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Abstract

In this paper we discuss the notion of universality for classes of
candidate common Lyapunov functions of linear switched systems.
On the one hand, we prove that a family of absolutely homogeneous
functions is universal as soon as it approximates arbitrarily well every
convex absolutely homogeneous function for the C0 topology of the
unit sphere. On the other hand, we prove several obstructions for a
class to be universal, showing, in particular, that families of piecewise-
polynomial continuous functions whose construction involves at most
l polynomials of degree at most m (for given positive integers l,m)
cannot be universal.

1 Introduction

Common Lyapunov functions constitute the most popular and powerful tool
for the stability analysis of switched systems. Roughly speaking, the use of
common Lyapunov functions for stability analysis gathers the global behavior
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of the system and allows to bypass the explicit analysis of single trajecto-
ries, which may be extremely complex. Yet, looking for a common Lyapunov
function may be a nontrivial task as stability cannot always be checked by
means of Lyapunov functions in a simple form, for instance within the class
of quadratic forms. Given a family of systems (e.g., the family of all linear
switched systems), classes of functions large enough to include a Lyapunov
function for each globally asymptotically stable system are called univer-
sal [3] and a result establishing the existence of such a class is a called
a converse Lyapunov theorem. The literature dealing with converse Lya-
punov theorems, starting from the works by Massera and Kurzweil in the
1950s (see e.g. [10, 7, 15, 8, 6]) is quite rich. The results concerning the
existence of smooth Lyapunov functions for nonlinear systems with global
asymptotic stability properties require the development of rather sophisti-
cated techniques. Concerning robust asymptotic stability with respect to a
closed invariant set in presence of perturbation terms, converse Lyapunov
theorems have been derived in [8]. In the context of switched systems (even
in a nonlinear setting) such results establish the equivalence between the
global uniform asymptotic stability and the existence of a smooth Lyapunov
function. For switched linear systems the construction of a Lyapunov func-
tion is much more direct and natural due, essentially, to the homogeneous
nature of the system and the equivalence between asymptotic and exponen-
tial stability (see e.g. [5]). Furthermore, in the linear case and even for the
more general class of uncertain systems, it is well-known that the families of
piecewise quadratic functions, polyhedral functions, and homogeneous poly-
nomials are universal [11, 12, 13, 3]. On the other hand, for every positive
integer m, the family of polynomials of degree less or equal than m is not uni-
versal even for the simple class of two-dimensional linear switched systems
with two modes [9]. Similarly, it is well accepted in the research commu-
nity (although, to the authors’ knowledge, no explicit proof is available) that
families of piecewise quadratic and polyhedral functions whose construction
involves a uniformly bounded number of quadratic or linear functions can-
not be universal. For this reason, all numerical methods investigating the
existence of Lyapunov functions within these classes are affected by a certain
degree of conservativeness.

The contribution of this paper is twofold. First, we provide a general
sufficient condition for a class of functions to be universal (Proposition 3.1),
which is a formalization of fundamental ideas already present in [11, 12, 13, 3].
As a corollary, we recover the universal classes of functions obtained in these
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references. We next derive the main results of this paper, which provide some
necessary conditions for the universality of classes of functions. The first one,
Theorem 4.2, is an abstract result which applies to families of real analytic
functions. The fact that polynomials with a uniform boundm on their degree
do not form a universal class [9] follows as a simple consequence of this result.
Finally, Theorem 4.5 states that families of piecewise-polynomial continuous
functions whose construction involves at most l polynomials of degree at most
m (for given positive integers l, m) cannot be universal.

2 Universal classes of common Lyapunov func-

tions

We consider linear switched systems of the form

ẋ(t) = A(t)x(t), t ≥ 0, x ∈ R
n, (ΣM )

where the switching law A is an arbitrary function belonging to the space
Sarb(M ) of measurable functions taking values on a bounded subset M of
the set of n× n matrices, denoted by Mn(R). We use ΦA(t, s) to denote the
fundamental matrix from s to t for (ΣM ) associated with the switching law
A so that every solution of (ΣM ) can be written as x(t) = ΦA(t, 0)x(0). We
are interested in the following uniform stability properties.

Definition 2.1. The switched system (ΣM ) is said to be

• uniformly stable if there exists C > 0 such that, for every switching
law A and t ≥ 0, ‖ΦA(t, 0)‖ ≤ C;

• uniformly exponentially stable if there exist C, γ > 0 such that, for
every switching law A and t ≥ 0, ‖ΦA(t, 0)‖ ≤ Ce−γt.

Stability in the previous senses may be assessed through common Lya-
punov functions, defined below.

Definition 2.2. We say that a continuous function V : Rn −→ R+ is a
nonstrict common Lyapunov function for (ΣM ) if it is positive definite, that
is, V (0) = 0 and V (x) > 0 for every x 6= 0, and V is non-increasing along
trajectories of (ΣM ). If, moreover, V is strictly decreasing along nonzero
trajectories of (ΣM ), we say that V is a common Lyapunov function for
(ΣM ).
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Remark 2.3. If V is a (possibly nonstrict) common Lyapunov function and
ϕ : R+ → R+ is continuous, strictly increasing, and such that ϕ(0) = 0,
then ϕ ◦ V is also a (nonstrict) common Lyapunov function. In particular,
the positive multiple of a common Lyapunov function is a common Lya-
punov function and if there exists a absolutely homogeneous common Lya-
punov function, then for every α > 0 there exists a absolutely homogeneous
common Lyapunov function of degree α.

We state here the version for linear switched systems of the classical direct
Lyapunov theorem.

Theorem 2.4. A linear switched system (ΣM ) admitting a nonstrict com-
mon Lyapunov function is uniformly stable. If there exists a strict common
Lyapunov function for (ΣM ), then the latter is uniformly exponentially stable.

In case the strict common Lyapunov function V : Rn → R+ in the above
theorem is of class C1 on Rn \{0}, then a standard test for checking the strict
decrease of V along non-trivial trajectories of (ΣM ) goes as follows:

∇V (x)⊤Mx < 0, M ∈ M , x ∈ R
n \ {0}. (1)

Definition 2.5. A set P of functions from Rn to R is a universal class of
Lyapunov functions if for every bounded set M ⊂ Mn(R) such that (ΣM ) is
uniformly exponentially stable there exists a common Lyapunov function for
(ΣM ) in P.

An equivalent formulation of the universality of a class P is that the
converse Lyapunov theorem holds true within P.

As mentioned in the introduction, the construction of a common Lya-
punov function for switched linear systems can be easily obtained. For in-
stance, a locally Lipschitz continuous Lyapunov function may be defined as

V (x) = sup
A∈Sarb(M )

∫ +∞

0

‖ΦA(t, 0)x‖dt,

and may be regularised outside the origin by convolution with a smooth
function (see e.g. [5, 9] for more details). Recalling that a function V : Rn →
R is absolutely homogeneous of degree α if V (λx) = |λ|αV (x) for every
x ∈ Rn and λ ∈ R, this classical construction leads to the following result.
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Proposition 2.6. Let α ≥ 1 and P be the class of convex absolutely homoge-
neous functions of degree α on Rn that are positive and smooth on Rn \ {0}.
Then P is universal. Moreover, for every bounded set M ⊂ Mn(R) such
that (ΣM ) is uniformly exponentially stable, there exists ε > 0 and a com-
mon Lyapunov function V ∈ P for (ΣM ) such that ∇V (x)⊤Mx ≤ −‖x‖α

for every x ∈ Rn \ {0} and M ∈ M .

Note that a globally smooth Lyapunov function may be constructed by
classical regularisation techniques developed in a nonlinear setting (see e.g. [7,
8]), at the price of losing homogeneity.

Similar to Proposition 2.6, the following straightforward converse Lya-
punov result links the uniform stability of (ΣM ) with the existence of a
nonstrict common Lyapunov function.

Proposition 2.7. Assume that M ⊂ Mn(R) is bounded and (ΣM ) is uni-
formly stable. Then the convex and absolutely homogeneous function of degree
one

V (x) = sup
t≥0,A∈Sarb(M )

‖ΦA(t, 0)x‖. (2)

is a nonstrict common Lyapunov function for (ΣM ).

Due to Proposition 2.6, the continuous differentiability outside the ori-
gin of the common Lyapunov function is not a restrictive assumption when
checking the uniform exponential stability of a linear switched system. On
the other hand, the uniform stability of (ΣM ) does not always imply the
existence of a C1 nonstrict common Lyapunov function (see e.g. [4, Example
3]). Furthermore, even in case of uniform exponential stability, it may be
useful to provide a criterion to ensure the existence of a common Lyapunov
function in a class of non-differentiable functions, such as piecewise linear or
piecewise quadratic ones. For these reasons we introduce below a criterion
which generalizes Equation (1) and characterizes the family of (possibly non-
strict) common Lyapunov functions in a nonsmooth setting. We refer to [1,
Proposition1] for a similar result in the context of differential inclusions.

We need the following preliminary result, which expresses the variation
of a convex function V along a trajectory in terms of the subdifferential of
V . Recall that the subdifferential ∂V (x) at a point x ∈ Rn is defined as

∂V (x) = {l ∈ R
n | l⊤(y − x) ≤ V (y)− V (x), ∀y ∈ R

n}.

The proof of the lemma is provided for completeness.
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Lemma 2.8. Let V : Rn → R be a convex function and ϕ : I → Rn be an
absolutely continuous function, with I ⊆ R an open interval. Then V ◦ ϕ is
absolutely continuous and it holds

d

dt
V (ϕ(t)) = l⊤ϕ̇(t), ∀l ∈ ∂V (ϕ(t)), for a.e. t ∈ I.

Proof. As V is convex, V is Lipschitz and the composition V ◦ϕ is absolutely
continuous. Hence for almost every t ∈ I the derivatives of both ϕ and
V ◦ ϕ are well-defined. By definition of subdifferential, for every t, s ∈ I and
l ∈ ∂V (ϕ(t)) we have

l⊤(ϕ(s)− ϕ(t)) ≤ V (ϕ(s))− V (ϕ(t)).

We deduce that

d

dt
V (ϕ(t)) = lim

s→t+

V (ϕ(s))− V (ϕ(t))

s− t

≥ l⊤ lim
s→t+

ϕ(s)− ϕ(t)

s− t

= l⊤ϕ̇(t)

holds true for almost every t ∈ I and for every l ∈ ∂V (ϕ(t)). Similarly,
taking the limit as s → t−, we obtain that d

dt
V (ϕ(t)) ≤ l⊤ϕ̇(t) for almost

every t ∈ I and for every l ∈ ∂V (ϕ(t)). This concludes the proof of the
lemma.

Here follows an adaptation to the nonsmooth setting of the characteriza-
tion of common Lyapunov function.

Proposition 2.9. Let M be a bounded subset of Mn(R) and V : Rn → R+ be
a convex positive definite function. Then V is a nonstrict common Lyapunov
function for (ΣM ) if and only if

l⊤Mx ≤ 0, ∀x ∈ R
n \ {0}, ∀l ∈ ∂V (x), ∀M ∈ M . (3)

Moreover, if the inequality in (3) is strict then V is a common Lyapunov
function for (ΣM ).

Proof. The second part of the proposition and the if implication in the first
part directly follow from Lemma 2.8. We are left to show that if V is a
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nonstrict common Lyapunov function for (ΣM ), then the inequality (3) holds
true. By contradiction, suppose that there exist x ∈ Rn, l ∈ ∂V (x), and
M ∈ M such that l⊤Mx > 0. By [14, Theorem 25.6] one may find a
differentiability point y of V such that the pair (y,∇V (y)) is arbitrarily
close to (x, l). In particular we may assume ∇V (y)⊤My > 0, that is, V is
increasing at t = 0 along the trajectory t 7→ etMy, leading to a contradiction.

3 Positive universality results

Given a switched linear system (ΣM ), the family P identified by Proposi-
tion 2.6 is unsuitable for numerical investigation of the existence of a Lya-
punov function. With this goal in mind, interesting candidate classes P are
those parametric families of functions for which the property of being positive
definite and strictly decreasing along all admissible dynamics can be trans-
lated into numerically verifiable algebraic relations or inequalities (e.g., linear
matrix inequalities). It is well-known that piecewise-quadratic, polynomial,
and polyhedral functions represent examples of such families [11, 12, 13, 3].

We next provide a general sufficient condition for a class P to be universal.
Roughly speaking, we exploit the fact, specific to convex functions defined on
compact sets, that being close in the uniform norm is equivalent to possessing
“close” subdifferentials.

Proposition 3.1. Let P be a subset of the family of convex absolutely ho-
mogeneous functions of degree one from Rn to R+. Assume that for every
convex absolutely homogeneous function V : Rn → R+ of degree one and
every δ > 0 there exists a function W in P such that ‖W (x) − V (x)‖ ≤ δ
for every x in the unit sphere Sn−1 of Rn. Then P is a universal class of
Lyapunov functions.

Proof. Let (ΣM ) be uniformly exponentially stable. Let V be the absolutely
homogeneous of degree one common Lyapunov function provided by Propo-
sition 2.6. In order to prove the proposition, it is enough to show that any
convex absolutely homogeneous function close enough to V on Sn−1 in uni-
form norm is itself a Lyapunov function for (ΣM ).

We proceed by contradiction: we assume that there exists a sequence of
convex absolutely homogeneous functions (Wk)k∈N converging uniformly to V
on Sn−1 as k goes to infinity and such that each Wk is not strictly decreasing
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along at least one trajectory of the system. In particular the derivative of Wk

along such a trajectory is nonnegative on a set of times of positive measure.
By Lemma 2.8 and absolute homogeneity of Wk, we deduce that there exist
xk ∈ Sn−1 and Mk ∈ M such that, for every fixed lk ∈ ∂Wk(xk), one has
l⊤k Mkxk ≥ 0. By compactness, we may assume that xk tends to x̄ ∈ Sn−1

as k goes to infinity. Then, by [14, Theorem 24.5], lk converges to ∇V (x̄),
so that limk→∞∇V (x̄)⊤M̄kx̄ = limk→∞ l⊤k Mkxk ≥ 0. However, it follows
by the choice of V and Proposition 2.6 that ∇V (x̄)⊤M̄kx̄ ≤ −1, yielding a
contradiction.

Remark 3.2. By the absolute homogeneity property, the statement of Propo-
sition 3.1 could be equivalently reformulated by fixing δ = 1.

As an application of the previous result, two classical examples of uni-
versal classes of Lyapunov functions (cf. [3, 11, 12, 13]) are recalled in the
following corollary.

Corollary 3.3. The family of polyhedral functions {maxk=1,...,N |l⊤k x| | lk ∈

Rn, N ∈ N} and that of homogeneous sums of squares {
∑N

k=1(l
⊤
k x)

2d | lk ∈
Rn, d, N ∈ N} are universal classes of Lyapunov functions.

Proof. Let V be a convex absolutely homogeneous function of degree one.
Let (xi)i∈N be a dense sequence in Sn−1, and li ∈ ∂V (xi). We consider
the increasing sequence of absolutely homogeneous functions of degree one
defined by

Wi(x) = max
j=1,...,i

|l⊤j x|.

Observe that each Wi is convex and Wi(x) ≤ V (x) for every x ∈ Rn. Indeed

|l⊤j x| = max{l⊤j x, l
⊤
j (−x)}

= max{l⊤j (x− xj), l
⊤
j (−x− xj)}+ l⊤j xj

≤ V (x)− V (xj) + l⊤j xj

= V (x),

for every positive integer j, by definition of subgradient and since V (x) =
V (−x) and V (xj) = l⊤j xj. We deduce that Wi(xk) = V (xk) for every k ∈ N

and i ≥ k, hence limi→∞Wi(xk) = V (xk) and we can apply [14, Theo-
rem 10.8] to conclude that the sequence of functions Wi converges to V
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uniformly on Sn−1. By applying Proposition 3.1 we get that the family of
polyhedral functions is a universal class of Lyapunov functions.

Let us now consider the absolutely homogeneous functions of degree one

Zi(x) =

(

i
∑

j=1

|l⊤j x|
2i

)
1

2i

.

The function Zi is convex since it is the composition of the 2i-norm on R
i,

i.e., ‖y‖2i =
(

∑i

j=1 y
2i
j

)
1

2i

for y ∈ Ri, with the linear function from Rn

to Ri mapping x to (l⊤1 x, . . . , l
⊤
i x)

⊤. Moreover it is immediate to see that

Wi(x) ≤ Zi(x) ≤ i
1

2iWi(x), and in particular Zi tends to Wi uniformly on
Sn−1 as d goes to infinity. By applying again Proposition 3.1, it follows that
the family of homogeneous sums of squares is a universal class of Lyapunov
functions.

Remark 3.4. According to Remark 2.3, the first part of Corollary 3.3 re-
mains valid if one replaces the piecewise linear functions maxk=1,...,N |l⊤k x|
with the functions

(

maxk=1,...,N |l⊤k x|
)q

= maxk=1,...,N |l⊤k x|
q, for any given

q > 1. In particular, for q = 2, we have that the family of piecewise quadratic
functions is a universal class of Lyapunov functions.

Remark 3.5. The proof of Proposition 3.1 relies on the fact that, when-
ever a linear switched system is uniformly exponentially stable, there exists a
common Lyapunov function which is convex and homogeneous. In the clas-
sical construction, convexity and homogeneity are direct consequences of the
convexity and homogeneity of the map x0 7→ ‖ΦA(t, 0)x0‖ for given t ≥ 0
and A ∈ Sarb(M ). Proposition 3.1, and hence Corollary 3.3, can then be
extended to any class of nonlinear switched systems

ẋ(t) = fσ(t)(x(t)), σ(t) ∈ Σ,

with Σ ⊂ Rm a bounded set of parameters, satisfying the following conditions:

• fσ is 1-homogeneous for every σ ∈ Σ, that is fσ(λx) = λfσ(x) for every
x ∈ R

n and λ ∈ R,

• for every R > 0, {fσ|B(0,R) | σ ∈ Σ} is a compact subset of C(B(0, R),Rn),

• the class of admissible switching laws is L∞(R+,Σ),
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• denoting by x(t, x0, σ(·)) the solution at time t of the system starting at
x0 and corresponding to the switching law σ ∈ L∞(R+,Σ), the function
x0 7→ ‖x(t, x0, σ(·))‖ is convex.

4 Negative universality results

Next, we provide restrictions on the classes of functions which may be candi-
date to be universal. For this purpose, we introduce the following technical
result.

Lemma 4.1. Let M1,M2 be bounded subsets of Mn(R) and assume that
(ΣM1

) is uniformly stable. For ν > 0, denote by M ν
2 the set of matrices of

the form M − νIdn for M ∈ M2, where Idn is the n× n identity matrix. Set
M = M1 ∪ M ν

2 . Then, the switched system (ΣM ) is uniformly stable for
ν > 0 large enough.

Proof. Proposition 2.7 guarantees the existence of a convex nonstrict Lya-
punov function V for (ΣM1

), absolutely homogeneous of degree one. Intu-
itively speaking, the lemma follows from the fact that, for λ large enough,
the vectors Mx, with M ∈ M λ

2 and x ∈ Rn, point towards the interior of
the sublevel set V −1([0, V (x)]). Let us formalize this idea. Since l⊤x = V (x)
whenever l ∈ ∂V (x), by boundedness of M2 and of ∪x∈V −1(1)∂V (x) [14, The-
orem 24.7], for λ > 0 large enough one has l⊤(M −λIdn)x = l⊤Mx−λl⊤x =
l⊤Mx − λ < 0 for every M ∈ M2, x ∈ V −1(1), and l ∈ ∂V (x). The result is
then an immediate consequence of Proposition 2.9.

Theorem 4.2. Let n ≥ 2 and P be a compact subset of the space of analytic
functions from Rn to R endowed with the topology of uniform convergence
on bounded sets. Assume that P does not contain the zero function. Then P
cannot be a universal class of Lyapunov functions.

Proof. We start by showing the theorem in the case n = 2. We proceed by
contradiction, assuming that every uniformly exponentially stable switched
system in the case where M consists of two matrices in M2(R) admits a
Lyapunov function in P. We consider a switched system corresponding to
M 0 = {M0

1 ,M
0
2} ⊂ M2(R), where M0

1 ,M
0
2 are Hurwitz, the correspond-

ing trajectories rotate clockwise around the origin, the system is uniformly
stable, but not attractive, and starting from every initial nonzero condition
there exists a unique periodic trajectory, with four switches per period. The
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existence of such a system is obtained in [2, Theorem 1], where it corre-
sponds to the case S4, R = 1. In particular, there exist t1, t2 > 0 such
that et1M

0
1 et2M

0
2 has an eigenvalue equal to −1, corresponding to an eigenvec-

tor x0. Set T = t1 + t2 and consider the switched systems associated with
M ε = {Mε

1 ,M
ε
2} ⊂ M2(R), where Mε

i = M0
i − εId2 for i = 1, 2. For ε ≥ 0

we consider the T -periodic switching sequence Aε(·) which takes values Mε
1

for t ∈ [0, t1) and Mε
2 for t ∈ [t1, T ).

Since λ(M ε) = −ε, system (ΣM ε) is uniformly exponentially stable for
ε > 0. Hence, by assumption, it admits a Lyapunov function Vε(·) in P.
Since the latter is compact, there exists a sequence (εk)k∈N converging to
zero such that (Vεk)k∈N converges to some V̄ ∈ P. Moreover, for every t ≥ 0,

V̄ (ΦA0(t, 0)x0) = lim
k→∞

Vεk(ΦAε
k (t, 0)x0)

≤ lim
k→∞

Vεk(x0) = V̄ (x0).

Since V̄ (ΦA0(2T, 0)x0) = V̄ (x0) we deduce that V̄ is constant along the
trajectory ΦA0(·, 0)x0. The function t 7→ V̄ (etM

0
1x0) is analytic, being the

composition of analytic functions, and it is constantly equal to V̄ (x0) for t ∈
[0, t1]. By analyticity, t 7→ V̄ (etM

0
1x0) is constant for all t > 0 and therefore

it must be identically equal to 0 since V̄ (limt→∞ etM
0
1x0) = V̄ (0) = 0. Since

every nonzero point of R2 may be written as µetM
0
1x0 for some positive µ and

t, we deduce that V̄ must be identically zero, contradicting the assumptions
on P.

We are left to prove the result for n > 2. For this purpose we consider
M1 = {M̄0

1 , M̄
0
2} with

M̄0
i =

(

M0
i 0
0 −Idn−2

)

,

where the matrices M0
i are defined as above. Let λ > 0 and M λ

2 be given
by Lemma 4.1 with M2 = {M ∈ so(n) | ‖M‖ ≤ 1}, where so(n) denotes the
space of skew-symmetric n × n matrices. Define M̄ 0 = M1 ∪ M λ

2 and, for
ε > 0, consider the switched system corresponding to M̄ ε = M̄ 0 − εIdn. It
is clear that (ΣM̄ ε) is uniformly exponentially stable for every ε > 0.

Letting Π1,2 be the (x1, x2) plane, i.e., Π1,2 = {x ∈ Rn | x3 = · · · =
xn = 0}, we notice that, starting from every x̄ ∈ Π1,2, there exists a periodic
trajectory of (ΣM̄ 0) lying on Π1,2. The restrictions of functions in P to Π1,2

form a compact set of analytic functions on this plane. As in the case n = 2,
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we prove by contradiction that P is not universal. Assume that there exists
a sequence (Vεk(·))k∈N of Lyapunov functions in P for (ΣM̄ ε

k ) converging to
V̄ ∈ P. We can show as before that V̄ is equal to 0 on Π1,2. Because of the
choice of M2 and by construction of M̄ 0, every 1-dimensional linear subspace
of Rn may be reached in finite time from Π1,2 via a trajectory of (ΣM̄ 0). Since
V̄ is non-increasing along such a trajectory, we deduce that V̄ ≡ 0 on Rn,
obtaining a contradiction.

Remark 4.3. The assumption that the zero function is not in P cannot be
removed from the hypotheses of Theorem 4.2. Indeed, consider the subset
of polynomial functions made of the zero polynomial and, for every N ≥ 0,
the polynomials of degree N whose maximum of the absolute value of the
coefficients is upper bounded by a positive constant cN , where the latter is
chosen in such a way that the supremum on the ball of radius N of the
polynomial is less than or equal to 1/(N + 1). Since the class P contains a
multiple of any polynomial, it is universal by Corollary 3.3. It is also compact
since, given a sequence in P, it has a subsequence with either degree going
to infinity or constant degree. In the former case, the subsequence converges
to zero for the topology of uniform convergence on bounded sets, while in
the latter one the coefficients are uniformly bounded and hence the sequence
admits a further converging subsequence.

As a consequence of the previous result we obtain a partial counterpart
to Corollary 3.3 for homogeneous polynomial functions. Namely, we recover
that, if we impose a uniform bound on the degree, such functions do not form
a universal class of Lyapunov functions, as already established in [9].

Corollary 4.4. For every n ≥ 2 and every positive integer m the set of
polynomial functions of degree at most m from R

n to R is not a universal
class of Lyapunov functions.

Proof. Without loss of generality we normalize the polynomial functions as-
suming (for instance) that the maximum of the modulus of their coefficients is
equal to 1. In this case the coefficients of the polynomials belong to a compact
subset of an Euclidean space and, since polynomials depend continuously (in
the topology of uniform convergence on bounded sets) on such coefficients,
we are reduced to a compact family of nonzero polynomials. The corollary
then follows as an immediate consequence of the previous theorem.
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The conclusion of Corollary 4.4 can be proved to hold true for functions
involving maxima and minima within a finite family of polynomials such as
the class of polyhedral functions V of the form

V (x) = max{|l⊤1 x|, . . . , |l
⊤
Nx|}

= max{l⊤1 x, . . . , l
⊤
Nx,−l⊤1 x, . . . ,−l⊤Nx},

with l1, . . . , lN ∈ R
n, where N is fixed. This partial counterpart to Corol-

lary 3.3 is a consequence of the following more general result.

Theorem 4.5. Let n ≥ 2 and Pn
d be the family of polynomial functions in

R
n of degree at most d and l be a positive integer. Consider the family

Pn
d,l = {V ∈ C(Rn,R) | ∃V1, . . . , Vl ∈ Pn

d

s.t. V (x) ∈ {V1(x), . . . , Vl(x)}, ∀x ∈ R
n}.

Then, Pn
d,l is not universal.

Proof. We first claim that if Pn
d,l is universal, the same is true for P2

d,l. Indeed,
for every M ⊂ M2(R) such that (ΣM ) is uniformly exponentially stable,

consider M̂ ⊂ Mn(R) given by

M̂ =

{(

M 0
0 −Idn−2

)

| M ∈ M

}

.

If V̂ ∈ Pn
d,l is a common Lyapunov function for (Σ

M̂
), then V : R2 ∋ x 7→

V̂ (x, 0) is a common Lyapunov function for (ΣM ) and V ∈ P2
d,l.

We are left to prove that P2
d,l is not universal. Consider the switched

systems (ΣM ε) introduced in the proof of Theorem 4.2, which are uniformly
exponentially stable for ε > 0, and only uniformly stable for ε = 0. Assume
by contradiction that P2

d,l is universal and, in particular, that for every ε > 0
there exists a Lyapunov function V ε ∈ P2

d,l for (ΣM ε). By definition of P2
d,l,

for every ε > 0 there exist l polynomials P ε
1 , . . . , P

ε
l of degree at most d such

that V ε(x) ∈ {P ε
1 (x), . . . , P

ε
l (x)}. Given j, k ∈ {1, . . . , l}, we investigate the

set of zeroes of the polynomial Qε
jk defined as the homogeneous polynomial

corresponding to the terms of maximal degree of P ε
j − P ε

k . For this purpose,
recall that every homogeneous polynomial Q of positive degree m may be
factorized as Q =

∏m

k=1(αkx1 + βkx2), where αk, βk ∈ C for k = 1, . . . , m,
so that its zeroes correspond to the intersection of the unit circle S1 with at
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most m lines through the origin. Hence, it follows that either Qε
jk ≡ 0 (i.e.,

P ε
j ≡ P ε

k ) or Q
ε
jk vanishes at most 2d times on the unit circle. Moreover, for

every ε > 0, the integer N = 2d
(

l−1
2

)

+1 is a strict upper bound for the total
number of zeroes of Qε

jk for j, k ∈ {1, . . . , l}. Partitioning the circle into N
arcs C1, . . . , CN of equal length, for every ε > 0 there exists an arc Cnε

which
contains no zero of the nontrivial polynomials Qε

jk in its interior. Denote by
Anε

the closed middle third of Cnε
.

We next claim that for every ε > 0 there exists νε > 0 large enough
such that the restriction of V ε to the dilated arc νεAnε

coincides with the
restriction to the same arc of one of the polynomials P ε

1 , . . . , P
ε
l . By definition

of the function V ε and taking into account its continuity, it is enough to prove
that, for every ε > 0 there exists νε > 0 large enough such that, in the interior
of the arc νεAnε

, one has for every j, k ∈ {1, . . . , l} that either P ε
j ≡ P ε

k or
P ε
j −P ε

k is never vanishing. To see that, it is enough to prove that if Qε
jk does

not vanish on Anε
then P ε

j − P ε
k does not vanish on νεAnε

for νε > 0 large
enough independent of j, k. In that case, one has, for ν > 0 large enough,
x ∈ S1 and j, k ∈ {1, . . . , l},

(P ε
j − P ε

k )(νx) = νd′
(

Qε
jk(x) + o(1)

)

,

where d′ is the positive degree of Qε
jk and o(1) is a function of x and ν

tending to 0 as ν tends to infinity uniformly with respect to x ∈ S1 and
j, k ∈ {1, . . . , l}. This concludes the proof of the claim.

Since the arcs A1, . . . ,AN do not depend on ε, there exist one of them,
denoted by A, and sequences (εm)m∈N, (νm)m∈N in (0,+∞), and (Vm)m∈N in
P2

d such that limm→∞ εm = 0 and V εm = Vm on νA for every m ∈ N and
every ν ≥ νm. Let V̂m ∈ P2

d be the homogeneous term of maximal degree of
Vm. Notice that

V̂m(x) = lim
ν→+∞

ν−dmVm(νx), ∀x ∈ R
2,

where dm denotes the degree of Vm. Up to normalizing V εm , we may assume
that the maximum of the moduli of the coefficients of the polynomial V̂j is

equal to 1. Thus, up to extracting a subsequence, V̂m converges uniformly
on compact sets to some nonzero V̄ ∈ P2

d .
Similarly to the proof of Theorem 4.2, we can construct a periodic tra-

jectory t 7→ ΦA0(t, 0)x̄ starting at x̄ in the interior of the arc A, with
A0(·) piecewise constant taking values in M 0. Consider the switching laws
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Aε(·) = A0(·) − εId2 taking values in M ε. For every t ≥ 0 such that
ΦA0(t, 0)x̄ ∈ A and for every m ∈ N, we have

V̂m(ΦAεm (t, 0)x̄) = lim
ν→+∞

ν−dmVm(νΦAεm (t, 0)x̄)

= lim
ν→+∞

ν−dmV εm(ΦAεm (t, 0)νx̄)

≤ lim
ν→+∞

ν−dmV εm(νx̄)

= lim
ν→+∞

ν−dmVm(νx̄) = V̂m(x̄),

and therefore

V̄ (ΦA0(t, 0)x̄) = lim
m→∞

V̂m(ΦAεm (t, 0)x̄)

≤ lim
m→∞

V̂m(x̄) = V̄ (x̄).

We then deduce that t 7→ V̄ (ΦA0(t, 0)x̄0) is constant on {t ≥ 0 | ΦA0(t, 0)x̄0 ∈
A}. Moreover ΦA0(t, 0) = etM

0
i for some i = 1, 2, for t small enough, and by

repeating the argument in the proof of Theorem 4.2 we obtain that V̄ ≡ 0,
yielding a contradiction.
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