assump-
tions on the network topology, to retrieve scalability. We
next address this question by pinning down on two key
model assumptions.

5.1. Relaxing the locality assumption

Underlying our analysis was the assumption of locality
in the sense of bounded nodal degrees, Assumption A2.
Recall that under this assumption, all undirected graph
families except expander families have decreasing algebraic
connectivity and are thus affected by Theorem 3.1. If this
assumption is relaxed, so that nodal neighborhoods are
allowed to grow with N , the algebraic connectivity can
remain bounded away from zero. Scalable stability can
then be retrieved. Interestingly, even though weights are
fixed, it can suffice to grow neighborhoods sub-linearly.

We show this for a ring graph topology, but note that the
same result applies to any graph that is better connected
due to Lemma 3.7.

Theorem 5.1. Let {GN} be a family of undirected 1-
dimensional q/2-fuzz lattices (q even), that is, ring graphs
with edges between each node and its q nearest neighbors.
Then, if

q ≥ cN2/3,

with c > 0 a constant independent of N , the sequence
{λ2(GN )} is bounded away from zero as N →∞.

Proof. The algebraic connectivity of GN is λ2(GN ) =∑q/2
k=−q/2 w(1 − cos 2πk

N ) if edge weights are uniform, i.e.,

wij = w for all (i, j) ∈ EN . The derivation of this ex-
pression is based on the Discrete Fourier Transform, see
e.g. Tegling et al. (2019). Therefore, in a graph with non-
uniform weights, but with wij ≥ wmin, we have

λ2(GN ) ≥
q/2∑

k=−q/2

wmin

(
1− cos

2πk

N

)

= 2wmin

(
1− cos

2π

N

)
+ · · ·+ 2wmin

(
1− cos

2π

N

)
≥ 2wmin

2

π2

((
2π

N

)2

+

(
2π · 2
N

)2

+· · ·+
(

2π · q
N

)2
)

=
16wmin

N2

(
12 + 22 + · · ·+ q2

)
=

16wmin

N2

q(q + 1)(2q + 1)

6
, (20)

where the first inequality follows from Lemma 3.7 and the
second from the fact that 1− cosx ≥ 2

π2x2 for x ∈ [−π, π].
The last equality is a standard result for sums of sequences
of squares. Now, if q ≥ cN2/3, where c is a positive

constant, then (20) is lower bounded by 16wmin

N2
2cN2

6 =
16c3wmin

6 , which is a positive constant independent of N .
The theorem follows.

The sub-linear scaling in Theorem 5.1 is surprising
in light of well-known bounds on algebraic connectivity,
which appear to require a linear scaling. One exam-
ple is the bound based on the edge connectivity e(GN ):
λ2(GN ) ≥ 2e(GN )(1 − cos π

N ) (Fiedler, 1973, §4.3). Since
the edge connectivity grows quadratically with the num-
ber of nearest-neighbor connections q and (1 − cos π

N ) =

O( 1
N2 ), this bound requires q = O(N).

It is also notable that leader-follower consensus indeed
requires a linear scaling of q. This is evident from (12),
which is a necessary stability condition. This again high-
lights an important difference in scalability between lead-
erless and leader-follower consensus.

Remark 7. Theorem 5.1 is stated for a ring graph family
that lets λ2(GN ) be expressed as a fairly simple function
of q and N . Numerical evaluations show, however, that
the same result holds in path graphs, see also Figure 1.
For more connected graph families, Lemma 3.7 applies,
making the result conservative.
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5.2. Impact of absolute feedback

Scalable stability can be retrieved if the control in-
cludes absolute state feedback (equivalent to non-zero self-
weights), if this feedback is carefully designed. To high-
light this result while keeping the section brief, we consider
the case of n = 3 and undirected graph families. In this
case, the control algorithm becomes

ui = −
2∑
k=0

ak ∑
j∈Ni

wij(x
(k)
i − x

(k)
j )− aabs

k x(k)

 , (21)

and we say that absolute feedback from the state x(k) is
available if one can set aabs

k > 0. The closed-loop system
dynamics become

d

dt
ξ =

 0 IN 0
0 0 IN

−a0L−aabs
0 IN −a1L−aabs

1 IN −a2L−aabs
2 IN

ξ.
The following proposition lines out that absolute feedback
from certain states is particularly important to retrieve
scalable stability.

Proposition 5.2. Let {GN} be an undirected graph family
in which {λ2(GN )} → 0 as N → ∞. Then, a necessary
condition for scalable stability of the controller (21), sub-
ject to Assumption A1, is that at least one of aabs

1 , aabs
2 > 0.

Proof. The proof follows that of Theorem 3.1, with mod-
ifications lined out as follows. With absolute feedback
terms, the characteristic polynomial corresponding to (7)
becomes

pl(s) = s3 +(a2λl+aabs
2 )s2 +(a1λl+aabs

1 )s+(a0λl+aabs
0 ),

and the relevant stability condition is obtained from (9)
by substituting (akRe{λl}+ aabs

k ) for akRe{λl}. Since we
let GN be undirected, λl are real-valued, and the condition
for l = 2 simplifies to

(a1λ2 + aabs
1 )(a2λ2 + aabs

2 )− a0λ2 − aabs
0 > 0 (22)

(which compares to (10)). If both aabs
1 = aabs

2 = 0, (22) is
eventually violated as λ2 → 0, regardless of aabs

0 . However
if at least one of aabs

1 , aabs
2 > 0 the condition can stay

satisfied, e.g. if aabs
1 a2 > a0 or aabs

2 a1 > a0 while aabs
0 = 0.

If both aabs
1 , aabs

2 > 0, it is also allowed to set aabs
0 > 0.

This implies that absolute feedback from the high-order
terms, that is, velocity or acceleration, is necessary to ren-
der the third-order consensus algorithm scalable. Reading
the proof in more detail also reveals the interesting ob-
servation that absolute feedback from positions cannot be
included unless there is also absolute feedback from both
velocity and acceleration (it will ruin scalable stability if
included with only one of the two). This is somewhat
counter-intuitive, as absolute feedback is usually beneficial
for performance and stability, though often more difficult
to implement (Jensen and Bamieh, 2022).

6. Discussion

This paper’s results show that there is an important
difference between the well-studied standard first-order
consensus algorithm and the corresponding second- and
higher-order algorithms, in that the latter are not always
scalable in a modular manner to large networks. When
subject to locality constraints, formally expressed through
the network’s Cheeger constant (13), high-order consen-
sus will stop converging and become unstable at some fi-
nite network size. We remark that this result contradicts
a statement made in (Ren et al., 2007, §V), that conver-
gence to consensus of a high-order multi-vehicle network
“will not be impacted as the number of vehicles increases”
(though the authors clearly note that controller gains must
be chosen to ensure stability.)

Second-order consensus is subject to the same scale
fragility in certain families of directed networks, such as
directed ring graphs. An interesting consequence of both
results is that, at some given network size, the addition
of only one agent to a multi-agent network renders a pre-
viously converging system unstable. This can be thought
of as a type of phase transition. For open multi-agent
systems (Franceschelli and Frasca, 2021; Hendrickx and
Martin, 2017) that obey a high-order consensus protocol,
e.g. for flight formation, our results imply that special care
must be taken to avoid this phase transition by limiting
the network size or avoiding a localized network topology.
We next discuss some further implications of our results.

6.1. Implications for distributed integral control

If distributed integral control is applied to a lower-order
consensus network with relative feedback, the closed-loop
dynamics can be formulated analogously to the high-order
consensus algorithm. Our results can be used to reveal
conditions on such integral control for scalable stability.

One example of such an integral controller is the
distributed-averaging proportional-integral (DAPI) con-
troller proposed for frequency control in electric power
grids, see Andreasson et al. (2014); Simpson-Porco et al.
(2013). While in frequency control, absolute frequency
feedback helps ensure scalable stability, the analogous con-
trol design based on relative feedback would lack scalable
stability. In earlier work (Tegling et al., 2019, Theorem
5.4) we have stated a particular stability result for dis-
tributed integral control, but the topic is far from fully
explored.

6.2. Asymptotic performance analysis

A further interesting consequence of our results is that
an analysis of the asymptotic (in network size) perfor-
mance of localized, consensus-like feedback control is only
possible in first- and second-order integrator networks.
This means that the analysis on coherence scaling in large-
scale networks in Bamieh et al. (2012) cannot, as was con-
jectured there, be extended to chains of n > 2 integrators.
We also note that the analysis for second-order networks

11



in that work hinges on the assumption of symmetric feed-
back, since the scale fragility from Theorem 4.1 applies in
directed tori.

6.3. Modular design vs. controller re-tuning

In order to be able to discuss a given controller’s scala-
bility in a network of increasing size, the assumption that
it be fixed is necessary. This presumes a modular design,
implying that the controller cannot be re-tuned as the net-
work grows. By re-tuning the consensus algorithm from
this paper, either by changing the gains ak, weights wij ,
or by relaxing the locality assumption, consensus can be
achieved also as the network grows.

Changing gains or weights would require adapting to the
graph’s changing algebraic connectivity. While this can
indeed be estimated in a decentralized manner (Yang et al.,
2010), dynamic weight re-tuning algorithms as in Kempton
et al. (2018) require the entire network to participate in
tuning to improve the connectivity. Still, the design of
controller re-tuning protocols – which this paper shows to
be necessary for scalable stability – is a highly interesting
direction for future research.
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Appendix A. Routh-Hurwitz criteria

We state the Routh-Hurwitz criteria for polynomials
with complex coefficients as they appear in Tondl (1965,
pp 21f).

Lemma A.1. Consider the polynomial

p(µ) = µn+(fn−1+jgn−1)µn−1+. . . (f0+jg0) = 0, (A.1)

where j =
√
−1 denotes the imaginary unit. The roots µ

will be such that Im{µ} > 0 if and only if all inequalities

−∆2 = −
∣∣∣∣1 fn−1

0 gn−1

∣∣∣∣ > 0, ∆4 =

∣∣∣∣∣∣∣∣
1 fn−1 fn−2 fn−3

0 gn−1 gn−2 gn−3

0 1 fn−1 fn−2

0 0 gn−1 gn−2

∣∣∣∣∣∣∣∣>0,

, · · · ,

(−1)n∆2n= (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 fn−1 · · · f0 0 · · · · · · 0
0 gn−1 · · · g0 0 · · · · · · 0
0 1 · · · f1 f0 0 · · · 0
0 0 · · · g1 g0 0 · · · 0

...
0 · · · · · · 0 1 · · · f1 f0

0 · · · · · · 0 0 · · · g1 g0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
>0

(A.2)

are satisfied.

Evaluating the determinants, the first two inequalities
(which suffice to prove the theorems in this paper) read

gn−1 < 0, (A.3)

fn−1gn−1gn−2 − fn−2g
2
n−1 + gn−3gn−1 − g2

n−2 > 0, (A.4)

for n ≥ 3.
Note that Lemma A.1 gives a condition for all roots

being in the upper half of the complex plane. To obtain a
condition for poles in the left half plane (Re{s} < 0), we
substitute µ = −js in (A.1) and identify the coefficients
with the polynomial

p(s) = sn + bn−1s
n−1 + . . .+ b1s+ b0. (A.5)

Those coefficients that appear in (A.3)–(A.4) are then
fn−1 = Im{bn−1}, gn−1 = −Re{bn−1}, fn−2 =
−Re{bn−2}, gn−2 = −Im{bn−2}, fn−3 = −Im{bn−3},
gn−3 = Re{bn−3}. Note that these identifications hold
regardless of n, as the coefficient of the highest order term
is set to 1 in both (A.5) and (A.1).
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