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Abstract

This paper presents a novel method for stability analysis of a wide class of linear, time-delay systems (TDS), including retarded,
incommensurate and distributed delays. The proposed method is based on frequency domain analysis and application of
Rouché’s theorem. Given a parametrized TDS and an arbitrary parametric point, the proposed method is capable of identifying
the surrounding region in the parametric space for which the number of unstable poles remains invariant. First, a procedure
for investigating stability along a line is developed. Then, the results are extended by application of Hölder’s inequality to
investigate stability within a region. The proposed method is uniformly applicable to parameters of different types (simple
delays, distributed delay limits, time constants, etc.), as illustrated by examples.
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1 Introduction

Time delays are effectively used to model a wide range
of physical, economic, social and biological phenom-
ena. Examples include modeling industrial processes
and their control, epidemic dynamics, operations re-
search and computer network flows. TDS are infinite-
dimensional, rendering their behavioral analysis more
challenging as compared to their finite-dimensional
counterparts.

The methodology presented in this paper performs
stability analysis in a given parametric space. Thus,
it is natural to compare it to D-partitioning methods
(Neimark (1949); Gryazina (2004); Neimark (1998); Lee
& Hsu (1969); El’sgol’ts & Norkin (1973)). Such meth-
ods view the parametric space as being split into mul-
tiple partitions, with an invariant number of unstable
poles inside each individual partition. In that context,
the proposed method determines one such partition,
starting from any of its interior points. The method
finds the entire partition, regardless of its shape. The
stability can be investigated with respect to both delays
and other types of parameters.

⋆ This paper was not presented at any IFAC meeting. Cor-
responding author Vukan Turkulov. Tel. +381621829124

Email addresses: vukan_turkulov@uns.ac.rs (Vukan
Turkulov), rapaja@uns.ac.rs (Milan R. Rapaić),
firstname.lastname@ims-bordeaux.fr (Rachid Malti).

Similarities can also be drawn towards methods which
determine the parametric stability crossing set (SCS).
The SCS is defined as the collection of surfaces in the
parametric space for which there is at least one sys-
tem pole on the imaginary axis. Such approaches have
been successfully developed for retarded systems with
two and three independent delays (Hale & Huang (1993);
Gu, Niculescu & Chen (2005); Sipahi & Olgac (2005);
Gu & Naghnaeian (2011)), providing insightful graphi-
cal representation of stability equivalence regions. Simi-
lar methods have been proposed in the domain of robust
control (Morărescu, Niculescu & Gu (2006)). Alterna-
tively, instead of computing the SCS in a high dimen-
sional parametric space, it is possible to directly com-
pute the projection of SCS to a low dimensional space
(Sipahi & Delice (2009); Delice & Sipahi (2010)). Finally,
SCS-based methods may be used to determine the sta-
bility radius of a given parametric point (Gu, Niculescu
& Chen (2007)). The method proposed in the present pa-
per bears similarities with frequency sweeping stability
analysis methods, such as the ones proposed in (Chen &
Latchman, 1995; Niculescu & Chen, 1999; Li, Niculescu
& Çela, 2013, 2015, 2017). The nature of similarities is
technical, as the proposed method involves frequency
sweeping tests. On the other hand, the proposed method
differs from the aforementioned ones in terms of prob-
lem formulation, classes of applicable systems and/or the
resulting conservatism. The stability boundary in the
parametric space can also be found by approximating
an infinite-dimensional system with a finite one, as pro-
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posed in Breda, Maset & Vermiglio (2009). The method
proposed in this work uses no such approximations.

The methodology proposed in this paper is also appli-
cable to systems containing distributed delays. Stability
analysis of such systems is challenging due to their form,
which is less well-behaved compared to their discrete
delay counterparts. Interesting techniques for stability
analysis of such systems can be found in Morărescu,
Niculescu & Gu (2007); Gu, Kharitonov & Chen (2003);
Zeng, He, Wu & She (2015). General behavioral analy-
sis of TDS can be found in papers such as Datko (1978);
Cooke & Grossman (1982); Bellman & Cooke (1963);
Michiels & Niculescu (2007). An overview of existing
TDS stability analysis methods is provided in several
books, including Dugard & Verriest (1998); Gu et al.
(2003); Niculescu & Gu (2004); Wu, He & She (2010);
Fridman (2014); Michiels & Niculescu (2014).

The strengths of the presented method are summarized
as follows. Firstly, it allows determining whether two
parametric points have the same stability characteris-
tics with an algorithmic complexity independent of the
number of parameters, when both points belong to the
same convex stability equivalence region. Secondly, the
entire stability equivalence region is determined with-
out any conservatism. It is worth emphasizing that the
method is applicable to a broad class of linear TDS, in-
cluding retarded, incommensurate and distributed delay
systems. A simplified methodology, giving stability con-
ditions along a parametric line in the case of a specific
system involving two delays, was previously considered
in Turkulov, Rapaić & Malti (2019).

Notations. The paper utilizes standard mathemati-
cal notations. Symbol s denotes the Laplace variable.
Angled brackets ⟨·, ·⟩ represent the dot product. The
p-norm of a vector x is denoted as ||x||p. The set of
non-negative real numbers is denoted as R+

0 and the set
of non-negative integers by N0. Boundary of set X is
denoted ∂X and the interior of set X is denoted int

(
X
)
.

The expressions ”left-hand side” and ”right-hand side”
are abbreviated to LHS and RHS, respectively. The
Bromwich-Wagner contour enveloping the entire right
half of the complex plane is denoted as C and defined as

C = Ca ∪ Cc
Ca = {s = jω | ω ∈ R}

Cc =
{
s = lim

ρ→∞
ρejφ

∣∣∣ φ ∈
(
−π

2
,
π

2

)} (1)

The characteristic function of a linear TDS is defined as

f : C× T → C, (2)

where T ⊂ (R+
0 )

n denotes a parametric space. A para-
metric point is denoted as τ = [τ1, τ2, . . . , τn] ∈ T . The

gradient vector field of f over the parametric space is
denoted as ∇f . NUf (τ ) designates the number of zeros
of the characteristic function f(s, τ ) with non-negative
real part, where each zero is counted as many times as its
multiplicity. The set of all parametric points of f(s, τ )
sharing the same number of zeros with non-negative real
part as a starting point τ0 ∈ T is defined as

M#
f (τ

0) = {τ ∈ T | NUf (τ ) = NUf (τ
0)}. (3)

Define the maximum surrounding stability equivalence
region of τ0, Mf (τ

0), as a set of points τ satisfying the
following conditions:

(1) τ ∈ M#
f (τ

0) ⊂ T
(2) There exists a path P which connects τ0 with τ ,

such that P ⊂ int
(
M#

f (τ
0)
)
.

Define “stability equivalence segment (or region)” of f as
the segment (or region) that has an equivalent number
of unstable poles, i.e. for which NUf (τ ) is invariant.
When NUf (τ ) = 0, it designates a stability segment (or
region). When NUf (τ ) > 0, it designates an instability
segment (or region) having the same number of unstable
poles.

Paper outline. The paper is organized as follows: sec-
tion 2 defines problems considered in the remainder of
the paper. The main results of the paper are presented
in sections 3 and 4. Section 3 lays out the theory for ex-
tending the stability along a line, with additional adap-
tations well-suited for retarded TDS. Section 4 extends
the methodology to analyze stability within a region.
Methods presented in sections 3 and 4 are illustrated on
examples with retarded and non-retarded TDS. Finally,
section 5 presents a short summary with several closing
comments.

2 Problem definition

Consider a linear TDS with a characteristic function
f(s, τ ) given in an explicit form. Starting from a para-
metric point τ0 ∈ T , two versions of the problem are
defined:

(P1) Stability equivalent segment. Find the maxi-
mum segment E ⊂ T along a predefined direc-
tion originating from τ0 such that NUf (τ

0) =
NUf (τ ),∀τ ∈ E .

(P2) Stability equivalence region. Find the maxi-
mum stability region Mf (τ

0), surrounding τ0.

Likewise, the paper presents two versions of the method
(line-based in section 3 and region-based in section 4) for
solving both problems. For the method to be applicable,
the following hypotheses must hold:
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(H1) System characteristic function must be holomor-
phic in the open right half complex-plane, continu-
ous on the imaginary axis for all τ ∈ T and contin-
uously differentiable with respect to τ in the closed
right half complex-plane. These conditions hold for
a majority of TDS, but they fail for most systems
with spatially distributed and/or fractional dynam-
ics.

(H2) The characteristic function must satisfy

lim
ρ→∞

∣∣f(ρejφ, τA)
∣∣∣∣∣∫ τB

τA ⟨∇f(ρejφ, τ ), dτ ⟩
∣∣∣ = ∞, (4)

∀τA, τB ∈ T , ∀φ ∈
[
−π

2 ,
π
2

]
, where

∫ τB

τA denotes a
line integral along a curve γ connecting points τA

and τB such that γ ⊂ T .

The hypotheses (H1) and (H2) are the only conditions
for the results of this paper to hold. These hypotheses
are satisfied by a wide class of systems, including all re-
tarded and some distributed delay systems. For exam-
ple, it can easily be proven that (H1) and (H2) hold for
all characteristic functions of the form

f(s, τ ) = sm +

m−1∑
i=0

si

(
n∑

k=1

αi,k(τ )e
−sβi,k(τ )

)
, (5)

where αi,k(τ ), βi,k(τ ) : T → R are differentiable func-
tions for i = 0, 1, · · · ,m − 1, k = 1, 2, · · · , n and
βi,k(τ ) ≥ 0,∀τ ∈ T .

Although the results, presented in sections 3 and 4, are
valid for all kind of TDS satisfying (H1) and (H2), spe-
cial attention is given to TDS of retarded type as they
introduce further simplifications to the established re-
sults. Finally, it is important to stress that the stability
addressed in this paper is of exponential type. A sim-
ilar method, investigating BIBO stability of fractional
non-commensurate systems subject to perturbations in
differentiation orders, is proposed in Rapaić & Malti
(2019).

3 Stability equivalence along a line

In this section, a solution to problem (P1) is obtained.
Let us characterize variations of τ along a line starting
from τ0 by a single scalar non-negative parameter θ as

τ (θ) = τ0 + θτd, θ ≥ 0 (6)

where τd is an arbitrarily chosen unit direction vector.
Define the starting value of θ as θ0 = 0, corresponding
to τ (0) = τ0. For simplicity, in this section, the charac-
teristic function is expressed as f(s, τ (θ)) ≡ f(s, θ). The
Problem (P1) reduces to finding the maximum value of

θ for which the number of non-negative zeros of f is pre-
served. Such stability-limiting value of θ is defined as

θlim = sup
{
θ∗
∣∣∣NUf (τ (θ)) = NUf (τ0) , ∀θ ∈ [θ0, θ

∗)
}
.

(7)

3.1 Sufficient condition

As a first step towards finding θlim, sufficient stability
equivalence condition along a line is provided.

Theorem 1 Let f satisfy hypotheses (H1) and (H2). Let
θ0 ≥ 0 be an initial point such that f(jω, τ (θ0)) ̸= 0,∀ω ∈
R. Let τ (θ) be defined as in (6). Then,

NUf (τ (θ0)) = NUf (τ (θ0 +∆))

holds for all 0 ≤ ∆ < ∆(θ0), where

∆(θ0) = min
ω∈R+

0

|f(jω, θ0)|

max
θ0≤β≤θ0+∆(θ0)

∣∣∣∂f
∂θ

(jω, θ = β)
∣∣∣ . (8)

PROOF. Due to (H1), Rouché’s theorem can be ap-
plied to f as

|f(s, θ0 +∆)− f(s, θ0)| < |f(s, θ0)|,∀s ∈ C ⇒
NUf (τ (θ0)) = NUf (τ (θ0 +∆)). (9)

Furthermore, the fundamental theorem of calculus can
be applied to the inequality in (9), resulting in∣∣∣∣∣

∫ θ0+∆

θ0

∂f

∂θ
(s, θ = β)dβ

∣∣∣∣∣ < |f(s, θ0)|. (10)

Due to (H2), inequality (10) holds ∀s ∈ Cc. Taking the
symmetry of f(s, θ) into account, further analysis is re-
stricted to s = jω,∀ω ∈ R+

0 . Notice that∣∣∣∣∣
∫ θ0+∆

θ0

∂f

∂θ
(jω, θ = β)dβ

∣∣∣∣∣ ≤∫ θ0+∆

θ0

∣∣∣∣∣∂f∂θ (jω, θ = β)

∣∣∣∣∣dβ ≤

∆ max
θ0≤β≤θ0+∆

∣∣∣∂f
∂θ

(jω, θ = β)
∣∣∣. (11)

Introducing the conservative bound (11) into (10) yields

∆ · max
θ0≤β≤θ0+∆

∣∣∣∂f
∂θ

(jω, θ = β)
∣∣∣ < |f(jω, θ0)|. (12)
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The LHS of (12) is non-decreasing, as a product of two
non-decreasing functions. Consequently, if inequality
(12) holds for some value of (θ0+∆), it also holds for all
values of β ∈ [θ0, θ0 +∆]. Based on this fact, (12) yields

∆ <
|f(jω, θ0)|

max
θ0≤β≤θ0+∆

∣∣∣∂f
∂θ

(jω, θ = β)
∣∣∣ . (13)

Steps smaller than ∆ retain stability if (13) holds ∀ω ∈
R+

0 . Thus, a valid step limit can be obtained by finding
the minimum of (13) with respect to ω (the worst-case
scenario), resulting in (8). In deriving (13), the maxi-
mum is assumed to be different from zero. If it equals
zero, then (12) implies that f is locally independent of θ
and that ∆ can be further increased. Hence, (13) holds
and the proof is concluded. 2

Remark 2 Theorem 1 determines a non-maximal sta-
bility equivalence segment along the line (6). Its compu-
tational complexity is independent of n, the dimension of
τ , as only the scalar ∆ is computed regardless of n.

Remark 3 The maximal step size ∆ appears on both
sides of (8), making the expression circular. However,
the LHS of (8) is strictly increasing, while the RHS is
non-increasing. Thus, a valid value of the (not necessarily
maximal) step size ∆ can be found by bisection up to a
certain tolerance threshold. Any conservatism introduced
at this point is overcome by iterating the method, as shown
in section 3.2. Lastly, for retarded TDS the RHS of (8)
can be substituted by a conservative form, independent of
∆ (hence removing circularity), as discussed below.

Application to retarded TDS

Although applicable to a wide class of linear systems,
the proposed method is particularly simple in case of
retarded TDS, which characteristic function is given by

f(s, τ ) = sm +

n∑
i=1

Pi(s)e
−sτi , (14)

where Pi(s) are polynomials with degPi(s) < m. Plug-
ging (6) into (14) yields

f(s, θ) = sm +

n∑
i=1

fi(s)e
−sθai , (15)

where ai are real scalars and fi(s) are complex functions,
independent of θ, that can easily be computed from (14).
This result is important because of the convenient form
of (15), which however is not limited to retarded TDS.
Namely, to implement the general form (8), evaluation
of |f(jω, θ0)| and maxθ0≤β≤θ0+∆ |∂f∂θ (jω, β)| is required.

The former expression is directly evaluated from (15).
For the latter, observe that

max
θ0≤β≤θ0+∆

∣∣∣∂f
∂θ

(jω, θ = β)
∣∣∣ ≤ n∑

i=1

ω
∣∣aifi(jω)|, (16)

which yields an elegant expression, albeit conservative.
Hence, the following corollary to Theorem 1 is formu-
lated.

Corollary 4 Let f be defined as in (15). Let θ0 ≥ 0 be
an initial value such that f(jω, τ (θ0)) ̸= 0,∀ω ∈ R. Let
τ (θ) be defined as in (6). Then,

NUf (τ (θ0)) = NUf (τ (θ0 +∆)) (17)

holds if

∆ < min
ω∈R+

0

|f(jω, θ)|∑n
i=1 ω|aifi(jω)|

. (18)

This corollary presents a convenient alternative to The-
orem 1, since (18) bypasses the circularity of (8).

Remark 5 The RHS of (18) contains a frequency sweep
over ω ∈ R+

0 . However, in case of retarded TDS, the
sweep can be confined to a finite interval as pointed out
in (Michiels & Niculescu, 2014, Proposition 1.12).

3.2 Stability limit

Under assumptions of Theorem 1, by applying (8), one
can obtain a stability equivalence interval defined by the
endpoint

θ1 = θ0 +∆. (19)
The method can now be applied again, taking previously
obtained value θ1 as the new starting point. Formally,
the method can be iterated a certain number of times

θk+1 = θk +∆k, ∀k ∈ N0. (20)

Such an iterative application of the method converges to
the stability boundary, since the resulting sequence θk
exactly converges to θlim, as defined in (7), provided θlim
exists. If θlim does not exist, the sequence θk diverges.
The aforementioned claim is formalized and proven in
the following lemma and theorem.

Lemma 6 Let the hypotheses of Theorem 1 be satisfied.
Let θlim be defined in (7) and let a sequence θk be obtained
by (20), with increments ∆k = η∆(θk), η ∈ (0, 1) and
∆(θk) computed according to (8) in each iteration. Then,
the following statements hold:

(C1) If θlim exists, then θk < θlim,∀k ∈ N0.
(C2) If lim

k→∞
θk exists, then lim

k→∞
θk = θlim.
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PROOF. Claim (C1) is a direct consequence of The-
orem 1, since 0 < η < 1. Claim (C2) can be proven
by contradiction. Assume that limk→∞ θk converges to
some θ# < θlim. As a consequence of (C1), such θ# must
be smaller than θlim. The bare existence of a conver-
gence limit implies that values ∆k get arbitrary small as
k → ∞. This, combined with (8) implies that the value
of

min
ω

|f(jω, θk)| (21)

becomes arbitrary small as k → ∞ and θ → θ#. How-
ever, it is not possible that (21) becomes arbitrarily small
near θ# because:

(1) Function |f(jω, θ)| is continuous with regards to θ.
(2) By definition (7), θlim is the smallest value of θ ∈

[θ0,∞) for which ∃ω ∈ R such that

|f(jω, θ)| = 0. (22)

Thus, ∃α ∈ R+ and ∃ε ∈ R+ such that

min
ω

|f(jω, θ)| > α, ∀θ ∈ (θ# − ε, θ# + ε), (23)

contradicting the assumption that θk → θ#. In other
words, values of ∆k cannot be arbitrarily small in the
neighborhood of any θ# < θlim. 2

Theorem 7 Let the hypotheses of Theorem 1 be satis-
fied. Let θlim be defined in (7) and let a sequence θk be ob-
tained by (20), with increments∆k = η∆(θk), 0 < η < 1,
and ∆(θk) fulfilling (8). If θlim exists, then θk converges
to θlim. Otherwise, θk diverges.

PROOF. Assume that θlim exists. From (8) and since
η > 0, the sequence θk is strictly increasing. From
Lemma 6, the sequence θk will never overshoot θlim.
Hence, the sequence θk must converge to a value in
the interval [θ0, θlim]. From Lemma 6, the only possible
value of convergence in the given interval is θlim.

On the other hand, assume that θlim does not exist. Sim-
ilarly to Lemma 6, the convergence of an increasing se-
quence θk would imply that the values ofminω |f(jω, θk)|
get arbitrary small as k → ∞. This is not possible be-
cause the non-existence of θlim implies that ∃α > 0 such
that

min
ω

|f(jω, θk)| > α, ∀θ > θ0. (24)

Thus, the steps∆k cannot become arbitrarily small, con-
cluding the proof. 2

Implementation issues. The procedure for approxi-
mate evaluation of θlim is presented in Algorithm 1. Nu-
merical implementation of the algorithm introduces is-
sues related to the floating point representation of small

Require: δ > 0,Θ > 0, θ0 ∈ [0,Θ), η ∈ (0, 1)
θk := θ0
∆(θk) := ∞
while η∆(θk) > δ and θk < Θ do

∆(θk) := min
ω

|f(jω, θk)|

maxθk≤β≤θk+∆(θk)

∣∣∣∂f∂θ (jω, θ = β)
∣∣∣

θk := θk + η∆(θk)
k := k + 1

end while
return θlim := θk

Algorithm 1. Approximate computation of θlim

and large numbers. If θk is convergent, then the steps
∆(θk) converge towards zero as θk iteratively increases.
Since the computer precision is finite, a termination cri-
terion is introduced when η∆(θk) becomes smaller than
a prescribed value δ. On the other hand, since the al-
gorithm cannot be run indefinitely, another termination
criterion is introduced when θk becomes larger than a
prescribed value Θ. Hence, if the algorithm returns a
value greater than or equal to Θ, it indicates that either
the sequence is divergent, or that the stability limit θlim
is beyond the considered searching domain. Increasing Θ
mitigates this problem to a certain extent at the cost of
an increased number of iterations. Finally, (8) depends
on finding the global minimum of a function. If the mini-
mum is overestimated due to numerical issues related to
the finite precision of floating point arithmetics, an acci-
dental jump, ∆(θk), of θ beyond the true stability limit,
θlim < Θ, may occur, leading to a wrong evaluation of
θlim. Thus, care must be taken, when performing the
necessary global optimizations, to avoid such accidental
jumps. This is precisely the reason why the scaling fac-
tor η ∈ (0, 1) is introduced in Lemma 6, and Theorem 7.

Remark 8 Theorem 7 determines the maximal stability
equivalence segment along the line (6). Its computational
complexity is independent of n, the dimension of τ .

Remark 9 Instead of extending stability along a line
as in (6), any smooth curve parametrized by a scalar θ,
provided that τ (θ0 = 0) = τ0, could have been chosen.
For example, one might analyze stability along an arc of
an n-sphere.

Example 10 Consider a system modeled by

ẋ(t) = −x(t− τ1)−
∫ 0

−τ2

ekαx(t+ α)dα. (25)

Its stability is investigated with respect to τ1, τ2, and k.

Stability of (25) can be reduced to the analysis of

f(s, τ1, τ2, k) = s2+s(k+e−sτ1)+ke−sτ1+1−e−τ2(k+s),

5



Fig. 1. Stability analysis of Example 10, computed from the
starting point (τ1, τ2, k) = (0.250, 8.000, 0.003)

which fulfills (H1) and (H2). Algorithm 1 is applied
to a manually chosen starting point (τ1, τ2, k) =
(0.250, 8.000, 0.003). The endpoints of obtained stability
equivalence rays are plotted in Fig. 1. 2

Example 11 Consider a system with a characteristic
function given by

f(s, τ ) = s2 + 2se−sτ1 + e−sτ2 . (26)

Its stability is investigated with respect to τ = [τ1, τ2].

Since the system is retarded, the simplified version of
the algorithm (using Corollary 4) is applied. The al-
gorithm is initialized at five different points, for which
the number of unstable poles has been determined using
Cauchy’s argument principle. The results are displayed
in Fig. 2 and compared to the stability crossing set (SCS)
obtained by Gu et al. (2005) for verification purposes.

Although applying the algorithm to obtain a plethora of
rays gives a good sketch of the stability equivalence re-
gion, the result does not guarantee stability equivalence
in a dense set of (τ1, τ2). This shortcoming is overcome
in section 4 by analyzing stability inside a region. 2

4 Stability equivalence within a region

In this section, a solution to problem (P2) is obtained.

4.1 Sufficient condition

Theorem 12 Let f satisfy (H1) and (H2). Let τ0 ∈ T
be any parameter point satisfying f(jω, τ0) ̸= 0,∀ω ∈ R.

0 1 2
τ1

0

1

2

3

τ 2

Origins

NUf = 0

NUf = 2

NUf = 4

SCS

Fig. 2. Stability analysis of Example 11

Let p and q satisfy

1

p
+

1

q
= 1, 1 ≤ p, q ≤ ∞. (27)

Then,

NUf (τ
0) = NUf (τ

0 + v)

holds for every v such that ∥v∥q < εp,q(τ
0), where

εp,q(τ
0) = min

ω∈R+
0

|f(jω, τ0)|
max

||v||q≤εp,q(τ0)
||∇f(jω, τ0 + v)||p

.

(28)

PROOF. To build towards the proof, it is beneficial to
start by analyzing stability equivalence of two arbitrary
parameter points. To that end, define a parameter point
τ as

τ (v) = τ0 + v, (29)

where τ0 ∈ T represents a chosen starting point and v
represents a change vector. The objective is to discuss
the stability equivalence of parameter points τ0 = τ (0)
and τ (v). From Rouché’s theorem, it is known that sta-
bility equivalence of these points is guaranteed if

|f(s, τ (v))− f(s, τ (0))| < |f(s, τ (0))|,∀s ∈ C. (30)

6



The LHS of (30) can further be elaborated to obtain

|f(s, τ (v))− f(s, τ (0))| =

∣∣∣∣∣
∫
γ

〈
∇f(s, τ (r)), dr

〉∣∣∣∣∣ =∣∣∣∣∣
∫ 1

0

〈
∇f(s, τ (r(β))), r′

〉
dβ

∣∣∣∣∣ ≤∫ 1

0

∣∣∣∣∣〈∇f(s, τ (r(β))), r′
〉∣∣∣∣∣dβ,

where r(β) represents parameterization of curve γ which
connects the 0 vector with v for β ∈ [0, 1], and r′ repre-
sents the derivative of r(β) with respect to β. Introduc-
ing the obtained conservative bound in (30), and using
(H2) and the symmetry of f , implies that for every ω > 0∫ 1

0

∣∣∣∣∣〈∇f(jω, τ (r(β))), r′
〉∣∣∣∣∣dβ < |f(jω, τ (0))| .

In order to simplify notation, in the remainder of this
proof f(jω, τ (v)) and∇f(jω, τ (βv)) are denoted as f(v)
and ∇f(βv), respectively. By defining the curve γ as
r(β) = βv and applying Hölder’s inequality,∫ 1

0

∣∣∣∣∣〈∇f(βv),v
〉∣∣∣∣∣dβ ≤

∫ 1

0

||∇f(βv)||p||v||q dβ. (31)

The results presented so far guarantee stability equiva-
lence for a specific change vector v.

Choosing arbitrary positive εp,q, one may notice that
for any v which satisfies ||v||q ≤ εp,q, it is possible to
substitute (31) with a more conservative expression∫ 1

0

||∇f(βv)||p ||v||q dβ ≤ max
||v||q<εp,q

||∇f(v)||p εp,q ,

derived from the fact that the integral of a positive quan-
tity is always less or equal than the product of the max-
imum of the integrand by the length of the integration
interval. Finally, the upper bound on εp,q, denoted as
εp,q(τ

0), defining the permissible stability equivalence
region, is obtained as in (28), concluding the proof. 2

Remark 13 Theorem 12 determines a non-maximal
stability equivalence region surrounding a given paramet-
ric point. Its computational complexity is independent of
n, the dimension of τ , as only the scalar εp,q is computed
regardless of n.

Remark 14 The inequality (28) is circular, since
εp,q(τ

0) appears on both sides. Similarly to (8), the
monotonicity of the involved expressions allows finding
a valid value of εp,q by bisection. Moreover, specific sys-
tem types (such as (14)) allow direct evaluation of the
RHS, removing the circularity, as discussed below.

Application to retarded TDS

Analogously to the line-based version of the method, the
convenient form of retarded TDS characteristic function
given by (14) can be utilized to further simplify (28). To
determine ||∇f(jω, τ )||p in (28), it is beneficial to first
evaluate partial derivatives of f with regards to each
component τi. Assuming ω ≥ 0, observe that∣∣∣∣ ∂f∂τi (jω, τ )

∣∣∣∣ = ∣∣∣∣− jωPi(jω)e−jωτi

∣∣∣∣ = ω

∣∣∣∣Pi(jω)
∣∣∣∣ (32)

which allows expressing the norm of ∇f as

||∇f(jω, τ )||p =

(
n∑

i=1

(
ω
∣∣Pi(jω)

∣∣)p) 1
p

(33)

which does not depend on τ and thus removes the cir-
cularity from (28).

Corollary 15 Let f be defined as in (14). Let τ0 ∈ T
be any parameter point satisfying f(jω, τ0) ̸= 0,∀ω ∈ R.
Let p and q satisfy (27). Then,

NUf (τ
0) = NUf (τ

0 + v),

holds if

||v||q < min
ω∈R+

0

|f(jω, τ0)|(∑n
i=1

(
ω|Pi(jω)|

)p) 1
p

. (34)

The application of (28) is analogous to performing a sin-
gle step of the line version algorithm. Likewise, Remark
5 is applicable to (34) as well. Fig. 3 shows the results
of applying Corollary 15 to Example 11, with different
shapes corresponding to different combinations of (p, q)
and different starting points. The number of unstable
poles is equivalent for all the points inside each individ-
ual region.

4.2 Maximal stability equivalence region

Analogously to the line-based version, an iterative
method for finding the maximal surrounding parametric
region is established, in which the number of unstable
poles is invariant. First, choose p and q satisfying (27),
and η ∈ (0, 1). Choose a starting point τ 0 and define a
set S0 as

S0 = {τ0}. (35)
Construct a monotonously growing sequence of sets

Sk+1 = Sk ∪
⋃

τ∈∂Sk

Wη(τ ), ∀k ∈ N0 , (36)

7
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1
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SCS

Starting points

(p, q) = (1, ∞)

(p, q) = (3/2, 3)

(p, q) = (2, 2)

(p, q) = (4, 4/3)

(p, q) = (9, 9/8)

Fig. 3. Results of applying Corollary 15 to various parametric
points in Example 11.

where

Wη(τ ) =
{
(τ + v) ∈ T

∣∣∣ ||v||q ≤ ηεp,q(τ )
}

, (37)

with εp,q(τ ) defined in (28). It is now established that
Sk converges to Mf (τ

0).

Theorem 16 Let f satisfy (H1) and (H2). Let p and q
satisfy (27). Let τ0 ∈ T be any parameter point satisfying
f(jω, τ0) ̸= 0,∀ω ∈ R. Define Sk, k ≥ 0 as in (35) and
(36). Then,

lim sup
k→∞

Sk = Mf (τ
0). (38)

PROOF. Choose any point τ∗ ∈ Mf (τ
0). By defini-

tion of Mf (τ
0), there exists a path P defined by a con-

tinuous bijective function g : [0, 1] → P ⊂ int
(
Mf (τ

0)
)

such that g(0) = τ0 and g(1) = τ∗. Define the sequence

mk = max
{
x ∈ [0, 1]

∣∣∣ g(x) ∈ Sk

}
. (39)

For any fixed k, the set Sk is closed and bounded, and
therefore compact. Consequently, the maximum in (39)
is well-defined. Define the sequence τk = g(mk), which
represents the farthest point along the path P (refer-
enced from τ0) such that τk ∈ Sk at iteration k. There
are two possible scenarios:

(1) τk−1 ̸= τ∗, implying τk ∈ ∂Sk. In this scenario,
τk is one of the points on which (36) is evaluated
at iteration k.

(2) τk−1 = τ∗, implying that the endpoint τ∗ has
already been reached.

0 5 10 15 20
τ

0.0

0.1

0.2

0.3

k

Origins

NUf = 0

NUf = 2

NUf = 4

NUf = 6

NUf = 8

Fig. 4. Results of iteratively applying (28) to Example 18

Let us further analyze scenario (1). Since τk ∈
int
(
Mf (τ

0)
)
, it holds that |f(jω, τk)| > 0,∀k ∈

N0,∀ω ≥ 0, further implying that the resulting εp,q from
(28) is strictly positive ∀k ∈ N0. Consequently, either
mk = 1, or mk < mk+1, meaning that τk gets strictly
closer to τ ∗ along P at each successive iteration unless
τk = τ∗. Thus, ∃k0 such that τ∗ ∈ Sk,∀k ≥ k0. Since
the same reasoning can be applied to any chosen point
τ∗ ∈ Mf (τ

0), the proof is concluded. 2

Remark 17 In practice, the sequence Sk is constructed
on a finite set of sampled points belonging to ∂Sk, rather
than an infinite set of points as in (36).

Example 18 Consider a distributed delay system mod-
eled by

ẋ(t) = −
∫ 0

−τ

ekαx(t+ α)dα. (40)

Its stability is investigated with respect to τ and k.

Stability of (40) can be reduced to the analysis of

f(s, τ, k) = s2 + sk + 1− e−τ(s+k), (41)

which fulfills (H1) and (H2). Fig. 4 shows the results of
applying (36) to ten different starting points, for which
the number of unstable poles are determined using
Cauchy’s argument principle. The obtained stability
regions are similar regardless which starting point is
chosen in the interior of the represented regions 1 . The
algorithm reached boundaries of the search space in the

1 If a starting point is on the boundary of two regions, then
condition f(jω, τ0) ̸= 0 is not satisfied and Theorems 1, 7,
12 and 16 cannot be applied.
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Fig. 5. Results of iteratively applying (34) to Example 11

positive direction (up and right). This could be an in-
dication that the system is unstable independently of τ
and k in the areas of the parametric space lying beyond
the search region (in these directions). 2

Additionally, Fig. 5 shows the results of iterative appli-
cations of Corollary 15 to Example 11.

Example 19 Consider a system with a characteristic
function given by

f(s, τ ) = (s2 + 1) + (s+ 2)e−τ1s +
√
5e−τ2s (42)

Its stability is investigated with respect to τ = [τ1, τ2].

This example belongs to a class of systems considered
to be degenerated in Gu et al. (2005), thus requiring
special considerations in their work. Contrary to this,
the approach proposed in this paper handles this exam-
ple straightforwardly, with no need for special consider-
ations of any kind. Fig. 6 shows the results of applying
Corollary 15 to (42) starting from 11 different points in
the τ1 versus τ2 plane. Two stability regions exist in the
searching domain. 2

Remark 20 The region-based method can be compared
to methods tackling robust stability and robust control,
such as Gu et al. (2007); Knospe & Roozbehani (2006);
Hinrichsen & Pritchard (1986); Kressner (2006). How-
ever, the problems being solved are slightly different.
When dealing with robust stability problems, the aim is
often to find the stability radius of a given parametric
point (minimal distance from the given parametric point
to the stability crossing set). On the other hand, the
methodology proposed in this paper aims at finding the

0 1 2 3 4 5
τ1

0

1

2

3

4

5

τ 2

Origins

NUf = 0

NUf = 2

NUf = 4

Fig. 6. Results of iteratively applying (34) to Example 19

entire stability equivalence region surrounding a given
parametric point.

5 Conclusions and discussions

This paper presents a new methodology for analyzing
stability of a large class of linear TDS, including re-
tarded and distributed delays. The presented methods
allow finding the maximal line segment and the maxi-
mal region in which the number of unstable poles is in-
variant. The primary comparative advantage of the pro-
posed methodology is that it can be applied in a uniform
manner to a wide class of problems: the only conditions
are captured by hypotheses (H1) and (H2). It is worth
emphasizing, however, that the time complexity of the
line-based Algorithm 1, which allows to reach the bound-
ary of the stability domain in a prescribed direction, is
independent of the dimension of the parametric vector
τ . The method developed in this paper has further been
extended to irrational systems in Turkulov, Rapaić &
Malti (2023). The proposed method is not able to ad-
dress neutral-type systems since they violate hypothe-
sis (H2). Weakening (H2), and consequently extending
the results to neutral-type systems, is an interesting per-
spective of this work. Further perspectives are linked
to establishing a computationally efficient algorithm for
finding the whole or even all stability regions in a pre-
scribed n-dimensional space using the results of either
the line-based stability or the region-based stability.
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