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Linear quadratic leader-follower stochastic differential

games for mean-field switching diffusions∗

Siyu Lv† Jie Xiong‡ Xin Zhang§

Abstract

In this paper, we consider a linear quadratic (LQ) leader-follower stochastic differ-
ential game for regime switching diffusions with mean-field interactions. One of the
salient features of this paper is that conditional mean-field terms are included in the
state equation and cost functionals. Based on stochastic maximum principles (SMPs),
the follower’s problem and the leader’s problem are solved sequentially and an open-loop

Stackelberg equilibrium is obtained. Further, with the help of the so-called four-step
scheme, the corresponding Hamiltonian systems for the two players are decoupled and
then the open-loop Stackelberg equilibrium admits a state feedback representation if
some new-type Riccati equations are solvable.

Keywords: leader-follower game, linear quadratic problem, Markov chain, mean-field
interaction, Riccati equation

1 Introduction

The leader-follower game involves two players with asymmetric roles, one called the leader
and the other called the follower. In the game, the leader first announces her action, and
the follower, according to the leader’s action, chooses an optimal response to minimize his
cost functional. Next, the leader has to take the follower’s optimal response into account and
chooses an optimal action to minimize her cost functional. Yong [32] first considered a linear
quadratic (LQ) leader-follower stochastic differential game. Then, within the LQ framework,
the result was extended by, e.g., [27, 23, 17] in different settings.

Mean-field stochastic differential equations (SDEs) were initially suggested to describe
physical systems involving a large number of interacting particles. In the dynamics of a
mean-field SDE, one replaces the interactions of all the particles by their average or mean
to reduce the complexity of the problem. In the last decade, since Buchdahn et al. [3, 4]
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and Carmona and Delarue [5, 6, 7] introduced the mean-field backward SDEs (BSDEs) and
mean-field forward-backward SDEs (FBSDEs), optimal control problems, especially stochas-
tic maximum principles (SMPs), for mean-field systems have become a popular topic; see,
for example, [16, 33, 30, 9, 10, 8, 36, 19, 1, 29].

Another feature of this paper is the use of a regime switching model, in which the con-
tinuous state of the LQ problem and the discrete state of the Markov chain coexist; see
[34, 38, 28, 39, 35, 20, 21] for more information and applications of regime switching models.
Recently, Nguyen, Yin, and Hoang [25] established the law of large numbers for systems with
regime switching and mean-field interactions, where the mean-field limit was characterized
as the conditional expectation of the solution to a conditional mean-field SDE with regime
switching (see also Remark 2.1). This work paves the way for treating mean-field optimal
control problems with regime switching; see [24, 26, 2, 11].

In this paper, we consider an LQ leader-follower stochastic differential game for mean-field
switching diffusions. Based on the SMP in Nguyen, Nguyen, and Yin [24], an open-loop op-
timal control for the follower is obtained. Then, by applying the four-step scheme developed
by Ma, Protter, and Yong [22], we derive its (anticipating) state feedback representation
in terms of two Riccati equations and an auxiliary BSDE. Knowing the follower’s optimal
control, the leader faces a state equation which is a conditional mean-field FBSDE with
regime switching. We also utilize the SMP to obtain an open-loop optimal control for the
leader. Then, by the dimensional augmentation approach in Yong [32], a non-anticipating
state feedback representation is derived in terms of two Riccati equations. As a consequence,
the follower’s optimal control can be also represented in a non-anticipating way.

The rest of this paper is organized as follows. In the next, we present an example which
motivates us to study the leader-follower problem in this paper. In Section 2, we formulate
the problem and provide some preliminary results. In Sections 3 and 4, we solve the LQ
problems for the follower and the leader, respectively. Finally, Section 5 concludes the paper.

Motivation: a pension fund optimization problem. Typically, in a defined benefit (DB)
scheme pension fund there are two participants who make contributions: one is the leader
(such as the company) with contribution rate u2(·), the other one is the follower (such as the
individual) with contribution rate u1(·). The dynamics of the pension fund is described as

dF (t) = F (t)d∆(t) + {u1(t) + u2(t)− ξ0}dt,

where d∆(t) is the return rate of the fund and ξ0 is the pension scheme benefit outgo. The
pension fund is invested in a bond S0(t) and a stock S(t), which are given by

{
dS0(t) =r(α(t))S0(t)dt,

dS(t) =b(α(t))S(t)dt + σ(α(t))S(t)dW (t),

where r(i) is the interest rate, b(i) is the appreciation rate, and σ(i) is the volatility corre-
sponding to the market regime α(t) = i. Assume the proportions π(·) and 1 − π(·) of the
fund are to be allocated in the stock and the bond, respectively. Then we have

d∆(t) = {r(α(t)) + [b(α(t))− r(α(t))]π(t)}dt+ σ(α(t))π(t)dW (t).

Therefore, the dynamics of the pension fund can be written as

dF (t) = {r(α(t))F (t) + [b(α(t))− r(α(t))]π(t)F (t)

+u1(t) + u2(t)− ξ0}dt+ σ(α(t))π(t)F (t)dW (t).
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The cost functionals for the follower and the leader to minimize are defined as

Jk(u1(·), u2(·)) =
1

2
E

[ ∫ T

0

(
uk(t)− ξk

)2
dt+

(
E[F (T )|Fα

T ]− ξT

)2]
, k = 1, 2,

respectively, where ξk, k = 1, 2, are the running benchmark, and ξT is the terminal wealth
target; both are introduced to measure the stability and performance of the pension scheme.

The above pension fund optimization problem formulates naturally a special case of the
LQ leader-follower game considered in this paper. For more pension fund optimization prob-
lems under various contexts, see [12, 14, 37]; for a conditional mean-variance portfolio selec-
tion problem (as an application of conditional mean-field control theory), see [26].

2 Problem formulation and preliminaries

Let Rn be the n-dimensional Euclidean space with Euclidean norm | · | and Euclidean inner
product 〈·, ·〉. Let Rn×m be the space of all (n×m) matrices. A⊤ denotes the transpose of a
vector or matrix A. In denotes the (n× n) identity matrix.

Let [0, T ] be a finite time horizon and (Ω,F , P ) be a fixed probability space on which
a one-dimensional standard Brownian motion W (t), t ∈ [0, T ], and a Markov chain α(t),
t ∈ [0, T ], are defined. The Markov chain α(·) takes values in a finite state space M. Let
Q = (λij)i,j∈M be the generator (i.e., the matrix of transition rates) of α(·) with λij ≥ 0 for
i 6= j and

∑
j∈M λij = 0 for each i ∈ M. Assume that W (·) and α(·) are independent. For

t ≥ 0, denote Fα
t = σ{α(s) : 0 ≤ s ≤ t} and Ft = σ{W (s), α(s) : 0 ≤ s ≤ t}. Let L2

F(R
n) be

the set of all Rn-valued Ft-adapted processes x(·) on [0, T ] such that E
∫ T

0
|x(t)|2dt <∞.

The state of the system is described by the following linear conditional mean-field SDE
with regime switching on [0, T ]:




dx(t) =
[
A(α(t))x(t) + Â(α(t))E[x(t)|Fα

t ] +B1(α(t))u1(t) +B2(α(t))u2(t)
]
dt

+
[
C(α(t))x(t) + Ĉ(α(t))E[x(t)|Fα

t ] +D1(α(t))u1(t) +D2(α(t))u2(t)
]
dW (t),

x(0) =x0,

(1)

where x(·) is the state process with values in Rn, u1(·) and u2(·) are control processes taken

by the follower and the leader, with values in Rm1 and Rm2 , respectively, and A(i), Â(i),

B1(i), B2(i), C(i), Ĉ(i), D1(i), D2(i), i ∈ M, are constant matrices of suitable dimensions.
It follows from Nguyen et al. [24, 26] that, for any u1(·) ∈ L2

F(R
m1) and u2(·) ∈ L2

F(R
m2),

SDE (1) admits a unique solution x(·) ∈ L2
F(R

n). Then, U1
.
= L2

F(R
m1) and U2

.
= L2

F(R
m2)

are called the admissible control sets for the follower and the leader, respectively.
The cost functionals for the follower and the leader to minimize are defined as

Jk(u1(·), u2(·)) =
1

2
E

[ ∫ T

0

(〈
Qk(α(t))x(t), x(t)

〉
+
〈
Q̂k(α(t))E[x(t)|F

α
t ], E[x(t)|F

α
t ]
〉

+
〈
Nk(α(t))uk(t), uk(t)

〉)
dt+

〈
Gk(α(T ))x(T ), x(T )

〉

+
〈
Ĝk(α(T ))E[x(T )|F

α
T ], E[x(T )|F

α
T ]
〉]
, k = 1, 2,

(2)
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respectively, where Qk(i), Q̂k(i), Nk(i), Gk(i), Ĝk(i), k = 1, 2, i ∈ M, are constant symmetric
matrices of suitable dimensions.

Remark 2.1. In fact, SDE (1) is obtained as the mean-square limit as N → ∞ of a system
of interacting particles in the following form:





dxl,N(t) =

[
A(α(t))xl,N(t) + Â(α(t))

1

N

N∑

l=1

xl,N(t) +B1(α(t))u1(t) +B2(α(t))u2(t)

]
dt

+

[
C(α(t))xl,N(t) + Ĉ(α(t))

1

N

N∑

l=1

xl,N(t) +D1(α(t))u1(t) +D2(α(t))u2(t)

]
dW l(t),

xl,N(0) =x0, 1 ≤ l ≤ N,

where {W l(·)}Nl=1 is a collection of independent standard Brownian motions and the Markov
chain α(·) serves as a common noise for all particles, which leads to the conditional expecta-
tions rather than expectations in (1).

Intuitively, since all the particles depend on the history of α(·), their average and thereby
its limit as N → ∞ should also depend on this process. This intuition has been justified
by the law of large numbers established by Nguyen et al. [25, Theorem 2.1], which shows
that the joint process ( 1

N

∑N

l=1 x
l,N(·), α(·)) converges weakly to a process (µα(·), α(·)), where

(µα(t), α(t)) = (E[x(t)|Fα
t ], α(t)), 0 ≤ t ≤ T , and x(·) is exactly the solution of (1).

Remark 2.2. Note that the cost functionals Jk, k = 1, 2, defined by (2) are standard in
the LQ mean-field control literature (see [33, 24, 26]) and, if we assume the Assumptions
(A1) and (A2) given in Sections 3 and 4 hold, then Jk is convex with respect to uk, k = 1, 2,
respectively. However, for LQ mean-field games of large-population systems, the tracking-type
cost functionals where one wants to keep the system states stay as much close as possible to
a function of the mean-field term are more frequently adopted (see [15, 18, 10]).

Now we explain the leader-follower feature of the game; see also Yong [32]. In the game, for
any u2(·) ∈ U2 of the leader, the follower would like to choose an optimal control u∗1(·) ∈ U1

so that J1(u
∗
1(·), u2(·)) achieves the minimum of J1(u1(·), u2(·)) over u1(·) ∈ U1. Knowing

the follower’s optimal control u∗1(·) (depending on u2(·)), the leader would like to choose an
optimal control u∗2(·) ∈ U2 to minimize J2(u

∗
1(·), u2(·)) over u2(·) ∈ U2.

In a more rigorous way, the follower wants to find an optimal map Π∗
1 : U2 7→ U1 and the

leader wants to find an optimal control u∗2(·) ∈ U2 such that





J1(Π
∗
1[u2(·)](·), u2(·)) = inf

u1(·)∈U1

J1(u1(·), u2(·)), ∀u2(·) ∈ U2,

J2(Π
∗
1[u

∗
2(·)](·), u

∗
2(·)) = inf

u2(·)∈U2

J2(Π
∗
1[u2(·)](·), u2(·)).

If the above optimal pair (Π∗
1[·], u

∗
2(·)) exists, it is called an open-loop Stackelberg equilibrium

of the leader-follower stochastic differential game.
Then we present some preliminary results on the martingales associated with a Markov

chain, which are needed to establish the conditional mean-field BSDEs with regime switching.
For each pair (i, j) ∈ M × M with i 6= j, define [Mij ](t) =

∑
0≤s≤t 1{α(s−)=i}1{α(s)=j} and
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〈Mij〉(t) =
∫ t

0
λij1{α(s−)=i}ds, where 1A denotes the indicator function of a set A. It follows

from [24, 26] that the processMij(t)
.
= [Mij ](t)−〈Mij〉(t) is a purely discontinuous and square-

integrable martingale with respect to Fα
t , which is null at the origin. In this sense, [Mij ](t)

and 〈Mij〉(t) are the optional and predictable quadratic variations of Mij(t), respectively. In
addition, we denote Mii(t) = [Mii](t) = 〈Mii〉(t) ≡ 0 for each i ∈ M.

Let S2
F (R

n) be the set of all Rn-valued Ft-adapted càdlàg processes y(·) on [0, T ] such

that E
∫ T

0
|y(t)|2dt < ∞. Let K2

F(R
n) be the set of all collections of Rn-valued Ft-adapted

processes {kij(·)}i,j∈M on [0, T ] such that
∑

i,j∈ME
∫ T

0
|kij(t)|

2d[Mij ](t) <∞ with kii(t) ≡ 0
for each i ∈ M. For convenience, we also denote k(·) = {kij(·)}i,j∈M and

∫ t

0

k(s) • dM(s) =
∑

i,j∈M

∫ t

0

kij(s)dMij(s), k(s) • dM(s) =
∑

i,j∈M

kij(s)dMij(s).

The following two lemmas play an important role in the subsequent analysis. The proof of
the first lemma is elementary and the proof of the second one is similar to that of Xiong [31,
Lemma 5.4]. For completeness and readers’ convenience, their proofs are provided here.

Lemma 2.3. For any Ft-adapted and square-integrable processes x(·) and y(·), we have

E
[
x(t)E[y(t)|Fα

t ]
]
= E

[
E[x(t)|Fα

t ]y(t)
]
= E

[
E[x(t)|Fα

t ]E[y(t)|F
α
t ]
]
.

Proof. Note that

E
[
x(t)E[y(t)|Fα

t ]
]
= E

[
E
(
x(t)E[y(t)|Fα

t ]
∣∣∣Fα

t

)]
= E

[
E[x(t)|Fα

t ]E[y(t)|F
α
t ]
]
.

Similarly,

E
[
E[x(t)|Fα

t ]y(t)
]
= E

[
E[x(t)|Fα

t ]E[y(t)|F
α
t ]
]
.

Consequently, the desired conclusion follows.

Lemma 2.4. For any Ft-adapted and square-integrable process x(·), we have

E

[ ∫ t

0

x(s)ds

∣∣∣∣F
α
t

]
=

∫ t

0

E[x(s)|Fα
s ]ds,

and

E

[ ∫ t

0

x(s)dW (s)

∣∣∣∣F
α
t

]
= 0.

Proof. For the first equation, from the Markov property of α(·) and the independence ofW (·)
and α(·), it follows that

E

[ ∫ t

0

x(s)ds

∣∣∣∣F
α
t

]
=

∫ t

0

E[x(s)|Fα
t ]ds =

∫ t

0

E[x(s)|Fα
s ]ds.

Now we proceed to prove the second equation. We first suppose x(·) is simple, namely

x(s) =
∑

m≥1

xm1[tm,tm+1)(s),

5



where, for each m ≥ 1, xm is an Ftm-measurable random variable. As W (tm+1) −W (tm) is
independent of Fα

t ∨ σ(xm)
.
= σ(Fα

t ∪ σ(xm)), we have

E

[ ∫ t

0

x(s)dW (s)

∣∣∣∣F
α
t

]
=
∑

m≥1

E

[
xm[W (tm+1)−W (tm)]

∣∣∣∣F
α
t

]

=
∑

m≥1

E

[
xmE

(
W (tm+1)−W (tm)

∣∣∣∣F
α
t ∨ σ(xm)

)∣∣∣∣F
α
t

]
= 0.

For general x(·), we can approximate x(·) by a sequence of simple processes {xn(·) : n ≥ 1}
such that |xn(s)| ≤ |x(s)|, a.s., for each n ≥ 1 and all s ≤ t. Note that

E

[∣∣∣∣
∫ t

0

xn(s)dW (s)

∣∣∣∣
2]

= E

[ ∫ t

0

|xn(s)|
2ds

]
≤ E

[ ∫ t

0

|x(s)|2ds

]
<∞,

which implies that {
∫ t

0
xn(s)dW (s) : n ≥ 1} is uniformly integrable. Therefore,

E

[ ∫ t

0

x(s)dW (s)

∣∣∣∣F
α
t

]
= lim

n→∞
E

[ ∫ t

0

xn(s)dW (s)

∣∣∣∣F
α
t

]
= 0.

This completes the proof.

3 The problem for the follower

In this section, we deal with the problem for the follower. For convenience, we denote

φ̂(t) = E[φ(t)|Fα
t ],

for a process φ(·). We will apply the SMP obtained by Nguyen et al. [24, Theorem 3.7] to
solve the follower’s problem. Besides the open-loop optimal control, we would like further to
find its state feedback representation. We make the following assumption:

(A1) Q1(i) ≥ 0, Q̂1(i) ≥ 0, N1(i) > 0, G1(i) ≥ 0, Ĝ1(i) ≥ 0, i ∈ M.

Lemma 3.1. Let Assumption (A1) hold. For any given u2(·) ∈ U2 for the leader, let u∗1(·)
be an optimal control for the follower, then u∗1(·) should have the following form:

u∗1(t) = −Ñ−1
1 (t, α(t))

[
S1(t, α(t))x(t) + Ŝ1(t, α(t))x̂(t) + Φ(t)

]
, (3)

where, for notational simplicity, we denote

Ñ1(t, i) = N1(i) +D⊤
1 (i)P1(t, i)D1(i),

S1(t, i) = B⊤
1 (i)P1(t, i) +D⊤

1 (i)P1(t, i)C(i), Ŝ1(t, i) = B⊤
1 (i)P̂1(t, i) +D⊤

1 (i)P1(t, i)Ĉ(i),

Φ(t) = B⊤
1 (α(t))ϕ(t) +D⊤

1 (α(t))θ(t) +D⊤
1 (α(t))P1(t, α(t))D2(α(t))u2(t), i ∈ M,

and P1(·, i) and P̂1(·, i), i ∈ M, are the solutions of Riccati equations (14) and (15), respec-
tively, and (ϕ(·), θ(·), η(·)) ∈ S2

F (R
n)×L2

F(R
n)×K2

F(R
n) is the solution of BSDE (16).
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Proof. From [24, Theorem 3.7], the adjoint equation for the follower is given by





dp(t) =−
[
A⊤(α(t))p(t) + Â⊤(α(t))p̂(t) + C⊤(α(t))q(t) + Ĉ⊤(α(t))q̂(t)

+Q1(α(t))x(t) + Q̂1(α(t))x̂(t)
]
dt + q(t)dW (t) + r(t) • dM(t),

p(T ) =G1(α(T ))x(T ) + Ĝ1(α(T ))x̂(T ),

(4)

which, from [24, Theorem 3.4], admits a unique solution (p(·), q(·), r(·)) ∈ S2
F (R

n)×L2
F (R

n)×
K2

F(R
n), and an optimal control u∗1(·) for the follower should satisfy

N1(α(t))u
∗
1(t) +B⊤

1 (α(t))p(t) +D⊤
1 (α(t))q(t) = 0. (5)

Inspired by the terminal condition of the adjoint equation (4), it is natural to guess

p(t) = P1(t, α(t))x(t) + P̂1(t, α(t))x̂(t) + ϕ(t), (6)

for some Rn×n-valued deterministic, differentiable, and symmetric functions P1(t, i) and

P̂1(t, i), i ∈ M, and an Rn-valued Ft-adapted process ϕ(t) with

dϕ(t) = γ(t)dt+ θ(t)dW (t) + η(t) • dM(t).

Then,

p̂(t) =
(
P1(t, α(t)) + P̂1(t, α(t))

)
x̂(t) + ϕ̂(t). (7)

From Lemma 2.4, we have

dx̂(t) =
[(
A(α(t)) + Â(α(t))

)
x̂(t) +B1(α(t))û1(t) +B2(α(t))û2(t)

]
dt.

In the rest of this paper, the arguments t and α(t) will be dropped to save space, if needed
and when no confusion arises. Applying Itô’s formula for Markov-modulated processes (see
Zhou and Yin [38, Lemma 3.1]) to (6), we obtain

dp =

(
Ṗ1 +

∑

j∈M

λα(t),j [P1(t, j)− P1(t, α(t))]

)
xdt+

∑

i,j∈M

[P1(t, j)− P1(t, i)]xdMij

+ P1[Ax+ Âx̂+B1u1 +B2u2]dt+ P1[Cx+ Ĉx̂+D1u1 +D2u2]dW

+

(
˙̂
P 1 +

∑

j∈M

λα(t),j [P̂1(t, j)− P̂1(t, α(t))]

)
x̂dt+

∑

i,j∈M

[P̂1(t, j)− P̂1(t, i)]x̂dMij

+ P̂1

[
(A+ Â)x̂+B1û1 +B2û2

]
dt+ γdt+ θdW + η • dM.

(8)

Comparing the coefficients of dW parts in (4) and (8), it follows that

q = P1

[
Cx+ Ĉx̂+D1u1 +D2u2

]
+ θ, (9)

and then,

q̂ = P1

[
(C + Ĉ)x̂+D1û1 +D2û2

]
+ θ̂. (10)

7



Inserting (6) and (9) into (5) yields

0 =
(
N +D⊤

1 P1D1

)
u∗1 +

(
B⊤

1 P1 +D⊤
1 P1C

)
x+

(
B⊤

1 P̂1 +D⊤
1 P1Ĉ

)
x̂

+B⊤
1 ϕ+D⊤

1 θ +D⊤
1 P1D2u2,

i.e., u∗1 = −Ñ−1
1 [S1x+ Ŝ1x̂+ Φ], provided Ñ1 is invertible. So we have (3). Also,

û∗1 = −Ñ−1
1

[
(S1 + Ŝ1)x̂+ Φ̂

]
. (11)

On the one hand, substituting (6), (7), (9), (10), and (3), (11) into (4), we have

dp =−
[(
A⊤P1 + C⊤P1C − C⊤P1D1Ñ

−1
1 S1 +Q1

)
x

+
(
Â⊤P1 + (A+ Â)⊤P̂1 + C⊤P1Ĉ + Ĉ⊤P1C + Ĉ⊤P1Ĉ

− C⊤P1D1Ñ
−1
1 Ŝ1 − Ĉ⊤P1D1Ñ

−1
1 (S1 + Ŝ1) + Q̂1

)
x̂

+
(
A− B1Ñ

−1
1 D⊤

1 P1C
)⊤
ϕ+

(
Â−B1Ñ

−1
1 D⊤

1 P1Ĉ
)⊤
ϕ̂

+
(
C −D1Ñ

−1
1 D⊤

1 P1C
)⊤
θ +

(
Ĉ −D1Ñ

−1
1 D⊤

1 P1Ĉ
)⊤
θ̂

+
(
C⊤P1D2 − C⊤P1D1Ñ

−1
1 D⊤

1 P1D2

)
u2

+
(
Ĉ⊤P1D2 − Ĉ⊤P1D1Ñ

−1
1 D⊤

1 P1D2

)
û2

]
dt

+ qdW + r • dM.

(12)

On the other hand, substituting (3) and (11) into (8), we have

dp =
[(
Ṗ1 + P1A− P1B1Ñ

−1
1 S1 +

∑

j∈M

λα(t),j [P1(t, j)− P1(t, α(t))]
)
x

+
(
˙̂
P 1 + P1Â+ P̂1(A + Â)− P1B1Ñ

−1
1 Ŝ1 − P̂1B1Ñ

−1
1 (S1 + Ŝ1)

+
∑

j∈M

λα(t),j [P̂1(t, j)− P̂1(t, α(t))]
)
x̂

+ γ − P1B1Ñ
−1
1 B⊤

1 ϕ− P̂1B1Ñ
−1
1 B⊤

1 ϕ̂− P1B1Ñ
−1
1 D⊤

1 θ − P̂1B1Ñ
−1
1 D⊤

1 θ̂

+
(
P1B2 − P1B1Ñ

−1
1 D⊤

1 P1D2

)
u2 +

(
P̂1B2 − P̂1B1Ñ

−1
1 D⊤

1 P1D2

)
û2

]
dt

+
{
· · ·
}
dW +

{
· · ·
}
• dM.

(13)

By equalizing the coefficients of x and x̂ as well as the non-homogeneous terms in the dt
parts of (12) and (13), we obtain two Riccati equations:





Ṗ1(t, i) =−
[
P1(t, i)A(i) + A⊤(i)P1(t, i) + C⊤(i)P1(t, i)C(i) +Q1(i)

− S⊤
1 (t, i)Ñ

−1
1 (t, i)S1(t, i) +

∑

j∈M

λij[P1(t, j)− P1(t, i)]
]
,

P1(T, i) =G1(i), i ∈ M,

(14)
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and 



˙̂
P 1(t, i) =−

[
P̂1(t, i)(A(i) + Â(i)) + (A(i) + Â(i))⊤P̂1(t, i)

+ P1(t, i)Â(i) + Â⊤(i)P1(t, i) + C⊤(i)P1(t, i)Ĉ(i)

+ Ĉ⊤(i)P1(t, i)C(i) + Ĉ⊤(i)P1(t, i)Ĉ(i) + Q̂1(i)

− S⊤
1 (t, i)Ñ

−1
1 (t, i)Ŝ1(t, i)− Ŝ⊤

1 (t, i)Ñ
−1
1 (t, i)S1(t, i)

− Ŝ⊤
1 (t, i)Ñ

−1
1 (t, i)Ŝ1(t, i) +

∑

j∈M

λij [P̂1(t, j)− P̂1(t, i)]
]
,

P̂1(T, i) =Ĝ1(i), i ∈ M,

(15)

and an auxiliary BSDE:





dϕ(t) =−
[
A

⊤(t, α(t))ϕ(t) + Â
⊤(t, α(t))ϕ̂(t) + C

⊤(t, α(t))θ(t) + Ĉ
⊤(t, α(t))θ̂(t)

+ F
⊤
2 (t, α(t))u2(t) + F̂

⊤
2 (t, α(t))û2(t)

]
dt+ θ(t)dW (t) + η(t) • dM(t),

ϕ(T ) =0,

(16)

where, for simplicity of presentation, we denote

A(t, i) =A(i)−B1(i)Ñ
−1
1 (t, i)S1(t, i), Â(t, i) = Â(i)− B1(i)Ñ

−1
1 (t, i)Ŝ1(t, i),

C(t, i) =C(i)−D1(i)Ñ
−1(t, i)S1(t, i), Ĉ(t, i) = Ĉ(i)−D1(i)Ñ

−1(t, i)Ŝ1(t, i),

S2(t, i) =B
⊤
2 (i)P1(t, i) +D⊤

2 (i)P1(t, i)C(i), Ŝ2(t, i) = B⊤
2 (i)P̂1(t, i) +D⊤

2 (i)P1(t, i)Ĉ(i),

F2(t, i) =S2(t, i)−D⊤
2 (i)P1(t, i)D1(i)Ñ

−1
1 (t, i)S1(t, i),

F̂2(t, i) =Ŝ2(t, i)−D⊤
2 (i)P1(t, i)D1(i)Ñ

−1
1 (t, i)Ŝ1(t, i), i ∈ M.

Further, let P̃1(t, i) = P1(t, i) + P̂1(t, i), i ∈ M, then we have





˙̃
P 1(t, i) =−

[
P̃1(t, i)Ã(i) + Ã⊤(i)P̃1(t, i) + C̃⊤(i)P1(t, i)C̃(i) + Q̃1(i)

− S̃⊤
1 (t, i)Ñ

−1
1 (t, i)S̃1(t, i) +

∑

j∈M

λij[P̃1(t, j)− P̃1(t, i)]
]
,

P̃1(T, i) =G̃1(i), i ∈ M,

(17)

where Λ̃
.
= Λ + Λ̂ for Λ = A,C,Q1, S1, G1; so we can use (17) instead of (15). Similar to

[33, Theorem 4.1], under Assumption (A1), (14) and (17) have unique solutions P1(·, i) and

P̃1(·, i), i ∈ M, respectively, which are positive definite. From [24, Theorem 3.4], (16) also
admits a unique solution (ϕ(·), θ(·), η(·)) ∈ S2

F(R
n)× L2

F(R
n)×K2

F (R
n).

Remark 3.2. Note that P1 and P̃1 do not depend on u2, whereas (ϕ, θ, η) does depend on
u2. Moreover, since (16) is a BSDE, the value (ϕ(t), θ(t), η(t)) of (ϕ, θ, η) at time t depends
on {u2(s) : s ∈ [0, T ]}. Then, Φ and hence u∗1 defined by (3) depend on {u2(s) : s ∈ [0, T ]}
as well, which means u∗1 is anticipating in nature. Thus, it is important to find a “real” state
feedback representation for u∗1 only in terms of x and x̂.
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In the following theorem, based on the so-called completion of the squares method, we
verify the optimality of (3) and compute the minimal cost for the follower.

Lemma 3.3. Let Assumption (A1) hold. For any given u2(·) ∈ U2 for the leader, u∗1(·)
defined by (3) is indeed an optimal control for the follower, and

J1(u
∗
1(·),u2(·)) =

1

2
〈P̃1(0, i)x0, x0〉+ 〈ϕ(0), x0〉

+
1

2
E

[ ∫ T

0

(
− |Ñ

− 1

2

1 Φ|2 + 〈D⊤
2 P1D2u2, u2〉+ 2〈B⊤

2 ϕ+D⊤
2 θ, u2〉

)
dt

]
.

Proof. Note that x(0) = x̂(0) = x0, then for any u1 ∈ U1, we have

J1(u1(·), u2(·))

=J1(u1(·), u2(·))−
1

2
〈P1(0, i)(x(0)− x̂(0)), x(0)− x̂(0)〉

−
1

2
〈P̃1(0, i)x̂(0), x̂(0)〉+

1

2
〈P̃1(0, i)x̂(0), x̂(0)〉 − 〈ϕ(0), x(0)〉+ 〈ϕ(0), x(0)〉

=J1(u1(·), u2(·)) +
1

2
〈P̃1(0, i)x0, x0〉+ 〈ϕ(0), x0〉

−
1

2
E

[
〈P1(T, α(T ))(x(T )− x̂(T )), x(T )− x̂(T )〉 −

∫ T

0

d〈P1(x− x̂), x− x̂〉

]

−
1

2
E

[
〈P̃1(T, α(T ))x̂(T ), x̂(T )〉 −

∫ T

0

d〈P̃1x̂, x̂〉

]
−E

[
〈ϕ(T ), x(T )〉 −

∫ T

0

d〈ϕ, x〉

]

=
1

2
〈P̃1(0, i)x0, x0〉+ 〈ϕ(0), x0〉

+
1

2
E

[ ∫ T

0

(
〈Q1(x− x̂), x− x̂〉+ 〈Q̃1x̂, x̂〉+ 〈N1u1, u1〉

)
dt

]

+
1

2
E

[ ∫ T

0

(
d〈P1(x− x̂), x− x̂〉+ d〈P̃1x̂, x̂〉+ 2d〈ϕ, x〉

)]
.

(18)

On the one hand, applying Itô’s formula for Markov modulated processes to P1(x− x̂),

d[P1(x− x̂)] =− [A⊤P1 + C⊤P1C +Q1 − S⊤
1 Ñ

−1
1 S1](x− x̂)dt

+ P1[B1u1 −B1û1 +B2u2 −B2û2]dt

+ P1[C(x− x̂) + C̃x̂+D1u1 +D2u2]dW

+
∑

i,j∈M

[P1(t, j)− P1(t, i)](x− x̂)dMij.

(19)

Applying Itô’s formula for semi-martingales (see Karatzas and Shreve [13, Theorem 3.3]) to
〈P1(x− x̂), x− x̂〉 (only the dt part is preserved),

d〈P1(x− x̂), x− x̂〉

=〈d[P1(x− x̂)], x− x̂〉+ 〈P1(x− x̂), d(x− x̂)〉+ 〈d[P1(x− x̂)], d(x− x̂)〉

=〈[−C⊤P1C −Q1 + S⊤
1 Ñ

−1
1 S1](x− x̂) + P1[B1u1 −B1û1 +B2u2 −B2û2], x− x̂〉dt

+ 〈P1(x− x̂), B1u1 −B1û1 +B2u2 −B2û2〉dt

+ 〈P1[C(x− x̂) + C̃x̂+D1u1 +D2u2], C(x− x̂) + C̃x̂+D1u1 +D2u2〉dt.

(20)
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On the other hand, applying Itô’s formula for Markov modulated processes to P̃1x̂,

d[P̃1x̂] =− [Ã⊤P̃1 + C̃⊤P1C̃ + Q̃1 − S̃⊤
1 Ñ

−1
1 S̃1]x̂dt+ P̃1[B1û1 +B2û2]dt

+
∑

i,j∈M

[P̃1(t, j)− P̃1(t, i)]x̂dMij.
(21)

Applying Itô’s formula for semi-martingales to 〈P̃1x̂, x̂〉,

d〈P̃1x̂, x̂〉 =〈d(P̃1x̂), x̂〉+ 〈P̃1x̂, dx̂〉+ 〈d(P̃1x̂), dx̂〉

=〈[−C̃⊤P1C̃ − Q̃1 + S̃⊤
1 Ñ

−1
1 S̃1]x̂+ P̃1[B1û1 +B2û2], x̂〉dt

+ 〈P̃1x̂, B1û1 +B2û2〉dt.

(22)

Finally, applying Itô’s formula for semi-martingales to 2〈ϕ, x〉,

2d〈ϕ, x〉 =2(〈dϕ, x〉+ 〈ϕ, dx〉+ 〈dϕ, dx〉)

=2〈−[A⊤ϕ+ Â
⊤ϕ̂+ C

⊤θ + Ĉ
⊤θ̂ + F

⊤
2 u2 + F̂

⊤
2 û2], x〉dt

+ 2〈ϕ,Ax+ Âx̂+B1u1 +B2u2〉dt

+ 2〈θ, Cx+ Ĉx̂+D1u1 +D2u2〉dt.

(23)

We first look at the terms involving u1 and û1 in (18)–(23):

u⊤1 (N1 +D⊤
1 P1D1)u1

+ 2u⊤1 [B
⊤
1 P1(x− x̂) +D⊤

1 P1(C(x− x̂) + C̃x̂+D2u2) +B1P̃1x̂+B⊤
1 ϕ+D⊤

1 θ]

=|Ñ
1

2

1 u1 + Ñ
− 1

2

1 [S1(x− x̂) + S̃1x̂+ Φ]|2 − |Ñ
− 1

2

1 [S1(x− x̂) + S̃1x̂+ Φ]|2,

in which we have used Lemma 2.3 to get

E〈P1B1û1, x− x̂〉 = E〈P1B1u1, x̂− x̂〉 = 0,

E〈P̃1B1û1, x̂〉 = E〈P̃1B1u1, x̂〉.

For the terms involving no u1 or û1 in (18)–(23):

〈S⊤
1 Ñ

−1
1 S1(x− x̂), x− x̂〉+ 〈D⊤

2 P1D2u2, u2〉

+ 2〈B⊤
2 P1(x− x̂), u2〉+ 2〈D⊤

2 P1[C(x− x̂) + C̃x̂], u2〉

+ 〈S̃⊤
1 Ñ

−1
1 S̃1x̂, x̂〉+ 2〈B⊤

2 P̃1x̂, u2〉+ 2〈B⊤
2 ϕ, u2〉+ 2〈D⊤

2 θ, u2〉

+ 2〈B1Ñ
−1
1 S1x, ϕ〉+ 2〈B1Ñ

−1
1 Ŝ1x̂, ϕ〉+ 2〈D1Ñ

−1
1 S1x, θ〉+ 2〈D1Ñ

−1
1 Ŝ1x̂, θ〉

− 2〈[S2 −D⊤
2 P1D1Ñ

−1
1 S1]x, u2〉 − 2〈[Ŝ2 −D⊤

2 P1D1Ñ
−1
1 Ŝ1]x̂, u2〉

=〈D⊤
2 P1D2u2, u2〉+ 2〈B⊤

2 ϕ, u2〉+ 2〈D⊤
2 θ, u2〉

+ 〈S⊤
1 Ñ

−1
1 S1(x− x̂), x− x̂〉+ 〈S̃⊤

1 Ñ
−1
1 S̃1x̂, x̂〉

+ 2〈D⊤
2 P1D1Ñ

−1
1 S1x, u2〉+ 2〈D⊤

2 P1D1Ñ
−1
1 Ŝ1x̂, u2〉

+ 2〈B1Ñ
−1
1 S1x, ϕ〉+ 2〈B1Ñ

−1
1 Ŝ1x̂, ϕ〉+ 2〈D1Ñ

−1
1 S1x, θ〉+ 2〈D1Ñ

−1
1 Ŝ1x̂, θ〉

=〈D⊤
2 P1D2u2, u2〉+ 2〈B⊤

2 ϕ, u2〉+ 2〈D⊤
2 θ, u2〉

+ |Ñ
− 1

2

1 [S1(x− x̂) + S̃1x̂+ Φ]|2 − |Ñ
− 1

2

1 Φ|2,
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in which we have also used Lemma 2.3 to get

E〈P1B2û2, x− x̂〉 = E〈P1B2u2, x̂− x̂〉 = 0,

E〈P1C(x− x̂), C̃x̂〉 = E〈P1C(x̂− x̂), C̃x〉 = 0,

E〈P̃1B2û2, x̂〉 = E〈P̃1B2u2, x̂〉,

E〈B1Ñ
−1
1 Ŝ1x, ϕ̂〉 = E〈B1Ñ

−1
1 Ŝ1x̂, ϕ〉,

E〈D1Ñ
−1
1 Ŝ1x, θ̂〉 = E〈D1Ñ

−1
1 Ŝ1x̂, θ〉,

E〈[Ŝ2 −D⊤
2 P1D1Ñ

−1
1 Ŝ1]x, û2〉 = E〈[Ŝ2 −D⊤

2 P1D1Ñ
−1
1 Ŝ1]x̂, u2〉.

Then, (18) reduces to

J1(u1(·),u2(·)) =
1

2
〈P̃1(0, i)x0, x0〉+ 〈ϕ(0), x0〉

+
1

2
E

[ ∫ T

0

(
|Ñ

1

2

1 (u1 + Ñ−1
1 [S1(x− x̂) + S̃1x̂+ Φ])|2 − |Ñ

− 1

2

1 Φ|2

+ 〈D⊤
2 P1D2u2, u2〉+ 2〈B⊤

2 ϕ+D⊤
2 θ, u2〉

)
dt

]
.

It follows that u∗1 defined by (3) is indeed an optimal control for the follower, and

J1(u
∗
1(·),u2(·)) =

1

2
〈P̃1(0, i)x0, x0〉+ 〈ϕ(0), x0〉

+
1

2
E

[ ∫ T

0

(
− |Ñ

− 1

2

1 Φ|2 + 〈D⊤
2 P1D2u2, u2〉+ 2〈B⊤

2 ϕ+D⊤
2 θ, u2〉

)
dt

]
.

The proof is completed.

4 The problem for the leader

After the follower’s problem being solved and the follower taking his optimal control (3), the
leader faces a state equation, which is a conditional mean-field FBSDE with regime switching,
consisting of the state equation (1) of the LQ problem and the auxiliary BSDE (16) of the
follower:




dx =
[
Ax+ Âx̂+ F1ϕ+ B1θ + B2u2

]
dt+

[
Cx+ Ĉx̂+ B

⊤
1 ϕ+ D1θ + D2u2

]
dW,

dϕ =−
[
A

⊤ϕ+ Â
⊤ϕ̂+ C

⊤θ + Ĉ
⊤θ̂ + F

⊤
2 u2 + F̂

⊤
2 û2

]
dt+ θdW + η • dM,

x(0) =x0, ϕ(T ) = 0,

(24)

where, for convenience, we denote

B1(t, i) =− B1(i)Ñ
−1
1 (t, i)D⊤

1 (i), B2(t, i) = B2(i)−B1(i)Ñ
−1
1 (t, i)D⊤

1 (i)P1(t, i)D2(i),

D1(t, i) =−D1(i)Ñ
−1
1 (t, i)D⊤

1 (i), D2(t, i) = D2(i)−D1(i)Ñ
−1
1 (t, i)D⊤

1 (i)P1(t, i)D2(i),

F1(t, i) =− B1(i)Ñ
−1
1 (t, i)B⊤

1 (i), i ∈ M.
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Note that the FBSDE (24) is decoupled in the sense that one can first solve the backward
equation for (ϕ, θ, η) and then solve the forward equation for x, so the unique solvability of
(24) is guaranteed. The leader’s problem is to find an optimal control u∗2(·) ∈ U2 to minimize
her cost functional (2) for k = 2. We will also utilize the SMP approach to solve the leader’s
problem. In addition to Assumption (A1), we further make the following assumption:

(A2) Q2(i) ≥ 0, Q̂2(i) ≥ 0, N2(i) > 0, G2(i) ≥ 0, Ĝ2(i) ≥ 0, i ∈ M.
The adjoint equation for the leader is given by





dy =−
[
A

⊤y + Â
⊤ŷ + C

⊤z + Ĉ
⊤ẑ +Q2x

∗ + Q̂2x̂
∗
]
dt+ zdW + k • dM,

dψ =
[
Aψ + Âψ̂ + F1y + B1z

]
dt+

[
Cψ + Ĉψ̂ + B

⊤
1 y + D1z

]
dW,

y(T ) =G2(α(T ))x
∗(T ) + Ĝ2(α(T ))x̂

∗(T ), ψ(0) = 0,

(25)

where (x∗, ϕ∗, θ∗, η∗) is the corresponding solution of (24) under an optimal control u∗2 for
the leader. Note that (25) is also a decoupled conditional mean-field FBSDE with regime
switching, and thereby its unique solvability is guaranteed. Based on Yong [32, Theorem 3.2]
and Nguyen et al. [24, Theorem 3.7], one can establish the following SMP for the leader’s
problem.

Lemma 4.1. Let Assumptions (A1) and (A2) hold. Then u∗2 ∈ U2 is an optimal control
for the leader if and only if the adjoint equation (25) admits a unique solution (y, z, k, ψ) ∈
S2
F(R

n)× L2
F(R

n)×K2
F(R

n)× L2
F(R

n) such that

N2u
∗
2 + B

⊤
2 y + D

⊤
2 z + F2ψ + F̂2ψ̂ = 0. (26)

Proof. Let (x∗, ϕ∗, θ∗, η∗) ∈ L2
F(R

n) × S2
F (R

n) × L2
F(R

n) × K2
F(R

n) be the corresponding
solution of (24) under u∗2. For any u

0
2 ∈ U2, we introduce the following state equation:





dx0 =
[
Ax0 + Âx̂0 + F1ϕ

0 + B1θ
0 + B2u

0
2

]
dt

+
[
Cx0 + Ĉx̂0 + B

⊤
1 ϕ

0 + D1θ
0 + D2u

0
2

]
dW,

dϕ0 =−
[
A

⊤ϕ0 + Â
⊤ϕ̂0 + C

⊤θ0 + Ĉ
⊤θ̂0 + F

⊤
2 u

0
2 + F̂

⊤
2 û

0
2

]
dt

+ θ0dW + η0 • dM,

x0(0) =0, ϕ0(T ) = 0,

(27)

and the adjoint equation:





dy0 =−
[
A

⊤y0 + Â
⊤ŷ0 + C

⊤z0 + Ĉ
⊤ẑ0 +Q2x

0 + Q̂2x̂
0
]
dt

+ z0dW + k0 • dM,

dψ0 =
[
Aψ0 + Âψ̂0 + F1y

0 + B1z
0
]
dt

+
[
Cψ0 + Ĉψ̂0 + B

⊤
1 y

0 + D1z
0
]
dW,

y0(T ) =G2(α(T ))x
0(T ) + Ĝ2(α(T ))x̂

0(T ), ψ0(0) = 0.

(28)
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Note that the initial condition x0(0) = 0 in (27), which is the only difference compared with
(24). Also, the FBSDEs (27) and (28) have a unique solution (x0, ϕ0, θ0, η0, y0, z0, k0, ψ0) in
the usual space.

For any λ ∈ R, consider u2
.
= u∗2 + λu02 ∈ U2 and denote (x, ϕ, θ, η) the corresponding

solution of (24). From the linearity of the above FBSDEs, we have x = x∗ + λx0. Then,

J2(u
∗
1, u2)− J2(u

∗
1, u

∗
2)

=
λ2

2
E

[ ∫ T

0

(
〈Q2x

0, x0〉+ 〈Q̂2x̂
0, x̂0〉+ 〈N2u

0
2, u

0
2〉
)
dt

+ 〈G2(α(T ))x
0(T ), x0(T )〉+ 〈Ĝ2(α(T ))x̂

0(T ), x̂0(T )〉

]

+ λE

[ ∫ T

0

(
〈Q2x

∗, x0〉+ 〈Q̂2x̂
∗, x̂0〉+ 〈N2u

∗
2, u

0
2〉
)
dt

+ 〈G2(α(T ))x
∗(T ), x0(T )〉+ 〈Ĝ2(α(T ))x̂

∗(T ), x̂0(T )〉

]

=
λ2

2
E

[ ∫ T

0

(
〈Q2x

0, x0〉+ 〈Q̂2x̂
0, x̂0〉+ 〈N2u

0
2, u

0
2〉
)
dt

+ 〈G2(α(T ))x
0(T ) + Ĝ2(α(T ))x̂

0(T ), x0(T )〉

]

+ λE

[ ∫ T

0

(
〈Q2x

∗, x0〉+ 〈Q̂2x̂
∗, x̂0〉+ 〈N2u

∗
2, u

0
2〉
)
dt

+ 〈G2(α(T ))x
∗(T ) + Ĝ2(α(T ))x̂

∗(T ), x0(T )〉

]
.

(29)

On the one hand,

E[〈G2(α(T ))x
0(T ) + Ĝ2(α(T ))x̂

0(T ), x0(T )〉]

=E[〈y0(T ), x0(T )〉]

=E[〈y0(T ), x0(T )〉 − 〈y0(0), x0(0)〉 − 〈ψ0(T ), ϕ0(T )〉+ 〈ψ0(0), ϕ0(0)〉]

=E

[ ∫ T

0

(
− 〈Q2x

0, x0〉 − 〈Q̂2x̂
0, x0〉+ 〈u02,B

⊤
2 y

0 + D
⊤
2 z

0 + F2ψ
0 + F̂2ψ̂

0〉
)
dt

]
.

(30)

Therefore,

E

[ ∫ T

0

〈u02, N2u
0
2 + B

⊤
2 y

0 + D
⊤
2 z

0 + F2ψ
0 + F̂2ψ̂

0〉dt

]

=E

[ ∫ T

0

(
〈Q2x

0, x0〉+ 〈Q̂2x̂
0, x0〉+ 〈N2u

0
2, u

0
2〉
)
dt

+ 〈G2(α(T ))x
0(T ) + Ĝ2(α(T ))x̂

0(T ), x0(T )〉

]

=E

[ ∫ T

0

(
〈Q2x

0, x0〉+ 〈Q̂2x̂
0, x̂0〉+ 〈N2u

0
2, u

0
2〉
)
dt

+ 〈G2(α(T ))x
0(T ), x0(T )〉+ 〈Ĝ2(α(T ))x̂

0(T ), x̂0(T )〉

]
≥ 0,

(31)
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where we have used Assumption (A2) and the following facts (noting Lemma 2.3):

E〈Q̂2x̂
0, x0〉 = E〈Q̂2x̂

0, x̂0〉 ≥ 0,

E〈Ĝ2x̂
0(T ), x0(T )〉 = E〈Ĝ2x̂

0(T ), x̂0(T )〉 ≥ 0.

On the other hand,

E[〈G2(α(T ))x
∗(T ) + Ĝ2(α(T ))x̂

∗(T ), x0(T )〉]

=E[〈y(T ), x0(T )〉]

=E[〈y(T ), x0(T )〉 − 〈y(0), x0(0)〉 − 〈ψ(T ), ϕ0(T )〉+ 〈ψ(0), ϕ0(0)〉]

=E

[ ∫ T

0

(
− 〈Q2x

∗, x0〉 − 〈Q̂2x̂
∗, x0〉+ 〈u02,B

⊤
2 y + D

⊤
2 z + F2ψ + F̂2ψ̂〉

)
dt

]
.

(32)

Thus, combining (29), (30), and (32) leads to

J2(u
∗
1, u2)− J2(u

∗
1, u

∗
2)

=
λ2

2
E

[ ∫ T

0

〈u02, N2u
0
2 + B

⊤
2 y

0 + D
⊤
2 z

0 + F2ψ
0 + F̂2ψ̂

0〉dt

]

+ λE

[ ∫ T

0

〈u02, N2u
∗
2 + B

⊤
2 y + D

⊤
2 z + F2ψ + F̂2ψ̂〉dt

]
.

From (31), we deduce that u∗2 is optimal if and only if

N2u
∗
2 + B

⊤
2 y + D

⊤
2 z + F2ψ + F̂2ψ̂ = 0.

The proof is completed.

Similar to the follower’s problem, we also expect to derive a state feedback representation
for u∗2 defined by (26), which, as shown later, is non-anticipating. To apply the dimensional
augmentation approach by Yong [32], we denote

X =

[
x∗

ψ

]
, Y =

[
y

ϕ∗

]
, Z =

[
z

θ∗

]
, K =

[
k

η∗

]
, X0 =

[
x0
0

]
,

A =

[
A 0
0 A

]
, Â =

[
Â 0

0 Â

]
, C =

[
C 0
0 C

]
, Ĉ =

[
Ĉ 0

0 Ĉ

]
,

B1 =

[
0 B1

B1 0

]
, B2 =

[
B2

0

]
, D1 =

[
0 D1

D1 0

]
, D2 =

[
D2

0

]
,

F1 =

[
0 F1

F1 0

]
, F2 =

[
0 F2

]
, F̂2 =

[
0 F̂2

]
,

Q2 =

[
Q2 0
0 0

]
, Q̂2 =

[
Q̂2 0
0 0

]
, G2 =

[
G2 0
0 0

]
, Ĝ2 =

[
Ĝ2 0
0 0

]
.
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Then, (24) and (25) can be rewritten as





dX =
[
AX + ÂX̂ + F1Y +B1Z +B2u

∗
2

]
dt

+
[
CX + ĈX̂ +B⊤

1 Y +D1Z +D2u
∗
2

]
dW,

dY =−
[
A⊤Y + Â⊤Ŷ +C⊤Z + Ĉ⊤Ẑ +Q2X + Q̂2X̂

+ F⊤
2 u

∗
2 + F̂⊤

2 û
∗
2

]
dt+ ZdW +K • dM,

X(0) =X0, Y (T ) = G2(α(T ))X(T ) + Ĝ2(α(T ))X̂(T ),

(33)

and (26) becomes

0 = N2u
∗
2 +B⊤

2 Y +D⊤
2 Z + F2X + F̂2X̂. (34)

Theorem 4.2. Let Assumptions (A1) and (A2) hold. An optimal control u∗2 for the leader
is given by

u∗2(t) = −Ñ−1
2 (t, α(t))

[
S2(t, α(t))X(t) + Ŝ2(t, α(t))X̂(t)

]
, (35)

where, for the sake of simplicity, we denote

Ñ2(t, i) =N2(i) +D⊤
2 (t, i)(I − P2(t, i)D1(t, i))

−1P2(t, i)D2(t, i),

J2(t, i) =B⊤
1 (t, i)P2(t, i) +C(t, i), Ĵ2(t, i) = B⊤

1 (t, i)P̂2(t, i) + Ĉ(t, i),

S2(t, i) =D⊤
2 (t, i)(I − P2(t, i)D1(t, i))

−1P2(t, i)J2(t, i) +B⊤
2 (t, i)P2(t, i) + F2(t, i),

Ŝ2(t, i) =D⊤
2 (t, i)(I − P2(t, i)D1(t, i))

−1P2(t, i)Ĵ2(t, i) +B⊤
2 (t, i)P̂2(t, i) + F̂2(t, i), i ∈ M,

provided Ñ2 and (I − P2D1) are invertible and P2(·, i) and P̂2(·, i), i ∈ M, are solutions of
Riccati equations (41) and (42), respectively.

Proof. In the light of the terminal condition of (33), it is natural to set

Y (t) = P2(t, α(t))X(t) + P̂2(t, α(t))X̂(t), (36)

for some R2n×2n-valued deterministic, differentiable, and symmetric functions P2(t, i) and

P̂2(t, i), i ∈ M. Applying Itô’s formula for Markov-modulated processes to (36), we have

dY =
(
Ṗ2 +

∑

j∈M

λα(t),j [P2(t, j)− P2(t, α(t))]
)
Xdt+

∑

i,j∈M

[P2(t, j)− P2(t, i)]XdMij

+ P2

[
AX + ÂX̂ + F1Y +B1Z +B2u

∗
2

]
dt+ P2

[
CX + ĈX̂ +B⊤

1 Y +D1Z +D2u
∗
2

]
dW

+
(
˙̂
P 2 +

∑

j∈M

λα(t),j [P̂2(t, j)− P̂2(t, α(t))]
)
X̂dt+

∑

i,j∈M

[P̂2(t, j)− P̂2(t, i)]X̂dMij

+ P̂2

[
(A+ Â)X̂ + F1Ŷ +B1Ẑ +B2û

∗
2

]
dt.

(37)
Comparing the coefficients of dW parts in (33) and (37), we obtain

Z = (I − P2D1)
−1P2

[
J2X + Ĵ2X̂ +D2u

∗
2

]
. (38)

16



Substituting (36) and (38) into (34) and observing that (I−P2D1)
−1P2 is symmetric, we get

u∗2 =− Ñ−1
2

[
S2X + Ŝ2X̂

]
.

Inserting (36), (38), and (35) into (33) and (37), respectively, we have

dY =−
[(

A⊤P2 +Q2 +C⊤(I − P2D1)
−1P2J2

−C⊤(I − P2D1)
−1P2D2Ñ

−1
2 S2 − F⊤

2 Ñ
−1
2 S2

)
X

+
(
A⊤P̂2 + Â⊤(P2 + P̂2) + Q̂2

+C⊤(I − P2D1)
−1P2Ĵ2 + Ĉ⊤(I − P2D1)

−1P2(J2 + Ĵ2)

−C⊤(I − P2D1)
−1P2D2Ñ

−1
2 Ŝ2

− Ĉ⊤(I − P2D1)
−1P2D2Ñ

−1
2 (S2 + Ŝ2)

− F⊤
2 Ñ

−1
2 Ŝ2 − F̂⊤

2 Ñ
−1
2 (S2 + Ŝ2)

)
X̂
]
dt

+
{
· · ·
}
dW +

{
· · ·
}
• dM,

(39)

and
dY =

[(
Ṗ2 + P2A+ P2F1P2 + P2B1(I − P2D1)

−1P2J2

− P2B1(I − P2D1)
−1P2D2Ñ

−1
2 S2 − P2B2Ñ

−1
2 S2

+
∑

j∈M

λα(t),j [P2(t, j)− P2(t, α(t))]
)
X

+
(
˙̂
P 2 + P2Â+ P̂2(A+ Â) + P2F1P̂2 + P̂2F1(P2 + P̂2)

+ P2B1(I − P2D1)
−1P2Ĵ2 + P̂2B1(I − P2D1)

−1P2(J2 + Ĵ2)

− P2B1(I − P2D1)
−1P2D2Ñ

−1
2 Ŝ2 − P2B2Ñ

−1
2 Ŝ2

− P̂2B1(I − P2D1)
−1P2D2(S2 + Ŝ2)− P̂2B2Ñ

−1
2 (S2 + Ŝ2)

+
∑

j∈M

λα(t),j [P̂2(t, j)− P̂2(t, α(t))]
)
X̂
]
dt

+
{
· · ·
}
dW +

{
· · ·
}
• dM.

(40)

By equalizing the coefficients of X and X̂ in (39) and (40), we obtain the following two
Riccati equations





Ṗ2(t, i) =−
[
P2(t, i)A(t, i) +A⊤(t, i)P2(t, i) + P2(t, i)F1(t, i)P2(t, i) +Q2(i)

+ J⊤
2 (t, i)(I − P2(t, i)D1(t, i))

−1P2(t, i)J2(t, i)

− S⊤
2 (t, i)Ñ

−1
2 (t, i)S2(t, i) +

∑

j∈M

λij[P2(t, j)− P2(t, i)]
]
,

P2(T, i) =G2(i), i ∈ M,

(41)
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and 



˙̂
P 2(t, i) =−

[
P̂2(t, i)(A(t, i) + Â(t, i)) + (A(t, i) + Â(t, i))⊤P̂2(t, i)

+ P2(t, i)Â(t, i) + Â⊤(t, i)P2(t, i) + P2(t, i)F1(t, i)P̂2(t, i)

+ P̂2(t, i)F1(t, i)P2(t, i) + P̂2(t, i)F1(t, i)P̂2(t, i) + Q̂2(i)

+ J⊤
2 (t, i)(I − P2(t, i)D1(t, i))

−1P2(t, i)Ĵ2(t, i)

+ Ĵ⊤
2 (t, i)(I − P2(t, i)D1(t, i))

−1P2(t, i)J2(t, i)

+ Ĵ⊤
2 (t, i)(I − P2(t, i)D1(t, i))

−1P2(t, i)Ĵ2(t, i)

− S⊤
2 (t, i)Ñ

−1
2 (t, i)Ŝ2(t, i)− Ŝ⊤

2 (t, i)Ñ
−1
2 (t, i)S2(t, i)

− Ŝ⊤
2 (t, i)Ñ

−1
2 (t, i)Ŝ2(t, i) +

∑

j∈M

λij [P̂2(t, j)− P̂2(t, i)]
]
,

P̂2(T, i) =Ĝ2(i), i ∈ M.

(42)

As the follower’s problem, we can also let P̃2(t, i) = P2(t, i) + P̂2(t, i), i ∈ M, to get an
equation that is structurally similar to (41) and can be used instead of (42), i.e.,





˙̃
P 2(t, i) =−

[
P̃2(t, i)Ã(t, i) + Ã⊤(t, i)P̃2(t, i) + P̃2(t, i)F1(t, i)P̃2(t, i) + Q̃2(i)

+ J̃⊤
2 (t, i)(I − P2(t, i)D1(t, i))

−1P2(t, i)J̃2(t, i)

− S̃⊤
2 (t, i)Ñ

−1
2 (t, i)S̃2(t, i) +

∑

j∈M

λij[P̃2(t, j)− P̃2(t, i)]
]
,

P̃2(T, i) =G̃2(i), i ∈ M,

(43)

where H̃
.
= H+ Ĥ for H = A,Q2,J2,S2,G2.

Then, we compute the minimal cost for the leader under u∗2 defined by (35), and derive
the non-anticipating state feedback representation of the follower’s optimal control (3).

Theorem 4.3. Let Assumptions (A1) and (A2) hold. Suppose that the Riccati equations (41)

and (43) have solutions P2(·, i) and P̃2(·, i), i ∈ M, respectively, such that Ñ2 and (I−P2D1)
are invertible. Then,

J2(u
∗
1(·), u

∗
2(·)) = 〈P̃

(11)
2 (0, i)x0, x0〉, (44)

where P̃
(11)
2 (0, i) is taken from

P̃2(0, i) =

(
P̃

(11)
2 (0, i) P̃

(12)
2 (0, i)

(P̃
(12)
2 )⊤(0, i) P̃

(22)
2 (0, i)

)
.

Moreover, the non-anticipating state feedback representation of the follower’s optimal control
(3) is given by (45).

Proof. Note that

E[〈y(T ), x∗(T )〉 − 〈y(0), x∗(0)〉 − 〈ψ(T ), ϕ∗(T )〉+ 〈ψ(0), ϕ∗(0)〉]

=E[〈G2(α(T ))x
∗(T ) + Ĝ2(α(T ))x̂

∗(T ), x∗(T )〉 − 〈y(0), x∗(0)〉].
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By applying Itô’s formula for semi-martingales to 〈x∗, y〉 − 〈ψ, ϕ∗〉, we have

E[〈G2(α(T ))x
∗(T ) + Ĝ2(α(T ))x̂

∗(T ), x∗(T )〉 − 〈y(0), x∗(0)〉]

=E

[ ∫ T

0

(
− 〈Q2x

∗, x∗〉 − 〈Q̂2x̂
∗, x∗〉+ 〈u∗2,B

⊤
2 y + D

⊤
2 z + F2ψ + F̂2ψ̂〉

)
dt

]

=E

[ ∫ T

0

(
− 〈Q2x

∗, x∗〉 − 〈Q̂2x̂
∗, x∗〉+ 〈u∗2,B

⊤
2 Y +D⊤

2 Z + F2X + F̂2X̂〉
)
dt

]
,

which implies that (noting (34))

J2(u
∗
1(·), u

∗
2(·)) = 〈Y (0), X(0)〉 = 〈P̃2(0, i)X(0), X(0)〉 = 〈P̃

(11)
2 (0, i)x0, x0〉.

On the other hand, note that u∗2 defined by (35) for the leader is non-anticipating, thereby
u∗1 defined by (3) for the follower can be also represented in a non-anticipating way, i.e.,

u∗1 =− Ñ−1
1

[
S1x+ Ŝ1x̂+ Φ

]

=− Ñ−1
1

[
( S1 0 )X + ( Ŝ1 0 )X̂ + ( 0 B⊤

1 )Y + ( 0 D⊤
1 )Z +D⊤

1 P1D2u
∗
2

]

=− Ñ−1
1

[
( S1 0 ) + ( 0 B⊤

1 )P2 + ( 0 D⊤
1 )(I − P2D1)

−1P2J2

− ( 0 D⊤
1 )(I − P2D1)

−1P2D2Ñ
−1
2 S2 −D⊤

1 P1D2Ñ
−1
2 S2

]
X

− Ñ−1
1

[
( Ŝ1 0 ) + ( 0 B⊤

1 )P̂2 + ( 0 D⊤
1 )(I − P2D1)

−1P2Ĵ2

− ( 0 D⊤
1 )(I − P2D1)

−1P2D2Ñ
−1
2 Ŝ2 −D⊤

1 P1D2Ñ
−1
2 Ŝ2

]
X̂.

(45)

The proof is completed.

Remark 4.4. Up to now, we have completely solved our LQ leader-follower stochastic differ-
ential game for mean-field switching diffusion. It turns out that the game admits an open-loop
Stackelberg equilibrium (u∗1, u

∗
2) with a non-anticipating state feedback representation (45) and

(35), respectively.

Finally, we provide a numerical example to illustrate the effectiveness of our theoretical
results. Note that the optimal controls (45) for the follower and (35) for the leader as well as

the value of the game (44) depend only on the solutions P1, P̃1, P2, P̃2 to Riccati equations
(14), (17), (41), (43), respectively. So, in order to implement our control policies in practice,

the whole task for us is to compute P1, P̃1, P2, P̃2.

Example 4.5. Let n = m1 = m2 = 1 and T = 1. Consider the following state equation:
{
dX(t) =[B1(α(t))u1(t) +B2u2(t)]dt+ CX(t)dW (t),

X(0) =x0,

where α(·) is a two-state Markov chain taking values in M = {1, 2} with generator
[
−1 1
1 −1

]
,
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and B1(1) = 2, B1(2) = 1, B2 = 1, C = 0.5.
The cost functionals for the follower and the leader are given by

Jk(u1(·), u2(·)) =
1

2
E

[ ∫ 1

0

Nku
2
k(t)dt+GkX

2(1) + Ĝk(E[X(1)|Fα
1 ])

2

]
,

where Nk = 1, Gk = 1, Ĝk = 0.5, k = 1, 2, respectively. Note that in this example, to exhibit
the effect of regime switching more clearly, we only let B1 vary depending on the Markov
chain and keep all the other parameters fixed as constants.

Then, P1(t, i), P̃1(t, i), P
(11)
2 (t, i), P̃

(11)
2 (t, i), i ∈ {1, 2}, on [0, 1] are computed and plotted

in Figures 1 and 2, respectively. It is mentioned that the other elements of the matrix-valued
functions P2(t, i) and P̃2(t, i), i ∈ {1, 2}, are not plotted for simplicity.

5 Concluding remarks

In this paper, we studied an LQ leader-follower stochastic differential game with regime
switching and mean-field interactions. Conditional mean-field terms are included due to the
presence of a Markov chain (just like a common noise). Some new-type Riccati equations
are introduced for the first time in the literature. The open-loop Stackelberg equilibrium and
its non-anticipating state feedback representation are obtained. There are several interesting
problems that deserve further investigation, in particular, the existence and uniqueness results
of the Riccati equations (41) and (43).
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