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Abstract

Among first order optimization methods, Polyak’s heavy ball method has long been known to guarantee the asymptotic rate of convergence
matching Nesterov’s lower bound for functions defined in an infinite-dimensional space. In this paper, we use results on the robust gain
margin of linear uncertain feedback control systems to show that the heavy ball method is provably worst-case asymptotically optimal
when applied to quadratic functions in a finite dimensional space.
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1 Introduction

First order methods for solving optimization problems

min
x

f(x) (1)

iteratively approximate the minimum point x∗ of f using
linear combinations of the previous iterates and the gradi-
ents of f computed at those previous iterates. Such methods
find widespread applications in machine learning and its ap-
plications to control. A fundamental problem regarding such
methods is to characterize their rate of convergence for a
given class of objective functions f [3,8,4].

For two times differentiable unimodal functions f : Rn →
R whose Hessian at the stationary point ∆ = ∇2f(x∗)
satisfies

mI ≤ ∆ ≤ LI, (2)

Polyak’s heavy ball method [10,11],

xt+1 = xt−α∇f(xt)+β(xt−xt−1), t = 0, 1, . . . , (3)

⋆ This work was supported by the Australian Research Coun-
cil under the Discovery Projects funding scheme (Project num-
bers DP190102158, DP200102945 and DP210102454). Part of
this work was carried out during the first author’s visit to the Aus-
tralian National University.

Email addresses: v.ugrinovskii@gmail.com
(V. Ugrinovskii), i.r.petersen@gmail.com
(I. R. Petersen), iman.shames@anu.edu.au (I. Shames).

guarantees that

r{xt} = lim sup
t→∞

‖xt − x∗‖1/t ≤ ρ∗, ρ∗ ,

√
L−√

m√
L+

√
m
,

(4)
when it is initiated sufficiently close to x∗. Here ∇f(·)
denotes the gradient of f . The quantity r{xt} is the root-

convergence factor of the sequence {xt} [9]; it character-
izes the asymptotic rate of convergence of {xt} to x∗. When
the set of functions f is restricted to include only quadratic
functions satisfying (2) (we denote this class of functions
Qn

m,L), the method (3) converges globally [11], and the in-
equality (4) is tight in the worst-case:

sup
f∈Qn

m,L

r{xt} = ρ∗. (5)

Polyak commented [11, p.74], that for large-scale problems
with quadratic functions in Qn

m,L, where the dimension of
the vector x is greater than the number of iterations T re-
quired to reach x∗ with a sufficient accuracy, one cannot ex-
pect any first order method to converge at a rate faster than
a geometric sequence with the heavy ball method’s ratio ρ∗.

The same ratio ρ∗ appears in the (often misquoted) infinite
dimensional Nesterov’s lower bound. Nesterov showed [8,
Theorem 2.1.13] that among m-strongly convex continu-
ously differentiable functions with L-Lipschitz gradient, de-
fined in an infinite dimensional Hilbert space, there exists a
‘bad’ quadratic function f for which

‖xt − x∗‖ ≥ (ρ∗)t‖x0 − x∗‖ ∀t = 0, 1, . . . , (6)
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for any first order optimization method. As a result, any such
method applied to this quadratic function will produce a se-
quence of iterates whose root-convergence factor is bounded
from below:

r{xt} = lim sup
t→∞

‖xt − x∗‖1/t ≥ ρ∗. (7)

For functions in the finite dimensional space R
n, lower

bounds similar to (6) hold only over the first T steps, and
T is linked to the dimension of the space R

n [3,4]. These
results have led the community to believe that in optimiza-
tion of quadratic functions R

n → R, no other first order
method can provide a better root-convergence factor than
the heavy ball method. However, this conclusion cannot be
drawn formally from the existing finite-dimensional results,
since they do not hold as T → ∞ while the dimension n of
the search space remains fixed.

In this paper, we consider the set Qn
m,L of finite-dimensional

quadratic functions f : Rn → R with the Hessian ∆ satis-
fying condition (2) and fixed-parameter first-order methods

xt+1 = xt +

k−1∑

j=0

βj(xt−j − xt−j−1)−
l∑

j=0

αj∇f(yt−j),

yt =

k−l∑

ν=0

γνxt−ν , t = 0, 1, . . . . (8)

The number of past iterates k and the number of gradient
evaluations l ≤ k used at every step can be arbitrary, but
they do not change with time. The coefficients αj , βj and
γν are scalar constants.

Our main result shows that for any converging method (8),
the worst-case root-convergence factor within the class
Qn

m,L is bounded from below by the same value ρ∗ which
appears on the right-hand side of equation (4); see in-
equality (16) in Theorem 1. This conclusion applies to any
optimization algorithm (8) including the fixed-step gradient
descent method [8,11], Polyak’s heavy-ball method [10,11],
the triple momentum method [12], and Nesterov’s fixed
parameter accelerated method [8]. From this result and
equation (5) it immediately follows that the heavy ball
method is worst-case optimal among methods (8) in the
sense that for quadratic functions in Qn

m,L it guarantees the
best worst-case asymptotic convergence rate.

Our approach uses robust control theory. Specifically, our
derivation of the worst-case lower bound on the root-
convergence factor of the method (8) employs the results
on the robust gain margin of feedback control systems [7].

2 Optimal lower bound on the convergence rate of first
order methods applied to quadratic functions

In this section, we derive the optimal lower bound on
the root-convergence factor of the method (8) applied to

quadratic functions f of the class Qn
m.L. First we recall

some basic definitions which formalize the notion of the
asymptotic rate of convergence of an iterative process.

Definition 1 ([9]) Let {xt} be a sequence that converges to
x∗. Then the number

r{xt} = lim sup
t→∞

‖xt − x∗‖1/t (9)

is the root-convergence factor, or R-factor of {xt}. If I is
an iterative process with limit point x∗, and C (I , x∗) is
the set of all sequences generated by I which converge to
x∗, then

rI = sup{r{xt} : {xt} ∈ C (I , x∗)} (10)

is the R-factor of I at x∗.

Iterative processes of the form (8) can be written in the form
of a nonlinear dynamic system of Luré type [5,6],

Xt+1 = AXt +BUt, (11)

Yt = CXt, Ut = −φ(Yt),

whose state, output and nonlinearity are respectively

Xt =
[
xT
t−k . . . x

T
t

]T
, Yt =

[
(ClXt)

T . . . (C0Xt)
T
]T

,

φ(Y ) =
[
(∇f(ClX))T . . . (∇f(C0X))T

]T
.

The matrices A ∈ R
(k+1)n×(k+1)n, B ∈ R

(k+1)n×(l+1)n,
C ∈ R

(l+1)n×(k+1)n and Cj ∈ R
n×(k+1)n, j = 0, . . . , l,

are defined as

A = A0 ⊗ In, B = B0 ⊗ In, C =
[
CT

l . . . CT
0

]T
,

A0 =



 0 Ik

−βk−1 βk−1 − βk−2 βk−2 − βk−3 . . . 1 + β0



 ,

B0 =



 0

αl αl−1 . . . α0



 , Cj = C0
j ⊗ In,

C0
j =

[
0 . . . 0
︸ ︷︷ ︸

l−j

γk−l . . . γ0 0 . . . 0
]

︸ ︷︷ ︸
j

.

In the above equations, the symbol ⊗ denotes the Kronecker
product, In is the n × n identity matrix, and 0 denotes a
zero matrix or vector. The dimensions of the matrices A0,
B0 and C0

j are (k + 1) × (k + 1), (k + 1) × (l + 1), and

1× (k + 1), respectively.

Assumption 1 It holds that

l∑

j=0

αj 6= 0,
k−l∑

ν=0

γν = 1. (12)
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Assumption 1 holds for many practical methods. For in-
stance, in Nesterov’s constant-step accelerated gradient
method [8, constant step scheme III, p.94], l = 0, k = 1,

α0 = 1
L 6= 0, β0 =

1−
√

m/L

1+
√

m/L
, and γ0 = (1+β0), γ1 = −β0.

Thus, γ0 + γ1 = 1.

Lemma 1 Suppose f(x) has a unique stationary point x∗.
Under Assumption 1, x∗ is the unique fixed point of the
method I in equation (8).

Proof: Substituting the xt = xt−1 = . . . = xt−k = x∗

into the left-hand side of equation (8) and using the second
identity (12) and the fact that ∇f(x∗) = 0 yields

xt+1 = x∗ −
l∑

j=0

αj∇f

(
k−l∑

ν=0

γνx
∗
)

= x∗ −




l∑

j=0

αj


∇f

((
k−l∑

ν=0

γν

)
x∗
)

= x∗.

This shows that x∗ is a fixed point of the mapping (8).

To show uniqueness, suppose that x̌ is a fixed point of the
method I . Then




l∑

j=0

αj



∇f

((
k−l∑

ν=0

γν

)
x̌

)
= 0.

According to (12) this implies that ∇f(x̌) = 0, i.e., x̌ is a
stationary point of f . Since f is assumed to have a unique
stationary point, the fixed point of the method I must be
unique. ✷

It follows from Lemma 1 that when f is unimodal, X∗ =
[1 . . . 1︸ ︷︷ ︸

k+1

]T ⊗x∗ is the unique equilibrium of the system (11).

For a quadratic function f(x) = 1
2 (x−x∗)T∆(x−x∗)+f0,

using the change of variable X̄t = Xt−X∗ and the condition∑k−l
ν=0 γν = 1 from Assumption 1, the system (11) can be

written as the linear system

X̄t+1 = ĀX̄t where Ā , A0 ⊗ In − (B0 ⊗∆)C. (13)

The system (13) is stable if and only if the spectral radius
of the matrix Ā, denoted ρ(Ā), satisfies ρ(Ā) < 1. More-
over, ρ(Ā) characterizes the degree of stability of the sys-
tem (13) [1]. That is, when the system (13) is stable, the
states Xt approach X∗ at least as fast as ρ(Ā)t. In terms of
the root convergence factor, this observation reads

rI = ρ(Ā) (14)

for any f ∈ Qn
m,L for which the matrix Ā is stable.

PSfrag replacements

K(z)
u(z) y(z)

+ −
λP (z)

Fig. 1. A linear uncertain control system with a robust stabilizing
compensator.

When the function f is not known in advance and it is
known only that it belongs to the set Qn

m,L, the system (13)

is uncertain. When it is stable for all f ∈ Qn
m,L, its degree

of stability in the face of this uncertainty is characterized
by supmI≤∆≤LI ρ(Ā), and so the states Xt approach X∗

at least as fast as (supmI≤∆≤LI ρ(Ā))
t. That is, the worst-

case root convergence rate of the method (8) is given by

sup
f∈Qn

m,L

rI = sup
mI≤∆≤LI

ρ(Ā). (15)

We are now in a position to present the main result of the
paper which establishes the lower bound on the quantity
in (15). Note that supmI≤∆≤LI ρ(Ā) can be greater than
or equal to 1, however the expression on the left-hand side
of (15) is well-defined only when the sequences {xt} and
{Xt} asymptotically converge. This is the standing assump-
tion of this result.

Theorem 1 For any k ≥ 1 and 0 ≤ l ≤ k and any collec-
tion of parameters α = (α0, . . . , αl), β = (β0, . . . , βk−1)
and γ = (γ0, . . . , γk−l) which satisfies Assumption 1 and
for which the algorithm (8) asymptotically converges for all
f ∈ Qn

m,L, it holds that

sup
f∈Qn

m,L

rI = sup
∆:mI≤∆≤LI

ρ(Ā) ≥ ρ∗. (16)

The proof of this theorem employs the result of [7] regarding
the robust gain margin of linear feedback control systems.
It is presented in Lemma 2 given below. This lemma is a
special case of a more general theoretical development in [7].
To make our presentation self-contained, we include a direct
proof of Lemma 2 in the Appendix.

Lemma 2 Consider the uncertain linear feedback system
shown in Fig. 1 consisting of the plant P (z) = 1

z−1 , an

uncertain constant gain λ and a compensator K(z). Let
ρ ∈ (0, 1) be a constant. A proper real rational compensator
K(z) that places all poles of this system in the interior of
the disk |z| < ρ for all λ ∈ [m,L] exists if and only if

ρ > ρ∗, (17)

where ρ∗ is the constant defined in (4), i.e., ρ∗ ,
√
L−√

m√
L+

√
m

.
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Proof of Theorem 1: Since the algorithm (8) is assumed to
converge asymptotically for all f ∈ Qn

m,L, then ρ(Ā) < 1
for every symmetric matrix ∆ which satisfies (2). We now
show that supmI≤∆≤LI ρ(Ā) < 1. Indeed, the set mI ≤
∆ ≤ LI is compact in the finite dimensional metric space
of symmetric matrices equipped with the norm induced by
the Euclidean norm in R

n. This conclusion follows from
the fact that this set is a closed bounded set. Furthermore,
ρ(Ā) depends continuously on ∆; see (13). Thus, by the
Weierstrass extreme value theorem, there exists a symmet-
ric matrix ∆∗ within that set which attains the supremum.
However, for this matrix ∆∗ the conditions of the theorem
state that the spectral radius of the corresponding matrix (13)
Ā∗ = A0 ⊗ In − (B0 ⊗∆∗)C is less than 1. Thus we con-
clude that

sup
mI≤∆≤LI

ρ(Ā) = max
mI≤∆≤LI

ρ(Ā) = ρ(Ā∗) < 1. (18)

Now consider an arbitrary function f ∈ Qn
m,L. The corre-

sponding matrix ∆ is symmetric, therefore there exists an
orthogonal matrix T such that ∆ = T TΛT , where Λ is the
diagonal matrix whose diagonal consists of the eigenvalues
of ∆. Using the matrix T , let us change coordinates in (13),

X̃t = T̃ X̄t , (Ik+1 ⊗ T )X̄t.

In the new coordinates, the system (13) becomes

X̃t+1 = T̃ ĀT̃ T X̃t = ÃX̃t, (19)

where Ã = T̃ ĀT̃ T . The state transformation does not affect
the spectral radius of a matrix. Therefore, ρ(Ā) = ρ(Ã).

Since the matrix T̃ = Ik+1 ⊗ T is orthogonal, Ã = A0 ⊗
I−N⊗Λ. Here N is a (k+1)× (k+1) matrix of the form

N =



 0

nk nk−1 . . . n0



 , (20)

where 0 is the k× (k+1) zero matrix. The elements of the
last row of N are the coefficients of the product polynomial

(
∑l

j=0 αjz
j)(
∑k−l

ν=0 γνz
ν),

nj =

j∑

ν=0

ανγj−ν , j = 0, . . . , k. (21)

Here we use the standard convention that if the index extends
beyond the length of a vector, the corresponding element of
the extended vector is taken to be 0.

Let λ1, . . . , λn be the eigenvalues of ∆, and so Λ =
diag[λ1, . . . , λn]. It is easy to see by permuting the columns
and rows of the matrix A0⊗ I−N ⊗Λ that the eigenvalues

of the matrix Ã are the same as those of the block diagonal
matrix comprised of the companion matrices

gi =A0 − λiN

=




0 1 . . . 0

.

.

.
.
.
.

. . .
.
.
.

0 0 . . . 1

−βk−1 − nkλi βk−1 − βk−2 − nk−1λi . . . 1 + β0 − n0λi



,

i = 1, . . . , n.

Therefore, we arrive at the conclusion that

ρ̄ , sup
mI≤∆≤LI

ρ(Ā) = max
i

sup
λi∈[m,L]

ρ(gi) = sup
λi∈[m,L]

ρ(gi).

(22)
In the last identity, maxi is dropped since all eigenval-
ues λi lie in the same interval [m,L], and therefore ρ̄ =
supλi∈[m,L] ρ(gi) and does not depend on i.

Next we observe that ρ(gi) represents the radius of the small-
est disk in the complex plane which contains all roots of the
characteristic equation of the matrix gi,

(z − 1)


zk −

k−1∑

j=0

βjz
k−j−1


+ λi

k∑

j=0

njz
k−j = 0. (23)

This equation can be written as 1+λiP (z)K(z) = 0, where
P (z) and K(z) are given by

P (z) =
1

z − 1
, K(z) =

N(z)

D(z)
,

N(z) ,

k∑

j=0

njz
k−j, D(z) , zk −

k−1∑

j=0

βjz
k−j−1.

Thus, we conclude that ρ̄ = supλi∈[m,L] ρ(gi) is the radius

of the smallest disk that contains the poles of the SISO feed-
back control system in Fig. 1 consisting of the uncertain
plant λiP (z) and the compensator K(z). According to (18),
this radius ρ̄ is in the interval (0, 1). Hence one can select
ρ ∈ (ρ̄, 1) such that all poles of this system lie in the inte-
rior of the disk |z| < ρ for any λi ∈ [m,L]. From Lemma 2,
a proper compensator K(z) which ensures such pole place-
ment for the family of plants λiP (z) exists if and only if
ρ > ρ∗. Taking infimum with respect to ρ ∈ (ρ̄, 1) proves
(16). ✷

3 Conclusions

This paper uses results on the robust gain margin of linear
uncertain systems to establish a theoretical lower bound on
the rate of asymptotic convergence of iterative first order op-
timization methods applied to quadratic functions. One con-
clusion that follows from our results is that among multistep
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methods of the form (8), Polyak’s heavy ball method [10,11]
in fact guarantees the best worst-case rate of asymptotic root
convergence for the class of quadratic functions. Also, our
result confirms that Nesterov’s bound indeed holds asymp-
totically for functions defined in finite-dimensional space
when one considers the worst case over quadratic functions.
Consequently it also holds for any class of strongly convex
twice differentiable functions that are m-convex and have
L-Lipschitz gradient in the vicinity of x∗, containing Qn

m,L
as a subset.
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Appendix: Proof of Lemma 2

Let N(z), D(z) be the numerator and denominator of the
compensator K(z). Introduce the sensitivity function

S(z) = (1 +
m+ L

2
P (z)K(z))−1. (24)

Note that the pole of the plant P (z), z = 1, lies outside the
disk |z| < ρ and is a zero of S(z). Also, z = ∞, the unique
zero of P (z), is a zero of 1 − S(z) since the compensator
K(z) is proper. Thus, we conclude that

S(1) = 0, S(∞) = 1. (25)

The following proposition adapts Lemma 2.3 from [7] to the
problem setting of this paper.

Proposition 1 The closed loop system in Fig. 1 has all its
poles in the disk |z| < ρ for all λ ∈ [m,L] if and only
if S(z) in (24) is real rational and analytic in the region

H̃ρ , {|z| ≥ ρ} ∪ {∞} and

S(z) 6∈ G ,

(
−∞,

2m

m− L

]
∪
[

2L

L−m
,+∞

)

∀z ∈ H̃ρ. (26)

The proof of this proposition follows, mutatis mutandis, the
proof of Lemma 2.3 in [7]. Based on this proposition, we
conclude that the poles of the closed loop system under
consideration can be placed in the interior of the open disk
|z| < ρ for all λ ∈ [m,L] if and only if there exist polyno-
mials D(z), N(z) with real coefficients, such that the degree
of N is less than or equal to the degree of D and the function

S(z) in (24) is analytic in H̃ρ, maps H̃ρ into the comple-
ment of the set G , denoted G c (i.e., G c = C\G where C

is the set of complex numbers), and satisfies (25). Follow-
ing [7], we observe that the existence of such polynomials
and the function S(z) is essentially the Nevanlinna-Pick in-
terpolation problem.

The classical Nevanlinna-Pick problem [2] is concerned with
the following. Given the points ζ1, ζ2, . . . ζl in the interior
of the unit disk D̄ = {z : |z| ≤ 1} and the array of val-
ues b1, b2, . . . , bl, the problem is to find a rational func-
tion s(z) with no poles in D = {z : |z| < 1}, for which
supz∈D |s(z)| < 1 and such that s(ζi) = bi, i = 1, . . . , l.
The equivalence between this classical formulation and the
interpolation problem stated above follows from the follow-
ing diagram

H̃ρ G c

D̄ D

S

ϕ θ

s

In this diagram, ϕ(z) = ρz−1 and θ(z) is the conformal
mapping which maps the set G c onto the open disk D [7]:

θ(z) =

(
1−

√
1− L−m

2L z

1− m−L
2m z

)(
1 +

√
1− L−m

2L z

1− m−L
2m z

)−1

.

(27)

According to this diagram, S(z) = θ−1(s(ρz−1)), s(z) =
θ(S(ρz−1)). The interpolation data for s(z) are obtained
from (25), s(0) = θ(1) = ρ∗, s(ρ) = θ(0) = 0. A function
s(z) which solves the Nevanlinna-Pick problem with these
data exists if and only if

[
1− (θ(1))2 1

1 1
1−ρ2

]
> 0; (28)

e.g., see [2, Theorem 18.1]. Condition (28) is equivalent to
ρ > θ(1) = ρ∗. This concludes the proof. ✷
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